Science.gov

Sample records for shielding analysis methods

  1. Current status of methods for shielding analysis

    SciTech Connect

    Engle, W.W.

    1980-01-01

    Current methods used in shielding analysis and recent improvements in those methods are discussed. The status of methods development is discussed based on needs cited at the 1977 International Conference on Reactor Shielding. Additional areas where methods development is needed are discussed.

  2. Shielding analysis methods available in the scale computational system

    SciTech Connect

    Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.

    1986-01-01

    Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.

  3. Analysis methods for Kevlar shield response to rotor fragments

    NASA Technical Reports Server (NTRS)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  4. Analysis of shield tunnel

    NASA Astrophysics Data System (ADS)

    Ding, W. Q.; Yue, Z. Q.; Tham, L. G.; Zhu, H. H.; Lee, C. F.; Hashimoto, T.

    2004-01-01

    This paper proposes a two-dimensional finite element model for the analysis of shield tunnels by taking into account the construction process which is divided into four stages. The soil is assumed to behave as an elasto-plastic medium whereas the shield is simulated by beam-joint discontinuous model in which curved beam elements and joint elements are used to model the segments and joints, respectively. As grout is usually injected to fill the gap between the lining and the soil, the property parameters of the grout are chosen in such a way that they can reflect the state of the grout at each stage. Furthermore, the contact condition between the soil and lining will change with the construction stage, and therefore, different stress-releasing coefficients are used to account for the changes. To assess the accuracy that can be attained by the method in solving practical problems, the shield tunnelling in the No. 7 Subway Line Project in Osaka, Japan, is used as a case history for our study. The numerical results are compared with those measured in the field. The results presented in the paper show that the proposed numerical procedure can be used to effectively estimate the deformation, stresses and moments experienced by the surrounding soils and the concrete lining segments. The analysis and method presented in this paper can be considered to be useful for other subway construction projects involving shield tunnelling in soft soils. Copyright

  5. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  6. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  7. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  8. Bumper shield analysis

    SciTech Connect

    Oyer, A.T.

    1986-07-01

    To initially examine the effectiveness of a shield surrounding a reentry vehicle, we used the hypervelocity hydrodynamic impact code, LASOIL. We completed a four-by-four matrix of 16 two-dimensional numerical impact simulations of 1-g tungsten cylinders striking circular plates. The variable parameters were the projectile impact velocity (10, 20, 40, and 80 km/s) and the plate thickness (1, 2, 4, and 8 mm). In each case, the projectile was destroyed in the impact. The shield was penetrated but retained negliible momentum from the impact. The resultant debris cloud was low-density debris and vapor.

  9. Pivotably mounted reactor shroud shield and shielding method

    SciTech Connect

    Hankinson, M.F.

    1987-03-31

    A method is described for shielding persons working around a nuclear reactor having a reactor head an a shroud extending upward from the reactor head, comprising: (a) mounting a plurality of swingout arms around the shroud, each swingout arm being pivotable about a respective axis that is substantially vertical and that is fixed with respect to the shroud; (b) positioning a shielding member adjacent a swingout arm with a hoist; (c) pivoting the swingout arm horizontally away from the shroud and toward the hoist; (d) transferring the shielding member from the hoist to the swingout arm so that the swingout arm supports the shielding member; (e) pivoting the swingout arm horizontally back toward the shroud; and (f) repeating steps (b) through (c) until the shroud is substantially surrounded by shielding members.

  10. Comparison of Shielding Effect of Steady State Coherent Synchrotron Radiation Using the Image Charge Method and Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Li, R.; Bohn, C. L.; Bisognano, J. J.

    1997-05-01

    There have been several studies([1] J. S. Nodvick and D. S. Saxon, Phys. Rev.) 96, 180 (1954); [2] S. A. Kheifets and B. Zotter, CERN SL-95-92 (AP), 1995; [3] B. Murphy, S. Krinsky, and R. L. Gluckstern, Phys. Rev. E 35, 2584 (1996). on the shielding effect of the coherent synchrotron radiation (CSR) emitted by a Gaussian bunch on a circular orbit in the center plane between two parallel plates. A functional dependence of the beam and machine parameters was given in [2] using the asymptotic analysis in the frequency domain. It indicates the shielded CSR mainly arises from harmonics n_th < n < n_c, where the threshold harmonic is n_th = √2/3(π ρ /h)^3/2, and harmonic cutoff is nc = ρ/σ (ρ: bend radius, h: spacing between plates, σ_s: bunch rms length). In this paper, we extend the frequency domain analysis to the parameter regime n_th > n_c, and the result is compared with the steady state CSR power obtained using the image charge method.

  11. Thermal neutron shield and method of manufacture

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  12. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.

    PubMed

    Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2016-07-01

    (29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. PMID:27117609

  13. Reliability Methods for Shield Design Process

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  14. Spacesuit Radiation Shield Design Methods

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  15. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  16. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  17. Performance analysis of superconducting generator electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Xia, D.; Xia, Z.

    2015-12-01

    In this paper, the shielding performance of electromagnetic shielding systems is analyzed using the finite element method. Considering the non-iron-core rotor structure of superconducting generators, it is proposed that the stator alternating magnetic field generated under different operating conditions could decompose into oscillating and rotating magnetic field, so that complex issues could be greatly simplified. A 1200KW superconducting generator was analyzed. The distribution of the oscillating magnetic field and the rotating magnetic field in rotor area, which are generated by stator winding currents, and the distribution of the eddy currents in electromagnetic shielding tube, which are induced by these stator winding magnetic fields, are calculated without electromagnetic shielding system and with three different structures of electromagnetic shielding system respectively. On the basis of the results of FEM, the shielding factor of the electromagnetic shielding systems is calculated and the shielding effect of the three different structures on the oscillating magnetic field and the rotating magnetic field is compared. The method and the results in this paper can provide reference for optimal design and loss calculation of superconducting generators.

  18. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  19. Shielding analysis of a small compact space nuclear reactor

    NASA Astrophysics Data System (ADS)

    Woodrow, Lee L., Jr.

    1987-08-01

    The SP-100 reactor, currently in its developmental stage, has a layered tungsten-lithium hydride shield. Studies indicate that this shield configuration is the lightest weight shield. This configuration and three other shielding concepts were analyzed to determine the lightest shield and to determine the shield configuration with the smallest volume. The other concepts were a boron carbide-beryllium layered shield, and a lithium hydride-beryllium shield. FEMP2D and FEMP1D codes were used in this analysis. These codes were developed at Sandia National Laboatory (SNL), using the input from another code, RFCC, which produced enery dependent dose conversion factors, and determined the shields' ability to attenuate the neutron and gamma radiation to permissible dose limits. The results of this analysis show that the lithium hydribe-tungsten layered shield was indeed the lightest weight shield. Volume, not weight, may be the driving factor in determining the shield configuration.

  20. DARHT : integration of shielding design and analysis with facility design /

    SciTech Connect

    Boudrie, R. L.; Brown, T. H.; Gilmore, W. E.; Downing, J. N. , Jr.; Hack, Alan; McClure, D. A.; Nelson, C. A.; Wadlinger, E. Alan; Zumbro, M. V.

    2002-01-01

    The design of the interior portions of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility incorporated shielding and controls from the beginning of the installation of the Accelerators. The purpose of the design and analysis was to demonstrate the adequacy of shielding or to determine the need for additional shielding or controls. Two classes of events were considered: (1) routine operation defined as the annual production of 10,000 2000-ns pulses of electrons at a nominal energy of 20 MeV, some of which are converted to the x-ray imaging beam consisting of four nominal 60-ns pulses over the 2000-ns time frame, and (2) accident case defined as up to 100 2000-ns pulses of electrons accidentally impinging on some metallic surface, thereby producing x rays. Several locations for both classes of events were considered inside and outside of the accelerator hall buildings. The analysis method consisted of the definition of a source term for each case studied and the definition of a model of the shielding and equipment present between the source and the dose areas. A minimal model of the fixed existing or proposed shielding and equipment structures was used for a first approximation. If the resulting dose from the first approximation was below the design goal (1 rem/yr for routine operations, 5 rem for accident cases), then no further investigations were performed. If the result of the first approximation was above our design goals, the model was refined to include existing or proposed shielding and equipment. In some cases existing shielding and equipment were adequate to meet our goals and in some cases additional shielding was added or administrative controls were imposed to protect the workers. It is expected that the radiation shielding design, exclusion area designations, and access control features, will result in low doses to personnel at the DARHT Facility.

  1. WASTE HANDLING BUILDING SHIELD WALL ANALYSIS

    SciTech Connect

    D. Padula

    2000-01-13

    The scope of this analysis is to estimate the shielding wall, ceiling or equivalent door thicknesses that will be required in the Waste Handling Building to maintain the radiation doses to personnel within acceptable limits. The shielding thickness calculated is the minimum required to meet administrative limits, and not necessarily what will be recommended for the final design. The preliminary evaluations will identify the areas which have the greatest impact on mechanical and facility design concepts. The objective is to provide the design teams with the necessary information to assure an efficient and effective design.

  2. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  3. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  4. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  5. Standardized Radiation Shield Design Methods: 2005 HZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  6. Methods and Procedures for Shielding Analyses for the SNS

    SciTech Connect

    Gallmeier, Franz X.; Iverson, Erik B.; Remec, Igor; Lu, Wei; Popova, Irina

    2014-01-01

    In order to provide radiologically safe Spallation Neutron Source operation, shielding analyses are performed according to Oak Ridge National Laboratory internal regulations and to comply with the Code of Federal Regulations. An overview of on-going shielding work for the accelerator facility and neutrons beam lines, methods, used for the analyses, and associated procedures and regulations is presented. Methods used to perform shielding analyses are described as well.

  7. Shielded beam delivery apparatus and method

    DOEpatents

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  8. Dynamical Analysis of the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    McNichols, Andrew Thomas; Teich, Yaron G.; Cannon, John M.

    2015-08-01

    We present a dynamical analysis of the 12 extremely low-mass dwarf galaxies that comprise SHIELD, a product of the Arecibo Legacy Fast ALFA survey (ALFALFA). We use multi-configuration, high spatial (˜ 150 - 350 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution data obtained from 21 cm observations conducted with the Karl G. Jansky Very Large Array. For each source, we attempt to derive an inclination-corrected rotation curve, to calculate the maximum rotation velocity (≤ 30 km s-1 for the survey population), and to further constrain the H I mass. For sources from which a sufficiently precise rotation curve can be derived, we use spatially resolved Spitzer Space Telescope 3.6 and 4.5 μm images to determine the stellar mass as a function of radius. The gaseous and stellar mass estimates are then used to decompose the total dynamical mass values and to obtain neutral gas fractions and relative baryonic content. Characterizing the kinematics of the SHIELD galaxies allows us to draw more general conclusions about the structure and dynamical evolution of low mass dwarf galaxies in the local universe.This work is a result of collaboration with the SHIELD Team and is supported by NSF grant 1211683.

  9. Preliminary Shielding Analysis for HCCB TBM Transport

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  10. Analysis of the new GCFR upper and lower plenum flow-through shields

    SciTech Connect

    Cramer, S.N.; Reed, D.A.; Emmett, M.B.; Rouse, C.A.

    1980-09-14

    Analysis of the proposed GCFR upper and lower plenum flow-through shields has been performed using both discrete ordinate (DOT) and Monte Carlo (MORSE) methods. Several shields having one change of direction in the coolant path (chevron) and two changes of direction (herringbone) were investigated. The shields were modeled as unit cells with periodic boundary conditions. From plenum fluence calculations and design constraints at the reactor vessel liner, it was determined that all the shield configurations analyzed should be adequate for the necessary radiation attenuation.

  11. WAPDEG Analysis of Waste Package and Drip shield Degradation

    SciTech Connect

    K. Mon

    2004-09-29

    [DIRS 170024]) and uses standard mathematical methods to enable easier implementation. The IWPD analysis also provides guidance on implementation of early failures (importance sampling and multinomial distribution usage). These manipulations are evident from standard scientific practices, approaches, or methods and do not require changes to the previously validated models. The IWPD analysis itself (Section 6.4), not the resultant curves from executing the IWPD analysis presented in Section 6.5 (which are for illustrative purposes), is used directly in total system performance assessment (TSPA). The IWPD analysis simulates general corrosion and stress corrosion cracking of the waste package outer barrier and general corrosion of the drip shield. The effects of igneous and seismic events and localized corrosion on drip shield and waste package performance are not evaluated in this report. The outputs of this report are inputs and methodologies used by TSPA to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. The analyses presented in this report are for the current repository design (BSC 2004 [DIRS 168489]).

  12. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique.

    PubMed

    Nasrabadi, M N; Mohammadi, A; Jalali, M

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required. PMID:19328700

  13. Bremsstrahlung converter debris shields: test and analysis

    SciTech Connect

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm/sup 2/) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm/sup 2/, the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm/sup 2/. The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials.

  14. On-orbit analysis of radiation shielding

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Cucinotta, F. A.; Golightly, M. J.; Zapp, N.; Petrov, V.; Wilson, J. W.; Nealy, J. E.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    Ground- and space-based experiments have validated the selection of polyethylene as an effective shield for radiation protection of humans from cosmic radiation exposure during spaceflight. Theoretical models that describe the physical interactions and transport of energetic ions through matter first identified the superior shielding performance of hydrogenous materials. Analytical transport models of space-like particle beams predicted that water would out-perform materials with higher effective charge, and plastics with low effective charge, particularly polyethylene (CH2), appeared to be even more promising. Experiments with accelerated particle beams confirmed the analytical predictions, and experimental measurements continue to provide validation of the use of polyethylene and other proposed shield materials for radiation protection during spaceflight. Due to the anisotropic radiation environment in low Earth orbit, vector flux models of incident radiation field and careful measurements on-orbit are required to definitively assess the effectiveness of polyethylene to protect the skin, eyes, and deeper tissues in that setting. An experiment is proposed herein in which operational and scientific detectors already aboard the ISS can be used to characterize the effectiveness of polyethylene as a radiation shield for reducing risks from geomagnetically trapped protons, cosmic ions, and albedo neutrons. Results are necessary for optimization of retrofit shield design, ab initio design of spacecraft, and development of analytical tools used in these activities and other operational aspects of radiation health and protection for human spaceflight.

  15. Design and analysis of electromagnetic interference filters and shields

    NASA Astrophysics Data System (ADS)

    McDowell, Andrew Joel

    Electromagnetic interference (EMI) is a problem of rising prevalence as electronic devices become increasingly ubiquitous. EMI filters are low pass filters intended to prevent the conducted electric currents and radiated electromagnetic fields of a device from interfering with the proper operation of other devices. Shielding is a method, often complementary to filtering, that typically involves enclosing a device in a conducting box in order to prevent radiated EMI. This dissertation includes three chapters related to the use of filtering and shielding for preventing electromagnetic interference. The first chapter deals with improving the high frequency EMI filtering performance of surface mount capacitors on printed circuit boards (PCBs). At high frequencies, the impedance of a capacitor is dominated by a parasitic inductance, thus leading to poor high frequency filtering performance. Other researchers have introduced the concept of parasitic inductance cancellation and have applied this concept to improving the filtering performance of volumetrically large capacitors at frequencies up to 100 MHz. The work in this chapter applies the concept of parasitic inductance cancellation to much smaller surface mount capacitors at frequencies up to several gigahertz. The second chapter introduces a much more compact design for applying parasitic inductance cancellation to surface mount capacitors that uses inductive coupling between via pairs as well as coplanar traces. This new design is suited for PCBs having three or more layers including solid ground and/or power plane(s). This design is demonstrated to be considerably more effective in filtering high frequency noise due to crosstalk than a comparable conventional shunt capacitor filter configuration. Finally, chapter 3 presents a detailed analysis of the methods that are used to decompose the measure of plane wave shielding effectiveness into measures of absorption and reflection. Textbooks on electromagnetic

  16. Designing space vehicle shields for meteoroid protection - A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    A new analysis for designing dual-layer shields is presented which is based on energy and momentum conservation, fundamental electromagnetic radiation physics, and the observation of results of extensive experimental impact studies performed at relatively low velocities (near 7 km/s). An important finding is that most of the kinetic energy of a meteoroid striking a dual-layer shield is expended as radiation at the stagnation zone on the face plate of the underlying structure. Systematic procedures for evaluating the response of shield designs for a given impact threat are described. It is noted that similar applications of the analysis can be employed to support a mathematically rigorous procedure for optimum shield design.

  17. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    SciTech Connect

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  18. Shielding analysis of glove boxes for handling of plutonium materials

    SciTech Connect

    Rainisch, R.

    1996-12-31

    The end of the Cold War has led the U.S. Department of Energy to adopt new programs for the management of excess plutonium materials. The programs center on placing plutonium is safe, long-term storage (50 yr) prior to final disposition. Before the plutonium can be placed in storage, materials will have to be stabilized and repackaged. Savannah River site (SRS) is pursuing the design of facilities for the stabilization of plutonium materials. Plutonium handling is to be performed in airtight glove boxes or similar enclosures. Glove boxes will incorporate radiation shielding for the protection of operators. This paper addresses the shielding configuration of the glove boxes and protection of operating personnel from external radiation. Shielding analysis of the glove boxes included (a) identification of plutonium source terms; (b) analysis of extremity exposures, which pertains to workers hands and forearms exposure; (c) shielding analysis, which includes shielding windows (transparent shielding) and glove-box walls; and (d) measures to enhance the radiological design of the enclosures.

  19. Modeling of spacecraft proton shielding by the discrete ordinates method

    SciTech Connect

    Drumm, C.R. )

    1992-01-01

    Radiation in space can be damaging to personnel and electronics in space missions. Solar flare and trapped protons are a significant component of the near-earth radiation environment. It is important to assess the effectiveness of materials (typically aluminum) for shielding protons for manned and unmanned space flights. The discrete ordinates method is a convenient and efficient method for modeling proton transport. With the adjoint capability, a set of proton environments for many different orbit trajectories can be modeled extremely efficiently. Modeling a slab geometry and a spherical shell geometry shield should provide bounds on the dose that a component inside of a satellite would be expected to receive. Neutron and other secondary particle production are neglected in this model.

  20. Analysis of the Radiation Shield of HT-7U Tokamak

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Chen, Yixue

    2003-06-01

    Analysis of the radiation shield of HT-7U fusion experimental device has been presented in this contribution. An inner shield and an outer shield, is used to reduce the dose rate to the device, workers and publics. Transport calculations and analyses have been done by 3D MCNP/4C models for neutron spectrum, γ spectrum, neutron and γ dose rate levels during operation and selection of detectors. Activation calculation have been done by inventory code FISPACT to estimate the decay γ dose rate level to workers after one pulse operation of the device and the permission time for workers to get into the shield building or device to make some maintenance or replace after discharge.

  1. SHIELDING ANALYSIS FOR PORTABLE GAUGING COMBINATION SOURCES

    SciTech Connect

    J. TOMPKINS; L. LEONARD; ET AL

    2000-08-01

    Radioisotopic decay has been used as a source of photons and neutrons for industrial gauging operations since the late 1950s. Early portable moisture/density gauging equipment used Americium (Am)-241/Beryllium (Be)/Cesium (Cs)-137 combination sources to supply the required nuclear energy for gauging. Combination sources typically contained 0.040 Ci of Am-241 and 0.010 Ci of CS-137 in the same source capsule. Most of these sources were manufactured approximately 30 years ago. Collection, transportation, and storage of these sources once removed from their original device represent a shielding problem with distinct gamma and neutron components. The Off-Site Source Recovery (OSR) Project is planning to use a multi-function drum (MFD) for the collection, shipping, and storage of AmBe sources, as well as the eventual waste package for disposal. The MFD is an approved TRU waste container design for DOE TRU waste known as the 12 inch Pipe Component Overpack. As the name indicates, this drum is based on a 12 inch ID stainless steel weldment approximately 25 inch in internal length. The existing drum design allows for addition of shielding within the pipe component up to the 110 kg maximum pay load weight. The 12 inch pipe component is packaged inside a 55-gallon drum, with the balance of the interior space filled with fiberboard dunnage. This packaging geometry is similar to the design of a DOT 6M, Type B shipping container.

  2. Neutron streaming analysis for shield design of FMIT Facility

    SciTech Connect

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe.

  3. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    SciTech Connect

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results.

  4. Early test facilities and analytic methods for radiation shielding: Proceedings

    SciTech Connect

    Ingersoll, D.T. ); Ingersoll, J.K. )

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  5. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  6. Shielding analysis of the NAC-MPC storage system

    SciTech Connect

    Napolitano, D.G.; Romano, N.J.; Hertel, N.E.

    1997-12-01

    This paper presents the shielding analyses of the NAC-MPC dry cask storage system. The NAC-MPC dry cask storage system consists of a transportable storage canister, a transfer cask, and a vertical concrete storage cask. The NAC-MPC is designed to accommodate 36 {open_quotes}Yankee Class{close_quotes} fuel assemblies with a maximum burnup of 36,000 MWd/tonne U burnup and 8 yr cooling time. The shielding analysis is performed with the SCALE 4.3 code package which includes SAS2H for source term generation and SAS4A, a modification of SAS4, for shielding evaluations. SAS4 utilizes a one-dimensional XSDRNPM adjoint calculation of the cask to generate biasing parameters for a three-dimensional MORSE-SGC Monte Carlo model of the cask geometry.

  7. Theoretical analysis of infrared radiation shields of spacecraft

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.

    1984-01-01

    For a system of N diffuse, gray body radiation shields which view only adjacent surfaces and space, the net radiation method for enclosures has been used to formulate a system of linear, nonhomogeneous equations in terms of the temperatures to the fourth power of each surface in the coupled system of enclosures. The coefficients of the unknown temperatures in the system of equations are expressed in terms of configuration factors between adjacent surfaces and the emissivities. As an application, a system of four conical radiation shields for a spin stabilized STARPROBE spacecraft has been designed and analyzed with respect to variations of the cone half angles, the intershield spacings, and emissivities.

  8. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  9. Shielding Analysis of the 5320 Shipping Cask

    SciTech Connect

    Blanchard, A.; Nathan, S.

    1998-05-01

    The purpose of this work is to demonstrate that the 5320 shipping cask meets Federal regulations for maximum radiation dose rates when loaded with the intended plutonium oxide cargo. It should be emphasized that the 5320 is an existing cask, and therefore this work represents confirmatory analysis rather than design analysis.

  10. FDTD Analysis of Effectiveness of Shielding Clothes in Suppressing Electromagnetic Field in Phantom Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yoshiyuki; Nagano, Isamu; Yagitani, Satoshi; Ueno, Tomohiko; Nakayabu, Toshihiro

    In order to prevent cardiac pacemakers from malfunctioning caused by electromagnetic (EM) wave, as one of the solutions to the problem of pacemaker malfunctioning, we can use a shielding material to decrease the EM wave intensity. For the effective suppression of the EM wave including a complicated enclosure or a human body, it is desirable to solve for the EM wave propagation by using numerical analysis. We introduce the transmission coefficient when an EM wave is incident into a multi-layered material with an arbitrary direction into the FDTD method. This realizes three-dimensional numerical analysis of a thin shielding material as a method to solve the EM wave transmission problem, which has been conventionally considered difficult. We use a phantom model, a dummy model of a cardiac pacemaker wearer, to analyze the EM wave shielding effectiveness of the shielding clothes. The analytical result agrees fairly well with the experimental result, which verifies the validity of the developed method. As for the effect of the aperture of the shielding clothes, the EM wave coming around from the apertures is found to be larger in amount than the EM wave transmitted through the clothes, which suggests that the aperture causes the SE to decrease largely.

  11. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  12. Precambrian shield and basement tectonics in sedimentary basin analysis

    SciTech Connect

    Touborg, J.F.

    1984-04-01

    This study focused on the use of (1) regional structural analysis of basement and Precambrian rocks surrounding a sedimentary basin, and (2) tracing basement structures into the sedimentary basin. The structural analysis of the Precambrian shield has a fundamental bearing on interpretation of overlying sedimentary cover rocks. This is expressed in the southern part of the Hudson's Bay basin and its southeastern arm, the Moose River basin. For instance, the rims of both basins are controlled by faults or graben structures. Approximately 13 major fault systems with strike lengths of 200-300 km (125-186 mi) or more can be traced from the exposed Precambrian shield into the basin in terms of lineament arrays and/or aeromagnetic and/or gravity signature. The data suggest reactivation of faults during basin sedimentation. This type of basement structural analysis in areas adjacent to sedimentary basins can provide a valuable interpretation base for subsequent seismic surveys and basin evaluation.

  13. Analysis of the JASPER Program Radial Shield Attenuation Experiment

    SciTech Connect

    Slater, C.O.

    1993-01-01

    The results of the analysis of the JASPER Program Radial Shield Attenuation Experiment are presented. The experiment was performed in 1986 at the ORNL Tower Shielding Facility. It is the first of six experiments in this cooperative Japanese and American program in support of shielding designs for advanced sodium-cooled reactors. Six different shielding configurations and subconfigurations thereof were studied. The configurations were calculated with the DOT-IV two-dimensional discrete ordinates radiation transport computer code using the R-Z geometry option, a symmetric S{sub 12} quadrature (96 directions), and cross sections from ENDF/B versions IV and V in either a 51- or 61-group structure. Auxiliary codes were used to compute detector responses and prepare cross sections and source input for the DOT-IV calculations. Calculated detector responses were compared with measured responses and the agreement was good to excellent in many cases. However, the agreement for configurations having thick steel or B{sub 4}C regions or for some very large configurations was fair to poor. The disagreement was attributed to cross-section data, broad-group structure, or high background in the measurements. In particular, it is shown that two cross-section sets for ``B give very different results for neutron transmission through the thick B{sub 4}C regions used in one set of experimental configurations. Implications for design calculations are given.

  14. Radiation shield analysis for a manned Mars rover

    SciTech Connect

    Morley, N.J.; ElGenk, M.S. )

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv.

  15. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  16. Graphene shield enhanced photocathodes and methods for making the same

    DOEpatents

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  17. SEU43 fuel bundle shielding analysis during spent fuel transport

    SciTech Connect

    Margeanu, C. A.; Ilie, P.; Olteanu, G.

    2006-07-01

    The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

  18. Loss of coolant analysis for the tower shielding reactor 2

    SciTech Connect

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs.

  19. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  20. Experimental nuclear cross sections for spacecraft shield analysis

    NASA Technical Reports Server (NTRS)

    Peelle, R. W.

    1972-01-01

    Experiments have been performed to validate and to supplement the intranuclear cascade model as a method for estimating cross sections of importance to spacecraft shield design. The experimental situation is inconclusive particularly for neutron-producing reactions, but is relatively sound for reaction cross sections and for proton spectra at several hundred MeV at medium forward angles. Secondary photon contributions are imprecisely known.

  1. Automated shielding analysis sequences for spent fuel casks

    SciTech Connect

    Tang, J.S.; Parks, C.V.; Hermann, O.W.

    1987-01-01

    Two important Shielding Analysis Sequences (SAS) have recently been developed within the SCALE computational system. These sequences significantly enhance the existing SCALE system capabilities for evaluating radiation doses exterior to spent fuel casks. These new control module sequences (SAS1 and SAS4) and their capabilities are discussed and demonstrated, together with the existing SAS2 sequence that is used to generate radiation sources for spent fuel. Particular attention is given to the new SAS4 sequence which provides an automated scheme for generating and using biasing parameters in a subsequent Monte Carlo analysis of a cask.

  2. Overview of active methods for shielding spacecraft from energetic space radiation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  3. Overview of active methods for shielding spacecraft from energetic space radiation.

    PubMed

    Townsend, L W

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made. PMID:11770543

  4. Shielding analysis of a small compact space nuclear reactor. Final report

    SciTech Connect

    Woodrow, L.L.

    1987-08-01

    The SP-100 reactor concept, currently in its developmental stage, has layered tungsten - lithium hydride shield. Studies indicate that this shield configuration is the lightest weight shield. This configuration and three other shielding concepts were analyzed to determine the lightest shield and to determine the shield configuration with the smallest volume. The other three concepts were a boron carbide - beryllium layered shield, and a lithium hydride - beryllium shield. FEMP2D and FEMP1D codes were used in this analysis. These codes were developed at Sandia National Laboratory (SNL), using the input from another code, RFCC, which produced energy-dependent dose conversion factors, and determined the shield's ability to attenuate the neutron and gamma radiation to permissible dose limits. The results of this analysis show that the lithium hydride - tungsten layered shield was indeed the lightest weight shield. However, a boron carbide - tungsten shield was calculably volume constrained. Therefore volume, not weight, may be the driving factor in determining the shield configuration.

  5. Seismic analysis of the mirror fusion test facility shielding vault

    SciTech Connect

    Gabrielsen, B.L.; Tsai, K.

    1981-04-01

    This report presents a seismic analysis of the vault in Building 431 at Lawrence Livermore National Laboratory which houses the mirror Fusion Test Facility. The shielding vault structure is approximately 120 ft long by 80 ft wide and is constructed of concrete blocks approximately 7 x 7 x 7 ft. The north and south walls are approximately 53 ft high and the east wall is approximately 29 ft high. These walls are supported on a monolithic concrete foundation that surrounds a 21-ft deep open pit. Since the 53-ft walls appeared to present the greatest seismic problem they were the first investigated.

  6. Physical analysis of the radiation shielding for the medical accelerators

    NASA Astrophysics Data System (ADS)

    Li, Q. F.; Xing, Q. Z.; Kong, C. C.

    2009-02-01

    Radiation safety standards today require comprehensive shielding protection schemes for all particle accelerators. The original shielding system of BJ-20 (BeiJing-20 MeV), the high-energy medical electron linac, was designed only for the 18 MeV level. And the dose caused by the lost electrons in the 270° bending magnet system was neglected. In this paper, the leakage dose of BJ-20 is carefully analyzed. The radiation leakage dose distribution of the photons coming from the accelerator head is obtained for energy levels of 6, 12, 14, and 18 MeV. The dose of the photoneutrons is especially analyzed for the 18 MeV level. The result gives that even neglecting the dose from the 270° bending magnet system, the shielding system is still not enough for the energy levels lower than 18 MeV. The radiation leakage produced by electrons that are lost in the 270° bending magnet system has been particularly studied. Using beam transport theory and Monte Carlo sampling methods, which have been combined in calculations, we have obtained the distribution of the energy, position, and direction of the lost electrons. These data were then further processed by the Monte Carlo N-particle (MCNP) code as input data. The results show that when the electron loss rate in the 270° bending magnet system is 13.5%, the radiation leakage dose of the photons generated by the lost electrons is 0.1% higher than that at the isocenter, and the corresponding relative leakage dose of the photoneutrons reaches 0.045% around an angle of 170° at 18 MeV level. Both of these parameters exceed radioprotection safety standards for medical accelerators. The original shielding design is therefore not suitable and is also incomplete since the radiation produced by the electrons being lost in the 270° bending magnet system was neglected and the leakage dose for the low-energy levels was not considered in the original design. Our calculations provide a very useful tool for further optimization and design

  7. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    SciTech Connect

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  8. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  9. Glove-box shielding analysis for sampling radioactive precipitate

    SciTech Connect

    Rainisch, R.

    1997-12-01

    This paper addresses a radiation transport analysis for as-built dose rates near a nitrite analyzer glove box. The glove box will be utilized in a laboratory serving the Late Wash Facility (LWF) at Savannah River site (SRS). The LWF will reduce the concentration of nitrite in the Defense Waste Processing Facility (DWPF) radioactive aqueous precipitate feed stream to levels acceptable for the DWPF process. A laboratory serving the LWF incorporates nitrite and benzene analyzer glove boxes. The glove boxes will handle radioactive filtrate from the LWF filter and incorporate shielding for the protection of laboratory technicians. The analysis objective is to predict dose rates around the nitrite glove box subsequent to introduction of filtrate.

  10. Extensive Radiation Shielding Analysis for Different Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Çay, Yiǧit; Kaymaz, Zerefsan

    2016-07-01

    Radiation environment around Earth poses a great danger for spacecraft and causes immature de-orbiting or loss of the spacecraft in near Earth space environment. In this study, a student project has been designed to build a CubeSat, PolarBeeSail (PBS), with an orbit having inclination of 80°, 4 Re in perigee and 20 Re in apogee to study the polar magnetospheric environment. An extensive radiation dose analyses were carried out for PBS orbit, and integral and differential fluxes were calculated using SPENVIS tools. A shielding analysis was performed and an optimum Aluminum thickness, 3 mm, was obtained. These results for PBS were then compared for other orbits at different altitudes both for polar and equatorial orbits. For this purpose, orbital characteristics of POES-19 and GOES-15 were used. The resulting proton flux analyses, TID analyses, and further shielding studies were conducted; comparisons and recommendations were made for future design of spacecraft that will use these environments.

  11. Neutron streaming through shield ducts using a discrete ordinates/Monte Carlo method

    SciTech Connect

    Urban, W.T.; Baker, R.S.

    1993-08-18

    A common problem in shield design is determining the neutron flux that streams through ducts in shields and also that penetrates the shield after having traveled partway down the duct. Obviously the determination of the neutrons that stream down the duct can be computed in a straightforward manner using Monte Carlo techniques. On the other hand those neutrons that must penetrate a significant portion of the shield are more easily handled using discrete ordinates methods. A hybrid discrete ordinates/Monte Carlo cods, TWODANT/MC, which is an extension of the existing discrete ordinates code TWODANT, has been developed at Los Alamos to allow the efficient, accurate treatment of both streaming and deep penetration problems in a single calculation. In this paper we provide examples of the application of TWODANT/MC to typical geometries that are encountered in shield design and compare the results with those obtained using the Los Alamos Monte Carlo code MCNP{sup 3}.

  12. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  13. Manned mars rover powered by a nuclear reactor; Radiation shield analysis

    SciTech Connect

    Morley, N.J.; El-Genk, M. . Dept. of Chemical and Nuclear Engineering)

    1992-08-01

    This paper discusses a key element in the conceptual design of a nuclear reactor power system for a manned Mars rover is the analysis, design, and integration of the radiation shield. A shield analysis is carried out to characterize the thickness and spacing of shield layers to provide the minimum mass configuration that meets a dose rate requirement of 300 mSv/yr. The analysis utilizes a two-dimensional transport code to model the reactor and to provide a source term that is subsequently used to calculate dose rates as a function of reactor power level and shield layer thickness. Results show that a multilayered tungsten and lithium hydride (LiH) shield would satisfy the dose rate limit of 300 mSv/yr (30 rem/yr) to the rover crew. The position of two tungsten and LiH layers is varied to minimize secondary gamma-ray production and to optimize shield mass.

  14. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  15. Spectral analysis of shielded gamma ray sources using precalculated library data

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas Wesley; Gardner, Robin P.

    2015-11-01

    In this work, an approach has been developed for determining the intensity of a shielded source by first determining the thicknesses of three different shielding materials from a passively collected gamma-ray spectrum by making comparisons with predetermined shielded spectra. These evaluations are dependent on the accuracy and validity of the predetermined library spectra which were created by changing the thicknesses of the three chosen materials lead, aluminum and wood that are used to simulate any actual shielding. Each of the spectra produced was generated using MCNP5 with a sufficiently large number of histories to ensure a low relative error at each channel. The materials were held in the same respective order from source to detector, where each material consisted of three individual thicknesses and a null condition. This then produced two separate data sets of 27 total shielding material situations and subsequent predetermined libraries that were created for each radionuclide source used. The technique used to calculate the thicknesses of the materials implements a Levenberg-Marquardt nonlinear search that employs a tri-linear interpolation with the respective predetermined libraries within each channel for the supplied input unknown spectrum. Given that the nonlinear parameters require an initial guess for the calculations, the approach demonstrates first that when the correct values are input, the correct thicknesses are found. It then demonstrates that when multiple trials of random values are input for each of the nonlinear parameters, the average of the calculated solutions that successfully converges also produced the correct thicknesses. Under situations with sufficient information known about the detection situation at hand, the method was shown to behave in a manner that produces reasonable results and can serve as a good preliminary solution. This technique has the capability to be used in a variety of full spectrum inverse analysis problems

  16. Early Test Facilities and Analytic Methods for Radiation Shielding

    SciTech Connect

    Ingersoll, D.T.

    1992-01-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting held in Chicago, Illinois on November 15 20,1992. The meeting is of special significance since it commemorates the 50th anniversary of the first controlled nuclear chain reaction, which occurred, not coincidentally, in Chicago. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting.

  17. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  18. Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block

    NASA Astrophysics Data System (ADS)

    Hao, Junchuan; Song, Yuntao; Du, Shuangsong; Wang, Zhongwei; Xu, Yang; Feng, Changle

    2013-04-01

    The ITER neutron shielding blocks are located between the inner shell and the outer shell of the vacuum vessel (VV) with the main function of providing neutron shielding. Considering the combined loads of the shielding blocks during the plasma operation of the ITER, limit analysis for one typical ferromagnetic (FM) shielding block has been performed and the structural design has been evaluated based on the American Society of Mechanical Engineers (ASME) criterion and European standards. Results show that the collapse load of this shielding block is three times the specified load, which is much higher than the design requirement of 1.25. The structure of this neutron shielding block has a sufficient safety margin.

  19. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  20. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  1. Three-dimensional analysis of AP600 standard plant shield building roof

    SciTech Connect

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-06-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  2. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  3. Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths.

    PubMed

    Lai, Bo-Lun; Sheu, Rong-Jiun; Lin, Uei-Tyng

    2015-05-01

    Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets (iron, graphite, tissue, and copper) and shielding materials (concrete, iron, and lead) were generated by performing Monte Carlo simulations for 100-300 MeV protons. Possible applications and a proper use of the data set were demonstrated through a practical case study, in which shielding analysis on a typical proton treatment room was conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, this study demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. This case study proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton therapy accelerators. PMID:25811254

  4. Design and Analysis of the Thermal Shield of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  5. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  6. Coupled radiation transport/thermal analysis of the radiation shield for a space nuclear reactor

    NASA Astrophysics Data System (ADS)

    Barattino, W. J.

    1985-07-01

    A coupled radiation transport-heat transfer-stress analysis of the radiation shield for an SP-100 reactor was performed using a numerical code developed at the University of New Mexico and Sandia National Laboratory. For a fast reactor operating at 1.66 MW sub th, the energy deposited and resulting temperature distribution was determined for a shield consisting of tungsten and lithium hydride pressed into a stainless steel honeycomb matrix. While temperature feedback was shown to have a minor effect on energy deposition, the shielding configuration was found to have a major influence in meeting thermal requirements of the lithium hydride. It was shown that a shield optimized for radiation protection will fail because of melting. However, with minor modifications in the shield layering and material selection, the thermal integrity of the shield can be preserved. A shield design of graphite, depleted lithium hydride, tungsten, and natural lithium hydride was shown to satisfy neutron and gamma fluence requirements, maximum temperature limits, and minimize cracking in the LiH portion of the shield.

  7. Electromagnetic analysis of forces and torques on the ITER shield modules due to plasma disruption.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  8. Improved deterministic calculational methods for irregularly shaped shields

    SciTech Connect

    Dorning, J.J.

    1992-12-01

    A new discrete nodal transport method has been developed for general two-dimensional curvilinear geometry by using a boundary-fitted coordinate transformation from the general 'physical' coordinates to square 'computational' coordinates. The metrics which appear in the transformed transport equation are expanded using a simple polynomial function, and the angular divergence term is treated in the same way it is treated in S[sub N] methods for curved geometries. Because the metrics of the transformation depend upon the computational coordinates, the technical details of the formal development of the nodal method differ from those of ordinary nodal methods for rectangular geometry. However, the computational process in the transformed rectangular coordinate system is very similar to that used in conventional discrete nodal transport methods. A discrete S[sub N] method also has been developed to solve the boundary-fitted coordinate transformed transport equation. Simple test problems for non-simple geometries were solved using the zeroth-order nodal method, the first-order nodal method, and the S[sub N] method for the same physical and computational grids. The results for the test problems studied showed that, for most performance criteria, the computational efficiency of the zeroth-order nodal method was the highest of the three methods.

  9. Morphometry and Cluster Analysis of Low Shield Volcanoes on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Henderson, A.; Christiansen, E. H.; Radebaugh, J.

    2015-12-01

    Volcanoes are common on all terrestrial planets and their morphology is influenced by eruption mechanisms, volumes, and compositions and temperatures of the magmas; these are in turn influenced by the tectonic setting. In an attempt to better understand the relationship between morphometry and volcanic processes, we compared low-shield volcanoes on Syria Planum, Mars, with basaltic shields of the eastern Snake River Plain (eSRP).We used 133 volcanoes on Syria Planum that are covered by MOLA and HRSC elevation data and 246 eSRP shields covered by the NED. Shields on Syria Planum average 191 +/- 88 m tall, 12 +/- 6 km in diameter, 16 +/- 28 km3 in volume, and have 1.7° +/- 0.8 flank slopes. eSRP shields average 83 +/- 44 m tall, 4 +/- 3 km in diameter, 0.8 +/- 2 km3 in volume, and have 2.5° +/- 1 flank slopes. Bivariate plots of morphometric characteristics show that Syria Planum and eSRP low shields form the extremes of the same morphospace shared with some Icelandic olivine tholeiite shields, but is generally distinct from other terrestrial volcanoes. Cluster analysis of SP and eSRP shields with other terrestrial volcanoes separates these volcanoes into one cluster and the majority of them into the same sub-cluster that is distinct from other terrestrial volcanoes. Principal component and cluster analysis of Syria Planum and eSRP shields using height, area, volume, slope, and eccentricity shows that Syria Planum and eSRP low-shields are similar in shape (slope and eccentricity). Apparently, these low shields formed by similar processes involving Hawaiian-type eruptions of low viscosity (mafic) lavas with fissure controlled eruptions, narrowing to central vents. Initially high eruption rates and long, tube-fed lava flows shifted to the development of small lava lakes that repeatedly overflowed, and on some with late fountaining to form steeper spatter ramparts. However, Syria Planum shields are systematically larger than those on the eastern Snake River Plain. The

  10. Analysis of Face Stability during Excavation of Double-O-Tube Shield Tunnel

    PubMed Central

    Yang, Yuyou; Zhou, Qinghong; Li, Hongan; Huang, Xuegang; Tu, Xiaoming

    2013-01-01

    This paper focuses on the face stability analysis of Double-O-Tube shield tunnel. This kind of analysis is significant to ensure the safety of workers and reduce the influence on the surrounding environment. The key point of the stability analysis is to determine the supporting pressure applied to the face by the shield. A collapse failure will occur when the supporting pressure is not sufficient to prevent the movement of the soil mass towards the tunnel. A three-dimensional collapse failure mechanism was presented in this paper. Based on the mechanism of a single circular shield tunnel, the mechanism of Double-O-Tube shield tunnel was established by using the fact that both of the mechanisms are symmetrical. Then by means of the kinematic theorem of limit analysis, the numerical results were obtained, and a design chart was provided. The finite difference software FLAC3D was applied to investigate the face failure mechanism of DOT shield tunnel established in this paper; the critical supporting pressures of the collapse failure mechanism in different strata (sand and silt) were calculated. Through comparative analysis, the theoretical values were very close to the numerical values. This shows that the face failure mechanism of DOT shield tunnel is reasonable, and it can be applied to the sand and silt strata. PMID:24174917

  11. Active magnetic radiation shielding system analysis and key technologies

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  12. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. PMID:26177618

  13. Thermal Analysis of a SHIELD Electromigration Test Structure

    SciTech Connect

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  14. An improved resonance self-shielding method for heterogeneous fast reactor assembly and core calculations

    SciTech Connect

    Lee, C.; Yang, W. S.

    2013-07-01

    An improved resonance self-shielding method has been developed to accurately estimate the effective multigroup cross sections for heterogeneous fast reactor assembly and core calculations. In the method, the heterogeneity effect is considered by the use of isotopic escape cross sections while the resonance interference effect is accounted for through the narrow resonance approximation or slowing-down calculations for specific compositions. The isotopic escape cross sections are calculated by solving fixed-source transport equations with the method of characteristics for the whole problem domain. This method requires no pre-calculated resonance integral tables or parameters that are typically necessary in the subgroup method. Preliminary results for multi pin-cell fast reactor problems show that the escape cross sections estimated from the explicit-geometry fixed source calculations produce more accurate eigenvalue and self-shielded effective cross sections than those from conventional one-dimensional geometry models. (authors)

  15. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    NASA Astrophysics Data System (ADS)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  16. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

    SciTech Connect

    Kucukboyaci, Vefa; Haghighat, Alireza

    2001-06-17

    New angular multigrid formulations have been developed, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, which are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S{sub N} code. Through use of the Fourier analysis method for an infinite, homogeneous medium, the effectiveness of the V-Cycle scheme was investigated for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. The theoretical analysis revealed that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. The effectiveness of the new schemes was also investigated for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem.

  17. Application of transport techniques to the analysis of NERVA shadow shields

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Anderson, S. L.

    1972-01-01

    A radiation shield internal to the NERVA nuclear rocket reactor required to limit the neutron and photon radiation levels at critical components located external to the reactor was evaluated. Two significantly different shield mockups were analyzed: BATH, a composite mixture of boron carbide, aluminum and titanium hydride, and a borated steel-liquid hydrogen system. Based on the comparisons between experimental and calculated neutron and photon radiation levels, the following conclusions were noted: (1) The ability of two-dimensional discrete ordinates code to predict the radiation levels internal to and at the surface of the shield mockups was clearly demonstrated. (2) Internal to the BATH shield mockups, the one-dimensional technique predicted the axial variation of neutron fluxes and photon dose rates; however, the magnitude of the neutron fluxes was about a factor of 1.8 lower than the two-dimensional analysis and the photon dose rate was a factor of 1.3 lower.

  18. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  19. Shielding analysis of the IEM cell offset adapter plate

    SciTech Connect

    Simons, R.L.

    1995-01-13

    The adapter plate for the Interim Examination and Maintenance (IEM) cell ten foot ceiling valve was modified so that the penetration through the valve is offset to the north side of the steel plate. The modifications required that the shielding effectiveness be evaluated for several operating conditions. The highest gamma ray dose rate (51 mrem/hr) occurs when a Core Component Container (CCC) with six high burn-up driver fuel assemblies is transferred into or out of Solid Waste Cask (SWC). The neutron dose rate at the same source location is 2.5 mrem/hr. The total dose rate during the transfer is less than the 200 mrem/hr limit. If the ten foot ceiling valve is closed, the dose rate with twelve DFA in the cell will be less than 0.1 mrem/hr. However, with the ceiling valve open the dose rate will be as high as 12 mrem/hr. The latter condition will require controlled access to the area around the offset adapter plate when the ceiling valve is open. It was found that gaps in the shield block around the SWC floor valve will allow contact dose rates as high as 350 mrem/hr during the transfer of a fully loaded CCC. Although this situation does not pertain to the offset adapter plate, it will require controlled access around the SWC valve during the transfer of a fully loaded CCC.

  20. Modeling resonance interference by 0-D slowing-down solution with embedded self-shielding method

    SciTech Connect

    Liu, Y.; Martin, W.; Kim, K. S.; Williams, M.

    2013-07-01

    The resonance integral table based methods employing conventional multigroup structure for the resonance self-shielding calculation have a common difficulty on treating the resonance interference. The problem arises due to the lack of sufficient energy dependence of the resonance cross sections when the calculation is performed in the multigroup structure. To address this, a resonance interference factor model has been proposed to account for the interference effect by comparing the interfered and non-interfered effective cross sections obtained from 0-D homogeneous slowing-down solutions by continuous-energy cross sections. A rigorous homogeneous slowing-down solver is developed with two important features for reducing the calculation time and memory requirement for practical applications. The embedded self-shielding method (ESSM) is chosen as the multigroup resonance self-shielding solver as an integral component of the interference method. The interference method is implemented in the DeCART transport code. Verification results show that the code system provides more accurate effective cross sections and multiplication factors than the conventional interference method for UO{sub 2} and MOX fuel cases. The additional computing time and memory for the interference correction is acceptable for the test problems including a depletion case with 87 isotopes in the fuel region. (authors)

  1. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint

    NASA Astrophysics Data System (ADS)

    Harris, Chad T.; Haw, Dustin W.; Handler, William B.; Chronik, Blaine A.

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils.

  2. Development and verification of design methods for ducts in a space nuclear shield

    NASA Technical Reports Server (NTRS)

    Cerbone, R. J.; Selph, W. E.; Read, P. A.

    1972-01-01

    A practical method for computing the effectiveness of a space nuclear shield perforated by small tubing and cavities is reported. Performed calculations use solutions for a two dimensional transport code and evaluate perturbations of that solution using last flight estimates and other kernel integration techniques. In general, perturbations are viewed as a change in source strength of scattered radiation and a change in attenuation properties of the region.

  3. Exterior spacecraft subsystem protective shielding analysis and design

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1990-01-01

    All spacecraft are susceptible to impacts by meteoroids and pieces of orbiting space debris. An effective mechanism is developed to protect external spacecraft subsystems against damage by ricochet particles formed during such impacts. Equations and design procedures for protective shield panels are developed based on observed ricochet phenomena and calculated ricochet particle sizes and speeds. It is found that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original project tile diameter, and can travel at speeds between 24 and 36 percent of the original projectile impact velocity. Panel dimensions are shown to be strongly dependent on their inclination to the impact velocity vector and on their distribution around a spacecraft module. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  4. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. PMID:26720262

  5. New Geant4 based simulation tools for space radiation shielding and effects analysis

    NASA Astrophysics Data System (ADS)

    Santina, G.; Nieminen, P.; Evansa, H.; Daly, E.; Lei, F.; Truscott, P. R.; Dyer, C. S.; Quaghebeur, B.; Heynderickx, D.

    2003-09-01

    We present here a set of tools for space applications based on the Geant4 simulation toolkit, developed for radiation shielding analysis as part of the European Space Agency (ESA) activities in the Geant4 collaboration. The Sector Shielding Analysis Tool (SSAT) and the Materials and Geometry Association (MGA) utility will first be described. An overview of the main features of the MUlti-LAyered Shielding SImulation Software tool (MULASSIS) will follow. The tool is specifically addressed to shielding optimization and effects analysis. A Java interface allows the use of MULASSIS by the space community over the World Wide Web, integrated in the widely used SPENVIS package. The analysis of the particle transport output provides automatically radiation fluence, ionising and NIEL dose and effects analysis. ESA is currently funding the porting of this tools to a lowcost parallel processor facility using the GRID technology under the ESA SpaceGRID initiative. Other Geant4 present and future projects will be presented related to the study of space environment effects on spacecrafts.

  6. A method for estimating muon production and penetration through a shield

    NASA Astrophysics Data System (ADS)

    Sullivan, A. H.

    1985-09-01

    An approximate expression is derived that describes muon production by high-energy protons and the subsequent attenuation of the muons in a shield. It is shown that the muon flux at x ahead of an interaction by a proton of energy ɛ GeV and where pions have a path length of Δ m in which to decay, will be given by: φ=8.5×10 -2{ɛΔ}/{x 2}e-( {αt}/{ɛ}) μ/ m2, where t is the shield thickness in m and α is an effective muon energy loss rate which has a value of 22 GeV/m for iron and 7.8 GeV/m for concrete. It is further shown that the effective muon attenuation mean-free path is equivalent to {1}/{16} of the range of a muon with the energy of the interacting proton. The width of the muon beam that passes through the shield is also considered and it is shown that the beam profile approximates a Gaussian distribution with a diameter at half-maximum intensity of: d= {4.6x}/{ɛαt}m. Calculated muon fluxes are shown to correspond reasonably with those obtained by more sophisticated computer methods for proton energies up to at least 30 GeV and over the entire range of shield thicknesses of interest for radiation safety. Results of measurements of muon levels behind beam dumps under various conditions are presented and are shown to be in reasonable agreement with predictions based on the above model.

  7. Cost benefit analysis of the radiological shielding of medical cyclotrons using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar

    2001-12-01

    Adequate radiation shielding is vital to the safe operation of modern commercial medical cyclotrons producing large yields of short-lived radioisotopes. The radiological shielding constitutes a significant capital investment for any new cyclotron-based radioisotope production facility; hence, the shielding design requires an accurate cost-benefit analysis often based on a complex multi-variant optimization technique. This paper demonstrates the application of a Genetic Algorithm (GA) for the optimum design of the high yield target cave of a Medical Cyclotron radioisotope production facility based in Sydney, Australia. The GA is a novel optimization technique that mimics the Darwinian Evolution paradigm and is ideally suited to search for global optima in a large multi-dimensional solution space.

  8. Comparison of hybrid methods for global variance reduction in shielding calculations

    SciTech Connect

    Peplow, D. E.

    2013-07-01

    For Monte Carlo shielding problems that calculate a mesh tally over the entire problem, the statistical uncertainties computed for each voxel can vary widely. This can lead to unacceptably long run times in order to reduce the uncertainties in all areas of the problem to a reasonably low level. Hybrid methods - using estimates from deterministic calculations to create importance maps for variance reduction in Monte Carlo calculations - have been successfully used to optimize the calculation of specific tallies. For the global problem, several methods have been proposed to create importance maps that distribute Monte Carlo particles in such a way as to achieve a more uniform distribution of relative uncertainty across the problem. The goal is to compute a mesh tally with nearly the same relative uncertainties in the low flux/dose areas as in the high flux/dose areas. Methods based on only forward deterministic estimates and methods using both forward and adjoint deterministic methods have been implemented in the SCALE/MAVRIC package and have been compared against each other by computing global mesh tallies on several representative shielding problems. Methods using both forward and adjoint estimates provide better performance for computing more uniform relative uncertainties across a global mesh tally. (authors)

  9. Health state evaluation of shield tunnel SHM using fuzzy cluster method

    NASA Astrophysics Data System (ADS)

    Zhou, Fa; Zhang, Wei; Sun, Ke; Shi, Bin

    2015-04-01

    Shield tunnel SHM is in the path of rapid development currently while massive monitoring data processing and quantitative health grading remain a real challenge, since multiple sensors belonging to different types are employed in SHM system. This paper addressed the fuzzy cluster method based on fuzzy equivalence relationship for the health evaluation of shield tunnel SHM. The method was optimized by exporting the FSV map to automatically generate the threshold value. A new holistic health score(HHS) was proposed and its effectiveness was validated by conducting a pilot test. A case study on Nanjing Yangtze River Tunnel was presented to apply this method. Three types of indicators, namely soil pressure, pore pressure and steel strain, were used to develop the evaluation set U. The clustering results were verified by analyzing the engineering geological conditions; the applicability and validity of the proposed method was also demonstrated. Besides, the advantage of multi-factor evaluation over single-factor model was discussed by using the proposed HHS. This investigation indicated the fuzzy cluster method and HHS is capable of characterizing the fuzziness of tunnel health, and it is beneficial to clarify the tunnel health evaluation uncertainties.

  10. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  11. DEVELOPMENT OF SOLID COLLECTION DIAGNOSTICS ON NIF THROUGH BLAST SHIELD ANALYSIS

    SciTech Connect

    Gostic, J M; Shaughnessy, D A; Grant, P M; Hutcheon, I D; Lewis, L A; Moody, K J

    2011-12-15

    Radiochemical analysis of post-shot debris inside the National Ignition Facility (NIF) target chamber can help determine various diagnostic parameters associated with the implosion efficiency of the fusion capsule. This capability is limited by the amount of target isotope that can be loaded inside the capsule ablator without affecting performance and the collection efficiency of the capsule debris after implosion. Prior to designing a collection system, the chemical nature and distribution of the debris inside the chamber must be determined and analysis methods developed. The focus of our current work has been on determining the elemental composition and distribution of debris on various blast shields and witness plates that were exposed to the chamber during ignition shots that occurred in 2009. These passive collection plates were used to develop both non-destructive and chemical analysis techniques to determine debris composition and melt depth at various shot energy profiles. A summary of these data will be presented along with our current strategy for the 2011 campaign.

  12. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  13. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    PubMed Central

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations. PMID:27461510

  14. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    PubMed

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations. PMID:27461510

  15. Growth of ZnSe single crystal by CVT method with self-moving convection shield

    NASA Astrophysics Data System (ADS)

    Fujiwara, S.; Namikawa, Y.; Hirota, Y.; Irikura, M.; Matsumoto, K.; Kotani, T.

    1999-01-01

    The self-moving convection shield was used in the growth of ZnSe single crystal by chemical vapor transport method using iodine as a transport agent. The reduction of the convection enables the growth of a 1-in diameter ZnSe single crystal. The incorporation efficiency of iodine on (1 1 1)B facet was proved to be larger than that on (1 0 0) facet. Impurity-hardening effect of incorporated iodine in the grown ZnSe crystal is also suggested.

  16. Identification of an unknown material in a radiation shield using the schwinger inverse method.

    SciTech Connect

    Favorite, J. A.; Bledsoe, K. C.

    2004-01-01

    The Schwinger method for solving inverse gamma-ray transport problems was proposed in a previous paper. The method is iterative and requires a set of uncoupled forward and adjoint transport calculations in each iteration. In this paper, the Schwinger inverse method is applied to the problem of identifying an unknown material in a radiation shield by calculating its total macroscopic photon cross sections. The gamma source is known and the total (angle-independent) gamma leakage is measured. In numerical one-dimensional spherical and slab test problems, the Schwinger inverse method successfully calculated the photon cross sections of an unknown material. Material identification was successfully achieved by comparing the calculated cross sections with those in a precomputed material cross section library, although there was some ambiguity when realistic measurements were used. The Schwinger inverse method compared very favorably with the standard single energy transmission technique (SET).

  17. U.S ITER : electromagnetic analysis of transient forces due to disrupted plasma currents on the ITER shield modules.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis

    2007-06-01

    This paper describes the electromagnetic analysis that has been completed using the OPERA-3d product to characterize the forces on the ITER shield modules as part of the conceptual design. These forces exist due to the interaction of the eddy currents induced in the shield modules and the large magnetic fields present in the tokamak.

  18. Shielding analysis at the upper section of the accelerator-driven system.

    PubMed

    Sasa, Toshinobu; Yang, Jin An; Oigawa, Hiroyuki

    2005-01-01

    The proton beam duct of the accelerator-driven system (ADS) acts as a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800 MWth). MCNPX was used to calculate the radiation dose from streamed neutrons and photons through the beam duct. For the secondary photon production calculation, cross sections for several actinides were substituted with plutonium because of the lack of gamma production cross section. From the results of this analysis, the neutron dose from the beam duct is seen to be about 20 orders higher than that of the bulk shield. The magnets and shield plug are heavily irradiated by streaming neutrons according to the DCHAIN-SP analysis. PMID:16604639

  19. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  20. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  1. Modified jet noise source model for twin-jet shielding analysis

    NASA Technical Reports Server (NTRS)

    Gerhold, C. H.; Kim, C.

    1983-01-01

    An analytical method to estimate the influence that a jet of heated flow has on the noise emission from a parallel jet is presented. The shielding jet is modelled as a cylinder of constant cross-section in which the flow speed and temperature are uniform throughout. The jet noise emission is modelled by a point source with directivity imposed. The directivity term consists of: a self-noise term, a shear-noise term, and a convection factor. The self- and shear-noise terms each contain a basic directivity factor multiplying a spectral shape function. The various components are evaluated based on comparison with isothermal jet radiation experimental data. The modified source term is incorporated into the jet shielding model and compared to heated twin jet shielding data. The estimated spectra agree well except further downstream of the nozzle where peak of the noise spectrum estimated by the model lies approximately one octave below the experimental peak. The noise reduction estimated by the model agrees favorably with experiment in the near downstream region. This discrepancy is explained in terms of the shielding mechanism which is dominant far downstream.

  2. Free-slit shielding of stress waves by the photoelasticity method

    SciTech Connect

    Freishist, N.A.; Dmitrienko, O.L.

    1986-05-01

    This paper is devoted to the study of an experimental model investigation of the distribution of dynamic stresses beyond a free shielding slit as a longitudinal wave from a blast source strikes the shield. The studies were conducted by the method of photoelasticity on a dynamic polarization apparatus in the stress-study laboratory at the Moscow V.V. Kuibyshev Civil Engineering Institute. The problem was solved in the plane elastic statement on models in the form of plates made of an optically sensitive epoxy-resin-base material. The pulse effect was created by the detonation of a cylindrical lead azide microcharge. The dynamic stressed state at internal points of the model was evaluated from the magnitudes and distribution of maximum tangential stresses, and on the free perimeter of the model from the magnitudes and distribution of the normal stress parallel to the perimeter. The experimental studies indicated that a zone in which the stress amplitude is reduced as compared with the nominal stresses exists beyond the slit in all cases examined. The investigations made it possible to evaluate these relationships within the range of parameters under consideration.

  3. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  4. Theoretical analysis of the density within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Brock, F. J.

    1976-01-01

    An analytical model based on the kinetic theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. Separate numerical results are presented for the primary and secondary density distribution components due to the drifting Maxwellian gas for speed ratios between 2.5 and 10. An analysis is also made of the density component due to gas desorbed from the wall of the hemisphere, and numerical results are presented for the density distribution. It is shown that the adsorption process may be completely ignored. The results are applicable to orbital trajectories in any planet-atmosphere system and interplanetary transfer trajectories. Application to the earth's atmosphere is mentioned briefly.

  5. Analysis of the flexible receiver lifting yoke and blast shield assembly. Tank 241SY101

    SciTech Connect

    Huang, F.H.

    1995-03-02

    The analysis of the lifting yoke and blast shield assembly considers the bending stress, weld strength, and resistance of the lug hole to tear out. The bending stress of the lifting lugs is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). Also considered in the calculations is the capability of the thick lugs to withstand the weight of the pump together with that of the container and strongback during rotation to the horizontal position.

  6. Shielding from the Cosmic Radiation for Interplanetary Missions: Active and Passive Methods

    NASA Astrophysics Data System (ADS)

    Spillantini, P.; Topical Team Of ESA On Radiation Shielding

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is highly problematic, because of the high-energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of magnetic fields to deflect the charged particles from the spacecraft target. A shielding system based on superconducting magnetic lenses could effectively shield a spacecraft from solar particle events, at least for the portion of energetic particles roughly collinear with the direction of the solar magnetic field. To address these issues, the European Space Agency (ESA) established a Topical Team in 2003 including several European experts in the field of space radiation shielding and superconducting magnets. The Topical Team identified a number of open research questions to be addressed, including development and testing of novel shielding materials, studies on the angular distributions of energetic solar particles, and cooling systems for magnetic lenses in space. A detailed report to ESA will be published within the Fall of the 2004. A summary of the Topical Team conclusions and recommendations will be discussed in this paper. (Work supported by ESA Opportunities for Research in Life Sciences grant # ESA-RA-LS-01-PREP/TT-007).

  7. Coupled radiation transport/thermal analysis of the radiation shield for a space nuclear reactor. Doctoral thesis

    SciTech Connect

    Barattino, W.J.

    1985-07-01

    A coupled radiation transport-heat transfer-stress analysis of the radiation shield for an SP-100 reactor was performed using a numerical code developed at the University of New Mexico and Sandia National Laboratory. For a fast reactor operating at 1.66 MW/sub th/, the energy deposited and resulting temperature distribution was determined for a shield consisting of tungsten and lithium hydride pressed into a stainless steel honeycomb matrix. While temperature feedback was shown to have a minor effect on energy deposition, the shielding configuration was found to have a major influence in meeting thermal requirements of the lithium hydride. It was shown that a shield optimized for radiation protection will fail because of melting. However, with minor modifications in the shield layering and material selection, the thermal integrity of the shield can be preserved. A shield design of graphite, depleted lithium hydride, tungsten, and natural lithium hydride was shown to satisfy neutron and gamma fluence requirements, maximum temperature limits, and minimize cracking in the LiH portion of the shield.

  8. A coupled radiation transport-thermal analysis of the radiation shield for an SP-100 type reactor

    NASA Astrophysics Data System (ADS)

    Barattino, William J.; El-Genk, Mohamed S.; McDaniel, Patrick J.

    A coupled radiation transport-thermal analysis of the radiation shield for an SP-100 reactor was performed using finite element codes developed at the University of New Mexico and Sandia National Laboratories. For a fast reactor operating at 1.66 MWt, the energy deposited and resulting temperature distribution were determined for a shield consisting of tungsten and lithium hydride pressed into a stainless steel honeycomb matrix. While temperature feedback was shown to have a minor effect on energy deposition, the shielding configuration was found to have a major influence in meeting thermal requirements of the lithium hydride. It was shown that a shield optimized only for radiation protection will fail because of LiH melting. However, with minor modifications in the shield layering and material selection, the thermal integrity of the shield can be preserved. A shield design of graphite, depleted lithium hydride, tungsten, and natural lithium hydride was shown to satisfy neutron and gamma fluence requirements, and maximum temperature limits, and to minimize cracking in the LiH portion of the shield.

  9. N-SAP and G-SAP neutron and gamma ray albedo model scatter shield analysis program

    NASA Technical Reports Server (NTRS)

    Sapovchak, B. J.; Stephenson, L. D.

    1967-01-01

    Computer program calculates neutron or gamma ray first order scattering from a plane or cylindrical surface to a detector point. The SAP Codes, G-SAP and N-SAP, constitute a multiple scatter albedo model shield analysis.

  10. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis.

    PubMed

    Anguiano-Sanchez, Jesica; Martinez-Romero, Oscar; Siller, Hector R; Diaz-Elizondo, Jose A; Flores-Villalba, Eduardo; Rodriguez, Ciro A

    2016-01-01

    Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan. PMID:27051460

  11. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis

    PubMed Central

    Anguiano-Sanchez, Jesica; Martinez-Romero, Oscar; Siller, Hector R.; Diaz-Elizondo, Jose A.; Flores-Villalba, Eduardo

    2016-01-01

    Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan. PMID:27051460

  12. Incorporation of Uncertainty and Variability of Drip Shield and Waste Package Degradation in WAPDEG Analysis

    SciTech Connect

    J.C. Helton

    2000-04-19

    This presentation investigates the incorporation of uncertainty and variability of drip shield and waste package degradation in analyses with the Waste Package Degradation (WAPDEG) program (CRWMS M&O 1998). This plan was developed in accordance with Development Plan TDP-EBS-MD-000020 (CRWMS M&O 1999a). Topics considered include (1) the nature of uncertainty and variability (Section 6.1), (2) incorporation of variability and uncertainty into analyses involving individual patches, waste packages, groups of waste packages, and the entire repository (Section 6.2), (3) computational strategies (Section 6.3), (4) incorporation of multiple waste package layers (i.e., drip shield, Alloy 22, and stainless steel) into an analysis (Section 6.4), (5) uncertainty in the characterization of variability (Section 6.5), and (6) Gaussian variance partitioning (Section 6.6). The presentation ends with a brief concluding discussion (Section 7).

  13. Thermal and stress analysis of the Faraday shield for the ORNL/TFTR rf antenna

    SciTech Connect

    Hammonds, C.J.; Nelson, B.E.; Walls, J.C.; Hoffman, D.J.; Baity, F.W.

    1989-01-01

    The rf antenna designed and built by Oak Ridge National Laboratory (ORNL) for the Tokamak Fusion Test Reactor (TFTR) is an ion cyclotron resonance heating antenna operating in the 40- to 80-MHz frequency range with a power output of 4 MW for a 2-s pulse. The antenna was delivered to Princeton in November 1987. A review of the antenna design began in early 1988 to ensure compatibility with D-T operation of TFTR. Owing to the serious consequences of a water leak during D-T operation and to other concerns, it was concluded that the Faraday shield of the antenna should be rebuilt. In addition, because of increased heat loads and more stringent acceptance criteria, a new thermal and stress analysis of the shield was authorized. 1 ref., 8 figs., 5 tabs.

  14. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  15. Tests of a novel method to assay SNM using polarized photofission and its sensitivity in the presence of shielding

    NASA Astrophysics Data System (ADS)

    Mueller, J. M.; Ahmed, M. W.; Kafkarkou, A.; Kendellen, D. P.; Sikora, M. H.; Spraker, M. C.; Weller, H. R.; Zimmerman, W. R.

    2015-03-01

    A novel method to identify Special Nuclear Material was recently developed (Mueller et al., 2014) [1]. This method relies upon using a linearly polarized γ-ray beam to induce photofission of a sample and then comparing the prompt fission neutron yields in and out of the plane of beam polarization. The present paper will describe experimental tests of this new technique and assess its sensitivity in the presence of shielding. The capability of this technique to measure the enrichment of uranium was tested by using combinations of thin 235U and 238U foils of known enrichments. The sensitivity of this assay to shielding by lead, steel, and polyethylene was experimentally measured and simulated using GEANT4. These tests show that the measured asymmetry can indeed be used to determine the enrichment of materials composed of an admixture of 235U and 238U, and this asymmetry is relatively insensitive to moderate amounts of shielding.

  16. Application of the first collision source method to CSNS target station shielding calculation

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Zhang, Bin; Chen, Meng-Teng; Zhang, Liang; Cao, Bo; Chen, Yi-Xue; Yin, Wen; Liang, Tian-Jiao

    2016-04-01

    Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source (CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results. Supported by Major National S&T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2011ZX06004-007), National Natural Science Foundation of China (11505059, 11575061), and the Fundamental Research Funds for the Central Universities (13QN34).

  17. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    SciTech Connect

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.; Kashy, David H.; Wiseman, Mark A.; Kashikhin, V.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-06-01

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  18. Electromagnetic analysis of forces and torques on the baseline and enhanced ITER shield modules due to plasma disruption.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-08-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma-disruption scenarios using the OPERA-3d software. The models considered include the baseline design as provided by the International Organization and an enhanced design that includes the more realistic geometrical features of a shield module. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  19. Global shielding analysis of the 2-element ANS core and reflector with photoneutrons

    SciTech Connect

    Bucholz, J.A.

    1996-04-01

    This paper describes the initial global 2-D shielding analyses for the 2-element, heavy-water cooled and reflected Advanced Neutron Source reactor which was to have been built in Oak Ridge, Tennessee. The portion of the system analyzed encompassed the highly enriched core, the 1.5-m-thick heavy-water reflector, the aluminum reflector vessel, and the first 0.2 m of light water beyond the reflector vessel. While some results are presented, this paper focuses primarily on the lessons learned during the analysis of this rather unique system.

  20. Improved Methodology Application for 12-Rad Analysis in a Shielded Facility at SRS

    SciTech Connect

    Paul, P.

    2003-01-31

    The DOE Order 420.1 requires establishing 12-rad evacuation zone boundaries and installing Criticality Accident Alarm System (CAAS) per ANS-8.3 standard for facilities having a probability of criticality greater than 10-6 per year. The H-Canyon at the Savannah River Site (SRS) is one of the reprocessing facilities where SRS reactor fuels, research reactor fuels, and other fissile materials are processed and purified using a modified Purex process called H-Modified or HM Process. This paper discusses an improved methodology for 12-rad zone analysis and its implementation within this large shielded facility that has a large variety of criticality sources and scenarios.

  1. Evaluation of a method to shield a welding electron beam from magnetic interference

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  2. Wake shield

    NASA Technical Reports Server (NTRS)

    Bannister, Tommy; Karr, Gerald R.

    1987-01-01

    Progress on the modeling of the flow field around a wake shield using a recently obtained code based on the Monte Carlo method is discussed. The direct simulation Monte Carlo method is a method for solving the Boltzman Equation using an approximation to the collision integral term. The collision integrand is evaluated for randomly selected values of its arguments and the summation will approach the integral for large enough samples. The collision effects may be modeled for either hard sphere or various power law potentials. The convective side of the Boltzman equation is approximated over a time step using a simple trajectory calculation of molecules as they travel through the domain of interest.

  3. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods

    NASA Astrophysics Data System (ADS)

    Arcisauskaite, Vaida; Melo, Juan I.; Hemmingsen, Lars; Sauer, Stephan P. A.

    2011-07-01

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ˜2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ˜500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ˜100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.

  4. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  5. A qualitative analysis of power take-off driveline shields: barriers and motivators to shield use for New York State farmers.

    PubMed

    Weil, R; Mellors, P; Fiske, T; Sorensen, J A

    2014-01-01

    Machinery entanglements are one of the top three causes of death in farming. Education on the risks of unshielded power take-off (PTO) equipment does not appear to significantly alter farmers' willingness to replace missing or broken shielding. Different assessments conducted in various regions of the U.S. indicate that as many as one-third to one-half of PTOs are inadequately shielded. Qualitative research was conducted with New York farmers to identify the factors that influence the decision to replace damaged or missing PTO driveline shields. Interview topics included: knowledge of entanglement risks, decisions regarding safety in general, decisions relating to PTO driveline shielding specifically, and the barriers and motivators to replacing missing or broken PTO driveline shields. Interviews with 38 farmers revealed the following themes: (1) farmers are fully aware of PTO entanglement risk, (2) insufficient time and money are primary barriers to purchasing or replacing damaged or missing PTO driveline shields, (3) PTO driveline shield designs are problematic and have led to negative experiences with shielding, and (4) risk acceptance and alternate work strategies are preferred alternatives to replacing shields. Our findings indicate that more innovative approaches will be required to make PTO driveline shield use a viable and attractive choice for farmers. New shield designs that address the practical barriers farmers face, as well as the provision of logistical and financial assistance for shield replacement, may alter the decision environment sufficiently to make replacing PTO driveline shielding a more attractive option for farmers. PMID:24804464

  6. Neutron shielding analysis for remote handled transuranic waste containers in facility casks at the Waste Isolation Pilot Plant

    SciTech Connect

    Livingston, J.V.; Disney, R.K.

    1984-04-01

    Neutron shielding characteristics of the Waste Isolation Pilot Plant facility cask have been quantified for a variety of combinations of neutron sources and waste matrices which would potentially be handled in waste containers. The neutron attenuation and neutron environment of the waste container and the facility cask have been analyzed to ensure that the design requirement of neutron dose rate will be met under the combinations of the source and waste matrix conditions. The analyses considered the ranges of neutron source spectrum and waste matrices which combine to produce the minimum neutron shielding worth of the facility cask. One-dimensional analyses were performed with discrete ordinate transport theory methods using multigroup neutron cross section data. The results discussed in this report demonstrate the effect of source spectrum and waste container matrix on predicted neutron dose rates adjacent to the unshielded waste container and the surface of the facility cask. An evaluation of the uncertainties in predicted neutron dose rates is provided which results in an assessment of the maximum measured neutron dose rate external to the facility cask. A description of the analytical models developed, the analysis methodology, the neutron source spectra, and the detailed results are described in this report. 10 refs., 50 figs., 39 tabs.

  7. Time-frequency Analysis on low-resistivity Shielding Layer in TEM Soundings

    NASA Astrophysics Data System (ADS)

    Shi, Xianxin; Wu, Kai

    The transient electromagnetic (TEM) method will be influenced by shielding effect of the low-resistivity overburden layer. By adopting the smooth pseudo Wigner-Ville distribution (SPWD), the responses simulated with a finite-difference time-domain method (FDTD) of D- and G-type models by a 2D line source and H-, A-, K- and Q-type models by a loop source are transformed to the time-frequency (T-F) plane. It is indicated that in low-resistivity, the TEM wave aggregates and will consume more energy, it transmits faster in high-resistivity layers but slower in low-resistivity ones. For A-type models widely in distribution of the North China type coalfield of our country, energy of the TEM field has been almost depleted when arriving at the bottom interface (interfaces of Ordovician limestone and coal series) during the TEM exploration in this area, influence of the low resistive shielding layer shall be taken into full consideration, and relatively longer observing time window shall be selected to ensure the detection depth and high-power instruments shall be adopted to increase the signal-noise ratio during construction design.

  8. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  9. Shielding analysis for a manned Mars rover powered by an SP-100 type reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    Shield design is one of the most crucial tasks in the integration of a nuclear reactor power system to a manned Mars rover. A multilayered W and LiH shield is found to minimize the shield mass and satisfy the dose rate limit of 30 rem/y to the rover crew. The effect on dose rate of tungsten layers thicknesses and position within the lithium hydride shields is investigated. Due to the large cross section for the W (n,gamma) reaction, secondary gammas become a significant radiation source. The man-rated shield mass for the Mars rover vehicle is correlated to the reactor thermal power. The correlation fits to within 9 percent of the calculated shield mass and results in an uncertainty of below 4 percent in the overall rover mass. The shield mass varied from 8600 kg to 20580 kg for a reactor thermal power of 100 to 1000 kW(t), respectively.

  10. Shielding analysis for a manned Mars rover powered by an SP-100 type reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1991-01-01

    Shield design is one of the most crucial tasks in the integration of a nuclear reactor power system to a manned Mars rover. A multilayered W and LiH shield is found to minimize the shield mass and satisfy the dose rate limit of 30 rem/y to the rover crew. The effect on dose rate of tungsten layers thicknesses and position within the lithium hydride shields is investigated. Due to the large cross section for the W (n,gamma) reaction, secondary gammas become a significant radiation source. The man-rated shield mass for the Mars rover vehicle is correlated to the reactor thermal power. The correlation fits to within 9 percent of the calculated shield mass and results in an uncertainty of below 4 percent in the overall rover mass. The shield mass varied from 8600 kg to 20580 kg for a reactor thermal power of 100 to 1000 kW(t), respectively.

  11. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  12. Heat Shielding: A Novel Method of Colonial Thermoregulation in Honey Bees

    NASA Astrophysics Data System (ADS)

    Starks, Philip T.; Gilley, David C.

    Honey bees, Apis mellifera, maintain constant colony temperatures throughout the year. Honey bees fan their wings to cool the colony, and often spread fluid in conjunction with this behavior to induce evaporative cooling. We present an additional, previously undescribed mechanism used by the honey bee to maintain constant colony temperature in response to localized temperature increases. Worker bees shield the comb from external heat sources by positioning themselves on hot interior regions of the hive's walls. Although honey comb and brood comb were both shielded, the temperature-sensitive brood received a greater number of heat shielders and was thus better protected from overheating. Heat shielding appears to be a context-dependent adaptive behavior performed by worker bees who would previously have been considered "unemployed."

  13. Shielding analysis of the NAC-LWT cask with MTR fuel using SCALE

    SciTech Connect

    Napolitano, D.G.

    1995-12-31

    NAC International has used the SCALE Code Package extensively for transport and storage cask design. This includes the design of the NAC-STC dual purpose cask, the ENSA-DPT dual purpose cask as well as design modifications to the NAC-LWT cask. The NAC-LWT is a legal weight truck cask that was originally designed to transport one pressurized water reactor (PWR) fuel assembly or two boiling water reactor (BWR) fuel assemblies. Recently, this cask has been modified to transport up to 42 materials test reactor (MTR) fuel elements. This paper discusses the use of the SCALE package in performing a source term analysis of MTR fuel and shielding analysis of the NAC-LWT cask in support of a 10 CFR Part 71 license amendment for MTR fuel contents.

  14. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    SciTech Connect

    Cho, S; Shin, E H; Kim, J; Ahn, S H; Chung, K; Kim, D-H; Han, Y; Choi, D H

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using the production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.

  15. Flow distribution analysis on the cooling tube network of ITER thermal shield

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O.; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  16. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  17. The SHIELD (Safety & Health Improvement: Enhancing Law Enforcement Departments) Study: Mixed Methods Longitudinal Findings.

    PubMed

    Kuehl, Kerry S; Elliot, Diane L; MacKinnon, David P; O'Rourke, Holly P; DeFrancesco, Carol; Miočević, Milica; Valente, Matthew; Sleigh, Adriana; Garg, Bharti; McGinnis, Wendy; Kuehl, Hannah

    2016-05-01

    The SHIELD (Safety & Health Improvement: Enhancing Law Enforcement Departments) Study is a worksite wellness team-based intervention among police and sheriff departments assessing the program's effectiveness to reduce occupational risks and unhealthy lifestyle behaviors. The SHIELD program focused on improving diet, physical activity, body weight and sleep, and reducing the effects of unhealthy stress and behaviors, such as tobacco and substance abuse. The SHIELD team-based health promotion program was found to be feasible and effective at 6 months in improving diet, sleep, stress, and overall quality of life of law enforcement department personnel. Both intervention and control groups were followed for 24 months, and we report those durability findings, along with qualitative group interview results that provide insight into the changes of the long-term outcomes. Long-term effects were observed for consumption of fruits and vegetables, and there was some evidence for effects on tobacco and alcohol use. Assessment of dietary habits, physical activity behaviors, weight loss maintenance, and substance use is rare more than 1 year following an intervention, and in general, initial positive changes do not persist in prior research. The SHIELD program was feasible, effective, and durable for improving dietary changes. PMID:27158956

  18. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  19. Analysis of chemical samples for environmental levels of radioactivity using a massively shielded 18% Ge(Li) system

    NASA Astrophysics Data System (ADS)

    Blanchard, Fred A.; Lickly, Tim D.

    1984-01-01

    An environmental level gamma radioactivity analysis system has been assembled from a commercially available, high sensitivity, high resolution, low background Ge(Li) detector with associated electronics (without coincidence or anticoincidence) and massive shielding with old iron. A variety of chemicals have been examined as part of a background baseline survey using quantitative peak or gross gamma analysis of the Ge(Li) gamma ray spectrum from a two liter sample in a Marinelli beaker. Gamma peak analysis had a calculated sensitivity (for a 30 min count) of 0.01 to 0.21 pCi/g, depending on sample bulk density, for an isotope such as 137Cs. A similar sensitivity (0.1 pCi/g) was obtained by gross gamma analysis for any mixture of isotopes. A method for estimating the necessary integral background value for samples of different bulk densities was developed. The methods are capable of demonstrating existing natural radioactivity as shown by the 40K and uranium, thorium and their daughters observed in about 16% of the chemicals tested. Especially noticeable were 40K, 228Ac, 212Pb, 208Tl, 214Pb, and 214Bi. The levels and isotopes were similar to those found in soils and common salts.

  20. UCF WASTE PACKAGE SHIELDING ANALYSIS/2-D DORT (SCPB: N/A)

    SciTech Connect

    D.J. Skulina

    1996-01-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the dose rates from the UCF waste packages to be used by the EBS and other repository systems to incorporate ALARA practices in the overall repository design in compliance with the goals of the Waste Package Implementation Plan for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are (1) to show the dose rate as a function of distance from the waste package surface and (2) to provide the shielding thicknesses required for the waste package transporter to meet a 10 mr/hr target dose rate at 2 meters from the transporter surface.

  1. Comparative analysis of the radiation shield effect in an abdominal CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Chil; Kim, Young-Jae; Lee, Joon-Seok; Dong, Kyung-Rae; Chung, Woon-Kwan; Lim, Chang-Seon

    2014-03-01

    This study measured and compared the dose on the eyeballs and the thyroid with and without the use of a shield by applying the abdominal examination protocol used in an actual examination to a 64-channel computed tomography (CT) scan. A dummy phantom manufactured from acryl was used to measure the dose to the eyeballs and the thyroid of a patient during a thoraco-abdominal CT scan. The dose was measured using three dosimeters (optically-stimulated luminescence dosimeter (OSLD), thermoluminescence dosimeter (TLD) and photoluminescence dosimeter (PLD)) attached to the surfaces of three parts (left and right eyeballs and thyroid) in a phantom with and without the use of a shield for the eyeballs and the thyroid. Two types of shields (1-mm barium shielding sheet and 1-mm tungsten shielding sheet) were used for the measurements. The goggles and the lead shield, which are normally used in clinical practice, were used to compare the shield ratios of the shields. According to the results of the measurements made by using the OSLD, the shield ratios of the barium and the tungsten sheets were in the range of 34-36%. The measurements made by using the TLD showed that the shield ratio of the barium sheet was 6.25% higher than that of the tungsten sheet. When the PLD was used for the measurement, the shield ratio of the barium sheet was 33.34%, which was equivalent to that of the tungsten sheet. These results confirmed that the cheap barium sheet had a better shielding effect than the expensive tungsten sheet.

  2. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  3. Crustal properties in the continuum Baltic Shield-Scandinavian Mountains from seismic ambient noise and magnetotelluric analysis

    NASA Astrophysics Data System (ADS)

    Ben Mansour, Walid; England, Richard W.; Fishwick, Stewart; Köhler, Andreas; Moorkamp, Max; Ottemøller, Lars; Smirnov, Maxim

    2016-04-01

    The Scandinavian passive margin is a good example of a region where a Precambrian shield is directly in contact with a younger mountain belt. Located along the Atlantic coast, the Scandinavian mountains, formed 440 Ma ago, show high peaks (> 1 km from the sea level) due to an uplift event 12 Ma ago. This topography contrasts strongly with the low topography of the Baltic shield (around 500 m from the sea level). If the mountain shows high topography compared to the shield, P-receiver functions analysis indicates that the Moho is deeper beneath the shield than beneath the orogenic belt. This result is surprising, as simple crustal isostasy would produce the opposite result. It is therefore likely that there is further variation in crustal and lithospheric properties between the shield and the mountain belt. In this perspective, several geophysical experiments (SCANLIPS2, POLENET-LAPNET, SCANLIPS3D, Norwegian National Seismic Network) have been deployed in the region in order to better understand the lateral variation in the crustal properties. From these different seismic arrays, we used the technique of ambient noise cross correlation in order to reconstruct the Rayleigh wave Green's function (R-R and Z-Z components) and produced a new Vs model of the upper crust in the transition between the Scandinavian mountains and Baltic Shield. In addition of this study, a magnetotelluric survey was done in the framework of MaSCa (MAgnetotellurics in the SCandes) project between 2011 and 2013 in the same area of broadband seismic network (Northern Scandinavia Mountains and the Baltic Shield). This project shows higher resistivity in the crust beneath the Baltic shield than beneath the orogenic belt. The results of this study are used in a joint inversion with seismic ambient noise in order to improve existing models. We used the multi objective genetic algorithms (GA) to inverse in the same time seismological data (receiver functions and dispersion curves from seismic ambient

  4. Postoperative irradiation for the prevention of heterotopic bone: Analysis of different dose schedules and shielding considerations

    SciTech Connect

    Blount, L.H.; Thomas, B.J.; Tran, L.; Selch, M.T.; Sylvester, J.E.; Parker, R.G. )

    1990-09-01

    Ninety-seven high risk hips were irradiated postoperatively for prevention of heterotopic bone (HTB) in the UCLA Department of Radiation Oncology from 1980 to 1988. Ninety-two hips in 82 patients were eligible for analysis with a minimum follow-up of 2 months and a median follow-up of 10 months. Forty-nine of the hips had porous coated ingrowth prostheses. From 1980 to 1986, 2 Gy fractions were used to deliver 20 Gy (8 hips), 12 Gy (1 hip), and 10 Gy (27 hips). Since December of 1986, 38 hips received 8 Gy in two increments and 18 hips received a single 7 Gy fraction. All porous ingrowth components were shielded with custom blocks. Six out of 92 hips developed clinically significant. There was one clinically significant failure in 78 hips (1.3%) when irradiation was initiated before post-operative day (POD) No.6 and shielding was properly placed. One clinical failure occurred in 38 hips which received 8 Gy in two increments. One clinical failure occurred out of the 18 hips treated with 7 Gy in one fraction. This failure could be related to block malposition. There were four clinical failures in the 36 hips treated with 2 Gy fractions to total doses of 10 Gy, 12 Gy, or 20 Gy. Three of these failures were associated with initiation of treatment after POD No.5, and the fourth was related to block malposition. Unshielded trochanteric osteotomies resulted in five migrations and seven fibrous unions for a total non-osseous union rate of 12/36 (33%). Shielding of the remaining 28 trochanteric osteotomies resulted in a non-osseous union rate of 7%. There were no failures of union of components, and the only side effects noted in the series were the five trochanteric migrations. In conclusion, the use of 8 Gy in two increments or 7 Gy in one fraction was found to be as efficacious as conventional 2 Gy fractionation schemes with no increase in side effects.

  5. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  6. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  7. Design analysis and optimization of self-cooled lithium blankets and shields

    SciTech Connect

    Gohar, Y.

    1988-02-01

    A study of self-cooled lithium blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main design parameters considered during the course of the study were the tritium breeding ratio, the blanket energy multiplication factor, the energy fraction lost to the shield, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Another study was carried out to determine materials, compositions, arrangements, and thickness of the shield zone for the reference blanket. Helium and water-cooled shields were optimized for the inboard and outboard sections of the reactor. Based on the above two studies, the reference blanket and shield configurations were developed for the ANL Tokamak Power Systems Study. The helium-cooled shield was selected for use with liquid metal blankets to reduce safety concerns related to lithium-water reactivity. This helium-cooled shield provides shielding characteristics similar to a conventional water-cooled shield. The analyses and results from these studies are the subject of this paper. 12 refs., 4 figs., 2 tabs.

  8. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  9. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    SciTech Connect

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may be exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.

  10. An Analysis of Ablation-Shield Requirements for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1960-01-01

    The problem of sublimation of material and accumulation of heat in an ablation shield is analyzed and the results are applied to the reentry of manned vehicles into the earth's atmosphere. The parameters which control the amount of sublimation and the temperature distribution within the ablation shield are determined and presented in a manner useful for engineering calculation. It is shown that the total mass loss from the shield during reentry and the insulation requirements may be given very simply in terms of the maximum deceleration of the vehicle or the total reentry time.

  11. Selecting Needs Analysis Methods.

    ERIC Educational Resources Information Center

    Newstrom, John W.; Lilyquist, John M.

    1979-01-01

    Presents a contingency model for decision making with regard to needs analysis methods. Focus is on 12 methods with brief discussion of their defining characteristics and some operational guidelines for their use. (JOW)

  12. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Shen, Zhigang

    2009-09-01

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  13. Analysis of Shuttle Multispecral Infrared Radiometer measurements of the western Saudi Arabian shield.

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Abbott, E.

    1987-01-01

    During the November 12-14, 1981 mission of the space shuttle Columbia, the Shuttle Multispectral Infrared Radiometer (SMIRR) recorded radiances in 10 channels along a 100m wide groundtrack across the western Saudi Arabian shield.-from Authors

  14. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    SciTech Connect

    Evans, J.H.; Eversole, R.E.; Just, R.A.; Schaich, R.W.

    1984-07-01

    The ORNL Lithium Hydroxide Fire and Impact Shield and its packaging were designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B quantities of radioactive material and limited quantities of fissionable material. The shield and its packaging were evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield and its packaging are in compliance with the applicable regulations. 16 references, 8 figures, 5 tables.

  15. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  16. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Xu, C. L.; Wang, S. M.

    2016-07-01

    The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.

  17. Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Santos, Jose A.; Oishi, Tomo; Martinez, Ed R.

    2011-01-01

    Seven instrumented sensor plugs were installed on the Mars Science Laboratory heat shield in December 2008 as part of the Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) project. These sensor plugs contain four in-depth thermocouples and one Hollow aErothermal Ablation and Temperature (HEAT) sensor. The HEAT sensor follows the time progression of a 700 C isotherm through the thickness of a thermal protection system (TPS) material. The data can be used to infer char depth and, when analyzed in conjunction with the thermocouple data, the thermal gradient through the TPS material can also be determined. However, the uncertainty on the isotherm value is not well defined. To address this uncertainty, a team at NASA Ames Research Center is carrying out a HEAT sensor calibration test program. The scope of this test program is described, and initial results from experiments conducted in the laboratory to study the isotherm temperature of the HEAT sensor are presented. Data from the laboratory tests indicate an isotherm temperature of 720 C 60 C. An overview of near term arc jet testing is also given, including preliminary data from 30.48cm 30.48cm PICA panels instrumented with two MEDLI sensor plugs and tested in the NASA Ames Panel Test Facility. Forward work includes analysis of the arc jet test data, including an evaluation of the isotherm value based on the instant in time when it reaches a thermocouple depth.

  18. Identification of Unknown Interface Locations in a Source/Shield System Using the Mesh Adaptive Direct Search Method

    SciTech Connect

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2012-06-20

    The Levenberg-Marquardt (or simply Marquardt) and differential evolution (DE) optimization methods were recently applied to solve inverse transport problems. The Marquardt method is fast but convergence of the method is dependent on the initial guess. While it has been shown to work extremely well at finding an optimum independent of the initial guess, the DE method does not provide a global optimal solution in some problems. In this paper, we apply the Mesh Adaptive Direct Search (MADS) algorithm to solve the inverse problem of material interface location identification in one-dimensional spherical radiation source/shield systems, and we compare the results obtained by MADS to those obtained by Levenberg-Marquardt and DE.

  19. ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository

    SciTech Connect

    Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M; Howard, Rob L

    2013-01-01

    en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuel packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose

  20. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    Energy Science and Technology Software Center (ESTSC)

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires nomore » additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.« less

  1. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    SciTech Connect

    KONDO, IKUO

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires no additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.

  2. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2015-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  3. Biological shield design and analysis of KIPT accelerator-driven subcritical facility.

    SciTech Connect

    Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

    2009-12-01

    Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

  4. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  5. Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)

    NASA Technical Reports Server (NTRS)

    Chui, Talso C.; Haddad, Nicolas E.

    2013-01-01

    A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.

  6. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  7. Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

    SciTech Connect

    Evans, J.H.; Levine, D.L.; Eversole, R.E.; Mouring, R.W.

    1983-04-01

    The ORNL gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and the results are reported herein. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations.

  8. Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1993-03-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

  9. Shielding analysis of the LMR in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1994-06-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest.

  10. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability

  11. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  12. Shielding considerations for satellite microelectronics

    SciTech Connect

    Fan, W.C.; Drumm, C.R.; Roeske, S.B.; Scrivner, G.J.

    1996-12-01

    Shielding for space microelectronics needs to provide an acceptable dose rate with minimum shield mass. The analysis presented here shows that the best approach is, in general, to use a graded-Z shield, with a high-Z layer sandwiched between two low-Z materials. A graded-Z shield is shown to reduce the electron dose rate by more than sixty percent over a single-material shield of the same areal density. For protons, the optimal shield would consist of a single, low-Z material layer. However, it is shown that a graded-Z shield is nearly as effective as a single-material shield, as long as a low-Z layer is located adjacent to the microelectronics. A specific shield design depends upon the details of the radiation environment, system model, design margins/levels, compatibility of shield materials, etc. Therefore, the authors present here general principles for designing effective shields and describe how the computer codes are used for this application.

  13. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    SciTech Connect

    Tantawy, Hesham Ramzy; Aston, D. Eric; Kengne, Blaise-Alexis F.; McIlroy, David N.; Qiang, You; Nguyen, Tai; Heo, Deukhyoun

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested. They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)

  14. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    NASA Astrophysics Data System (ADS)

    Tantawy, Hesham Ramzy; Kengne, Blaise-Alexis F.; McIlroy, David N.; Nguyen, Tai; Heo, Deukhyoun; Qiang, You; Aston, D. Eric

    2015-11-01

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100-1500 MHz and ˜2-14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8-12 GHz range for SE was tested. They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band).

  15. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  16. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  17. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given. PMID:12793737

  18. The heterogeneous anti-radiation shield for spacecraft*

    NASA Astrophysics Data System (ADS)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  19. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect

    Newsom, Rob K.

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross

  20. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    SciTech Connect

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  1. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  2. Fused slurry silicide coatings for columbium alloys reentry heat shields. Volume 1: Evaluation analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.

  3. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  4. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    SciTech Connect

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  5. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  6. Thermal history of Michigan Basin and southern Canadian Shield from apatite fission track analysis

    SciTech Connect

    Crowley, K.D. )

    1991-01-10

    Apatite fission track ages and confined-length distributions were collected from 38 basement outcrop and 5 basement drillcore samples in order to reconstruct the Phanerozoic thermal history of the Michigan Basin and southern Canadian Shield. The apatite data indicate two periods of thermal activity in the region: Triassic heating/cooling that affected the basin and adjacent shield and Cretaceous or post-Cretaceous heating/cooling that primarily affected the basin. The magnitude, timing, and cause of Cretaceous thermal activity cannot be identified with the present data. Model calculations suggest that some of the shield samples and probably all of the basin samples were heated to temperatures of at least 90C just prior to relatively rapid cooling in the Triassic. Available stratigraphic and geochemical constraints suggest that these elevated temperatures were the result of burial by an additional 2-5 km of late Paleozoic (probably Pennsylvanian and Permian) sediments. It is likely that the basin was buried during the Alleghenian Orogeny as observed for the adjacent Appalachian Basin.

  7. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    SciTech Connect

    Shaughnessy, D A; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D; Lindvall, R; Gostic, J M

    2011-11-20

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  8. Improved deterministic calculational methods for irregularly shaped shields. Final report, September 30, 1988--November 30, 1990

    SciTech Connect

    Dorning, J.J.

    1992-12-01

    A new discrete nodal transport method has been developed for general two-dimensional curvilinear geometry by using a boundary-fitted coordinate transformation from the general `physical` coordinates to square `computational` coordinates. The metrics which appear in the transformed transport equation are expanded using a simple polynomial function, and the angular divergence term is treated in the same way it is treated in S{sub N} methods for curved geometries. Because the metrics of the transformation depend upon the computational coordinates, the technical details of the formal development of the nodal method differ from those of ordinary nodal methods for rectangular geometry. However, the computational process in the transformed rectangular coordinate system is very similar to that used in conventional discrete nodal transport methods. A discrete S{sub N} method also has been developed to solve the boundary-fitted coordinate transformed transport equation. Simple test problems for non-simple geometries were solved using the zeroth-order nodal method, the first-order nodal method, and the S{sub N} method for the same physical and computational grids. The results for the test problems studied showed that, for most performance criteria, the computational efficiency of the zeroth-order nodal method was the highest of the three methods.

  9. Implementation of hybrid variance reduction methods in a multi group Monte Carlo code for deep shielding problems

    SciTech Connect

    Somasundaram, E.; Palmer, T. S.

    2013-07-01

    In this paper, the work that has been done to implement variance reduction techniques in a three dimensional, multi group Monte Carlo code - Tortilla, that works within the frame work of the commercial deterministic code - Attila, is presented. This project is aimed to develop an integrated Hybrid code that seamlessly takes advantage of the deterministic and Monte Carlo methods for deep shielding radiation detection problems. Tortilla takes advantage of Attila's features for generating the geometric mesh, cross section library and source definitions. Tortilla can also read importance functions (like adjoint scalar flux) generated from deterministic calculations performed in Attila and use them to employ variance reduction schemes in the Monte Carlo simulation. The variance reduction techniques that are implemented in Tortilla are based on the CADIS (Consistent Adjoint Driven Importance Sampling) method and the LIFT (Local Importance Function Transform) method. These methods make use of the results from an adjoint deterministic calculation to bias the particle transport using techniques like source biasing, survival biasing, transport biasing and weight windows. The results obtained so far and the challenges faced in implementing the variance reduction techniques are reported here. (authors)

  10. Thermocouple shield

    SciTech Connect

    Ripley, Edward B.

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  11. Iron shielded MRI optimization

    NASA Astrophysics Data System (ADS)

    Borghi, C. A.; Fabbri, M.

    1998-09-01

    The design of the main current systems of an actively shielded and of an iron shielded MRI device for nuclear resonance imaging, is considered. The model for the analysis of the magnetic induction produced by the current system, is based on the combination of a Boundary Element technique and of the integration of two Fredholm integral equations of the first and the second kind. The equivalent current magnetization model is used for the calculation of the magnetization produced by the iron shield. High field uniformity in a spherical region inside the device, and a low stray field in the neighborhood of the device are required. In order to meet the design requirements a multi-objective global minimization problem is solved. The minimization method is based on the combination of the filled function technique and the (1+1) evolution strategy algorithm. The multi-objective problem is treated by means of a penalty method. The actively shielded MRI system results to utilize larger amount of conductor and produce higher magnetic energy than the iron shield device. On veut étudier le projet du système des courants principaux d'un MRI à écran en fer et d'un MRI à écran actif. Le modèle d'analyse du champ magnétique produit par le système de courants est basé sur la combinaison d'une technique Boundary Element et de l'intégration de deux équations intégrales de Fredholm de première et de seconde sorte. On utilise pour calculer la magnétisation produite par l'écran en fer le modèle à cou rants de magné ti sa tion équivalents. On exige une élévation uniforme du champ dans une région sphérique au cœur de l'appareil et un bas champ magnétique dispersé à proximité de l'appareil. Dans le but de répondre aux impératifs du projet, on va résoudre un problème multiobjectif de minimisation globale. On utilise une technique de minimisation obtenue par la combinaison des méthodes “Filled Function” et “(1+1) Evolution Strategy”. Le probl

  12. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    SciTech Connect

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  13. The application of the phase space time evolution method to electron shielding

    NASA Technical Reports Server (NTRS)

    Cordaro, M. C.; Zucker, M. S.

    1972-01-01

    A computer technique for treating the motion of charged and neutral particles and called the phase space time evolution method was developed. This technique employs the computer's bookkeeping capacity to keep track of the time development of a phase space distribution of particles. This method was applied to a study of the penetration of electrons. A 1 MeV beam of electrons normally incident on a semi-infinite slab of aluminum was used. Results of the calculation were compared with Monte Carlo calculations and experimental results. Time-dependent PSTE electron penetration results for the same problem are presented.

  14. Analysis of the in-vessel control rod guide tube and subpile room shielding design for the advanced neutron source reactor

    SciTech Connect

    Gallmeier, F.X.; Bucholz, J.A.; Engle, W.W. Jr.; Williams, L.R.

    1995-08-01

    An extensive sheilding analysis of the control rod guide tube (CRGT) and the subpile room was performed for the Advanced Neutron Source (ANS) reactor. A two-dimensional model for the CRGT and subpile room was developed. Coupled 39 neutron group and 44 gamma group calculations with the multigroup DORT discrete originates transport code were done using cross sections from the ANSL-V library including photoneutron production. Different shield designs were investigated with a shield thickness of 10 to 15 mm. None of the shields affected the neutron dose rate and gamma dose rate at the top of the subpile room, which were 1 {center_dot} 10{sup 5} mrem/h and 1 {center_dot} 10{sup 3} mrem/h, respectively. An L-shaped cylindrical boral shield positioned around the core pressure boundary tube at the bottom of the reflector vessel with the horizontal part extended over the whole bottom of the reflector vessel reduced the maximal displacements per atom (DPA) level and helium production level in the primary coolant supply adapter and its flange after 40 years of reactor operation from 1 and 500 appm to 5 {center_dot} 10{sup -2} and 2 {center_dot} 10{sup -2} appm compared with the unshielded arrangement. Shields of boral and hafnium with the horizontal part of the shield restricted to a radius of 485 mm gave a maximal DPA of 5 {center_dot} 10{sup -2} and a helium production of up to 20 appm. Heat loads of up to 70 W{center_dot}cm{sup -3} were calculated at the most exposed parts of the shield both for boral and hafnium shields. A depletion/activation analysis of the hafnium shield showed that at the most exposed part of the shield, the naturally occurring isotope {sup 177}Hf is 34% depleted at the end of two years of reactor operation. This high burnup is somewhat balanced by a subsequent buildup of {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf. In all other parts of the shield, the burnup is much smaller.

  15. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory for wing shielding

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1991-01-01

    A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.

  16. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  17. Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer

    PubMed Central

    Lu, Jia-Yang; Huang, Bao-Tian; Xing, Lei; Chang, Daniel T.; Peng, Xun; Xie, Liang-Xi; Lin, Zhi-Xiong; Li, Mei

    2016-01-01

    This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc (IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regarding target coverage, organ-at-risk (OAR) sparing and monitor units (MUs). The relationship between the dose reduction of BS/SC and some geometric parameters including the angle extended by the target with respect to the axis of BS/SC (Ang_BSSC), the minimum distance between the target and BS/SC (Dist_Min) and the target volume were evaluated. The IS-RA reduced the BS/SC doses by approximately 1–4 Gy on average over the C-RA, with more MUs. The IS-RA demonstrated similar target coverage and sparing of other OARs except for slightly improved sparing of optic structures. More dose reduction in the isocentric region was observed in the cases with larger Ang_BSSC or smaller Dist_Min. Our results indicated that the IS-RA significantly improves the sparing of BS/SC without compromising dosimetric requirements of other involved structures for lrNPC. PMID:27173670

  18. Sound shield

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Beckwith, I. E. (Inventor)

    1982-01-01

    An improved test section for a supersonic or hypersonic wind tunnel is disclosed wherein the model tested is shielded from the noise normally radiated by the turbulent tunnel wall boundary layer. A vacuum plenum surrounds spaced rod elements making up the test chamber to extract some of the boundary layer as formed along the rod elements during a test to thereby delay the tendency of the rod boundary layers to become turbulent. Novel rod construction involves bending each rod slightly prior to machining the bent area to provide a flat segment on each rod for connection with the flat entrance fairing. Rods and fairing are secured to provide a test chamber incline on the order of 1 deg outward from the noise shield centerline to produce up to 65% reduction of the root mean square (rms) pressure over previously employed wind tunnel test sections at equivalent Reynolds numbers.

  19. Filling the gap in central shielding: three-dimensional analysis of the EQD2 dose in radiotherapy for cervical cancer with the central shielding technique.

    PubMed

    Tamaki, Tomoaki; Ohno, Tatsuya; Noda, Shin-ei; Kato, Shingo; Nakano, Takashi

    2015-09-01

    This study aimed to provide accurate dose distribution profiles of radiotherapy for cervical cancer when treated with the central shielding technique by analysing the composite 3D EQD2 dose distribution of external beam radiotherapy (EBRT) plus intracavitary brachytherapy (ICBT). On a phantom, four patterns of the combinations of whole pelvis irradiation (WP) (4 fields), pelvis irradiation with central shielding technique (CS) [anterior-posterior/posterior-anterior (AP-PA fields), shielding width of 3 or 4 cm] and ICBT using Point-A prescription were created: 30 Gy/15 fractions + 20 Gy/10 fractions + 24 Gy/4 fractions [Plan (30 + 20 + 24)], 40 Gy/20 fractions + 10 Gy/5 fractions + 18 Gy/3 fractions [Plan (40 + 10 + 18)], 40 Gy/20 fractions + 10 Gy/5 fractions + 24 Gy/4 fractions [Plan (40 + 10 + 24)] and 45 Gy/25 fractions + 0 Gy + 28 Gy/4 fractions [Plan (45 + 0 + 28)]. The composite EQD2 dose distributions of the complete treatment were analysed. The Point-A dose of Plan (30 + 20 + 24), Plan (40 + 10 + 18), Plan (40 + 10 + 24) and Plan (45 + 0 + 28) were 78.0 Gy (CS 3 cm)/71.8 Gy (CS 4 cm), 72.1 Gy (CS 3 cm)/69.0 Gy (CS 4 cm), 80.1 Gy (CS 3 cm)/77.0 Gy (CS 4 cm) and 84.1 Gy, whereas it has been previously reported to be 62 Gy, 64 Gy, 72 Gy and 84 Gy, respectively. For all the treatment plans with CS, equivalent or wider coverage of 60 Gy (EQD2) was achieved in the right-left direction, while coverage in the anterior-posterior direction decreased in plans with CS. There were no irregularly 'cold' regions around the central target. The use of CS in radiotherapy for cervical cancer resulted in tumor coverage in the lateral direction with doses higher than the previously reported Point-A doses. PMID:26062811

  20. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  1. Radiation Shielding Materials and Containers Incorporating Same

    SciTech Connect

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  2. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  3. Drip Shield Emplacement Gantry Concept

    SciTech Connect

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  4. Generalized Multicoincidence Analysis Methods

    SciTech Connect

    Warren, Glen A.; Smith, Leon E.; Aalseth, Craig E.; Ellis, J. E.; Valsan, Andrei B.; Mengesha, Wondwosen

    2005-10-01

    The ability to conduct automated trace radionuclide analysis at or near the sample collection point would provide a valuable tool for emergency response, nuclear forensics and environmental monitoring. Pacific Northwest National Laboratory is developing systems for this purpose based on dual gamma-ray spectrometers, e.g. NaI(TI) or HPGe, combined with thin organic scintillator sensors to detect light charged particles. Translating the coincident signatures recorded by these systems, which include , and , into the concentration of detectable radionuclides in the sample requires generalized multicoincidence analysis tools. The development and validation of the Coincidence Lookup Library, which currently contains the probabilities of single and coincidence signatures from more than 420 isotopes, is described. Also discussed is a method to calculate the probability of observing a coincidence signature which incorporates true coincidence summing effects. These effects are particularly important for high-geometric-efficiency detection systems. Finally, a process for validating the integrated analysis software package is demonstrated using GEANT 4 simulations of the prototype detector systems.

  5. Generalized Multicoincidence Analysis Methods

    SciTech Connect

    Warren, Glen A.; Smith, Leon E.; Aalseth, Craig E.; Ellis, J. E.; Valsan, Andrei B.; Mengesha, Wondwosen

    2006-02-01

    The ability to conduct automated trace radionuclide analysis at or near the sample collection point would provide a valuable tool for emergency response, environmental monitoring, and verification of treaties and agreements. Pacific Northwest National Laboratory is developing systems for this purpose based on dual gamma-ray spectrometers, e.g. NaI(TI) or HPGe, combined with thin organic scintillator sensors to detect light charged particles. Translating the coincident signatures recorded by these systems, which include beta-gamma, gamma-gamma and beta-gamma-gamma, into the concentration of detectable radionuclides in the sample requires generalized multicoincidence analysis tools. The development and validation of the Coincidence Lookup Library, which currently contains the probabilities of single and coincidence signatures from more than 420 isotopes, is described. Also discussed is a method to calculate the probability of observing a coincidence signature which incorporates true coincidence summing effects. These effects are particularly important for high-geometric-efficiency detection systems. Finally, a process for verifying the integrated analysis software package is demonstrated using GEANT 4 simulations of the prototype detector systems.

  6. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  7. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant.

    PubMed

    Lauridsen, Clara Bratt; Sanyova, Jana; Simonsen, Kim Pilkjær

    2015-11-01

    The pigment composition of six painted metal knight shields of the Order of the Elephant dating from the second half of the 20th century belonging to the Danish royal collection were studied using Raman microscopy. By focusing a 785 nm laser with a 50× objective on particles in paint cross sections, it was possible to identify the following 20 compounds: hematite, goethite, chrome red/orange, chrome yellow, zinc chrome yellow, carbon black, toluidine red PR3, chlorinated para red PR4, dinitroaniline orange PO5, phthalocyanine blue PB15, indanthrone blue PB60, ultramarine, Prussian blue, lead white, anatase, rutile, calcium carbonate, barium sulphate, gypsum and dolomite. The components were frequently present in complex pigment mixtures. Additional information was obtained by elemental analysis with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) to identify cobalt blue, zinc white and cadmium red, as well as to indicate the presence of zinc white in some pigment mixtures. The study allowed a comparison between the industrially applied preparation layers and the artistic paint layers applied by the heraldic painter. Differences in the choice of paint and pigment types were observed on the earliest knight shields, demonstrating a general delay of industrial materials into artist paints. PMID:26023056

  8. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    SciTech Connect

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  9. Neutron streaming through a slit and duct in concrete shields and comparison with a Monte Carlo analysis

    SciTech Connect

    Hiroyuki, H.; Hideshi, F.; Masatsugu, A.; Shigehiro, A.; Yoshiaki, O.

    1983-08-01

    A series of measurements of about14-MeV deuterium-tritium neutrons streaming through a slit and a duct in concrete shields has been carried out using a Cockcroft-Walton-type neutron generator. Measured neutron energy spectra are compared with calculations in six configurations of the shields. The configurations are the simplified geometries of streaming paths of tokamak reactors, such as a divertor throat and a neutral beam injection port. The measured data were obtained with an NE-213 liquid scintillator using pulse shape discrimination methods to resolve neutron and gamma-ray pulse height data and using a spectral unfolding code to convert these data to energy spectra. The experiments were analyzed by a Monte Carlo code. The calculated neutron energy spectra slightly underestimate the measured data, especially in the range of 6 to 8 MeV. The agreement between the calculated and measured integral flux above 2.2 MeV ranges from 87.5 to 72.% depending on the configurations.

  10. Analysis of damaging effects of laser-plasma accelerated shrapnels on protecting glass shield

    NASA Astrophysics Data System (ADS)

    Martinkova, Michaela; Kalal, Milan; Shmatov, Mikhail L.

    2013-11-01

    Analysis of the damage caused by laser plasma accelerated fragments of metal target was performed. Measured as well as calculated parameters of craters and shrapnel found in BK7 glass blastshield are presented. Method applied for the measurement of parameters of craters is described. Potential damage of optical elements by the so-called striking cores (high-velocity stable objects arising due to collapse of cones or some other target parts toward their axes) that can be generated in IFE related experiments is evaluated.

  11. GCFR shielding design and supporting experimental programs

    SciTech Connect

    Perkins, R.G.; Hamilton, C.J.; Bartine, D.

    1980-05-01

    The shielding for the conceptual design of the gas-cooled fast breeder reactor (GCFR) is described, and the component exposure design criteria which determine the shield design are presented. The experimental programs for validating the GCFR shielding design methods and data (which have been in existence since 1976) are also discussed.

  12. Relativistic corrections to the diamagnetic term of the nuclear magnetic shielding: Analysis of contributions from localized orbitalsa)

    NASA Astrophysics Data System (ADS)

    Gómez, Sergio S.; Melo, Juan I.; Romero, Rodolfo H.; Aucar, Gustavo A.; de Azúa, Martín Ruiz

    2005-02-01

    We have calculated the relativistic corrections to the diamagnetic term of the nuclear magnetic shielding constants for a series of molecules containing heavy atoms. An analysis of the contributions from localized orbitals is performed. We establish quantitatively the relative importance of inner core and valence shell molecular orbitals in each correcting term. Contributions from the latter are much less important than those from the former. The calculated values of the correction σL-PSO, first derived within the linear response elimination of small component formalism, show a power-law dependence on the nuclear charge ˜Z3.5, in contrast with the ˜Z3.1 behavior of the mass-velocity external-field correction to the paramagnetic term previously reported.

  13. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  14. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

    1986-06-01

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

  15. SHIELDING ANALYSIS FOR X-RAY SOURCES GENERATED IN TARGET CHAMBER OF THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Khater, H Y; Brereton, S J; Singh, M S

    2008-03-27

    Prompt doses from x-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility (NIF). The maximum dose outside a Target Chamber diagnostic port is {approx} 1 rem for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (8 laser beams) drops to {approx} 40 mrem. Doses calculated outside the Target Bay doors and inside the Switchyards (except for the 17 ft.-6 in. level) range from a fraction of mrem to about 11 mrem for 192 beams, and scales down proportionally with smaller number of beams. At the 17ft.-6 in. level, two diagnostic ports are directly facing two of the Target Bay doors and the maximum doses outside the doors are 51 and 15.5 mrem, respectively. Shielding each of the two Target Bay doors with 1/4 in. Pb reduces the dose by factor of fifty. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the Switchyards.

  16. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

  17. Radiological characteristics of lead foils in dental film packets: analysis of components and shielding effect.

    PubMed

    Araki, K; Kanda, S

    1992-02-01

    The radiological characteristics of the lead in five different dental film packets currently on the market in Japan were studied with monochromatic X-rays. Four packets were of a foil type while in the fifth, the lead was incorporated in the vinyl of the film packet. The samples were analysed by polychromatic photon absorptiometry, and the main component found to be lead with tin and/or antimony in smaller amounts. The shielding effect was calculated and, with the exception of the lead vinyl type, all found to exceed the ISO standard 3665. The lead foils attenuated the primary beam by, on average, 77% and 56% at 60 and 90 kVp respectively: in contrast, the reduction with the lead vinyl packet was only 38% and 23%. Using a 7 cm round beam, the lead foils reduced the dose by an average of 15% compared with 30% with a rectangular beam; the average dose reduction with the lead vinyl type was 8% and 15% respectively. These data show that the lead vinyl packet is unsuitable for clinical use and confirm the importance of optimum beam collimation for the reduction of patient risk. PMID:1397446

  18. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO.

    PubMed

    Cucinotta, F A; Wilson, J W; Williams, J R; Dicello, J F

    2000-06-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used. PMID:11543368

  19. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-12-01

    The NMR nuclear shielding tensors for the series LaX(3), with X = F, Cl, Br and I, have been computed using two-component relativistic density functional theory based on the zeroth-order regular approximation (ZORA). A detailed analysis of the inverse halogen dependence (IHD) of the La shielding was performed via decomposition of the shielding tensor elements into contributions from localized and delocalized molecular orbitals. Both spin-orbit and paramagnetic shielding terms are important, with the paramagnetic terms being dominant. Major contributions to the IHD can be attributed to the La-X bonding orbitals, as well as to trends associated with the La core and halogen lone pair orbitals, the latter being related to X-La π donation. An 'orbital rotation' model for the in-plane π acceptor f orbital of La helps to rationalize the significant magnitude of deshielding associated with the in-plane π donation. The IHD goes along with a large increase in the shielding tensor anisotropy as X becomes heavier, which can be associated with trends for the covalency of the La-X bonds, with a particularly effective transfer of spin-orbit coupling induced spin density from iodine to La in LaI(3). PMID:20586110

  20. Corium shield

    DOEpatents

    McDonald, Douglas B.; Buchholz, Carol E.

    1994-01-01

    A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.

  1. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  2. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  3. The Douglas-Kroll-Hess method based on vector-potential-including Foldy-Wouthuysen transformation: Application to NMR shielding tensor

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Hada, Masahiko

    2013-08-01

    We propose a novel Foldy-Wouthuysen transformation including a vector potential A, which can be used to introduce restricted magnetic balance in the Douglas-Kroll-Hess (DKH) method. We also demonstrate that the DKH method can be used in combination with the gauge-including atomic orbital method. For the numerical examination, we calculate the NMR shielding constants and anisotropies of noble gas atoms (Ne, Ar, Kr, Xe), halogens (F, Cl, Br, I), and chalcogens (O, S, Se, Te) in molecules without using extremely large basis sets.

  4. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  5. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  6. Magnetic shielding

    DOEpatents

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  7. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  8. Communication Network Analysis Methods.

    ERIC Educational Resources Information Center

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  9. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital. PMID:25941756

  10. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2011-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for

  11. Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Mcanelly, W. B.; Young, C. T. K.

    1973-01-01

    Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.

  12. Space reactor shielding fabrication

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1972-01-01

    The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

  13. Determination of near-surface, crustal and lithospheric structures in the Canadian Precambrian Shield using time-domain electromagnetic and magnetotelluric methods

    NASA Astrophysics Data System (ADS)

    Wu, Xianghong

    Two electromagnetic methods were used to analyse the geoelectric structure of the subsurface of regions of the Precambrian Shield in Canada: the magnetotelluric (MT) and time-domain electromagnetic (TEM) methods. Magnetotelluric soundings were made at 60 sites in the southwestern Northwest Territories, Canada, along the LITHOPROBE SNORCLE Transect Corridor 1 and 1A, in the summer of 1996. The sites are located in southwestern Northwest Territories, Canada, between latitudes 60°--65°N and longitudes 110°--125°W, and cross the Archean Slave Province, the Proterozoic Buffalo Head, Great Bear Magmatic Arc, Hottah, Fort Simpson and Nahanni terranes, and the Great Slave Lake Shear Zone. Phanerozoic sedimentary rocks overlie the Proterozoic terranes. The main object of this project is to map the fracture zones and fresh/saline water interface in Precambrian granitic rocks using the surface TEM method. The TEM surveys were completed at Sites B, D, URL and A. A GEONICS PROTEM47 system with a 100 m transmitter loop was used. The data were collected for receiver offsets ranging from 0--280 m on four sides of transmitter loop. Analysis of the TEM and borehole log data indicates a basic three-layer structure: a thin conductive surface layer, a thick resistive second layer with an embedded conductive layer at some stations, and a conductive bottom layer. The results of this study show the TEM method can be used to investigate the fracture zones and groundwater salinity distribution in the Precambrian granitic rocks and contribute to site investigations for nuclear waste deposit. The TEM study in the Lac du Bonnet Batholith was successful in demonstrating the potential of the TEM methods in mapping groundwater salinity in granitic batholith. The PROTEM47 instrument, in combination with a 100 m transmitter loop, provides a suitable TEM system for mapping the resistivity structure of the Lac du Bonnet batholith down to a depth of 300--400 m. For deeper penetration and more

  14. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; Zapp, E. Neal; Shelfer, Tad D.

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  15. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    SciTech Connect

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  16. Using stakeholder analysis to support moves towards universal coverage: lessons from the SHIELD project.

    PubMed

    Gilson, Lucy; Erasmus, Ermin; Borghi, Jo; Macha, Janet; Kamuzora, Peter; Mtei, Gemini

    2012-03-01

    Stakeholder analysis is widely recommended as a tool for gathering insights on policy actor interests in, positions on, and power to influence, health policy issues. Such information is recognized to be critical in developing viable health policy proposals, and is particularly important for new health care financing proposals that aim to secure universal coverage (UC). However, there remain surprisingly few published accounts of the use of stakeholder analysis in health policy development generally, and health financing specifically, and even fewer that draw lessons from experience about how to do and how to use such analysis. This paper, therefore, aims to support those developing or researching UC reforms to think both about how to conduct stakeholder analysis, and how to use it to support evidence-informed pro-poor health policy development. It presents practical lessons and ideas drawn from experience of doing stakeholder analysis around UC reforms in South Africa and Tanzania, combined with insights from other relevant material. The paper has two parts. The first presents lessons of experience for conducting a stakeholder analysis, and the second, ideas about how to use the analysis to support policy design and the development of actor and broader political management strategies. Comparison of experience across South Africa and Tanzania shows that there are some commonalities concerning which stakeholders have general interests in UC reform. However, differences in context and in reform proposals generate differences in the particular interests of stakeholders and their likely positioning on reform proposals, as well as in their relative balance of power. It is, therefore, difficult to draw cross-national policy comparisons around these specific issues. Nonetheless, the paper shows that cross-national policy learning is possible around the approach to analysis, the factors influencing judgements and the implications for, and possible approaches to, management

  17. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  18. Status of reactor-shielding research in the US

    SciTech Connect

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study.

  19. VELM61 and VELM22: Multigroup cross-section libraries for sodium-cooled reactor shield analysis

    SciTech Connect

    Fu, C.Y.; Ingersoll, D.T.

    1987-04-01

    Two coupled neutron and photon multigroup cross-section libraries, derived from ENDF/B-V nuclear data, are described. The energy group structures, 61n/23..gamma.. and 22n/10..gamma.., are subsets of the Vitamin-E 174n/38..gamma.. group structure, and are tailored to the iron and sodium resonances, windows, and capture gamma-ray spectra. Each of the two libraries are available in two formats, the AMPX master format and the ANISN format. Cross sections for all materials in the Vitamin-E library were collapsed using a standard energy weighting function, and in addition, several cross-section sets for each of the major constituents of commercial grade sodium, stainless steel (types 304 and 316), and carbon steel were derived using several problem-dependent weighting functions for averaging the fine groups. Effects of various group structures and weighting functions on the accuracy of the broad group libraries are studied by ANISN analysis of a typical sodium-iron shield configuration.

  20. Configuration-interaction and Hylleraas configuration-interaction methods in valence-bond theory: Calculation of the nuclear shielding constant for the ground state of the hydrogen molecule

    SciTech Connect

    Komasa, J.; Cencek, W.; Rychlewski, J. )

    1992-09-01

    Values of the magnetic shielding constant in the ground state of the hydrogen molecule are calculated using explicitly correlated Gaussian functions. The total shielding at equilibrium amounts to 26.73 ppm.

  1. Application of DOT-MORSE coupling to the analysis of three-dimensional SNAP shielding problems

    NASA Technical Reports Server (NTRS)

    Straker, E. A.; Childs, R. L.; Emmett, M. B.

    1972-01-01

    The use of discrete ordinates and Monte Carlo techniques to solve radiation transport problems is discussed. A general discussion of two possible coupling schemes is given for the two methods. The calculation of the reactor radiation scattered from a docked service and command module is used as an example of coupling discrete ordinates (DOT) and Monte Carlo (MORSE) calculations.

  2. Numerical instabilities encountered in non-linear temperature analysis of radiation shield for SP-100 reactor

    NASA Astrophysics Data System (ADS)

    Barattino, William J.; El-Genk, Mohamed S.; McDaniel, Patrick J.

    The finite element method using Simplex elements and Newton-Raphson iteration has been shown to be quite accurate for solving nonlinear, nonhomogeneous, steady-state heat conduction problems, with radiative boundary conditions. However, at high values of internal heat generation, a bifurcation solution results in which the temperature at the radiative boundary oscillates between two values, neither of which is the exact solution. The introduction of a relaxation parameter in the radiative heat transfer coefficient was effective in eliminating the oscillatory behavior of the radiative surface temperature. A nodal decomposition was performed on the basic Newton-Raphson system of equations which led to a qualitative understanding of how the engineering parameters of the heat transfer-governing equation affected the oscillations. A method for determining the optimum relaxation parameter to ensure convergence and maximize the convergence rate was proposed.

  3. Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.

    2008-01-01

    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and

  4. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  5. Shield topology in lightning transient control

    NASA Technical Reports Server (NTRS)

    Vance, E. F.; Tesche, F. M.

    1980-01-01

    A formalism in which the interaction of a system with an electromagnetic source is described by sets of scattering, penetrations, and propagation functions is reviewed and interpreted in the context of the lightning interaction problem. In this formalism, the system is decomposed into simple volumes separated by closed shield surfaces. These surfaces are nested and interconnected to produce higher levels of shielding and subvolumes within a given level. The interaction analysis uses scattering theory to define current and charge densities on the shield surface in conjunction with the diffusion, apertures, and transmission line analysis to define penetration through shield imperfections and propagation within the protected volume.

  6. Traditional Methods for Mineral Analysis

    NASA Astrophysics Data System (ADS)

    Ward, Robert E.; Carpenter, Charles E.

    This chapter describes traditional methods for analysis of minerals involving titrimetric and colorimetric procedures, and the use of ion selective electrodes. Other traditional methods of mineral analysis include gravimetric titration (i.e., insoluble forms of minerals are precipitated, rinse, dried, and weighed) and redox reactions (i.e., mineral is part of an oxidation-reduction reaction, and product is quantitated). However, these latter two methods will not be covered because they currently are used little in the food industry. The traditional methods that will be described have maintained widespread usage in the food industry despite the development of more modern instrumentation such as atomic absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy (Chap. 24). Traditional methods generally require chemicals and equipment that are routinely available in an analytical laboratory and are within the experience of most laboratory technicians. Additionally, traditional methods often form the basis for rapid analysis kits (e.g., Quantab®; for salt determination) that are increasingly in demand. Procedures for analysis of minerals of major nutritional or food processing concern are used for illustrative purposes. For additional examples of traditional methods refer to references (1-6). Slight modifications of these traditional methods are often needed for specific foodstuffs to minimize interferences or to be in the range of analytical performance. For analytical requirements for specific foods see the Official Methods of Analysis of AOAC International (5) and related official methods (6).

  7. Heat-shield design for glovebox applications.

    SciTech Connect

    Frigo, A. A.

    1998-07-10

    Heat shields can often be used in place of insulation materials as an effective means of insulating glovebox furnace vessels. If used properly, shields can accomplish two important objectives: thermal insulation of the vessel to maintain a desired process temperature and protection of the glovebox, equipment, and user. A heat-shield assembly can be described as an arrangement of thin, properly-spaced, metal sheets that reduce radiation heat transfer. The main problem encountered in the design of a heat shield assembly is choosing the number of shields. In determining the heat transfer characteristics of a heat-shield assembly, a number of factors must be taken into consideration. The glovebox or outside environment, material properties, geometry, and operating temperature all have varying effects on the expected results. A simple method, for planar-horizontal and cylindrical-vertical shields, allowing the approximation of the outermost shield temperature, the practical number of shields, and the net heat-transfer rate will be presented. Methods used in the fabrication of heat-shield assemblies will also be discussed.

  8. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  9. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies.

    PubMed

    Platts, James A; Gkionis, Konstantinos

    2009-11-28

    Ab initio and density functional theory (DFT) calculations of nuclear magnetic resonance shielding tensors in benzene-methane and two isomers of the benzene dimer are reported, with the aim of probing the changes in shielding induced by the formation of supramolecular complexes from isolated molecules. It is shown that the changes in shielding (and hence of chemical shift) for hydrogen nuclei are broadly in line with expectations from "shielding cones" based on aromatic ring current, but that changes for carbon nuclei are rather more subtle. More detailed analysis indicates that the change in isotropic shielding results from much larger changes in individual components of the shielding tensor and in diamagnetic/paramagnetic shielding contributions. Benchmark data were obtained using Møller-Plesset 2nd order perturbation theory with a medium-sized basis set, but it is shown that Hartree-Fock and most density functional theory methods reproduce all essential changes in shielding, and do so in a reasonably basis set independent fashion. The chosen method is then applied to a DNA-intercalator complex. PMID:19890517

  10. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  11. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  12. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  13. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  14. Testing the bioelectric shield.

    PubMed

    Blackmore, Susan J; Rose, Nicholas

    2002-01-01

    A pendant was claimed to provide numerous health benefits, including reduced stress, increased strength, and protection from electromagnetic radiation from computers and mobile phones. Three experiments tested the effectiveness of this pendant's effect as a bioelectric shield. In the first experiment, 12 subjects who work with computers wore shields (6 real, 6 sham) for several weeks and were regularly tested for hand strength and mood changes. Both types of shield increased calmness, but the real shields did not have any greater effect. In 2 further studies (in each N=40) hand strength was measured at baseline, with mobile phone, and with mobile phone and bioelectric or sham shield. The shields did not differ in their effects. Both studies showed a significant correlation between the change in strength with and without the shield and subjects'scores on a questionnaire concerning their belief in and use of alternative therapies. The shields appear to produce a measurable placebo effect but are otherwise ineffective. PMID:12233804

  15. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  16. NEUTRONIC REACTOR SHIELD

    DOEpatents

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  17. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    PubMed Central

    2015-01-01

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry). PMID:25300934

  18. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation.

    PubMed

    Musil, Stanislav; Matoušek, Tomáš; Currier, Jenna M; Stýblo, Miroslav; Dědina, Jiří

    2014-10-21

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry). PMID:25300934

  19. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  20. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  1. The Copper Sulfide Coating on Polyacrylonitrile with Chelating Agents by an Electroless Deposition Method and its EMI Shielding Effectiveness

    SciTech Connect

    Roan, M.-L.; Chen, Y.-H.; Huang, C.-Y.

    2008-08-28

    In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reaction with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.

  2. A model for the rapid evaluation of active magnetic shielding designs

    NASA Astrophysics Data System (ADS)

    Washburn, Scott Allen

    The use of active magnetic radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs that utilize only passive shielding. One of the common techniques for assessing the effectiveness of active or passive shielding designs is the use of Monte Carlo analysis to determine crew radiation exposure. Unfortunately, Monte Carlo analysis is a lengthy and computationally intensive process, and the associated time requirements to generate results make a broad analysis of the active magnetic shield design trade space impractical using this method. The ability to conduct a broad analysis of system design variables would allow the selection of configurations suited to specific mission goals, including mission radiation exposure limits, duration, and destination. Therefore, a rapid analysis method is required in order to effectively assess active shielding design parameters, and this body of work was developed in order to address this need. Any shielding analysis should also use complete representations of the radiation environment and detailed transport analyses to account for secondary particle production mechanisms. This body of work addresses both of these issues by utilizing the full Galactic Cosmic Radiation GCR flux spectrum and a detailed transport analysis to account for secondary particle effects due to mass interactions. Additionally, there is a complex relationship between the size and strength of an active shielding design and the amount and type of mass required to create it. This mass can significantly impact the resulting flux and radiation exposures inside the active shield, and any shielding analysis should not only include passive mass, but should attempt to provide a reasonable estimate of the actual mass associated with a given design. Therefore, a survey of active shielding systems is presented so that reasonable mass quantity and composition

  3. SIR-B analysis of the Precambrian shield of Sudan and Egypt: Penetration studies and subsurface mapping

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Roth, L.; Stern, R. J.; Almond, D. C.; Kroner, A.; Elshazly, E. M.

    1984-01-01

    A shuttle imaging radar-B (SIR-B) study is proposed for the Precambrian shield in southeast Egypt and northeast Sudan in an area east of the Nile. The phenomenon of radar penetration of thin, dry eolian/alluvial cover is to be confirmed and quantified. The penetration phenomenon is to be used to map structural and lithologic features. Field work to be done in conjunction with image acquisition is discussed.

  4. Comparison of Modified Cartilage Shield Tympanoplasty with Tympanoplasty Using Temporalis Fascia Only: Retrospective Analysis of 142 Cases

    PubMed Central

    Parikh, Vibhuti; Shah, Saumya; Pandya, Parita; Kansara, Anuj

    2016-01-01

    The current study compares outcomes of modified cartilage shield tympanoplasty (CST) with temporalis fascia tympanoplasty in type I procedures in Indian patients. Graft uptake rates are better with the CST technique and hearing results are almost equivalent with both techniques except at 8000 Hz where improvement in hearing was found better with the use of temporalis fascia alone. The CST technique used in the study is unique. PMID:27559489

  5. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  6. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  7. Wake Shield Target Protection

    SciTech Connect

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-05-15

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed.

  8. The effect of small variations in the magnetization curves of shielding material upon shielded fields

    NASA Astrophysics Data System (ADS)

    Kost, A.; Jacobs, R. T.; Hahn, A.

    2007-08-01

    The shielding of strong electromagnetic fields at power frequency, performed by ferromagnetic plates, is often successfully modelled by the effective reluctivity. This method delivers good results for the RMSvalue of the shielded field. The following paper shows that a small variation of the magnetization curve (e.g.by taking another material charge) can strongly influence the shielded field. The field calculation is performed by the Finite Element Method (FEM), where for the interior plate region a)finite elements and b)non-linear Impedance Boundary Conditions (IBC) are used which circumvents the need to discretize the shielding plate.

  9. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  10. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  11. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  12. On the recovery of effective elastic thickness using spectral methods: examples from synthetic data and from the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Velicogna, I.

    2003-12-01

    The effective elastic thickness, Te, represents the response to long-term loading of the lithosphere; it is thus a useful measure of its strength. However, the use of different methods and assumptions to calculate Te yield different results, leading to controversial interpretations of the relationship of Te to rheology. We investigate the ability of the Bouguer coherence and free air admittance to recover Te assuming that surface and subsurface loads exist. We use synthetic data to show that the estimated Te using both functions is similar; the recovery with admittance is somewhat poorer due to leakage problems. When the underlying Te is constant, the bias and variance of the resulting Te increases with decreasing analysis window size and increasing underlying Te value. When Te varies spatially, Te estimation using sliding, overlapping windows retrieves a structure that approximates the true spatial variability, but window sizes must be chosen carefully. In light of these results, we analyse Te in Fennoscandia using both techniques and obtain similar estimates. Te is 20-40 km in the Caledonides, 40- 60 km in the Swedish Svecofennides, 40-60 km in the Kola peninsula and 70-100 km in southern Karelia and Svecofennian central Finland. These estimates are not biased by unrecovered post-glacial rebound and also potential noise introduced by long-term erosion and sedimentation does not appear to affect Te. An independent estimate of Te using rheological modelling, confirms that Te in central Finland should be high. Because Te exceeds crustal thickness ( ˜ 60 km), the mantle must contribute significant strength to the total. Te is also larger than the seismogenic thickness, thus indicating that they represent different physical behaviours. In general, Te in Fennoscandia increases with tectonic age, seismic lid thickness and decreasing heat flow. Te is low where seismicity is frequent and high where it is reduced. In Proterozoic and Archean lithosphere, the relationship

  13. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  14. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  15. Resonance self-shielding methodology in MPACT

    SciTech Connect

    Liu, Y.; Collins, B.; Kochunas, B.; Martin, W.; Kim, K. S.; Williams, M.

    2013-07-01

    The resonance self-shielding methods of the neutron transport code Michigan Parallel Characteristics based Transport (MPACT) are described in this paper. Two resonance-integral table based methods are utilized to resolve the resonance self-shielding effect. The subgroup method is a mature approach used in MPACT as the basic functionality for the resonance calculation. Another new iterative method, named the embedded self-shielding method is also implemented in MPACT. Comparisons of the two methods as well as their numerical verifications are presented. The results show that MPACT is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. (authors)

  16. Performance of solar shields

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1975-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab I, about 63 seconds after lift-off, proved to be the harbinger of a prodigious effort to quickly develop a workable substitute for the carefully tailored passive portion of the thermal-control system. The paper describes the intensive ten-day around-the-clock effort in which numerous potential thermal-shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal-shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material 'memory' properties.

  17. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  18. Development of fiber shields for engine containment. [mathematical models

    NASA Technical Reports Server (NTRS)

    Bristow, R. J.; Davidson, C. D.

    1977-01-01

    Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.

  19. An evaluation of the applicability of the telluric-electric and audio-magnetotelluric methods to mineral assessment on the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Zablocki, Charles J.

    1984-01-01

    Feasibility studies of two electromagnetic methods were made in selected areas of the Jabal Hibshi (1:250,000) quadrangle, 26F, in the Kingdom of Saudi Arabia in March of 1983. The methods tested were the natural source-field telluricelectric and audio-magnetotelluric methods developed and extensively used in recent years by the U.S. Geological Survey in some of its domestic programs related to geothermal and mineral resource assessment. Results from limited studies in the Meshaheed district, the Jabal as Silsilah ring complex, and across a portion of the Raha fault zone clearly demonstrate the appropriateness of these sub-regional scale, reconnaissance-type studies to mineral resource assessment. The favorable results obtained are largely attributed to distinctive and large contrasts in the electrical resistivity of the major rock types encountered. It appears that the predominant controlling factor governing the rock resistivities is the amount of contained clay minerals. Accordingly, unaltered (specifically, non-argillic) igneous and metamorphic rocks have very high resistivities; metasedimentary rocks of the Murdama group that contain several percent clay minerals have intermediate values of resistivity; and highly altered rocks, containing abundant clay minerals, have very low values of resistivity. Water-filled fracture porosity may be a secondary, but important, factor in some settings. However, influences from variations in interstitial or intercrystalline, water-filled porosity are probably small because these types of porosity are generally low. It is reasonable to expect similar results in other areas within the Arabian Shield.

  20. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  1. Shielding measurements for 230-Mev protons

    SciTech Connect

    Siebers, J.V.; DeLuca, P.M. Jr.; Pearson, D.W. . Dept. of Medical Physics); Coutrakon, G. . Medical Center)

    1993-09-01

    Energetic neutrons, produced as protons interact with matter, dominate the radiation shielding environment for proton accelerators. Because of the scarcity of data describing the shielding required to protect personnel from these neutrons, absorbed dose and dose-equivalent values are measured as a function of depth in a thick concrete shield at neutron emission angles of 0, 22, 45, and 90 deg for 230-MeV protons incident upon stopping-length aluminum, iron, and lead targets. Neutron attenuation lengths vary sharply with angle but are independent of the target material. Comparing results with prior shielding calculations, the High-Energy Transport Code overestimates neutron production and attenuation lengths in the forward direction. Analytical methods compare favorably in the forward direction but overestimate the production and attenuation lengths at large angles. The results presented are useful for determining the shielding requirements for proton radiotherapy facilities and as a benchmark for future calculations.

  2. Repository Waste Package Transporter Shielding Weight Optimization

    SciTech Connect

    C.E. Sanders; Shiaw-Der Su

    2005-02-02

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight.

  3. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  4. Voltametric analysis apparatus and method

    DOEpatents

    Almon, Amy C.

    1993-01-01

    An apparatus and method for electrochemical analysis of elements in solution. An auxiliary electrode 14, a reference electrode 18, and five working electrodes 20, 22, 26, 28, and 30 are positioned in a container 12 containing a sample solution 34. The working electrodes are spaced apart evenly from each other and auxiliary electrode 14 to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode 14 and each of the working electrodes 20, 22, 26, 28, and 30. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution 34 and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  5. Voltammetric analysis apparatus and method

    DOEpatents

    Almon, A.C.

    1993-06-08

    An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  6. Correlation method of electrocardiogram analysis

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Timochko, Katerina B.

    2002-02-01

    The electrocardiograph method is the informational source for functional heart state characteristics. The electrocardiogram parameters are the integrated map of many component characteristics of the heart system and depend on disturbance requirements of each device. In the research work the attempt of making the skeleton diagram of perturbation of the heart system is made by the characteristic description of its basic components and connections between them through transition functions, which are written down by the differential equations of the first and second order with the purpose to build-up and analyze electrocardiogram. Noting the vector character of perturbation and the various position of heart in each organism, we offer own coordinate system connected with heart. The comparative analysis of electrocardiogram was conducted with the usage of correlation method.

  7. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. The design of reactive shielded magnet clutches

    NASA Technical Reports Server (NTRS)

    Gertsov, S. M.

    1978-01-01

    The design of reactive shielded magnet clutches is considered along with their schematics, design formulas and characteristics of clutches in general. The design method suggested makes it possible to reduce calculation errors to 10%.

  10. MicroShield/ISOCS gamma modeling comparison.

    SciTech Connect

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberra's ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  11. Dislocation shielding of a cohesive crack

    NASA Astrophysics Data System (ADS)

    Bhandakkar, Tanmay K.; Chng, Audrey C.; Curtin, W. A.; Gao, Huajian

    2010-04-01

    Dislocation interaction with a cohesive crack is of increasing importance to computational modelling of crack nucleation/growth and related toughening mechanisms in confined structures and under cyclic fatigue conditions. Here, dislocation shielding of a Dugdale cohesive crack described by a rectangular traction-separation law is studied. The shielding is completely characterized by three non-dimensional parameters representing the effective fracture toughness, the cohesive strength, and the distance between the dislocations and the crack tip. A closed form analytical solution shows that, while the classical singular crack model predicts that a dislocation can shield or anti-shield a crack depending on the sign of its Burgers vector, at low cohesive strengths a dislocation always shields the cohesive crack irrespective of the Burgers vector. A numerical study shows the transition in shielding from the classical solution of Lin and Thomson (1986) in the high strength limit to the solution in the low strength limit. An asymptotic analysis yields an approximate analytical model for the shielding over the full range of cohesive strengths. A discrete dislocation (DD) simulation of a large (>10 3) number of edge dislocations interacting with a cohesive crack described by a trapezoidal traction-separation law confirms the transition in shielding, showing that the cohesive crack does behave like a singular crack at very high cohesive strengths (˜7 GPa), but that significant deviations in shielding between singular and cohesive crack predictions arise at cohesive strengths around 1GPa, consistent with the analytic models. Both analytical and numerical studies indicate that an appropriate crack tip model is essential for accurately quantifying dislocation shielding for cohesive strengths in the GPa range.

  12. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  13. Graphitic heat shields for solar probe missions

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.

    1981-01-01

    The feasibility of using a graphitic heat-shield system on a solar probe going to within 4 solar radii of the center of the sun is investigated. An analysis of graphite vaporization, with commonly used vaporization coefficients, indicates that the maximum mass-loss rate from a conical shield as large as 4 m in diameter can be kept low enough to avoid interference with measurements of the solar environment. In addition to the mass-loss problem, the problem of protecting the payload from the high-temperature (up to 2300 K) primary shield must be solved. An analysis of radiation exchange between concentric disks provides a technique for designing the intermediate shielding. The technique is applied to the design of a system for the Starprobe spacecraft, and it is found that a system with 10 shields and a payload surface temperature of 600 K will have a payload diameter of 2.45 m. Since this is 61% of the 4-m diameter of the primary shield, it is concluded that a graphitic heat-shield system is feasible for the Starprobe mission.

  14. Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method: tin tetrahalides

    NASA Astrophysics Data System (ADS)

    Kaneko, H.; Hada, M.; Nakajima, T.; Nakatsuji, H.

    1996-10-01

    The 119Sn NMR chemical shifts of SnX 4(X=H, Cl, Br and I) and SnBr 4- nI n ( n = 1, 2, 3) are calculated by the ab initio UHF method including the spin-orbit (SO) interaction combined with the finite perturbation method. The calculated Sn chemical shifts are in good agreement with experiment when the SO interaction is included. As the halogen ligand becomes heavier, the SO effect increases and the chemical shift moves to a higher field. The normal halogen dependence by the substitution from Cl to I in tin tetrahalides is reproduced only when the SO interaction is included. The origin of the SO effect is ascribed to the Fermi contact term.

  15. Analysis of the effect of different absorber materials and loading on the shielding effectiveness of a metallic enclosure

    NASA Astrophysics Data System (ADS)

    Parr, S.; Karcoon, H.; Dickmann, S.; Rambousky, R.

    2015-11-01

    Metallic rooms as part of a complex system, like a ship, are necessarily connected electromagnetically via apertures and cables to the outside. Therefore, their electromagnetic shielding effectiveness (SE) is limited by ventilation openings, cable feed-throughs and door gaps. Thus, electronic equipment inside these rooms is susceptible to outer electromagnetic threats like IEM (Intentional Electromagnetic Interference). Dielectric or magnetic absorber inside such a screened room can be used in order to prevent the SE from collapsing at the resonant frequencies. In this contribution, the effect of different available absorber materials is compared, as well as other properties like weight and workability. Furthermore, parameter variations of the absorber as well as the effect of loading in form of metallic and dielectric structures on the SE are analyzed.

  16. Tank evaluation system shielded annular tank application

    SciTech Connect

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  17. Methods for Cancer Epigenome Analysis

    PubMed Central

    Nagarajan, Raman P.; Fouse, Shaun D.; Bell, Robert J.A.; Costello, Joseph F.

    2014-01-01

    Accurate detection of epimutations in tumor cells is crucial for understanding the molecular pathogenesis of cancer. Alterations in DNA methylation in cancer are functionally important and clinically relevant, but even this well-studied area is continually re-evaluated in light of unanticipated results, including a strong connection between aberrant DNA methylation in adult tumors and polycomb group profiles in embryonic stem cells, cancer-associated genetic mutations in epigenetic regulators such as DNMT3A and TET family genes, and the discovery of abundant 5-hydroxymethylcytosine, a product of TET proteins acting on 5-methylcytosine, in human tissues. The abundance and distribution of covalent histone modifications in primary cancer tissues relative to normal cells is a largely uncharted area, although there is good evidence for a mechanistic role of cancer-specific alterations in epigenetic marks in tumor etiology, drug response and tumor progression. Meanwhile, the discovery of new epigenetic marks continues, and there are many useful methods for epigenome analysis applicable to primary tumor samples, in addition to cancer cell lines. For DNA methylation and hydroxymethylation, next-generation sequencing allows increasingly inexpensive and quantitative whole-genome profiling. Similarly, the refinement and maturation of chromatin immunoprecipitation with next-generation sequencing (ChIP-seq) has made possible genome-wide mapping of histone modifications, open chromatin and transcription factor binding sites. Computational tools have been developed apace with these epigenome methods to better enable the accuracy and interpretation of the data from the profiling methods. PMID:22956508

  18. CAD-based radiation protection and shielding in space

    SciTech Connect

    Appleby, M.H.

    1991-01-01

    In the not-too-distant future, astronauts will begin living and working on space station Freedom (SSF), eventually establishing a permanent presence in space. Beyond Freedom, the National Aeronautics and Space Administration (NASA) has set its sights on returning to and eventually establishing outposts on the moon and Mars. Without appropriate methods of identifying protection deficiencies, spacecraft designers often overestimate or defer shielding solutions in both cases burdening the program. To avoid possible penalties such as increased mass, complexity, and cost, radiation analysis should be conducted as part of the preliminary design process. An innovative radiation assessment system combining computer-aided design (CAD) capabilities with established NASA transport codes has been developed permitting fast, accurate analysis of spacecraft. The use of this automated analytical tool the Boeing Radiation Exposure Model (Brem) is discussed in this paper, relative to spacecraft design and the optimization of radiation shielding. Results obtained from recently completed radiation analysis of space station Freedom are also discussed.

  19. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  20. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  1. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  2. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    PéRez-Gussinyé, Marta; Lowry, Anthony R.; Watts, Anthony B.; Velicogna, Isabella

    2004-10-01

    There is considerable controversy regarding the long-term strength of continents (Te). While some authors obtain both low and high Te estimates from the Bouguer coherence and suggest that both crust and mantle contribute to lithospheric strength, others obtain estimates of only <25 km using the free-air admittance and suggest that the mantle is weak. At the root of this controversy is how accurately Te can be recovered from coherence and admittance. We investigate this question by using synthetic topography and gravity anomaly data for which Te is known. We show that the discrepancies stem from comparison of theoretical curves to multitaper power spectral estimates of free-air admittance. We reformulate the admittance method and show that it can recover synthetic Te estimates similar to those recovered using coherence. In light of these results, we estimate Te in Fennoscandia and obtain similar results using both techniques. Te is 20-40 km in the Caledonides, 40-60 km in the Swedish Svecofennides, 40-60 km in the Kola peninsula, and 70-100 km in southern Karelia and Svecofennian central Finland. Independent rheological modeling, using a xenolith-controlled geotherm, predicts similar high Te in central Finland. Because Te exceeds crustal thickness in this area, the mantle must contribute significantly to the total strength. Te in Fennoscandia increases with tectonic age, seismic lithosphere thickness, and decreasing heat flow, and low Te correlates with frequent seismicity. However, in Proterozoic and Archean lithosphere the relationship of Te to age is ambiguous, suggesting that compositional variations may influence the strength of continents.

  3. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  4. Shielding of the Hip Prosthesis During Radiation Therapy for Heterotopic Ossification is Associated with Increased Failure of Prophylaxis

    SciTech Connect

    Balboni, Tracy A.; Gaccione, Peter; Gobezie, Reuben; Mamon, Harvey J. . E-mail: hmamon@partners.org

    2007-04-01

    Purpose: Radiation therapy (RT) is frequently administered to prevent heterotopic ossification (HO) after total hip arthroplasty (THA). The purpose of this study was to determine if there is an increased risk of HO after RT prophylaxis with shielding of the THA components. Methods and Materials: This is a retrospective analysis of THA patients undergoing RT prophylaxis of HO at Brigham and Women's Hospital between June 1994 and February 2004. Univariate and multivariate logistic regressions were used to assess the relationships of all variables to failure of RT prophylaxis. Results: A total of 137 patients were identified and 84 were eligible for analysis (61%). The median RT dose was 750 cGy in one fraction, and the median follow-up was 24 months. Eight of 40 unshielded patients (20%) developed any progression of HO compared with 21 of 44 shielded patients (48%) (p = 0.009). Brooker Grade III-IV HO developed in 5% of unshielded and 18% of shielded patients (p 0.08). Multivariate analysis revealed shielding (p = 0.02) and THA for prosthesis infection (p = 0.03) to be significant predictors of RT failure, with a trend toward an increasing risk of HO progression with age (p = 0.07). There was no significant difference in the prosthesis failure rates between shielded and unshielded patients. Conclusions: A significantly increased risk of failure of RT prophylaxis for HO was noted in those receiving shielding of the hip prosthesis. Shielding did not appear to reduce the risk of prosthesis failure.

  5. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  6. What Is Radiation Shielding?

    NASA Video Gallery

    Kerry Lee, NASA Orion radiation system manager, explains how radiation shielding is used to block harmful particles coming into the spacecraft without producing secondary particles that can cause e...

  7. ALS synchrotron radiation shielding

    SciTech Connect

    Donahue, R.J.

    1995-10-01

    This note discusses the assumptions and results of synchrotron radiation shielding estimates for ALS bend magnet and wiggler beamlines. Estimates of gas bremsstrahlung production are not included and are dealt with elsewhere.

  8. SNS shielding analyses overview

    SciTech Connect

    Popova, Irina; Gallmeier, Franz; Iverson, Erik B; Lu, Wei; Remec, Igor

    2015-01-01

    This paper gives an overview on on-going shielding analyses for Spallation Neutron Source. Presently, the most of the shielding work is concentrated on the beam lines and instrument enclosures to prepare for commissioning, save operation and adequate radiation background in the future. There is on-going work for the accelerator facility. This includes radiation-protection analyses for radiation monitors placement, designing shielding for additional facilities to test accelerator structures, redesigning some parts of the facility, and designing test facilities to the main accelerator structure for component testing. Neutronics analyses are required as well to support spent structure management, including waste characterisation analyses, choice of proper transport/storage package and shielding enhancement for the package if required.

  9. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  10. Shielded cells transfer automation

    SciTech Connect

    Fisher, J J

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

  11. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  12. Low-Power Magnetically Shielded Hall Thrusters

    NASA Astrophysics Data System (ADS)

    Conversano, Ryan William

    This dissertation presents an investigation of the applicability of magnetic shielding to low-power Hall thrusters as a means to significantly improve operational lifetime. The key life-limiting factors of conventional Hall thrusters, including ion-bombardment sputter erosion of the discharge channel and high-energy electron power deposition to the channel walls, have been investigated extensively for a wide range of thruster scales. As thruster power is reduced to the "miniature" (i.e. sub-500 W) power regime, the increased surface-to-volume ratio of the discharge channel and decreased thruster component sizes promotes increased plasma-wall interactions and susceptibility to overheating, thereby reducing thruster operational lifetime and performance. Although methods for compensating for these issues have been investigated, unshielded miniature Hall thrusters are generally limited to sub-45% anode efficiencies and maximum lifetimes on the order of 1,000 h. A magnetically shielded magnetic field topology aims to maintain a low electron temperature along the channel surfaces and a plasma potential near that of the discharge voltage along the entire surface of the discharge channel along its axial length. These features result in a reduction of the kinetic energy of ions that impact the channel surfaces to near to or below the sputtering threshold, thus preventing significant ion-bombardment erosion of the discharge channel. Improved confinement of high-energy electrons is another byproduct of the field structure, aiding in the reduction of electron power deposition to the channel. Magnetic shielding has been shown to dramatically reduce plasma-wall interactions on 4--6 kW Hall thrusters, resulting in significant increases in projected operational lifetimes with minimal effects to thruster performance. In an effort to explore the scalability of magnetic shielding to low-power devices, two magnetically shielded miniature Hall thrusters were designed, fabricated and

  13. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-03-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  14. Hypervelocity impact simulation for micrometeorite and debris shield design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1992-01-01

    A new capability has been developed for direct computer simulation of hypervelocity impacts on multi-plate orbital debris shields, for combinations of low shield thickness and wide shield spacing which place extreme demands on conventional Eulerian analysis techniques. The modeling methodology represents a novel approach to debris cloud dynamics simulation, a problem of long term interest in the design of space structures. Software implementation of the modeling methodology provides a new design tool for engineering analysis of proposed orbital debris protection systems.

  15. Projectile Density Effects on Shield Performance

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana; Lyons, Frankel; Davis, Alan

    2009-01-01

    In the past, the orbital debris environment was modeled as consisting entirely of aluminum particles. As a consequence, most of the impact test database on spacecraft micro-meteoroid and orbital debris (MMOD) shields, and the resulting ballistic limit equations used to predict shielding performance, has been based on using aluminum projectiles. Recently, data has been collected from returned spacecraft materials and other sources that indicate higher and lower density components of orbital debris also exist. New orbital debris environment models such as ORDEM2008 provide predictions of the fraction of orbital debris in various density bins (high = 7.9 g/cu cm, medium = 2.8 g/cu cm, and low = 0.9-1.1 g/cu cm). This paper describes impact tests to assess the effects of projectile density on the performance capabilities of typical MMOD shields. Updates to shield ballistic limit equations are provided based on results of tests and analysis.

  16. Probabilistic methods for structural response analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Burnside, O. H.; Cruse, T. A.

    1988-01-01

    This paper addresses current work to develop probabilistic structural analysis methods for integration with a specially developed probabilistic finite element code. The goal is to establish distribution functions for the structural responses of stochastic structures under uncertain loadings. Several probabilistic analysis methods are proposed covering efficient structural probabilistic analysis methods, correlated random variables, and response of linear system under stationary random loading.

  17. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  18. Global shielding analysis for the three-element core advanced neutron source reactor under normal operating conditions

    SciTech Connect

    Slater, C.O.; Bucholz, J.A.

    1995-08-01

    Two-dimensional discrete ordinates radiation transport calculations were performed for a model of the three-element core Advanced Neutron Source reactor design under normal operating conditions. The core consists of two concentric upper elements and a lower element radially centered in the annulus between the upper elements. The initial radiation transport calculations were performed with the DORT two-dimensional discrete ordinates radiation transport code using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub 6} quadrature, and a P{sub 1} Legendre polynomial expansion of the cross sections to determine the fission neutron source distribution in the core fuel elements. These calculations were limited to neutron groups only. The final radiation transport calculations, also performed with DORT using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub l0} quadrature, and a P{sub 3} Legendre polynomial expansion of the cross sections, produced neutron and gamma-ray fluxes over the full extent of the geometry model. Responses (or activities) at various locations in the model were then obtained by folding the appropriate response functions with the fluxes at those locations. Some comparisons were made with VENTURE-calculated (diffusion theory) 20-group neutron fluxes that were summed into four broad groups. Tne results were in reasonably good agreement when the effects of photoneutrons were not included, thus verifying the physics model upon which the shielding model was based. Photoneutrons increased the fast-neutron flux levels deep within the D{sub 2}0 several orders of magnitude. Results are presented as tables of activity values for selected radial and axial traverses, plots of the radial and axial traverse data, and activity contours superimposed on the calculational geometry model.

  19. Further analysis and evaluation of the results of the NATO common shield-DAT#7 experiment: defence against terrorism

    NASA Astrophysics Data System (ADS)

    Dill, Stephan; Peichl, Markus; Jirousek, Matthias; Süß, Helmut

    2009-09-01

    The contactless control of persons and the remote surveillance of sensitive infrastructures are important tasks in order to provide the required security measures to protect the human population against the threads of international terrorism. Passive microwave imaging allows a daytime independent observation and examination of objects and persons under nearly all adverse ambient conditions without artificial exposure, hence fully avoiding health risks. The penetration capability of microwaves provides the detection of objects through atmospheric obstacles like bad weather, fog or dust, vapour and smoke, as well as through thin non-metallic materials and clothing. For the latter the detection of hidden objects like weapons, explosives, and contraband is possible by monitoring dielectric anomalies. The experiment "Common Shield" is part of a perennial investigation series leaded by the "Center for Transformation of the German armed forces (Bundeswehr)". In 2008 the protection of soldiers and facilities was experimentally investigated under the aspect of a networked operational leadership. In this context as well a harbour protection trial was carried out in August/September 2008 at the naval base Eckernfoerde in Germany. This trial was part of the NATO CNADs program of work for "Defence Against Terrorism (DAT)" starting in 2003, and Germany is the lead nation for item 7 on "Technology for Intelligence, Surveillance, Reconnaissance & Target Acquisition of Terrorists (ISRTA)". One main activity in the Eckernfoerde trial was the simulation of a military entrance control facility by a tent including various imaging and a chemical sensor suite in order to provide security for a military camp. Besides commercial optical and infrared cameras various passive millimeter-wave imagers have been used from different German research institutions. The DLR Microwaves and Radar Institute, Department for Reconnaissance and Security (HR-AS), provided an imaging radiometer scanner

  20. Correlating the EMC analysis and testing methods for space systems in MIL-STD-1541A

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    1990-01-01

    A study was conducted to improve the correlation between the electromagnetic compatibility (EMC) analysis models stated in MIL-STD-1541A and the suggested testing methods used for space systems. The test and analysis methods outlined in MIL-STD-1541A are described, and a comparative assessment of testing and analysis techniques as they relate to several EMC areas is presented. Suggestions on present analysis and test methods are introduced to harmonize and bring the analysis and testing tools in MIL-STD-1541A into closer agreement. It is suggested that test procedures in MIL-STD-1541A must be improved by providing alternatives to the present use of shielded enclosures as the primary site for such tests. In addition, the alternate use of anechoic chambers and open field test sites must be considered.

  1. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  2. Ethnographic Analysis of Instructional Method.

    ERIC Educational Resources Information Center

    Brooks, Douglas M.

    1980-01-01

    Instructional methods are operational exchanges between participants within environments that attempt to produce a learning outcome. The classroom teacher's ability to produce a learning outcome is the measure of instructional competence within that learning method. (JN)

  3. Methods of Building Cost Analysis.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Presentation of symposium papers includes--(1) a study describing techniques for economic analysis of building designs, (2) three case studies of analysis techniques, (3) procedures for measuring the area and volume of buildings, and (4) an open forum discussion. Case studies evaluate--(1) the thermal economics of building enclosures, (2) an…

  4. Innovative technologies for Faraday shield cooling

    SciTech Connect

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-12-31

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm{sup 2};. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach.

  5. Experimental and analytical studies of shielding concepts for point sources and jet noise

    NASA Astrophysics Data System (ADS)

    Wong, R. L. M.

    1983-05-01

    Concepts for jet noise shielding were explored. Model experiments center on solid planar shields, simulating engine-over-wing installations and sugar scoop shields. Tradeoff on effective shielding length is set by interference "edge noise' as the shield trailing edge approaches the spreading jet. In general, shielding attentuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several decibels, the reduction of the subjectively weighted perceived noise levels is higher. Calculated ground contours of peak PN dB (perceived noise level) show a substantial contraction due to shielding: this reaches 66% for one of the sugar scoop shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding.

  6. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  7. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  8. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  9. Prognostic Analysis System and Methods of Operation

    NASA Technical Reports Server (NTRS)

    MacKey, Ryan M. E. (Inventor); Sneddon, Robert (Inventor)

    2014-01-01

    A prognostic analysis system and methods of operating the system are provided. In particular, a prognostic analysis system for the analysis of physical system health applicable to mechanical, electrical, chemical and optical systems and methods of operating the system are described herein.

  10. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  11. Undulator Beam Pipe Magnetic Shielding Effect Tests

    SciTech Connect

    Fisher, Andrew; Wolf, Zachary; ,

    2010-11-23

    The proposed stainless steel beampipe for the LCLS undulator has a measurable shielding effect on the magnetic field of the LCLS undulators. This note describes the tests used to determine the magnitude of the shielding effect, as well as deviations in the shielding effect caused by placing different phase shims in the undulator gap. The effect of the proposed Steel strongback which will be used to support the beam pipe, was also studied. A hall probe on a 3 axis movement system was set up to measure the main component of the magnetic field in the Prototype Undulator. To account for temperature variations of the magnetic field of the undulator for successive tests, a correction is applied which is described in this technical note. Using this method, we found the shielding effect, the amount which the field inside the gap was reduced due to the placement of the beampipe, to be {approx}10 Gauss. A series of tests was also performed to determine the effect of phase shims and X and Y correction shims on the shielding. The largest effect on shielding was found for the .3 mm phase shims. The effect of the .3 mm phase shims was to increase the shielding effect {approx}4 Gauss. The tolerance for the shielding effect of the phase shims is less than 1 gauss. The effect of the strongback was seen in its permanent magnetic field. It introduced a dipole field across the measured section of the undulator of {approx}3 gauss. This note documents the tests performed to determine these effects, as well as the results of those tests.

  12. Convergence analysis of combinations of different methods

    SciTech Connect

    Kang, Y.

    1994-12-31

    This paper provides a convergence analysis for combinations of different numerical methods for solving systems of differential equations. The author proves that combinations of two convergent linear multistep methods or Runge-Kutta methods produce a new convergent method of which the order is equal to the smaller order of the two original methods.

  13. Three-Dimensional (X,Y,Z) Deterministic Analysis of the PCA-Replica Neutron Shielding Benchmark Experiment using the TORT-3.2 Code and Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-02-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and BUGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-96 (ENDF/B-VI.3) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103 m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  14. Convex geometry analysis method of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, XiChang; Qi, Hongxing; Yu, BingXi

    2003-06-01

    We present matrix expression of convex geometry analysis method of hyperspectral data by linear mixing model and establish a mathematic model of endmembers. A 30-band remote sensing image is applied to testify the model. The results of analysis reveal that the method can analyze mixed pixel questions. The targets that are smaller than earth surface pixel can be identified by applying the method.

  15. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  16. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  17. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  18. Dose-to-water conversion for the backscatter-shielded EPID: A frame-based method to correct for EPID energy response to MLC transmitted radiation

    SciTech Connect

    Zwan, Benjamin J. O’Connor, Daryl J.; King, Brian W.; Greer, Peter B.

    2014-08-15

    Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager to MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step

  19. Methods of DNA methylation analysis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...

  20. Mathematical model of thermal shields for long-term stability optical resonators.

    PubMed

    Sanjuan, Josep; Gürlebeck, Norman; Braxmaier, Claus

    2015-07-13

    Modern experiments aiming at tests of fundamental physics, like measuring gravitational waves or testing Lorentz Invariance with unprecedented accuracy, require thermal environments that are highly stable over long times. To achieve such a stability, the experiment including typically an optical resonator is nested in a thermal enclosure, which passively attenuates external temperature fluctuations to acceptable levels. These thermal shields are usually designed using tedious numerical simulations or with simple analytical models. In this paper, we propose an accurate analytical method to estimate the performance of passive thermal shields in the frequency domain, which allows for fast evaluation and optimization. The model analysis has also unveiled interesting properties of the shields, such as dips in the transfer function for some frequencies under certain combinations of materials and geometries. We validate the results by comparing them to numerical simulations performed with commercial software based on finite element methods. PMID:26191850

  1. Hybrid methods for cybersecurity analysis :

    SciTech Connect

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  2. Optimal Shielding for Minimum Materials Cost of Mass

    SciTech Connect

    Woolley, Robert D.

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  3. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  4. Analysis methods for photovoltaic applications

    SciTech Connect

    1980-01-01

    Because photovoltaic power systems are being considered for an ever-widening range of applications, it is appropriate for system designers to have knowledge of and access to photovoltaic power systems simulation models and design tools. This brochure gives brief descriptions of a variety of such aids and was compiled after surveying both manufacturers and researchers. Services available through photovoltaic module manufacturers are outlined, and computer codes for systems analysis are briefly described. (WHK)

  5. Lightweight blast shield

    DOEpatents

    Mixon, Larry C.; Snyder, George W.; Hill, Scott D.; Johnson, Gregory L.; Wlodarski, J. Frank; von Spakovsky, Alexis P.; Emerson, John D.; Cole, James M.; Tipton, John P.

    1991-01-01

    A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

  6. Magsat investigation. [Canadian shield

    NASA Technical Reports Server (NTRS)

    Hall, D. H. (Principal Investigator)

    1980-01-01

    A computer program was prepared for modeling segments of the Earth's crust allowing for heterogeneity in magnetization in calculating the Earth's field at Magsat heights. This permits investigation of a large number of possible models in assessing the magnetic signatures of subprovinces of the Canadian shield. The fit between the model field and observed fields is optimized in a semi-automatic procedure.

  7. Shield against radiations

    SciTech Connect

    Grifoni, S.

    1988-02-23

    This patent describes a shield against ionizing radiations that comprises at least one layer of an aggregate-containing cement-based conglomerate or an aggregate-containing cement-based mortar wherein the aggregate consists essentially of floated galena or mixtures thereof which at least one boron mineral.

  8. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  9. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  10. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  11. Microparticle analysis system and method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  12. Molecular shield - An orbiting low-density materials laboratory

    NASA Technical Reports Server (NTRS)

    Melfi, L. T., Jr.; Outlaw, R. A.; Hueser, J. E.; Brock, F. J.

    1976-01-01

    Analysis of a molecular shield orbited at 200 km utilizes the kinetic theory of a drifting Maxwellian gas, applied to a hemispherical shell geometry containing internal sources. The molecular shield provides very low gas density conditions for materials experiments at low gravity, while the hemispherical geometry minimizes the internal surface/volume ratio. Deployment of the shield in orbit is described. Contributions to density by shield outgassing, by experiment outgassing, and by interaction with the orbiter are discussed separately. A jettisonable closure plate sealing the hemisphere minimizes any risk of experiment contamination during deployment.

  13. SSC environmental radiation shielding

    SciTech Connect

    Jackson, J.D.

    1987-07-01

    The environmental radiation shielding requirements of the SSC have been evaluated using currently available computational tools that incorporate the well known processes of energy loss and degradation of high energy particles into Monte Carlo computer codes. These tools permit determination of isodose contours in the matter surrounding a source point and therefore the specification of minimum thicknesses or extents of shielding in order to assure annual dose equivalents less than some specified design amount. For the general public the annual dose equivalent specified in the design is 10 millirem, small compared to the dose from naturally occurring radiation. The types of radiation fall into two classes for the purposes of shielding determinations-hadrons and muons. The sources of radiation at the SSC of concern for the surrounding environment are the interaction regions, the specially designed beam dumps into which the beams are dumped from time to time, and beam clean-up regions where stops remove the beam halo in order to reduce experimental backgrounds. A final, unlikely source of radiation considered is the accidental loss of the full beam at some point around the ring. Conservative choices of a luminosity of 10{sup 34} cm{sup {minus}2}s{sup {minus}1} and a beam current three times design have been made in calculating the required shielding and boundaries of the facility. In addition to determination of minimum distances for the annual dose equivalents, the question of possible radioactivity produced in nearby wells or in municipal water supplies is addressed. The designed shielding distances and beam dumps are such that the induced radioactivity in ground water is safely smaller than the levels permitted by EPA and international agencies.

  14. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  15. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  16. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.

    PubMed

    Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan

    2014-09-01

    Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129

  17. Radiation shielding for underground low-background experiments

    SciTech Connect

    Stewart, D. Y.; Harrison, P. F.; Morgan, B.; Ramachers, Y.

    2006-11-17

    The design task of creating an efficient radiation shield for the new COBRA double-beta decay experiment led to a comprehensive study of commercially available shielding materials. The aim was to find the most efficient combination of materials under the constraints of an extreme low-background experiment operating in a typical underground laboratory. All existing shield configurations for this type of experiment have been found to perform sub-optimally in comparison to the class of multilayered configurations proposed in this study. The method used here to create a specific shield configuration should yield a close to optimal result when applied to any experiment utilising a radiation shield. In particular, the survey of single material response to a given radiation source turns out to give a guideline for the construction of efficient multilayer shields. Note that these proceedings are a short version of a recently submitted, more detailed discussion.

  18. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  19. The Qualitative Method of Impact Analysis.

    ERIC Educational Resources Information Center

    Mohr, Lawrence B.

    1999-01-01

    Discusses qualitative methods of impact analysis and provides an introductory treatment of one such approach. Combines an awareness of an alternative causal epistemology with current knowledge of qualitative methods of data collection and measurement to produce an approach to the analysis of impacts. (SLD)

  20. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  1. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Nachtscheim, P. R.; Blome, J. C.

    1976-01-01

    A hyperpure vitreous silica material is being developed for use as a reflective and ablative heat shield for planetary entry. Various purity grades and forms of raw materials were evaluated along with various processing methods. Slip casting of high purity grain was selected as the best processing method, resulting in a highly reflective material in the wavelength bands of interest (the visible and ultraviolet regions). The selected material was characterized with respect to optical, mechanical and physical properties using a limited number of specimens. The process has been scaled up to produce a one-half scale heat shield (18 in. dia.) (45.72 cm) for a Jupiter entry vehicle. This work is now being extended to improve the structural safety factor of the heat shield by making hyperpure silica material tougher through the addition of silica fibers.

  2. Probabilistic structural analysis by extremum methods

    NASA Technical Reports Server (NTRS)

    Nafday, Avinash M.

    1990-01-01

    The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.

  3. Text analysis methods, text analysis apparatuses, and articles of manufacture

    DOEpatents

    Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M

    2014-10-28

    Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.

  4. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  5. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  6. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    SciTech Connect

    Kharrati, Hedi

    2005-05-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations and does not exceed 75% for the leakage radiation.

  7. Resonant Faraday shield ICRH antenna

    NASA Astrophysics Data System (ADS)

    Cattanei, G.; W7-AS Team

    2002-05-01

    ICRH has proved to be an efficient method of heating the plasma in toroidal devices. The high voltages needed at the coupling structure are, however, a severe handicap of this method. The possibility is investigated of having the highest voltages between the bars of the Faraday shield (FS), where they are both necessary and easier to maintain. For this purpose a resonant Faraday shield (RFS) antenna where the first and last bars of the FS are connected by an inductive strip is proposed. In front of this strip there is a second strip, fed, as in a conventional antenna, by an RF generator. It is shown that if the toroidal length of the FS is larger than λ/2 the strip connecting the bars of the FS acts as the secondary coil of a tuned transformer, the strip fed by the generator being the primary. It is therefore possible, by varying the frequency and the distance between the two strips, i.e. the coupling coefficient, to match the impedance of the primary to that of the generator.

  8. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  9. Roof Shield for Advance and Retreat Mining

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Shield sections change their configuration to suit mining mode. Articulation cylinders raise rear shield to advance position, and locking cylinders hold it there. To change to retreat position articulation cylinders lower shield. Locking pins at edge of outermost shield plate latch shield to chock base. Shield accommodates roof heights ranging from 36 to 60 inches (0.9 to 1.52 meters).

  10. Capacitive Proximity Sensors With Additional Driven Shields

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert L.

    1993-01-01

    Improved capacitive proximity sensors constructed by incorporating one or more additional driven shield(s). Sensitivity and range of sensor altered by adjusting driving signal(s) applied to shield(s). Includes sensing electrode and driven isolating shield that correspond to sensing electrode and driven shield.

  11. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  12. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  13. Multilayer radiation shield

    SciTech Connect

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  14. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  15. Whipple bumper shield simulations

    SciTech Connect

    Hertel, E.S.; Chhabildas, L.C. ); Hill, S.A. . George C. Marshall Space Flight Center)

    1991-01-01

    The Whipple bumper is a space shield designed to protect a space station from the most hazardous orbital space debris environment. A series of numerical simulations has been performed using the multi-dimensional hydrodynamics code CTH to estimate the effectiveness of the thin Whipple bumper design. These simulations are performed for impact velocities of {approximately}10 km/s which are now accessible by experiments using the Sandia hypervelocity launcher facility. For a {approximately}10 km/s impact by a 0.7 gm aluminum flier plate, the experimental results indicate that the debris cloud resulting upon impact of the bumper shield by the flier plate, completely penetrates the sub-structure. The CTH simulations also predict complete penetration by the subsequent debris cloud. 5 refs., 4 figs., 2 tabs.

  16. The Interaction Between Shield, Ground and Tunnel Support in TBM Tunnelling Through Squeezing Ground

    NASA Astrophysics Data System (ADS)

    Ramoni, M.; Anagnostou, G.

    2011-01-01

    When planning a TBM drive in squeezing ground, the tunnelling engineer faces a complex problem involving a number of conflicting factors. In this respect, numerical analyses represent a helpful decision aid as they provide a quantitative assessment of the effects of key parameters. The present paper investigates the interaction between the shield, ground and tunnel support by means of computational analysis. Emphasis is placed on the boundary condition, which is applied to model the interface between the ground and the shield or tunnel support. The paper also discusses two cases, which illustrate different methodical approaches applied to the assessment of a TBM drive in squeezing ground. The first case history—the Uluabat Tunnel (Turkey)—mainly involves the investigation of TBM design measures aimed at reducing the risk of shield jamming. The second case history—the Faido Section of the Gotthard Base Tunnel (Switzerland)—deals with different types of tunnel support installed behind a gripper TBM.

  17. Combustor bulkhead heat shield assembly

    SciTech Connect

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  18. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  19. Gravity Scaling of a Power Reactor Water Shield

    SciTech Connect

    Reid, Robert S.; Pearson, J. Boise

    2008-01-21

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa{sup n}. These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  20. Skylab Solar Shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A sail like sunshade for possible use as a sunscreen for the Skylab Orbital Workshop (OWS) is shown being fabricated in the GE Building across the street from Johnson Space Center, Houston Texas. Three people help the steamstress feed the material through the sewing machine. The three-layered sunshade will be composed of a top layer of aluminized mylar, a middle layer of laminated nylon ripstop, and a bottom layer of thin nylon. Working on the sunshade are from left to right: Dale Gentry, Elizabeth Gauldin, Alyene Baker, and James H. Barnett Jr. Mrs. Baker, a GE employee, operates the double needle Singer sewing machine. Barnett is head of the Crew Equipment Development Section of JSC Crew Systems Division. Mrs. Gauldin is also with the Crew Systems Division. Gentry works for GE. The work shown here is part of the crash program underway to prepare a sunshield for Skylab to replace the orginal shield which was lost when Skylab 1 was launched on May 14, 1973. The improvised solar shield selected to be used will be carried to Earth orbit by the Skylab 2 crewman who will then deploy the reflective parasol to shade part of the OWS from the hot rays of the sun. Loss of the orginal sun shield has caused an overheating problem. in the Orbital Work Shop.

  1. Crumpled Heat Shield

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Phoenix Mars Lander's Surface Stereo Imager took this image of the spacecraft's crumpled heat shield on Sept. 16, 2008, the 111th Martian day of the mission.

    The 2-1/2 meter (about 8-1/2 feet) heat shield landed southeast of Phoenix, about halfway between the spacecraft and its backshell/parachute. The backshell/parachute touched ground 300 meters (1,000 ft) to the south of the lander.

    The dark area to the right of the heat shield is the 'bounce mark' it made on impact with the Red Planet. This image is the highest-resolution image that will likely be taken by the lander, and is part of the 1,500-image 'Happily Ever After' panorama.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Shielding in ungated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-01

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 102-104 are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  3. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  4. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  5. Composite materials microstructure for radiation shielding

    NASA Technical Reports Server (NTRS)

    Radford, Donald W.; Sadeh, Willy Z.; Cheng, Boyle C.

    1992-01-01

    Shielding against radiation is a concern for applications on earth, in space, and on extraterrestrial surfaces. On earth EMI is an important factor, while in space and on extraterrestrial surfaces particle (high charge-Z and high energy-E) radiation is a critical issue. Conventional metallic materials currently used for EMI shielding incur large weight penalties. To overcome this weight penalty, ultra-lightweight composite materials utilizing fillers ranging from carbon microballoons to silver coated ceramic microballoons are proposed. The crucial shielding requirement is conductivity of the constituent materials, while the hollow microballoon geometry is utilized to yield low weight. Methods of processing and composition effects are examined and these results are compared to the effectiveness of varying the conductive microballoon material. The resulting ultralightweight materials, developed for EMI shielding, can be tailored through the application of the understanding of the relative effects of variables such as those tested. Initial experimental results reveal that these tailored ultralightweight composite materials are superior to traditional aluminum shielding at only a small fraction of the weight.

  6. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  7. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.

  8. Radiation shielding effectiveness of newly developed superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  9. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  10. Point-Kernel Shielding Code System.

    Energy Science and Technology Software Center (ESTSC)

    1982-02-17

    Version 00 QAD-BSA is a three-dimensional, point-kernel shielding code system based upon the CCC-48/QAD series. It is designed to calculate photon dose rates and heating rates using exponential attenuation and infinite medium buildup factors. Calculational provisions include estimates of fast neutron penetration using data computed by the moments method. Included geometry routines can describe complicated source and shield geometries. An internal library contains data for many frequently used structural and shielding materials, enabling the codemore » to solve most problems with only source strengths and problem geometry required as input. This code system adapts especially well to problems requiring multiple sources and sources with asymmetrical geometry. In addition to being edited separately, the total interaction rates from many sources may be edited at each detector point. Calculated photon interaction rates agree closely with those obtained using QAD-P5A.« less

  11. Analysis of the radiation shielding of the bunker of a 230MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques.

    PubMed

    Sunil, C

    2016-04-01

    The neutron ambient dose equivalent outside the radiation shield of a proton therapy cyclotron vault is estimated using the unshielded dose equivalent rates and the attenuation lengths obtained from the literature and by simulations carried out with the FLUKA Monte Carlo radiation transport code. The source terms derived from the literature and that obtained from the FLUKA calculations differ by a factor of 2-3, while the attenuation lengths obtained from the literature differ by 20-40%. The instantaneous dose equivalent rates outside the shield differ by a few orders of magnitude, not only in comparison with the Monte Carlo simulation results, but also with the results obtained by line of sight attenuation calculations with the different parameters obtained from the literature. The attenuation of neutrons caused by the presence of bulk iron, such as magnet yokes is expected to reduce the dose equivalent by as much as a couple of orders of magnitude outside the shield walls. PMID:26844542

  12. Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio P.; Cowell, Andrew J.; Gregory, Michelle L.; Baddeley, Robert L.; Paulson, Patrick R.; Tratz, Stephen C.; Hohimer, Ryan E.

    2012-03-20

    Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture are described according to some aspects. In one aspect, a hypothesis analysis method includes providing a hypothesis, providing an indicator which at least one of supports and refutes the hypothesis, using the indicator, associating evidence with the hypothesis, weighting the association of the evidence with the hypothesis, and using the weighting, providing information regarding the accuracy of the hypothesis.

  13. Receiver function analysis of the crust and upper mantle from the North German Basin to the Archaean Baltic Shield

    NASA Astrophysics Data System (ADS)

    Alinaghi, A.; Bock, G.; Kind, R.; Hanka, W.; Wylegalla, K.

    2003-11-01

    Two passive seismic experiments have been carried out across the Trans European Suture Zone (TESZ) from northern Germany to southern Sweden (TOR) and across the Proterozoic-Archaean suture in Finland (SVEKALAPKO) to improve our understanding of the processes involved in the creation of the European continent. Teleseismic earthquakes recorded by the two networks and stations of the GRSN and GEOFON permanent networks have been used for studies of the crust-mantle, and upper mantle seismic discontinuities with the receiver function method. Along the TOR network the depth to the Moho increases from 30 km at the southern edge of the profile to 40 km at the Elbe Line. Between the Elbe Line and TESZ the Moho branches off and whereas the deeper branch continues at 40 km depth to the TESZ a second branch appears at 30-35 km depth. The upper branch descends north of the TESZ to below 55 km under the northern end of the TOR profile. The crustal thickening north of the TESZ is accompanied by an increase in average Vp/Vs values, appearance of intracrustal conversion zones and north dipping features which we interpret as remnants of the subduction and subsequent collision between Avalonia and Baltica. In southern Finland beneath the SVEKALAPKO network the Moho starts in the south at the depth of 40-45 km, plunges to about 65 km depth south of the Archaean-Proterozoic suture. This deepening of the Moho is coincident with a north dipping intracrustal structure apparently related to the subduction and collision and of the Proterozoic and Archaean provinces in Proterozoic. North of the line of the suture the Moho rises smoothly to 45-50 km depth in the Archaean province. Along the TOR profile, 410 and 660 discontinuities were hard to detect. However, manyfold stacking of receiver functions revealed that the conversions from the two discontinuities arrive more or less according to IASP91 predicted time. Across the SVEKALAPKO network 410 and 660 discontinuities arrive markedly earlier

  14. SHIELD: an integrative gene expression database for inner ear research

    PubMed Central

    Shen, Jun; Scheffer, Déborah I.; Kwan, Kelvin Y.; Corey, David P.

    2015-01-01

    The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness. Database URL: https://shield.hms.harvard.edu PMID:26209310

  15. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  16. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  17. Benchmark calculations of the shielding constants in the water dimer

    NASA Astrophysics Data System (ADS)

    Pecul, Magdalena; Lewandowski, Józef; Sadlej, Joanna

    2001-01-01

    The NMR shielding constants in (H 2O) 2 have been calculated using GIAO-SCF, MP2, MP4 and CCSD methods and for a range of basis sets. According to the obtained results the 6-311++G ** or aug-cc-pVDZ basis sets are recommended for SCF calculations, and the aug-cc-pVXZ series is suggested for correlated calculations of the interaction-induced changes in the shielding constants. The counterpoise correction improves the results towards the basis set limit and is essential in the case of 17O shielding. Correlation effects are substantial for the changes in 17O shielding, less so for 1H shielding. They are overestimated by the MP2 method.

  18. Measurement of the transient shielding effectiveness of shielding cabinets

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2008-05-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  19. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  20. Passive Shielding in CUORE

    SciTech Connect

    Bellini, F.; Cosmelli, C.; Dafinei, I.; Diemoz, S.; Faccini, R.; Ferroni, F.; Gargiulo, C.; Longo, E.; Morganti, S.; Tomei, C.; Vignati, M.; Alessandria, F.; Andreotti, E.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Sangiorgio, S.; Ardito, R.; Arnaboldi, C.; Brofferio, C.

    2007-03-28

    The nature of neutrino mass is one of the friontier problems of fundamental physics. Neutrinoless Double Beta Decay (0{nu}DBD) is a powerful tool to investigate the mass hierarchy and possible extensions of the Standard Model. CUORE is a 1-Ton next generation experiment, made of 1000 Te bolometers, aiming at reaching a background of 0.01 (possibly 0.001) counts keV-1kg-1y-1 and therefore a mass sensitivity of few tens of meV The background contribution due to environmental neutrons, muon-induced neutrons in the shieldings and external gamma is discussed.

  1. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  2. Galactic and Solar Cosmic Ray Shielding in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tai, H.; Simonsen, Lisa C.; Shinn, Judy L.; Thibeault, Shelia; Kim, M. Y.

    1997-01-01

    An analysis of the radiation hazards in support of NASA deep space exploration activities is presented. The emphasis is on materials required for radiation protection shielding. Aluminum has been found to be a poor shield material when dose equivalent is used with exposure limits for low Earth orbit (LEO) as a guide for shield requirements. Because the radiation issues are cost related-the parasitic shield mass has high launch costs, the use of aluminum as a basic construction material is clearly not cost-effective and alternate materials need to be developed. In this context, polyethylene is examined as a potentially useful material and demonstrates important advantages as an alternative to aluminum construction. Although polyethylene is useful as a shield material, it may not meet other design criteria (strength, stability, thermal); other polymer materials must be examined.

  3. Stiffness characteristics of longwall shields

    SciTech Connect

    Barczak, T.M.; Schwemmer, D.E.

    1988-01-01

    Since longwall strata activity is characterized by roof-to-floor and face-to-waste displacements, a model with two degrees of freedom was used to describe the load-displacement relationship of the shield structure. The model considers the support as an elastic body and relates horizontal and vertical resultant forces acting on the support to associated displacements as a function of the stiffness of the support structure. Stiffness coefficients under full canopy and base contact configurations were determined by controlled displacement loading of longwall shields in the Bureau's Mine Roof Simulator. These two-legged longwall shields of different manufacture were investigated. The stiffness characteristics of these shields were evaluated relative to two parameters, namely, shield height and setting pressure. The tests results indicate a reduction in shield stiffness for increasing height. Setting pressure was found to have less of an effect on shield stiffness, producing only a slight increase in stiffness as setting pressure increased. Similar trends were observed for all three shields, indicating a similarity in stiffness characteristics for shields of the same basic configuration.

  4. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  5. Method and apparatus for ceramic analysis

    DOEpatents

    Jankowiak, Ryszard J.; Schilling, Chris; Small, Gerald J.; Tomasik, Piotr

    2003-04-01

    The present invention relates to a method and apparatus for ceramic analysis, in particular, a method for analyzing density, density gradients and/or microcracks, including an apparatus with optical instrumentation for analysis of density, density gradients and/or microcracks in ceramics. The method provides analyzing density of a ceramic comprising exciting a component on a surface/subsurface of the ceramic by exposing the material to excitation energy. The method may further include the step of obtaining a measurement of an emitted energy from the component. The method may additionally include comparing the measurement of the emitted energy from the component with a predetermined reference measurement so as to obtain a density for said ceramic.

  6. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  7. Shielding during x-ray examination of pediatric female patients with developmental dysplasia of the hip.

    PubMed

    Tsai, Yi-Shan; Liu, Yi-Sheng; Chuang, Ming-Tsung; Wang, Chien-Kuo; Lai, Cheng-Shih; Tsai, Hong-Ming; Lin, Chii-Jeng; Lu, Chia-Hsing

    2014-12-01

    Patients with developmental dysplasia of the hip (DDH) generally undergo multiple x-ray examinations of both hip joints. During these examinations, the gonads are completely exposed to radiation, unless shielded. Although many types and sizes of gonad shields exist, they often do not provide adequate protection because of size and placement issues; additionally, these shields are frequently omitted for female patients. Our aim was to assess gonad protection during x-ray examination that is provided by gonad shields designed for individual female patients with DDH.We retrospectively retrieved data from the Picture Archiving and Communication System database; pelvic plain x-ray films from 766 females, 18 years old or younger, were included in our analysis. Based on x-ray measurements of the anterior superior iliac spine, we developed a system of gonad shield design that depended on the distance between anterior superior iliac spine markers. We custom-made shields and then examined shielding rates and shielding accuracy before and after these new shields became available. Standard (general-purpose) shields were used before our custom design project was implemented. The shielding rate and shielding accuracy were, respectively, 14.5% and 8.4% before the project was implemented and 72.7% and 32.2% after it was implemented. A shield that is more anatomically correct and available in several different sizes may increase the likelihood of gonad protection during pelvic x-ray examinations. PMID:25325378

  8. PBF Cubicle 13. Shield wall details illustrate shielding technique of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cubicle 13. Shield wall details illustrate shielding technique of stepped penetrations and brick layout scheme for valve stem extension sleeve. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195280 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  10. Critical-load studies of a shield support

    SciTech Connect

    Barczak, T.M.; Schwemmer, D.E.

    1987-01-01

    One of the primary goals of Bureau of Mines research is to reduce the cost of coal mining by improving the efficiency of longwall supports. One method of achieving the goal is the optimization of stress distribution within the support structure, resulting in a lower overall weight, more fully stressed shield. However, before stress optimization can be initiated, load conditions must be defined that cause maximum stress in the various support components. A finite element model of a longwall shield was used to identify these critical load conditions. These load conditions were then evaluated in the Bureau's mine roof simulator by instrumentation of a longwall shield and measurement of strains in each of the shield components. Conclusions were drawn regarding the structural integrity of the major shield components and potential for stress optimization.

  11. A high-performance magnetic shield with large length-to-diameter ratio

    NASA Astrophysics Data System (ADS)

    Dickerson, Susannah; Hogan, Jason M.; Johnson, David M. S.; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A.

    2012-06-01

    We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.

  12. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  13. Advanced reliability method for fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Wirsching, P. H.

    1984-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) may become extremely difficult or very inefficient. This study suggests using a simple and easily constructed second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  14. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  15. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  16. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  17. Absorbed dose behind eye shields during kilovoltage photon radiotherapy.

    PubMed

    Baker, C R; Luhana, F; Thomas, S J

    2002-08-01

    The absorbed dose at the position of the lens of the eye under lead or tungsten eye shields during kilovoltage photon radiotherapy is critically dependent not so much on the thickness of the eye shield itself as on the size of the treatment field and the diameter of the shield used. Whilst dose from primary photons is easily attenuated to relatively insignificant levels by a few millimetres of lead or tungsten, scattered photons from outside the shielded area can provide over 25% of the prescribed dose. Since backscatter factors do not increase monotonically with photon energy, it is not safe to assume that the highest photon energy used will provide the highest dose. A simple method to estimate the dose under an eye shield based on tabulated backscatter factors is shown. Measurements under commercially available eye shields were made to verify the expression and to determine the attenuation of primary photons. Predicted and measured absorbed dose under the eye shields were found to agree to within 1% of the prescribed dose. The relative dose due to primary photons beneath the eye shields was found to be less than 0.1% and 0.5 (+/-0.1)% for the 150 kV and 260 kV beams, respectively. This is considerably less than the dose from backscattered radiation. PMID:12153943

  18. NOA: a novel Network Ontology Analysis method

    PubMed Central

    Wang, Jiguang; Huang, Qiang; Liu, Zhi-Ping; Wang, Yong; Wu, Ling-Yun; Chen, Luonan; Zhang, Xiang-Sun

    2011-01-01

    Gene ontology analysis has become a popular and important tool in bioinformatics study, and current ontology analyses are mainly conducted in individual gene or a gene list. However, recent molecular network analysis reveals that the same list of genes with different interactions may perform different functions. Therefore, it is necessary to consider molecular interactions to correctly and specifically annotate biological networks. Here, we propose a novel Network Ontology Analysis (NOA) method to perform gene ontology enrichment analysis on biological networks. Specifically, NOA first defines link ontology that assigns functions to interactions based on the known annotations of joint genes via optimizing two novel indexes ‘Coverage’ and ‘Diversity’. Then, NOA generates two alternative reference sets to statistically rank the enriched functional terms for a given biological network. We compare NOA with traditional enrichment analysis methods in several biological networks, and find that: (i) NOA can capture the change of functions not only in dynamic transcription regulatory networks but also in rewiring protein interaction networks while the traditional methods cannot and (ii) NOA can find more relevant and specific functions than traditional methods in different types of static networks. Furthermore, a freely accessible web server for NOA has been developed at http://www.aporc.org/noa/. PMID:21543451

  19. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  20. Chromatographic methods for analysis of triazine herbicides.

    PubMed

    Abbas, Hana Hassan; Elbashir, Abdalla A; Aboul-Enein, Hassan Y

    2015-01-01

    Gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled to different detectors, and in combination with different sample extraction methods, are most widely used for analysis of triazine herbicides in different environmental samples. Nowadays, many variations and modifications of extraction and sample preparation methods such as solid-phase microextraction (SPME), hollow fiber-liquid phase microextraction (HF-LPME), stir bar sportive extraction (SBSE), headspace-solid phase microextraction (HS-SPME), dispersive liquid-liquid microextraction (DLLME), dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO), ultrasound-assisted emulsification microextraction (USAEME), and others have been introduced and developed to obtain sensitive and accurate methods for the analysis of these hazardous compounds. In this review, several analytical properties such as linearity, sensitivity, repeatability, and accuracy for each developed method are discussed, and excellent results were obtained for the most of developed methods combined with GC and HPLC techniques for the analysis of triazine herbicides. This review gives an overview of recent publications of the application of GC and HPLC for analysis of triazine herbicides residues in various samples. PMID:25849823

  1. Electromagnetic Shielding of Oriented Carbon Fiber Composite Materials

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Laurenzi, S.; Mariani Primiani, V.; Moglie, F.; Gradoni, G.; Marchetti, M.

    2012-05-01

    The paper analyses the electromagnetic shielding measurements of carbon fiber composite structure. In particular the shielding effectiveness is measured applying the nested reverberation chamber method in the frequency range of 3.5 GHz - 8.5 GHz. This method ensure a realistic electromagnetic excitation of the sample under test characterized by a random polarization and incoming direction. The paper also describes the material manufacturing procedure and gives important details about the sample mounting technique. Three material samples are considered which differ in carbon fiber orientation and stratification. Obtained results highlight the capability of such materials to behave as high-performance shields in the microwave region.

  2. Atlas Breached Waste Package and Drip Shield Experiments: Breached Drip Shield Tests

    SciTech Connect

    Z. P. Walton

    2003-05-28

    The Engineered Barrier System (EBS) represents one system in the performance of the Yucca Mountain high-level radioactive waste (HLW) repository to isolate and prevent the transport of radionuclides from the site to the accessible environment. Breached Waste Package and Drip Shield Experiments (BWPDSE) were performed at the Department of Energy's National Nuclear Security Administration Nevada Support Facility in North Las Vegas, NV in the A-1 lowbay between May 2, 2002 and July 25, 2002. Data collected from the BWPDSE will be used to support the flux splitting model used in Analysis and Modeling Report ANL-WIS-PA-000001 REV 00 ICN 03 ''EBS Radionuclide Transport Abstraction'' (BSC 2001a). Tests were conducted by dripping water from heights representing the drift crown or wall on a full-scale section of a drip shield with both smooth and rough surfaces. The drip shields had machined square breaches that represent the general corrosion breaches or nodes in the ''WAPDEG Analysis of Waste Package and Drip Shield Degradation'' AMR (CRWMS M&O 2000d). Tests conducted during the BWPDSE included: initial tests to determine the splash radius distances and spread factor from the line of drip impact, single patch tests to determine the amount of water collected in target breaches from splashing or rivulet flow, multiple patch tests to determine the amount of water collected in several breaches from both splashing and rivulet flow, and bounding flow rate tests. Supplemental data were collected to provide additional information for rivulet spread, pan evaporation in the test chamber, and water temperatures of the input water and drip shield surface water. The primary flow mechanism observed on both smooth and rough surfaces was rivulet flow, not film flow. Lateral rivulet spread distances were, in general, wider on the smooth drip shield surface than on the rough drip shield surface. There were substantial differences between the mechanisms of rivulet formation and movement on

  3. Thermal contact conductance and thermal shield design for superconducting magnet systems

    SciTech Connect

    Nilles, M.J.; Lehmann, G.A.

    1994-12-31

    The aluminum radiation shields in the SSC Quadrupole magnets are conductively cooled from the cryogen flow in the 80 K and 20 K flow circuits. As the shield temperature is very sensitive to the effective heat transfer rate between the shield-piping interface, the method of shield mounting and heat sinking is critical. Cost and reliability concerns also drive the design. Here, the authors discuss critical issues that can have a limiting effect on the shield thermal performance. The spring-type action of the shield clamps it in place and heat transfer across the interface depends on thermal contact conductance. Thermally induced stresses can be relieved by allowing the shield and piping to slide relative to each other. Test results are presented on stainless steel-aluminum thermal contact conductance and its effect on the shield performance is discussed.

  4. Simplified method for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    A simplified inelastic analysis computer program was developed for predicting the stress-strain history of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a simulated plasticity hardening model. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, and different materials and plasticity models. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  5. Probabilistic structural analysis methods development for SSME

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1988-01-01

    The development of probabilistic structural analysis methods is a major part of the SSME Structural Durability Program and consists of three program elements: composite load spectra, probabilistic finite element structural analysis, and probabilistic structural analysis applications. Recent progress includes: (1) the effects of the uncertainties of several factors on the HPFP blade temperature pressure and torque, (2) the evaluation of the cumulative distribution function of structural response variables based on assumed uncertainties on primitive structural variables, and (3) evaluation of the failure probability. Collectively, the results obtained demonstrate that the structural durability of critical SSME components can be probabilistically evaluated.

  6. Design analysis, robust methods, and stress classification

    SciTech Connect

    Bees, W.J.

    1993-01-01

    This special edition publication volume is comprised of papers presented at the 1993 ASME Pressure Vessels and Piping Conference, July 25--29, 1993 in Denver, Colorado. The papers were prepared for presentations in technical sessions developed under the auspices of the PVPD Committees on Computer Technology, Design and Analysis, Operations Applications and Components. The topics included are: Analysis of Pressure Vessels and Components; Expansion Joints; Robust Methods; Stress Classification; and Non-Linear Analysis. Individual papers have been processed separately for inclusion in the appropriate data bases.

  7. A Renormalisation Group Method. IV. Stability Analysis

    NASA Astrophysics Data System (ADS)

    Brydges, David C.; Slade, Gordon

    2015-05-01

    This paper is the fourth in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The third paper in the series presents a perturbative analysis of a supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on . We now present an analysis of the relevant interaction functional of the supersymmetric field theory, which permits a nonperturbative analysis to be carried out in the critical dimension . The results in this paper include: proof of stability of the interaction, estimates which enable control of Gaussian expectations involving both boson and fermion fields, estimates which bound the errors in the perturbative analysis, and a crucial contraction estimate to handle irrelevant directions in the flow of the renormalisation group. These results are essential for the analysis of the general renormalisation group step in the fifth paper in the series.

  8. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1995-02-01

    Certain genetic disorders are rare in the general population, but more common in individuals with specific trisomies. Examples of this include leukemia and duodenal atresia in trisomy 21. This paper presents a linkage analysis method for using trisomic individuals to map genes for such traits. It is based on a very general gene-specific dosage model that posits that the trait is caused by specific effects of different alleles at one or a few loci and that duplicate copies of {open_quotes}susceptibility{close_quotes} alleles inherited from the nondisjoining parent give increased likelihood of having the trait. Our mapping method is similar to identity-by-descent-based mapping methods using affected relative pairs and also to methods for mapping recessive traits using inbred individuals by looking for markers with greater than expected homozygosity by descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected homozygosity in the chromosomes inherited from the nondisjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the trait gene, a confidence interval for that distance, and methods for computing power and sample sizes. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers and how to test candidate genes. 20 refs., 5 figs., 1 tab.

  9. Reflective Shields for Artificial Satellites

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1986-01-01

    Report proposes reflective shield that protects spacecraft from radiant energy. Also gives some protection against particle beams and cosmic rays. Conceptual shield essentially advanced version of decorative multifaceted mirror balls often hung over dance floors. Mirror facets disperse radiant energy in many directions.

  10. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  11. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-01-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the

  12. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Astrophysics Data System (ADS)

    Hanson, D. B.; McColgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-05-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the

  13. Shielded Canister Transporter

    SciTech Connect

    Eidem, G.G. Jr.; Fages, R.

    1993-08-01

    The Hanford Waste Vitrification Plant (HWVP) will produce canisters filled with high-level radioactive waste immobilized in borosilicate glass. This report discusses a Shielded Canister Transporter (SCT) which will provide the means for safe transportation and handling of the canisters from the Vitrification Building to the Canister Storage Building (CSB). The stainless steel canisters are 0.61 meters in diameter, 3.0 meters tall, and weigh approximately 2,135 kilograms, with a maximum exterior surface dose rate of 90,000 R/hr. The canisters are placed into storage tubes to a maximum of three tall (two for overpack canisters) with an impact limiter placed at the tube bottom and between each canister. A floor plug seals the top of the storage tube at the operating floor level of the CSB.

  14. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  15. Shielding and fragmentation studies.

    PubMed

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J

    2005-01-01

    Radiation dosimetry for manned spaced missions depends on the ability to adequately describe the process of high-energy ion transport through many materials. Since the types of possible nuclear interactions are many and complex, transport models are used which depend upon a reliable source of experimental data. To expand the heavy ion database used in the models we have been measuring charge-changing cross sections and fragment production cross sections from heavy-ion interactions in various elementa targets. These include materials flown on space missions such as carbon and aluminium, as well as those important in radiation dosimetry such as hydrogen, nitrogen and water. Measuring heavy-ion fragmentation through these targets also gives us the ability to determine the effectiveness of new materials proposed for shielding such as graphite composites and polyethylene hybrids. Measurement without a target present gives an indication of the level of contamination of the primary beam, which is also important in radiobiology experiments. PMID:16604611

  16. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  17. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  18. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A.

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  19. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  20. Modeling and detection of external signals from small apertures in wire shields

    NASA Astrophysics Data System (ADS)

    Jones, Brian Allen

    Detecting, locating, and identifying wire faults are problems that have been studied from many approaches. The effects of wiring faults are widely seen in aging aircraft, where wiring faults can cause tragic outcomes. Common tools such as reflectometry work well to reveal short and open circuits. In some cases, reflectometry can also detect areas where the cable has significant cable damage. As a fault becomes smaller, reflectometry methods cannot discriminate between the return signal and noise. Faults in cable shields are one type of fault that is often difficult to detect. New techniques and approaches are needed for detecting these small shield faults, which are the focus of this dissertation. This dissertation presents a method of externally detecting electromagnetic fields that leak out of holes in cable shields. The significant contributions of this project are expanding the understanding of the fields that leak from damaged shields, analysis of a toroid sensor that can be used to detect and locate these fields, and use of analytic expressions to approximate fields down the length of the cable. The analysis of the fields escaping from the hole in the shield is based on previous work, and is expanded in this dissertation using numerical simulation. It is shown that a small fault in a cable shield resembles a high-pass filter, and that those fields within or near the fault are copies of the excitation signal, but the far fields exhibit a derivative effect from the filtering. The fields directly over the fault are a combination of the original input signal and fringing fields. Moving away from the fault, the signal stabilizes and becomes nearly constant. In this work, analytic expressions for the inductance and capacitance for a small fault are used in conjunction with approximations from simulations to predict the external signal as it propagates down the cable. Once the signal is propagating on the outside of the cable, a toroid is used to pick it up. The

  1. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  2. Systems and methods for sample analysis

    SciTech Connect

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-01-13

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  3. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  4. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  5. Analysis methods for tocopherols and tocotrienols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tocopherols and tocotrienols, sometimes called tocochromanols or tocols, are also collectively termed Vitamin E. Vitamins A, D, E, and K, are referred to as fat soluble vitamins. Since the discovery of Vitamin E in 1922, many methods have been developed for the analysis of tocopherols and tocotrie...

  6. Systems and methods for sample analysis

    SciTech Connect

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-10-20

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  7. Multiple predictor smoothing methods for sensitivity analysis.

    SciTech Connect

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  8. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  9. Developing a Methodology for Determination of Elemental Composition of Shielding Materials.

    PubMed

    Fitzmaurice, Matthew Blake; Marianno, Craig M; Solodov, Alexander A

    2015-10-01

    Radiation transport simulation models can provide estimations of radiation effects such as detector response and detection capabilities. The objective of this research was to develop a methodology for quick, efficient, and effective determination of the composition of shielding materials to be used in radiation transport models. A C++ code, MatFit, was developed that used the concept of densitometry and the iterative method developed for the Spectrum Analysis by Neutron Detectors II (SAND II) computer program to estimate the elemental composition of shielding materials. These results were compared to previous neutron activation analysis (NAA) on the same samples. It was determined that densitometry provided an elemental approximation that yielded an attenuation rate within 10% of that found through NAA but requires much fewer resources, as well as less time. From this research, it is recommended that the developed method and C++ program be used when constructing models for detector response. PMID:26313588

  10. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-08-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  11. Enrichment Determination of Uranium in Shielded Configurations

    SciTech Connect

    Crye, Jason Michael; Hall, Howard L; McConchie, Seth M; Mihalczo, John T; Pena, Kirsten E

    2011-01-01

    The determination of the enrichment of uranium is required in many safeguards and security applications. Typical methods of determining the enrichment rely on detecting the 186 keV gamma ray emitted by {sup 235}U. In some applications, the uranium is surrounded by external shields, and removal of the shields is undesirable. In these situations, methods relying on the detection of the 186 keV gamma fail because the gamma ray is shielded easily. Oak Ridge National Laboratory (ORNL) has previously measured the enrichment of shielded uranium metal using active neutron interrogation. The method consists of measuring the time distribution of fast neutrons from induced fissions with large plastic scintillator detectors. To determine the enrichment, the measurements are compared to a calibration surface that is created from Monte Carlo simulations where the enrichment in the models is varied. In previous measurements, the geometry was always known. ORNL is extending this method to situations where the geometry and materials present are not known in advance. In the new method, the interrogating neutrons are both time and directionally tagged, and an array of small plastic scintillators measures the uncollided interrogating neutrons. Therefore, the attenuation through the item along many different paths is known. By applying image reconstruction techniques, an image of the item is created which shows the position-dependent attenuation. The image permits estimating the geometry and materials present, and these estimates are used as input for the Monte Carlo simulations. As before, simulations predict the time distribution of induced fission neutrons for different enrichments. Matching the measured time distribution to the closest prediction from the simulations provides an estimate of the enrichment. This presentation discusses the method and provides results from recent simulations that show the importance of knowing the geometry and materials from the imaging system.

  12. CONCEPTS FOR CAPACITIVELY RF-SHIELDED BELLOWS IN CRYOGENIC STRUCTURES.

    SciTech Connect

    ZHAO,Y.HAHN,H.

    2004-03-24

    Bellows are frequently required in accelerators and colliders. Usually RF-shields with spring fingers are employed to screen the bellows. The lack of accessibility in cryogenic systems can be a problem and asks for alternate solutions to eliminate possible overheating, sparking, etc that occurred in intensive beams. This note addresses an alternate kind of RF shield, which uses capacitive contact instead of mechanical contact. The analysis, as well as numerical example of a superconducting cavity structure, shows that the capacitive RF shield satisfies the impedance requirements of both beam and HOMs. The capability of thermal isolation is also analyzed.

  13. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  14. Power System Transient Stability Analysis through a Homotopy Analysis Method

    SciTech Connect

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  15. Monte Carlo methods in genetic analysis

    SciTech Connect

    Lin, Shili

    1996-12-31

    Many genetic analyses require computation of probabilities and likelihoods of pedigree data. With more and more genetic marker data deriving from new DNA technologies becoming available to researchers, exact computations are often formidable with standard statistical methods and computational algorithms. The desire to utilize as much available data as possible, coupled with complexities of realistic genetic models, push traditional approaches to their limits. These methods encounter severe methodological and computational challenges, even with the aid of advanced computing technology. Monte Carlo methods are therefore increasingly being explored as practical techniques for estimating these probabilities and likelihoods. This paper reviews the basic elements of the Markov chain Monte Carlo method and the method of sequential imputation, with an emphasis upon their applicability to genetic analysis. Three areas of applications are presented to demonstrate the versatility of Markov chain Monte Carlo for different types of genetic problems. A multilocus linkage analysis example is also presented to illustrate the sequential imputation method. Finally, important statistical issues of Markov chain Monte Carlo and sequential imputation, some of which are unique to genetic data, are discussed, and current solutions are outlined. 72 refs.

  16. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Blome, J. C.; Drennan, D. N.; Schmitt, R. J.

    1974-01-01

    Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.

  17. Simulation Study to Improve Focalization of a Figure Eight Coil by Using a Conductive Shield Plate and a Ferromagnetic Block.

    PubMed

    Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao

    2015-07-01

    A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method. PMID:25594972

  18. A comparison of calculated NMR shielding probes.

    PubMed

    Martin, Ned H; Loveless, David M; Wade, Dustin C

    2004-12-01

    In a strong magnetic field, covalently bonded hydrogen nuclei located over the plane of an anisotropic pi bond-containing functional group experience magnetic shielding (or deshielding) that results from the combined effect of the magnetic anisotropy of the functional group and other nearby covalent bonds plus other intramolecular shielding effects. These effects can now be calculated with reasonable accuracy using ab initio methods. We have investigated several computational probes of the magnetic shielding surface near anisotropic functional groups and compared the results to previous reports of experimental observations in example structures. GIAO-HF in Gaussian 03 was employed to calculate isotropic shielding values and to predict the net NMR shielding increment for several computational probes: methane, diatomic hydrogen, a hydrogen atom, a helium atom, or a ghost atom, each held in various positions over simple test molecules (ethene, ethyne, benzene and HCN) that contain the functional groups studied. Also, the effect of performing single point calculations versus constrained geometry-optimized calculations was examined. In addition, the effect of the angle of the orientation of the probe molecule (in the case of CH(4) and H(2)) relative to the pi bond in the test molecule was studied. Finally, the atomic charges in the molecular probes (CH(4) and H(2)) were computed to investigate the nature of the interaction of the probe with the test molecule. The optimal, most economical computational results were obtained using single point calculations of a diatomic hydrogen probe oriented perpendicular to the surface (or axis) of the test molecule. PMID:15530824

  19. An analytical and experimental evaluation of shadow shields and their support members

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Boyle, R. J.

    1972-01-01

    Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.

  20. Graphical methods for the sensitivity analysis in discriminant analysis

    SciTech Connect

    Kim, Youngil; Anderson-Cook, Christine M.; Dae-Heung, Jang

    2015-09-30

    Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretative compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern of the change.

  1. Graphical methods for the sensitivity analysis in discriminant analysis

    DOE PAGESBeta

    Kim, Youngil; Anderson-Cook, Christine M.; Dae-Heung, Jang

    2015-09-30

    Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretative compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern ofmore » the change.« less

  2. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1994-09-01

    Certain genetic disorders (e.g. congenital cataracts, duodenal atresia) are rare in the general population, but more common in people with Down`s syndrome. We present a method for using individuals with trisomy 21 to map genes for such traits. Our methods are analogous to methods for mapping autosomal dominant traits using affected relative pairs by looking for markers with greater than expected identity-by-descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected reduction to homozygosity in the chromosomes inherited form the non-disjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the gene, a confidence interval for that distance, and methods for computing power and sample sizes. The methods are described in the context of gene-dosage model for the etiology of the disorder, but can be extended to other models. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers, how to test candidate genes, and how to handle the effect of reduced recombination associated with maternal meiosis I non-disjunction.

  3. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  4. Probabilistic Computational Methods in Structural Failure Analysis

    NASA Astrophysics Data System (ADS)

    Krejsa, Martin; Kralik, Juraj

    2015-12-01

    Probabilistic methods are used in engineering where a computational model contains random variables. Each random variable in the probabilistic calculations contains uncertainties. Typical sources of uncertainties are properties of the material and production and/or assembly inaccuracies in the geometry or the environment where the structure should be located. The paper is focused on methods for the calculations of failure probabilities in structural failure and reliability analysis with special attention on newly developed probabilistic method: Direct Optimized Probabilistic Calculation (DOProC), which is highly efficient in terms of calculation time and the accuracy of the solution. The novelty of the proposed method lies in an optimized numerical integration that does not require any simulation technique. The algorithm has been implemented in mentioned software applications, and has been used several times in probabilistic tasks and probabilistic reliability assessments.

  5. Lunar Surface Reactor Shielding Study

    SciTech Connect

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    2006-01-20

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.

  6. Evolution of large shield volcanoes on Venus

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Dufek, Josef; McGovern, Patrick J.

    2005-01-01

    We studied the geologic history, topographic expression, and gravity signature of 29 large Venusian shield volcanoes with similar morphologies in Magellan synthetic aperture radar imagery. While they appear similar in imagery, 16 have a domical topographic expression and 13 have a central depression. Typical dimensions for the central depression are 150 km wide and 500 m deep. The central depressions are probably not calderas resulting from collapse of a shallow magma chamber but instead are the result of a corona-like sagging of a previously domical volcano. The depressions all have some later volcanic filling. All but one of the central depression volcanoes have been post-dated by geologic features unrelated to the volcano, while most of the domical volcanoes are at the top of the stratigraphic column. Analysis of the gravity signatures in the spatial and spectral domains shows a strong correlation between the absence of post-dating features and the presence of dynamic support by an underlying plume. We infer that the formation of the central depressions occurred as a result of cessation of dynamic support. However, there are some domical volcanoes whose geologic histories and gravity signatures also indicate that they are extinct, so sagging of the central region apparently does not always occur when dynamic support is removed. We suggest that the thickness of the elastic lithosphere may be a factor in determining whether a central depression forms when dynamic support is removed, but the gravity data are of insufficient resolution to test this hypothesis with admittance methods.

  7. Text analysis devices, articles of manufacture, and text analysis methods

    DOEpatents

    Turner, Alan E; Hetzler, Elizabeth G; Nakamura, Grant C

    2013-05-28

    Text analysis devices, articles of manufacture, and text analysis methods are described according to some aspects. In one aspect, a text analysis device includes processing circuitry configured to analyze initial text to generate a measurement basis usable in analysis of subsequent text, wherein the measurement basis comprises a plurality of measurement features from the initial text, a plurality of dimension anchors from the initial text and a plurality of associations of the measurement features with the dimension anchors, and wherein the processing circuitry is configured to access a viewpoint indicative of a perspective of interest of a user with respect to the analysis of the subsequent text, and wherein the processing circuitry is configured to use the viewpoint to generate the measurement basis.

  8. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)

    NASA Technical Reports Server (NTRS)

    Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.

    1991-01-01

    The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.

  9. Corrosion evaluation of stainless steel root weld shielding

    SciTech Connect

    Gorog, M.; Sawyer, L.A.

    1999-07-01

    The effect of five shielding methods for gas tungsten arc root pass welds, on the corrosion resistance of stainless steel was evaluated in two laboratory solutions. The first experiment was performed in 6% ferric chloride solution, a test designed to corrode stainless steel. The second experiment was performed in a simulated paper machine white water solution that contained hydrogen peroxide. Argon shielding produced excellent results by maintaining corrosion resistance in both solutions. Nitrogen purging and flux coated TIG rod techniques produced variable results. Paste fluxes and welding without shielding are not recommended for root protection. They performed very poorly with the welds corroding in both tests.

  10. Galactic heavy-ion shielding using electrostatic fields

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The shielding of spacecraft against galactic heavy ions, particularly high-energy Fe(56) nuclei, by electrostatic fields is analyzed for an arrangement of spherical concentric shells. Vacuum breakdown considerations are found to limit the minimum radii of the spheres to over 100 m. This limitation makes it impractical to use the fields for shielding small spacecraft. The voltages necessary to repel these Fe(56) nuclei exceed present electrostatic generating capabilities by over 2 orders of magnitude and render the concept useless as an alternative to traditional bulk-material shielding methods.

  11. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses

  12. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  13. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  14. Measurement methods for human exposure analysis.

    PubMed Central

    Lioy, P J

    1995-01-01

    The general methods used to complete measurements of human exposures are identified and illustrations are provided for the cases of indirect and direct methods used for exposure analysis. The application of the techniques for external measurements of exposure, microenvironmental and personal monitors, are placed in the context of the need to test hypotheses concerning the biological effects of concern. The linkage of external measurements to measurements made in biological fluids is explored for a suite of contaminants. This information is placed in the context of the scientific framework used to conduct exposure assessment. Examples are taken from research on volatile organics and for a large scale problem: hazardous waste sites. PMID:7635110

  15. Forum discussion on probabilistic structural analysis methods

    SciTech Connect

    Rodriguez, E.A.; Girrens, S.P.

    2000-10-01

    The use of Probabilistic Structural Analysis Methods (PSAM) has received much attention over the past several decades due in part to enhanced reliability theories, computational capabilities, and efficient algorithms. The need for this development was already present and waiting at the door step. Automotive design and manufacturing has been greatly enhanced because of PSAM and reliability methods, including reliability-based optimization. This demand was also present in the US Department of Energy (DOE) weapons laboratories in support of the overarching national security responsibility of maintaining the nations nuclear stockpile in a safe and reliable state.

  16. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position, the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for a obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. A comparison was made of the fractional change in the dose per unit change in shield layer thickness as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  17. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  18. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  19. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  20. Empirical comparison of neutron activation sample analysis methods

    NASA Astrophysics Data System (ADS)

    Gillenwalters, Elizabeth

    The U.S. Geological Survey (USGS) operates a research reactor used mainly for neutron activation of samples, which are then shipped to industrial customers. Accurate nuclide identification and activity determination are crucial to remain in compliance with Code of Federal Regulations guidelines. This facility utilized a Canberra high purity germanium detector (HPGe) coupled with Canberra Genie(TM) 2000 (G2K) software for gamma spectroscopy. This study analyzed the current method of nuclide identification and activity determination of neutron activated materials utilized by the USGS reactor staff and made recommendations to improve the method. Additionally, analysis of attenuators, effect of detector dead time on nuclide identification, and validity of activity determination assumptions were investigated. The current method of activity determination utilized the G2K software to obtain ratio of activity per nuclide identified. This determination was performed without the use of geometrically appropriate efficiency calibration curves. The ratio of activity per nuclide was used in conjunction with an overall exposure rate in mR/h obtained via a Fluke Biomedical hand-held ion chamber. The overall exposure rate was divided into individual nuclide amounts based on the G2K nuclide ratios. A gamma energy of 1 MeV and a gamma yield of 100% was assumed for all samples. Utilizing the gamma assumption and nuclide ratios, a calculation was performed to determine total sample activity in muCi (microCuries). An alternative method was proposed, which would eliminate the use of exposure rate and rely solely on the G2K software capabilities. The G2K software was energy and efficiency calibrated with efficiency curves developed for multiple geometries. The USGS reactor staff were trained to load appropriate calibration data into the G2K software prior to sample analysis. Comparison of the current method and proposed method demonstrated that the activity value calculated with the 1 Me