Sample records for shielding analysis methods

  1. Analysis methods for Kevlar shield response to rotor fragments

    NASA Technical Reports Server (NTRS)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  2. Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations

    NASA Astrophysics Data System (ADS)

    Bohmann, Jonathan A.; Weinhold, Frank; Farrar, Thomas C.

    1997-07-01

    Nuclear magnetic shielding tensors computed by the gauge including atomic orbital (GIAO) method in the Hartree-Fock self-consistent-field (HF-SCF) framework are partitioned into magnetic contributions from chemical bonds and lone pairs by means of natural chemical shielding (NCS) analysis, an extension of natural bond orbital (NBO) analysis. NCS analysis complements the description provided by alternative localized orbital methods by directly calculating chemical shieldings due to delocalized features in the electronic structure, such as bond conjugation and hyperconjugation. Examples of NCS tensor decomposition are reported for CH4, CO, and H2CO, for which a graphical mnemonic due to Cornwell is used to illustrate the effect of hyperconjugative delocalization on the carbon shielding.

  3. Reliability Methods for Shield Design Process

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  4. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  5. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  6. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  7. Shielding of substations against direct lightning strokes by shield wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhuri, P.

    1994-01-01

    A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.

  8. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  9. Comparison of different shielding methods in acquisition of physiological signals.

    PubMed

    Yanbing Jiang; Ning Ji; Hui Wang; Xueyu Liu; Yanjuan Geng; Peng Li; Shixiong Chen; Guanglin Li

    2017-07-01

    Power line interference in the surrounding environment could usually introduce many difficulties when collecting and analyzing physiological signals. Since power line interference is usually several orders of amplitude larger than the physiological electrical signals, methods of suppressing power line interference should be considered during the signal acquisition. Many studies used a hardware or software band-stop filter to suppress power line interference but it could easily cause attenuations and distortions to the signal of interest. In this study, two kinds of methods that used different signals to drive the shields of the electrodes were proposed to reduce the impacts of power line interference. Three channels of two physiological signals (ECG and EMG) were simultaneously collected when the electrodes were not shielded (No-Shield), shielded by ground signals (GND-Shield) and shielded by buffered signals of the corresponding electrodes (Active-Shield), respectively, on a custom hardware platform based on TI ADS1299. The results showed that power line interference would be significantly suppressed when using shielding approaches, and the Active-Shield method could achieve the best performance with a power line interference reduction up to 36dB. The study suggested that the Active-Shield method at the analog front-end was a great candidate to reduce power line interference in routine acquisitions of physiological signals.

  10. Accuracy of a simplified method for shielded gamma-ray skyshine sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassett, M.S.; Shultis, J.K.

    1989-11-01

    Rigorous transport or Monte Carlo methods for estimating far-field gamma-ray skyshine doses generally are computationally intensive. consequently, several simplified techniques such as point-kernel methods and methods based on beam response functions have been proposed. For unshielded skyshine sources, these simplified methods have been shown to be quite accurate from comparisons to benchmark problems and to benchmark experimental results. For shielded sources, the simplified methods typically use exponential attenuation and photon buildup factors to describe the effect of the shield. However, the energy and directional redistribution of photons scattered in the shield is usually ignored, i.e., scattered photons are assumed tomore » emerge from the shield with the same energy and direction as the uncollided photons. The accuracy of this shield treatment is largely unknown due to the paucity of benchmark results for shielded sources. In this paper, the validity of such a shield treatment is assessed by comparison to a composite method, which accurately calculates the energy and angular distribution of photons penetrating the shield.« less

  11. A direct method for fabricating tongue-shielding stent.

    PubMed

    Wang, R R; Olmsted, L W

    1995-08-01

    During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.

  12. Thermal neutron shield and method of manufacture

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  13. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.

    1979-08-01

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less

  14. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  15. Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Ibrahim, Ahmad M.

    2017-05-01

    This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less

  16. Overview of active methods for shielding spacecraft from energetic space radiation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  17. Shielding of medical imaging X-ray facilities: a simple and practical method.

    PubMed

    Bibbo, Giovanni

    2017-12-01

    The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.

  18. Geological analysis of parts of the southern Arabian Shield based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Qari, Mohammed Yousef Hedaytullah T.

    This thesis examines the capability and applicability of Landsat multispectral remote sensing data for geological analysis in the arid southern Arabian Shield, which is the eastern segment of the Nubian-Arabian Shield surrounding the Red Sea. The major lithologies in the study area are Proterozoic metavolcanics, metasediments, gneisses and granites. Three test-sites within the study area, located within two tectonic assemblages, the Asir Terrane and the Nabitah Mobile Belt, were selected for detailed comparison of remote sensing methods and ground geological studies. Selected digital image processing techniques were applied to full-resolution Landsat TM imagery and the results are interpreted and discussed. Methods included: image contrast improvement, edge enhancement for detecting lineaments and spectral enhancement for geological mapping. The last method was based on two principles, statistical analysis of the data and the use of arithmetical operators. New and detailed lithological and structural maps were constructed and compared with previous maps of these sites. Examples of geological relations identified using TM imagery include: recognition and mapping of migmatites for the first time in the Arabian Shield; location of the contact between the Asir Terrane and the Nabitah Mobile Belt; and mapping of lithologies, some of which were not identified on previous geological maps. These and other geological features were confirmed by field checking. Methods of lineament enhancement implemented in this study revealed structural lineaments, mostly mapped for the first time, which can be related to regional tectonics. Structural analysis showed that the southern Arabian Shield has been affected by at least three successive phases of deformation. The third phase is the most dominant and widespread. A crustal evolutionary model in the vicinity of the study area is presented showing four stages, these are: arc stage, accretion stage, collision stage and post

  19. Modeling and Analysis of Geoelectric Fields: Extended Solar Shield

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2016-12-01

    In the NASA Applied Sciences Program Solar Shield project, an unprecedented first-principles-based system to forecast geomagnetically induced current (GIC) in high-voltage power transmission systems was developed. Rapid progress in the field of numerical physics-based space environment modeling has led to major developments over the past few years. In this study modeling and analysis of induced geoelectric fields is discussed. Specifically, we focus on the successful incorporation of 3-D EM transfer functions in the modeling of E-fields, and on the analysis of near real-time simulation outputs used in the Solar Shield forecast system. The extended Solar Shield is a collaborative project between DHS, NASA, NOAA, CUA and EPRI.

  20. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.

    PubMed

    Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2016-07-05

    (29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Method and system for determining radiation shielding thickness and gamma-ray energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio

    2015-12-15

    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  2. Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin

    Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less

  3. Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis

    DOE PAGES

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; ...

    2016-06-25

    Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less

  4. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  5. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  6. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  7. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  8. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  9. Validation of Shielding Analysis Capability of SuperMC with SINBAD

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Yang, Qi; Wu, Bin; Han, Yuncheng; Song, Jing

    2017-09-01

    Abstract: The shielding analysis capability of SuperMC was validated with the Shielding Integral Benchmark Archive Database (SINBAD). The SINBAD was compiled by RSICC and NEA, it includes numerous benchmark experiments performed with the D-T fusion neutron source facilities of OKTAVIAN, FNS, IPPE, etc. The results from SuperMC simulation were compared with experimental data and MCNP results. Very good agreement with deviation lower than 1% was achieved and it suggests that SuperMC is reliable in shielding calculation.

  10. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  12. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  13. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  14. Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields

    NASA Technical Reports Server (NTRS)

    Carrasquilla, Maria J.; Miller, Joshua E.

    2017-01-01

    The informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with

  15. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  16. Analysis of Broadband Metamaterial Shielding for Counter-Directed Energy Weapons

    DTIC Science & Technology

    2017-06-01

    SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS by Chester H. Hewitt III June 2017 Thesis Advisor: Dragoslav Grbovic Second Reader: James H...COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF BROADBAND METAMATERIAL SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS 5. FUNDING NUMBERS 6...high-power microwave (HPM) directed- energy weapons (DEWs), which can disrupt electronics remotely with great accuracy without the need to inflict

  17. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, A.; Zhai, Y.; Wang, W.

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  18. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE PAGES

    Khodak, A.; Zhai, Y.; Wang, W.; ...

    2017-06-19

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  19. Magnetic Shielding Design for Coupler of Wireless Electric Vehicle Charging Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Zhao, W. N.; Yang, X. J.; Yao, C.; Ma, D. G.; Tang, H. J.

    2017-10-01

    Inductive power transfer (IPT) is a practical and preferable method for wireless electric vehicle (EV) charging which proved to be safe, convenient and reliable. Due to the air gap between the magnetic coupler, the magnetic field coupling decreases and the magnetic leakage increases significantly compared to traditional transformer, and this may lead to the magnetic flux density around the coupler more than the safety limit for human. So magnetic shielding should be adding to the winding made from litz wire to enhance the magnetic field coupling effect in the working area and reduce magnetic field strength in non-working area. Magnetic shielding can be achieved by adding high-permeability material or high-conductivity material. For high-permeability material its magnetic reluctance is much lower than the surrounding air medium so most of the magnetic line goes through the high-permeability material rather than surrounding air. For high-conductivity material the eddy current in the material can produce reverse magnetic field to achieve magnetic shielding. This paper studies the effect of the two types of shielding material on coupler for wireless EV charging and designs combination shielding made from high-permeability material and high-conductivity material. The investigation of the paper is done with the help of finite element analysis.

  20. Shielded beam delivery apparatus and method

    DOEpatents

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  1. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  2. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse

    PubMed Central

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young

    2017-01-01

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100–700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material. PMID:28976931

  3. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse.

    PubMed

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young; Singh, Jitendra Kumar; Ismail, Mohamed A

    2017-10-04

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100-700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material.

  4. Spectral analysis of shielded gamma ray sources using precalculated library data

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas Wesley; Gardner, Robin P.

    2015-11-01

    In this work, an approach has been developed for determining the intensity of a shielded source by first determining the thicknesses of three different shielding materials from a passively collected gamma-ray spectrum by making comparisons with predetermined shielded spectra. These evaluations are dependent on the accuracy and validity of the predetermined library spectra which were created by changing the thicknesses of the three chosen materials lead, aluminum and wood that are used to simulate any actual shielding. Each of the spectra produced was generated using MCNP5 with a sufficiently large number of histories to ensure a low relative error at each channel. The materials were held in the same respective order from source to detector, where each material consisted of three individual thicknesses and a null condition. This then produced two separate data sets of 27 total shielding material situations and subsequent predetermined libraries that were created for each radionuclide source used. The technique used to calculate the thicknesses of the materials implements a Levenberg-Marquardt nonlinear search that employs a tri-linear interpolation with the respective predetermined libraries within each channel for the supplied input unknown spectrum. Given that the nonlinear parameters require an initial guess for the calculations, the approach demonstrates first that when the correct values are input, the correct thicknesses are found. It then demonstrates that when multiple trials of random values are input for each of the nonlinear parameters, the average of the calculated solutions that successfully converges also produced the correct thicknesses. Under situations with sufficient information known about the detection situation at hand, the method was shown to behave in a manner that produces reasonable results and can serve as a good preliminary solution. This technique has the capability to be used in a variety of full spectrum inverse analysis problems

  5. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  6. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  7. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  8. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  9. Meta-Analysis of the Effect of Chest Shielding on Preventing Patent Ductus Arteriosus in Premature Infants.

    PubMed

    Mannan, Javed; Amin, Sanjiv B

    2017-03-01

    Objective  This study aims to perform a meta-analysis of randomized studies to evaluate if chest shielding during phototherapy is associated with decreased incidence of patent ductus arteriosus (PDA) in premature infants. Design/Methods  We used published guidelines for the meta-analysis of clinical trials. The search strategy included electronic searches of CINAHL, CENTRAL Cochrane Library, MEDLINE, PubMed, and abstracts presented at the Pediatric Academic Societies. Inclusion criteria were randomized controlled trials (RCTs), quasi-RCTs or cluster RCTs published in English and involving chest shielding during phototherapy in premature infants with PDA as an outcome. Exclusion criteria involved case reports, case series, and multiple publications from the same author. Heterogeneity testing using Q statistics was performed to evaluate the variance between studies. Results  Two RCTs met study criteria. There was heterogeneity (I 2 : 55.4%) between the two trials. Meta-analysis of RCTs using the random effect model demonstrated that chest shielding during phototherapy was associated with decreased incidence of PDA (odds ratio: 0.47, 95% confidence interval: 0.23-0.96). There was no publication bias on Eggers test. Heterogeneity was seen in gestational age, gender, prophylactic use of postnatal indomethacin, duration of phototherapy, and assessment of PDA. Conclusion  Chest shielding during phototherapy may be associated with decreased incidence of PDA among premature infants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. DataSHIELD: taking the analysis to the data, not the data to the analysis.

    PubMed

    Gaye, Amadou; Marcon, Yannick; Isaeva, Julia; LaFlamme, Philippe; Turner, Andrew; Jones, Elinor M; Minion, Joel; Boyd, Andrew W; Newby, Christopher J; Nuotio, Marja-Liisa; Wilson, Rebecca; Butters, Oliver; Murtagh, Barnaby; Demir, Ipek; Doiron, Dany; Giepmans, Lisette; Wallace, Susan E; Budin-Ljøsne, Isabelle; Oliver Schmidt, Carsten; Boffetta, Paolo; Boniol, Mathieu; Bota, Maria; Carter, Kim W; deKlerk, Nick; Dibben, Chris; Francis, Richard W; Hiekkalinna, Tero; Hveem, Kristian; Kvaløy, Kirsti; Millar, Sean; Perry, Ivan J; Peters, Annette; Phillips, Catherine M; Popham, Frank; Raab, Gillian; Reischl, Eva; Sheehan, Nuala; Waldenberger, Melanie; Perola, Markus; van den Heuvel, Edwin; Macleod, John; Knoppers, Bartha M; Stolk, Ronald P; Fortier, Isabel; Harris, Jennifer R; Woffenbuttel, Bruce H R; Murtagh, Madeleine J; Ferretti, Vincent; Burton, Paul R

    2014-12-01

    Research in modern biomedicine and social science requires sample sizes so large that they can often only be achieved through a pooled co-analysis of data from several studies. But the pooling of information from individuals in a central database that may be queried by researchers raises important ethico-legal questions and can be controversial. In the UK this has been highlighted by recent debate and controversy relating to the UK's proposed 'care.data' initiative, and these issues reflect important societal and professional concerns about privacy, confidentiality and intellectual property. DataSHIELD provides a novel technological solution that can circumvent some of the most basic challenges in facilitating the access of researchers and other healthcare professionals to individual-level data. Commands are sent from a central analysis computer (AC) to several data computers (DCs) storing the data to be co-analysed. The data sets are analysed simultaneously but in parallel. The separate parallelized analyses are linked by non-disclosive summary statistics and commands transmitted back and forth between the DCs and the AC. This paper describes the technical implementation of DataSHIELD using a modified R statistical environment linked to an Opal database deployed behind the computer firewall of each DC. Analysis is controlled through a standard R environment at the AC. Based on this Opal/R implementation, DataSHIELD is currently used by the Healthy Obese Project and the Environmental Core Project (BioSHaRE-EU) for the federated analysis of 10 data sets across eight European countries, and this illustrates the opportunities and challenges presented by the DataSHIELD approach. DataSHIELD facilitates important research in settings where: (i) a co-analysis of individual-level data from several studies is scientifically necessary but governance restrictions prohibit the release or sharing of some of the required data, and/or render data access unacceptably slow; (ii) a

  11. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  12. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  13. Standardized Radiation Shield Design Methods: 2005 HZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  14. Application of the method of steepest descent to laminated shield weight optimization with several constraints: Theory

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions.

  15. Environment Impact Analysis of Shield Passing Alongside Bridge Pile Platform Using Three Dimensional Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji

    2017-10-01

    The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.

  16. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  17. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    PubMed

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  18. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  19. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    PubMed

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  20. Health state evaluation of shield tunnel SHM using fuzzy cluster method

    NASA Astrophysics Data System (ADS)

    Zhou, Fa; Zhang, Wei; Sun, Ke; Shi, Bin

    2015-04-01

    Shield tunnel SHM is in the path of rapid development currently while massive monitoring data processing and quantitative health grading remain a real challenge, since multiple sensors belonging to different types are employed in SHM system. This paper addressed the fuzzy cluster method based on fuzzy equivalence relationship for the health evaluation of shield tunnel SHM. The method was optimized by exporting the FSV map to automatically generate the threshold value. A new holistic health score(HHS) was proposed and its effectiveness was validated by conducting a pilot test. A case study on Nanjing Yangtze River Tunnel was presented to apply this method. Three types of indicators, namely soil pressure, pore pressure and steel strain, were used to develop the evaluation set U. The clustering results were verified by analyzing the engineering geological conditions; the applicability and validity of the proposed method was also demonstrated. Besides, the advantage of multi-factor evaluation over single-factor model was discussed by using the proposed HHS. This investigation indicated the fuzzy cluster method and HHS is capable of characterizing the fuzziness of tunnel health, and it is beneficial to clarify the tunnel health evaluation uncertainties.

  1. CAD-Based Shielding Analysis for ITER Port Diagnostics

    NASA Astrophysics Data System (ADS)

    Serikov, Arkady; Fischer, Ulrich; Anthoine, David; Bertalot, Luciano; De Bock, Maartin; O'Connor, Richard; Juarez, Rafael; Krasilnikov, Vitaly

    2017-09-01

    Radiation shielding analysis conducted in support of design development of the contemporary diagnostic systems integrated inside the ITER ports is relied on the use of CAD models. This paper presents the CAD-based MCNP Monte Carlo radiation transport and activation analyses for the Diagnostic Upper and Equatorial Port Plugs (UPP #3 and EPP #8, #17). The creation process of the complicated 3D MCNP models of the diagnostics systems was substantially accelerated by application of the CAD-to-MCNP converter programs MCAM and McCad. High performance computing resources of the Helios supercomputer allowed to speed-up the MCNP parallel transport calculations with the MPI/OpenMP interface. The found shielding solutions could be universal, reducing ports R&D costs. The shield block behind the Tritium and Deposit Monitor (TDM) optical box was added to study its influence on Shut-Down Dose Rate (SDDR) in Port Interspace (PI) of EPP#17. Influence of neutron streaming along the Lost Alpha Monitor (LAM) on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) of EPP#8. For the UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), an excessive neutron streaming along the CXRS shutter, which should be prevented in further design iteration.

  2. Analysis of Shield Construction in Spherical Weathered Granite Development Area

    NASA Astrophysics Data System (ADS)

    Cao, Quan; Li, Peigang; Gong, Shuhua

    2018-01-01

    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  3. Graphene shield enhanced photocathodes and methods for making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan Andrew

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  4. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  5. SU-G-206-17: RadShield: Semi-Automated Shielding Design for CT Using NCRP 147 and Isodose Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Rutel, I; Yang, K

    2016-06-15

    Purpose: Computed tomography (CT) exam rooms are shielded more quickly and accurately compared to manual calculations using RadShield, a semi-automated diagnostic shielding software package. Last year, we presented RadShield’s approach to shielding radiographic and fluoroscopic rooms calculating air kerma rate and barrier thickness at many points on the floor plan and reporting the maximum values for each barrier. RadShield has now been expanded to include CT shielding design using not only NCRP 147 methodology but also by overlaying vendor provided isodose curves onto the floor plan. Methods: The floor plan image is imported onto the RadShield workspace to serve asmore » a template for drawing barriers, occupied regions and CT locations. SubGUIs are used to set design goals, occupancy factors, workload, and overlay isodose curve files. CTDI and DLP methods are solved following NCRP 147. RadShield’s isodose curve method employs radial scanning to extract data point sets to fit kerma to a generalized power law equation of the form K(r) = ar^b. RadShield’s semiautomated shielding recommendations were compared against a board certified medical physicist’s design using dose length product (DLP) and isodose curves. Results: The percentage error found between the physicist’s manual calculation and RadShield’s semi-automated calculation of lead barrier thickness was 3.42% and 21.17% for the DLP and isodose curve methods, respectively. The medical physicist’s selection of calculation points for recommending lead thickness was roughly the same as those found by RadShield for the DLP method but differed greatly using the isodose method. Conclusion: RadShield improves accuracy in calculating air-kerma rate and barrier thickness over manual calculations using isodose curves. Isodose curves were less intuitive and more prone to error for the physicist than inverse square methods. RadShield can now perform shielding design calculations for general scattering

  6. SU-F-P-53: RadShield: Semi-Automated Shielding Design for CT Using NCRP 147 and Isodose Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Rutel, I; Wu, D

    Purpose: Computed tomography (CT) exam rooms are shielded more quickly and accurately compared to manual calculations using RadShield, a semi-automated diagnostic shielding software package. Last year, we presented RadShield’s approach to shielding radiographic and fluoroscopic rooms calculating air kerma rate and barrier thickness at many points on the floor plan and reporting the maximum values for each barrier. RadShield has now been expanded to include CT shielding design using not only NCRP 147 methodology but also by overlaying vendor provided isodose curves onto the floor plan. Methods: The floor plan image is imported onto the RadShield workspace to serve asmore » a template for drawing barriers, occupied regions and CT locations. SubGUIs are used to set design goals, occupancy factors, workload, and overlay isodose curve files. CTDI and DLP methods are solved following NCRP 147. RadShield’s isodose curve method employs radial scanning to extract data point sets to fit kerma to a generalized power law equation of the form K(r) = ar^b. RadShield’s semi-automated shielding recommendations were compared against a board certified medical physicist’s design using dose length product (DLP) and isodose curves. Results: The percentage error found between the physicist’s manual calculation and RadShield’s semi-automated calculation of lead barrier thickness was 3.42% and 21.17% for the DLP and isodose curve methods, respectively. The medical physicist’s selection of calculation points for recommending lead thickness was roughly the same as those found by RadShield for the DLP method but differed greatly using the isodose method. Conclusion: RadShield improves accuracy in calculating air-kerma rate and barrier thickness over manual calculations using isodose curves. Isodose curves were less intuitive and more prone to error for the physicist than inverse square methods. RadShield can now perform shielding design calculations for general scattering

  7. Self-Shielding Analysis of the Zap-X System

    PubMed Central

    Schneider, M. Bret; Adler, John R.

    2017-01-01

    The Zap-X is a self-contained and first-of-its-kind self-shielded therapeutic radiation device dedicated to brain as well as head and neck stereotactic radiosurgery (SRS). By utilizing an S-band linear accelerator (linac) with a 2.7 megavolt (MV) accelerating potential and incorporating radiation-shielded mechanical structures, the Zap-X does not typically require a radiation bunker, thereby saving SRS facilities considerable cost. At the same time, the self-shielded features of the Zap-X are designed for more consistency of radiation protection, reducing the risk to radiation workers and others potentially exposed from a poorly designed or constructed radiotherapy vault. The hypothesis of the present study is that a radiosurgical system can be self-shielded such that it produces radiation exposure levels deemed safe to the public while operating under a full clinical workload. This study summarizes the Zap-X system shielding and found that the overall system radiation leakage values are reduced by a factor of 50 compared to the occupational radiation limit stipulated by the Nuclear Regulatory Commission (NRC) or agreement states. The goal of self-shielding is achieved under all but the most exceptional conditions for which additional room shielding or a larger restricted area in the vicinity of the Zap-X system would be required. PMID:29441251

  8. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers

    PubMed Central

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-01-01

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the “all parallel” shielding coils with a 45° starting position have the best shielding performance, whereas the “separated loop” shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same. PMID:28587137

  9. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.

    PubMed

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-05-26

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.

  10. An alternative NMR method to determine nuclear shielding anisotropies for molecules in liquid-crystalline solutions with (13)C shielding anisotropy of methyl iodide as an example.

    PubMed

    Tallavaara, Pekka; Jokisaari, Jukka

    2008-03-28

    An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.

  11. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  12. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of Shielding Performance for Newly Developed Composite Materials

    NASA Astrophysics Data System (ADS)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  14. Extensive Radiation Shielding Analysis for Different Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Çay, Yiǧit; Kaymaz, Zerefsan

    2016-07-01

    Radiation environment around Earth poses a great danger for spacecraft and causes immature de-orbiting or loss of the spacecraft in near Earth space environment. In this study, a student project has been designed to build a CubeSat, PolarBeeSail (PBS), with an orbit having inclination of 80°, 4 Re in perigee and 20 Re in apogee to study the polar magnetospheric environment. An extensive radiation dose analyses were carried out for PBS orbit, and integral and differential fluxes were calculated using SPENVIS tools. A shielding analysis was performed and an optimum Aluminum thickness, 3 mm, was obtained. These results for PBS were then compared for other orbits at different altitudes both for polar and equatorial orbits. For this purpose, orbital characteristics of POES-19 and GOES-15 were used. The resulting proton flux analyses, TID analyses, and further shielding studies were conducted; comparisons and recommendations were made for future design of spacecraft that will use these environments.

  15. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  16. A qualitative analysis of power take-off driveline shields: barriers and motivators to shield use for New York State farmers.

    PubMed

    Weil, R; Mellors, P; Fiske, T; Sorensen, J A

    2014-01-01

    Machinery entanglements are one of the top three causes of death in farming. Education on the risks of unshielded power take-off (PTO) equipment does not appear to significantly alter farmers' willingness to replace missing or broken shielding. Different assessments conducted in various regions of the U.S. indicate that as many as one-third to one-half of PTOs are inadequately shielded. Qualitative research was conducted with New York farmers to identify the factors that influence the decision to replace damaged or missing PTO driveline shields. Interview topics included: knowledge of entanglement risks, decisions regarding safety in general, decisions relating to PTO driveline shielding specifically, and the barriers and motivators to replacing missing or broken PTO driveline shields. Interviews with 38 farmers revealed the following themes: (1) farmers are fully aware of PTO entanglement risk, (2) insufficient time and money are primary barriers to purchasing or replacing damaged or missing PTO driveline shields, (3) PTO driveline shield designs are problematic and have led to negative experiences with shielding, and (4) risk acceptance and alternate work strategies are preferred alternatives to replacing shields. Our findings indicate that more innovative approaches will be required to make PTO driveline shield use a viable and attractive choice for farmers. New shield designs that address the practical barriers farmers face, as well as the provision of logistical and financial assistance for shield replacement, may alter the decision environment sufficiently to make replacing PTO driveline shielding a more attractive option for farmers.

  17. Hybrid Monte Carlo/deterministic methods for radiation shielding problems

    NASA Astrophysics Data System (ADS)

    Becker, Troy L.

    For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods

  18. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  19. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  20. Measuring space radiation shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  1. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  2. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  3. New method for shielding electron beams used for head and neck cancer treatment.

    PubMed

    Farahani, M; Eichmiller, F C; McLaughlin, W L

    1993-01-01

    Shields and stents of metals with high atomic number, which are custom cast in molds from the melt, are the materials most widely used to protect surrounding tissues during treatment of skin or oral lesions with therapeutic electron beams. An improved fabrication method is to mix a polysiloxane-metal composite, which is readily cast at room temperature by combining a metal-powder/polysiloxane resin mixture with a hardening catalyst. The purpose of the present study is to compare the shielding effectiveness of two different metal-polysiloxane composites with that of conventional cast Lipowitz metal (50.1% Bi, 26.6% Pb, 13.3% Sn, 10% Cd). Also, a 2(3) factorial experiment was run to investigate the effects and interactions of metal particle size (20-microns vs 100-microns diameter), the atomic weight of the metal (304 stainless steel vs 70% Ag, 30% Cu alloy), and the presence or absence of a layer of unfilled polymer added to the forward-scatter side of the shield. The composites of different thicknesses were made by blending 90% (w/w) metal powder separately with 10% polysiloxane base and catalyst. A thin GafChromic dosimeter film was placed between the shielding material and a polystyrene base to measure the radiation shielding effect of composite disc samples irradiated with a 6-MeV electron beam normal to the flat surface of the disc. The results show that composite shields with the metal of higher atomic weight and density (Ag-Cu) combined with an additional unfilled layer are more effective than the stainless-steel composite with a similar additional unfilled layer, in terms of diminishing the dose at the surface of the polystyrene backing material.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  5. Morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  6. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.

    PubMed

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S

    2015-11-01

    To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.

  7. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  8. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  9. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Vanderhoek, M

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beammore » entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.« less

  10. Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)

    NASA Technical Reports Server (NTRS)

    Chui, Talso C.; Haddad, Nicolas E.

    2013-01-01

    A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.

  11. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  12. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  13. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  14. Hybrid Magnetic Shielding

    NASA Astrophysics Data System (ADS)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  15. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  16. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  17. Measurement of the transient shielding effectiveness of shielding cabinets

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2008-05-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  18. METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broughton, J.; Butler, J.; Brimstone, M.

    1969-10-31

    The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less

  19. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  20. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    PubMed Central

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations. PMID:27461510

  1. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    PubMed

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-27

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  2. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  3. Design and analysis of a personnel blast shield for different explosives applications

    NASA Astrophysics Data System (ADS)

    Lozano, Eduardo

    The use of explosives brings countless benefits to our everyday lives in areas such as mining, oil and gas exploration, demolition, and avalanche control. However, because of the potential destructive power of explosives, strict safety procedures must be an integral part of any explosives operation. The goal of this work is to provide a solution to protect against the hazards that accompany the general use of explosives, specifically in avalanche control. For this reason, a blast shield was designed and tested to protect the Colorado Department of Transportation personnel against these unpredictable effects. This document will develop a complete analysis to answer the following questions: what are the potential hazards from the detonation of high explosives, what are their effects, and how can we protect ourselves against them. To answer these questions theoretical, analytical, and numerical calculations were performed. Finally, a full blast shield prototype was tested under different simulated operational environments proving its effectiveness as safety device. The Colorado Department of Transportation currently owns more than fifteen shields that are used during every operation involving explosive materials.

  4. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S; Shin, E H; Kim, J

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using themore » production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.« less

  5. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  6. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  7. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  8. ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M

    2013-01-01

    en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce

  9. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  10. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  11. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  12. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  13. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE PAGES

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; ...

    2017-07-17

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  14. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  15. A survey of industry practices regarding shielding of substations against direct lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, A.M.; Wehling, R.J.

    1993-01-01

    A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle methodmore » or Wagner's 1942 method.« less

  16. An Analysis of Ablation-Shield Requirements for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1960-01-01

    The problem of sublimation of material and accumulation of heat in an ablation shield is analyzed and the results are applied to the reentry of manned vehicles into the earth's atmosphere. The parameters which control the amount of sublimation and the temperature distribution within the ablation shield are determined and presented in a manner useful for engineering calculation. It is shown that the total mass loss from the shield during reentry and the insulation requirements may be given very simply in terms of the maximum deceleration of the vehicle or the total reentry time.

  17. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  18. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  19. PWR upper/lower internals shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homyk, W.A.

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less

  20. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    PubMed

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  1. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  2. Method for reducing measurement errors of a Langmuir probe with a protective RF shield

    NASA Astrophysics Data System (ADS)

    Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.

    2018-04-01

    Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.

  3. Noise shielding by a hot subsonic jet

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Parthasarathy, S. P.

    1981-01-01

    An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.

  4. Evaluation of a method to shield a welding electron beam from magnetic interference

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  5. Effect of an overhead shield on gamma-ray skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stedry, M.H.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    A hybrid Monte Carlo and integral line-beam method is used to determine the effect of a horizontal slab shield above a gamma-ray source on the resulting skyshine doses. A simplified Monte Carlo procedure is used to determine the energy and angular distribution of photons escaping the source shield into the atmosphere. The escaping photons are then treated as a bare, point, skyshine source, and the integral line-beam method is used to estimate the skyshine dose at various distances from the source. From results for arbitrarily collimated and shielded sources, the skyshine dose is found to depend primarily on the mean-free-pathmore » thickness of the shield and only very weakly on the shield material.« less

  6. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  7. A Full-Core Resonance Self-Shielding Method Using a Continuous-Energy Quasi–One-Dimensional Slowing-Down Solution that Accounts for Temperature-Dependent Fuel Subregions and Resonance Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Martin, William; Williams, Mark

    In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less

  8. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  9. Radiation shielding for gamma stereotactic radiosurgery units

    PubMed Central

    2007-01-01

    Shielding calculations for gamma stereotactic radiosurgery units are complicated by the fact that the radiation is highly anisotropic. Shielding design for these devices is unique. Although manufacturers will answer questions about the data that they provide for shielding evaluation, they will not perform calculations for customers. More than 237 such units are now installed in centers worldwide. Centers installing a gamma radiosurgery unit find themselves in the position of having to either invent or reinvent a method for performing shielding design. This paper introduces a rigorous and conservative method for barrier design for gamma stereotactic radiosurgery treatment rooms. This method should be useful to centers planning either to install a new unit or to replace an existing unit. The method described here is consistent with the principles outlined in Report No. 151 from the U.S. National Council on Radiation Protection and Measurements. In as little as 1 hour, a simple electronic spreadsheet can be set up, which will provide radiation levels on planes parallel to the barriers and 0.3 m outside the barriers. PACS numbers: 87.53.Ly, 87.56By, 87.52Tr

  10. Shielding in ungated field emitter arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less

  11. An approach to achieve progress in spacecraft shielding

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.

    2004-01-01

    Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.

  12. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  13. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  14. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.; Pan, Heng; Liu, X. K.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less

  15. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  16. Preliminary Shielding Analysis for HCCB TBM Transport

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  17. Method and Apparatus of Implementing a Magnetic Shield Flux Sweeper

    NASA Technical Reports Server (NTRS)

    Sadleir, John E. (Inventor)

    2018-01-01

    The present invention relates to a method and apparatus of protecting magnetically sensitive devices with a shield, including: a non-superconducting metal or lower transition temperature (T.sub.c) material compared to a higher transition temperature material, disposed in a magnetic field; means for creating a spatially varying order parameter's |.PSI.(r,T)|.sup.2 in a non-superconducting metal or a lower transition temperature material; wherein a spatially varying order parameter is created by a proximity effect, such that the non-superconducting metal or the lower transition temperature material becomes superconductive as a temperature is lowered, creating a flux-free Meissner state at a center thereof, in order to sweep magnetic flux lines to the periphery.

  18. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    NASA Astrophysics Data System (ADS)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  19. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DTIC Science & Technology

    2011-04-01

    two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the...Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to... coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall

  20. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  1. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  2. Development of fiber shields for engine containment. [mathematical models

    NASA Technical Reports Server (NTRS)

    Bristow, R. J.; Davidson, C. D.

    1977-01-01

    Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.

  3. Shield fields: Concentrations of small volcanic edifices on Venus

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    Pre-Magellan analysis of the Venera 15/16 data indicated the existence of abundant small volcanic edifices, each less than or equal to 20 km diameter, interpreted to be predominantly shield volcanoes and occurring throughout the plains terrain, most common in equidimensional clusters. With the analysis of Magellan data, these clusters of greater than average concentration of small volcanic edifices have been called 'shield fields'. Although individual small shields can and do occur almost everywhere on the plains terrain of Venus, they most commonly occur in fields that are well-defined, predominantly equant, clusters of edifices. Major questions include why the edifices are concentrated in this way, how they relate to the source of the eruptive material, and what the possible relationship of shield fields to plains terrain is. There are three possible models for the origin of fields and small shields: (1) a field represents an 'island' of higher topography subsequently surrounded by later plains material; and (2) a field represents the area of magma reservoir.

  4. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  5. A new self-shielding method based on a detailed cross-section representation in the resolved energy domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, H.; Hebert, A.

    The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less

  6. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  7. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield

    PubMed Central

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-01-01

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale. PMID:28621723

  8. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield.

    PubMed

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-06-16

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale.

  9. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  10. Spacesuit Radiation Shield Design Methods

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  11. Galactic heavy-ion shielding using electrostatic fields

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The shielding of spacecraft against galactic heavy ions, particularly high-energy Fe(56) nuclei, by electrostatic fields is analyzed for an arrangement of spherical concentric shells. Vacuum breakdown considerations are found to limit the minimum radii of the spheres to over 100 m. This limitation makes it impractical to use the fields for shielding small spacecraft. The voltages necessary to repel these Fe(56) nuclei exceed present electrostatic generating capabilities by over 2 orders of magnitude and render the concept useless as an alternative to traditional bulk-material shielding methods.

  12. Multiplate Radiation Shields: Investigating Radiational Heating Errors

    NASA Astrophysics Data System (ADS)

    Richardson, Scott James

    1995-01-01

    Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy

  13. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  14. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  15. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  16. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  17. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  18. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    PubMed

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  19. The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons.

    PubMed

    Hornikx, Maarten; Forssén, Jens

    2007-11-01

    When a domain in outdoor acoustics is invariant in one direction, an inverse Fourier transform can be used to transform solutions of the two-dimensional Helmholtz equation to a solution of the three-dimensional Helmholtz equation for arbitrary source and observer positions, thereby reducing the computational costs. This previously published approach [D. Duhamel, J. Sound Vib. 197, 547-571 (1996)] is called a 2.5-dimensional method and has here been extended to the urban geometry of parallel canyons, thereby using the equivalent sources method to generate the two-dimensional solutions. No atmospheric effects are considered. To keep the error arising from the transform small, two-dimensional solutions with a very fine frequency resolution are necessary due to the multiple reflections in the canyons. Using the transform, the solution for an incoherent line source can be obtained much more efficiently than by using the three-dimensional solution. It is shown that the use of a coherent line source for shielded urban canyon observer positions leads mostly to an overprediction of levels and can yield erroneous results for noise abatement schemes. Moreover, the importance of multiple facade reflections in shielded urban areas is emphasized by vehicle pass-by calculations, where cases with absorptive and diffusive surfaces have been modeled.

  20. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    NASA Astrophysics Data System (ADS)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  1. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  2. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Nachtscheim, P. R.; Blome, J. C.

    1976-01-01

    A hyperpure vitreous silica material is being developed for use as a reflective and ablative heat shield for planetary entry. Various purity grades and forms of raw materials were evaluated along with various processing methods. Slip casting of high purity grain was selected as the best processing method, resulting in a highly reflective material in the wavelength bands of interest (the visible and ultraviolet regions). The selected material was characterized with respect to optical, mechanical and physical properties using a limited number of specimens. The process has been scaled up to produce a one-half scale heat shield (18 in. dia.) (45.72 cm) for a Jupiter entry vehicle. This work is now being extended to improve the structural safety factor of the heat shield by making hyperpure silica material tougher through the addition of silica fibers.

  3. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  4. NPR Reactor shield calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E.G.

    1961-09-27

    At the request of IPD Personnel, calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly. The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the frontmore » face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft{sup 3} and 265 lb/ft{sup 3} (designated by I-S-245-P and I-S-265-P, respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.« less

  5. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  6. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  7. The integral line-beam method for gamma skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Bassett, M.S.

    1991-03-01

    This paper presents a refinement of a simplified method, based on line-beam response functions, for performing skyshine calculations for shielded and collimated gamma-ray sources. New coefficients for an empirical fit to the line-beam response function are provided and a prescription for making the response function continuous in energy and emission direction is introduced. For a shielded source, exponential attenuation and a buildup factor correction for scattered photons in the shield are used. Results of the new integral line-beam method of calculation are compared to a variety of benchmark experimental data and calculations and are found to give generally excellent agreementmore » at a small fraction of the computational expense required by other skyshine methods.« less

  8. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  9. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less

  10. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  11. Radiation shielding quality assurance

    NASA Astrophysics Data System (ADS)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  12. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  13. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  14. Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.

    PubMed

    Casanova, A O; López, N; Gelen, A; Guevara, M V Manso; Díaz, O; Cimino, L; D'Alessandro, K; Melo, J C

    2004-01-01

    A cyclic electron accelerator Microtron MT-25 will be installed in Havana, Cuba. Electrons, neutrons and gamma radiation up to 25 MeV can be produced in the MT-25. A detailed shielding analysis for the bunker is carried out using two ways: the NCRP-51 Report and the Monte Carlo Method (MCNP-4C Code). The walls and ceiling thicknesses are estimated with dose constraints of 0.5 and 20 mSv y(-1), respectively, and an area occupancy factor of 1/16. Both results are compared and a preliminary bunker design is shown. Copyright 2004 Oxford University Press

  15. Shielding of the Hip Prosthesis During Radiation Therapy for Heterotopic Ossification is Associated with Increased Failure of Prophylaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Tracy A.; Gaccione, Peter; Gobezie, Reuben

    2007-04-01

    Purpose: Radiation therapy (RT) is frequently administered to prevent heterotopic ossification (HO) after total hip arthroplasty (THA). The purpose of this study was to determine if there is an increased risk of HO after RT prophylaxis with shielding of the THA components. Methods and Materials: This is a retrospective analysis of THA patients undergoing RT prophylaxis of HO at Brigham and Women's Hospital between June 1994 and February 2004. Univariate and multivariate logistic regressions were used to assess the relationships of all variables to failure of RT prophylaxis. Results: A total of 137 patients were identified and 84 were eligiblemore » for analysis (61%). The median RT dose was 750 cGy in one fraction, and the median follow-up was 24 months. Eight of 40 unshielded patients (20%) developed any progression of HO compared with 21 of 44 shielded patients (48%) (p = 0.009). Brooker Grade III-IV HO developed in 5% of unshielded and 18% of shielded patients (p 0.08). Multivariate analysis revealed shielding (p = 0.02) and THA for prosthesis infection (p = 0.03) to be significant predictors of RT failure, with a trend toward an increasing risk of HO progression with age (p = 0.07). There was no significant difference in the prosthesis failure rates between shielded and unshielded patients. Conclusions: A significantly increased risk of failure of RT prophylaxis for HO was noted in those receiving shielding of the hip prosthesis. Shielding did not appear to reduce the risk of prosthesis failure.« less

  16. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  17. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  18. Galactic and Solar Cosmic Ray Shielding in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tai, H.; Simonsen, Lisa C.; Shinn, Judy L.; Thibeault, Shelia; Kim, M. Y.

    1997-01-01

    An analysis of the radiation hazards in support of NASA deep space exploration activities is presented. The emphasis is on materials required for radiation protection shielding. Aluminum has been found to be a poor shield material when dose equivalent is used with exposure limits for low Earth orbit (LEO) as a guide for shield requirements. Because the radiation issues are cost related-the parasitic shield mass has high launch costs, the use of aluminum as a basic construction material is clearly not cost-effective and alternate materials need to be developed. In this context, polyethylene is examined as a potentially useful material and demonstrates important advantages as an alternative to aluminum construction. Although polyethylene is useful as a shield material, it may not meet other design criteria (strength, stability, thermal); other polymer materials must be examined.

  19. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  20. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  1. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  2. A high-performance magnetic shield with large length-to-diameter ratio.

    PubMed

    Dickerson, Susannah; Hogan, Jason M; Johnson, David M S; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A

    2012-06-01

    We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.

  3. Experimental study of some shielding parameters for composite shields

    NASA Astrophysics Data System (ADS)

    Mkhaiber, Ahmed F.; Dheyaa, Abdulraheem

    2018-05-01

    In this study radiation protection shields have been prepared consist of composite materials have epoxy as a basis material and different reinforcing materials C Ni PbO and Bi with various reinforcing ratios 10 20 30 40 50 % and dimensions 1 × 10 × 10 cm. For examination the suitability of using this shields to protect from gamma ray some shielding parameters were calculated like: Linear attenuation coefficient μ, effective atomic number Zeffe, heaviness and half value thickness X1/2 for energy rang 1218 – 1480 KeV. These parameters have been measured by using sodium iodide system NaITI with deferent radiation sources 152Eu 60Co and 137Cs. The results show that these parameters are effected by the reinforcing ratio and gamma ray energy, it is found that the linear attenuation coefficient and atomic effective number increases with reinforcing ratio increases and decreased with energy increasing especially with high concentrations 40 50 % and at low energies Eγ < 0662 MeV with certain energy while the values of X1/2 decrease with reinforcing ratio increases. Heaviness was calculated too for all shields, with respect to lead from its values we found that this shields lighter than lead, which make it preferable to traditional material such as lead and concrete.

  4. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  5. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  6. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  7. Magnetic shielding structure optimization design for wireless power transmission coil

    NASA Astrophysics Data System (ADS)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  8. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  10. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, S

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have alsomore » provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and

  11. A simple method to eliminate shielding currents for magnetization perpendicular to superconducting tapes wound into coils

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Funaki, Kazuo

    2011-12-01

    Application of an external AC magnetic field parallel to superconducting tapes helps in eliminating the magnetization caused by the shielding current induced in the flat faces of the tapes. This method helps in realizing a magnet system with high-temperature superconducting tapes for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) applications. The effectiveness of the proposed method is validated by numerical calculations carried out using the finite-element method and experiments performed using a commercially available superconducting tape. The field uniformity for a single-layer solenoid coil after the application of an AC field is also estimated by a theoretical consideration.

  12. The value of thyroid shielding in intraoral radiography

    PubMed Central

    Hazenoot, Bart; Sanderink, Gerard C H; Berkhout, W Erwin R

    2016-01-01

    Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p < 0.01. Results: The ANOVA test revealed that the differences between mean doses of all protocols and geometries were statistically significant, p < 0.001. For the Isup, thyroid dose levels were comparable with both collimators at a level indicating primary beam exposure. Thyroid shield reduced this dose with circa 75%. For the Csup position, round collimation also revealed primary beam exposure, and thyroid shield yield was 70%. In Csup with rectangular collimation, the thyroid dose was reduced with a factor 4 compared with round collimation and thyroid shield yielded an additional 42% dose reduction. The thyroid dose levels for the Csup, Psup, Msup and BW exposures were lower with rectangular collimation without thyroid shield than with round collimation with thyroid shield. With rectangular collimation, the thyroid shield in Psup, Msup and BW reduced the dose 10% or less, where dose levels were already low, implying no clinical significance. Conclusions: For the exposures in the upper anterior region, thyroid shield results in an important dose reduction for the thyroid. For

  13. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  14. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  15. RadShield: semiautomated shielding design using a floor plan driven graphical user interface

    PubMed Central

    Wu, Dee H.; Yang, Kai; Rutel, Isaac B.

    2016-01-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java‐based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air‐kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry‐based approach and a manual approach. A series of geometry‐based equations were derived giving the maximum air‐kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)‐certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air‐kerma rate was compared against the geometry‐based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry‐based approach and RadShield's approach in finding the magnitude and location of the maximum air‐kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air‐kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X‐ray exam distribution by a

  16. Thermocouple shield

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  17. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.

  18. An analytical and experimental evaluation of shadow shields and their support members

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Boyle, R. J.

    1972-01-01

    Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.

  19. Pelvic infection: a comparison of the Dalkon shield and three other intrauterine devices.

    PubMed Central

    Snowden, R; Pearson, B

    1984-01-01

    A detailed analysis was undertaken of reports of possible pelvic infection in relation to the use of four commonly fitted intrauterine contraceptive devices during 1971 to 1978 in the United Kingdom. The four devices were the Dalkon shield, Lippes loops 3C and 2D, and the Gravigard (copper 7), and data used were those collected systematically through the UK intrauterine device research network. Prospective reports that the Dalkon shield was uniquely related to high levels of infection when compared with other intrauterine devices were not substantiated in this prospective study among 13 349 users. Though some factors such as social class and previous experience of abortion appeared to influence the rate of infection, the type of intrauterine device being worn did not appear to be a significant factor. Various methods of analysis were used including life table, regression, and discriminant analysis, using information relating to the type of intrauterine device worn, the characteristics of the user, the fitting centre, and the pattern of diagnosis and treatment of reported or suspected pelvic infection. The results of this study suggest that fears that the Dalkon shield may be associated with a higher incidence of pelvic infection than other intrauterine devices may have been unjustified. PMID:6426647

  20. Shielding and activation calculations around the reactor core for the MYRRHA ADS design

    NASA Astrophysics Data System (ADS)

    Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.

    2017-09-01

    In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.

  1. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability

  2. Verification of Small Hole Theory for Application to Wire Chaffing Resulting in Shield Faults

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2011-01-01

    Our work is focused upon developing methods for wire chafe fault detection through the use of reflectometry to assess shield integrity. When shielded electrical aircraft wiring first begins to chafe typically the resulting evidence is small hole(s) in the shielding. We are focused upon developing algorithms and the signal processing necessary to first detect these small holes prior to incurring damage to the inner conductors. Our approach has been to develop a first principles physics model combined with probabilistic inference, and to verify this model with laboratory experiments as well as through simulation. Previously we have presented the electromagnetic small-hole theory and how it might be applied to coaxial cable. In this presentation, we present our efforts to verify this theoretical approach with high-fidelity electromagnetic simulations (COMSOL). Laboratory observations are used to parameterize the computationally efficient theoretical model with probabilistic inference resulting in quantification of hole size and location. Our efforts in characterizing faults in coaxial cable are subsequently leading to fault detection in shielded twisted pair as well as analysis of intermittent faulty connectors using similar techniques.

  3. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  4. Electroless shielding of plastic electronic enclosures

    NASA Astrophysics Data System (ADS)

    Thompson, D.

    1985-12-01

    The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.

  5. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Technicians move the Orion heat shield for Exploration Mission-1 toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Protective pads are being attached to the heat shield surface. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test also serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  6. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  7. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  8. [An individual facial shield for a sportsman with an orofacial injury].

    PubMed

    de Baat, C; Peters, R; van Iperen-Keiman, C M; de Vleeschouwer, M

    2005-05-01

    Facial shields are used when practising contact sports, high speed sports, sports using hard balls, sticks or bats, sports using protective shields or covers, and sports using hard boardings around the sports ground. Examples of facial shields are commercially available, per branch of sport standardised helmets. Fabricating individual protective shields is primarily restricted to mouth guards. In individual cases a more extensive facial shield is demanded, for instance in case of a surgically stabilised facial bone fracture. In order to be able to fabricate an extensive individual facial shield, an accurate to the nearest model of the anterior part of the head is required. An accurate model can be provided by making an impression of the face, which is poured in dental stone. Another method is producing a stereolithographic model using computertomography or magnetic resonance imaging. On the accurate model the facial shield can be designed and fabricated from a strictly safe material, such as polyvinylchloride or polycarbonate.

  9. Shielding requirements for mammography.

    PubMed

    Simpkin, D J

    1987-09-01

    Shielding requirements for mammography installations have been investigated. To apply the methodologies of NCRP Report No. 49, the scatter-to-incident ratio of a typical mammography beam was measured, and the broad beam transmission was calculated for several representative beam spectra. These calculations were found to compare favorably with published low kVp tungsten-targeted x-ray transmission through a variety of shielding materials. Radiation shielding tables were developed from the calculated transmissions through Pb, concrete, gypsum, steel, plate glass, and water, using a technique which eliminates the "add one HVL" rule. It is concluded that Mo-targeted x-ray beams operated at 35 kVp require half the shielding of W-targeted beams operated at 50 kVp, and that adequate, cost-effective shielding calculations will consider alternatives to Pb.

  10. Structural evolution of Halaban Area, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Amri, Yousef; Kassem1, Osama M. K.

    2017-04-01

    Neoproterozoic basement complex comprises a metamorphic/igneous suite (Abt schist and sheared granitoids) with syn-accretionary transpressive structures, unconformably overlain by a post-amalgamation volcanosedimentary sequence. This study aims to attempt to exposed post-accretionary thrusting and thrust-related structures at Halaban area, Eastern Arabian Shield. The Rf/ϕ and Fry methods are utilized on quartz and feldspar porphyroclasts, as well as on mafic crystals, such as hornblende and biotite, in eighteen samples. The X/Z axial ratios range from 1.12 to 4.99 for Rf/ϕ method and from 1.65 to 4.00 for Fry method. The direction of finite strain for the long axes displays clustering along the WNW trend (occasionally N) with slight plunging. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It indicates that the contacts between various lithological units in the Halaban area were formed under brittle to semi-ductile deformation conditions. The penetrative subhorizontal foliation was concurrent with thrusting and shows nearly the same attitudes of tectonic contacts with the overlying nappes. Keywords: Finite strain analysis, volcanosedimentary sequence, Halaban area, Eastern Arabian Shield, Saudi Arabia.

  11. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-12-01

    The NMR nuclear shielding tensors for the series LaX(3), with X = F, Cl, Br and I, have been computed using two-component relativistic density functional theory based on the zeroth-order regular approximation (ZORA). A detailed analysis of the inverse halogen dependence (IHD) of the La shielding was performed via decomposition of the shielding tensor elements into contributions from localized and delocalized molecular orbitals. Both spin-orbit and paramagnetic shielding terms are important, with the paramagnetic terms being dominant. Major contributions to the IHD can be attributed to the La-X bonding orbitals, as well as to trends associated with the La core and halogen lone pair orbitals, the latter being related to X-La π donation. An 'orbital rotation' model for the in-plane π acceptor f orbital of La helps to rationalize the significant magnitude of deshielding associated with the in-plane π donation. The IHD goes along with a large increase in the shielding tensor anisotropy as X becomes heavier, which can be associated with trends for the covalency of the La-X bonds, with a particularly effective transfer of spin-orbit coupling induced spin density from iodine to La in LaI(3). Copyright © 2010 John Wiley & Sons, Ltd.

  12. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  13. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-26

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  14. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-28

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  15. Transfer impedances of balanced shielded cables

    NASA Astrophysics Data System (ADS)

    Hardiguian, M.

    1982-07-01

    The transfer impedance concept is extended to balanced shielded cables, e.g., shielded pairs and twinax in which the actual voltage developed at the load, between the two wires of a pair is emphasized. This parameter can be computed by a separate knowledge of the shield, and the shield-to-pair coupling (i.e., the pair unbalance ratio). Thus, a unique parameter called shield coupling evolves which relates directly the shield current to the differential output voltage. Conditions of cable pair and harness shielding and the impact of grounding at one or both ends are discussed.

  16. PBF Cubicle 13. Shield wall details illustrate shielding technique of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cubicle 13. Shield wall details illustrate shielding technique of stepped penetrations and brick layout scheme for valve stem extension sleeve. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195280 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. Radiation Shielding Properties of Some Marbles in Turkey

    NASA Astrophysics Data System (ADS)

    Günoǧlu, K.; Akkurt, I.

    2011-12-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazordous effect of radition into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined. In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  18. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Lee, J; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. Themore » gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.« less

  19. New shielding material development for compact accelerator-driven neutron source

    NASA Astrophysics Data System (ADS)

    Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei

    2017-04-01

    The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  20. Study on textile comfort properties of polypropylene blended stainless steel woven fabric for the application of electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.

    2017-10-01

    In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.

  1. Flow distribution analysis on the cooling tube network of ITER thermal shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube networkmore » for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.« less

  2. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  3. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2007-01-01

    A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).

  4. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    NASA Astrophysics Data System (ADS)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  5. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  6. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  7. Vorticity Analysis and Deformation History of the Mizil Gneiss Dome, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Al-Saleh, Ahmad M.

    2018-05-01

    The Mizil gneiss dome is an elliptical structure consisting of an amphibolite-facies volcanosedimentary mantle and a gneissic granite core. This dome is located at the northern tip of the Ar Rayn terrane only a few kilometers from the eastern edge of the Arabian shield. Previous investigations have shown the intrusive core to be an adakitic diapir with a U-Pb zircon age of 689 ± 10 Ma; this age is 50-80 Ma years older than other granites in this terrane. Vorticity analysis was carried out on samples from the intrusive core and volcanosedimentary cover; the Passchier and Rigid Grain Net (RGN) methods were used to obtain the kinematic vorticity number ( W k) and the mean kinematic vorticity number ( W m). The W k and W m values show a marked increase towards the south; such a pattern indicates a N-S movement of the core pluton thus creating an inclined diapir tilted to the south. Analogue experiments simulating the flow of magma diapirs rising form a subducted slab through the mantle wedge have shown that supra-subduction zone oblique diapirs are produced close to the trench and are elongated normal to the convergence direction as is the case in the Mizil pluton. This effect was found to increase with increasing slab dip due to enhanced drag along the upper surface of the subducted lithospheric plate. Spontaneous subduction which is often associated with rollback resulting in back-arc extension and steep dipping slabs is thought to have occurred in the Mozambique Ocean by 700 Ma. The Mizil pluton is coeval with the back-arc Urd ophiolite from the adjacent Dawadimi terrane, and could therefore have been produced by incipient subduction of a relatively cold slab as observed in many Pacific margin adakites. The tectonic evolution of the eastern shield, as deduced from the Mizil dome and other data from Ar Rayn and neighboring terranes, begins with the subduction of >100 My-old lithosphere beneath the Afif terrane resulting in back-arc spreading and the splitting of the

  8. Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shouju; Kang Chengang; Sun, Wei

    2010-05-21

    Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.

  9. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  10. Nuclear shieldings with the SSB-D functional.

    PubMed

    Armangué, Lluís; Solà, Miquel; Swart, Marcel

    2011-02-24

    The recently reported SSB-D functional [J. Chem. Phys. 2009, 131, 094103] is used to check the performance for obtaining nuclear magnetic resonance (NMR) shielding constants. Four different databases were studied, which contain a diversity of molecules and nuclear shielding constants. The SSB-D functional is compared with its "parent" functionals (PBE, OPBE), the KT2 functional that was designed specially for NMR applications and the coupled cluster CCSD(T) method. The best performance for the experimentally most-used elements ((1)H, (13)C) is obtained for the SSB-D and KT2 functionals.

  11. Shield system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, D.R.; Chandler, J.R.; Church, J.P.

    1979-01-01

    The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.

  12. Critical analysis of active methods of ozone layer recovery

    NASA Astrophysics Data System (ADS)

    Bekker, S. Z.; Doronin, A. P.; Kozlov, S. I.

    2017-09-01

    A critical analysis is given for various methods for recovery of the ozone layer of the Earth: the emission of alkane gases, the destruction of freons by laser IR radiation and with microwave discharge, exposure to laser UV radiation and electric discharge in the atmosphere, the use of solar radiation, laser infrared radiation, and gamma rays, and the creation of an artificial formation at high altitudes that shields the solar radiation dissociating ozone. The optimal methods are discussed in terms of their effectiveness, economic costs, and environmental consequences. These include the use of gamma rays sources, electric discharge in the atmosphere, and microwave breakdown.

  13. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics

  14. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  15. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  16. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  17. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  18. Securing the data economy: translating privacy and enacting security in the development of DataSHIELD.

    PubMed

    Murtagh, M J; Demir, I; Jenkings, K N; Wallace, S E; Murtagh, B; Boniol, M; Bota, M; Laflamme, P; Boffetta, P; Ferretti, V; Burton, P R

    2012-01-01

    Contemporary bioscience is seeing the emergence of a new data economy: with data as its fundamental unit of exchange. While sharing data within this new 'economy' provides many potential advantages, the sharing of individual data raises important social and ethical concerns. We examine ongoing development of one technology, DataSHIELD, which appears to elide privacy concerns about sharing data by enabling shared analysis while not actually sharing any individual-level data. We combine presentation of the development of DataSHIELD with presentation of an ethnographic study of a workshop to test the technology. DataSHIELD produced an application of the norm of privacy that was practical, flexible and operationalizable in researchers' everyday activities, and one which fulfilled the requirements of ethics committees. We demonstrated that an analysis run via DataSHIELD could precisely replicate results produced by a standard analysis where all data are physically pooled and analyzed together. In developing DataSHIELD, the ethical concept of privacy was transformed into an issue of security. Development of DataSHIELD was based on social practices as well as scientific and ethical motivations. Therefore, the 'success' of DataSHIELD would, likewise, be dependent on more than just the mathematics and the security of the technology. Copyright © 2012 S. Karger AG, Basel.

  19. Application of the first collision source method to CSNS target station shielding calculation

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Zhang, Bin; Chen, Meng-Teng; Zhang, Liang; Cao, Bo; Chen, Yi-Xue; Yin, Wen; Liang, Tian-Jiao

    2016-04-01

    Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source (CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results. Supported by Major National S&T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2011ZX06004-007), National Natural Science Foundation of China (11505059, 11575061), and the Fundamental Research Funds for the Central Universities (13QN34).

  20. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  1. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  2. Design of a plastic minicolpostat applicator with shields.

    PubMed

    Weeks, K J; Montana, G S; Bentel, G C

    1991-09-01

    A plastic intracavitary applicator system for the treatment of cancer of the uterine cervix is described. This applicator has a minicolpostat and a mechanism for affixing the tandem to the colpostats. Traditional afterloading refers only to the radioactive source. Both the source and the ovoid shield are afterloaded together in this applicator in contrast to traditional afterloading systems which afterload the source alone. A potential advantage of our applicator system is that it allows high quality CT localization because the sources and shields can be removed and the applicator is made of plastic. The advantages and disadvantages of this variation to the Fletcher system as well as other aspects of applicator design are discussed. An experimentally verified dose calculation method for shielded sources is applied to the design problems associated with this applicator. The dose distribution calculated for a source-shield configuration of the plastic applicator is compared to that obtained with a commercial Fletcher-Suit-Delclos (FSD) applicator. Significant shielding improvements can be achieved for the smallest diameter ovoid, that is, in the minicolpostat. The plastic minicolpostat dose distributions are similar to those produced by the conventional larger diameter colpostats. In particular, the colpostat shielding for rectum and bladder, which is reduced in the metal applicator's minicolpostat configuration, is maintained for the plastic minicolpostat. Further, it is shown that, if desired, relative to the FSD minicolpostat, the mucosa dose can be reduced by a suitable change of the minicolpostat source position.

  3. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2015-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  4. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses

  5. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.

  6. Protecting personal data in epidemiological research: DataSHIELD and UK law.

    PubMed

    Wallace, Susan E; Gaye, Amadou; Shoush, Osama; Burton, Paul R

    2014-01-01

    Data from individual collections, such as biobanks and cohort studies, are now being shared in order to create combined datasets which can be queried to ask complex scientific questions. But this sharing must be done with due regard for data protection principles. DataSHIELD is a new technology that queries nonaggregated, individual-level data in situ but returns query data in an anonymous format. This raises questions of the ability of DataSHIELD to adequately protect participant confidentiality. An ethico-legal analysis was conducted that examined each step of the DataSHIELD process from the perspective of UK case law, regulations, and guidance. DataSHIELD reaches agreed UK standards of protection for the sharing of biomedical data. All direct processing of personal data is conducted within the protected environment of the contributing study; participating studies have scientific, ethics, and data access approvals in place prior to the analysis; studies are clear that their consents conform with this use of data, and participants are informed that anonymisation for further disclosure will take place. DataSHIELD can provide a flexible means of interrogating data while protecting the participants' confidentiality in accordance with applicable legislation and guidance. © 2014 S. Karger AG, Basel.

  7. Radiation shielding for future space exploration missions

    NASA Astrophysics Data System (ADS)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  8. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  9. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  12. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  13. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  14. Shield Optimization in Simple Geometry for the Gateway Concept

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Simonsen, L. C.; Nealy, J. E.; Troutman, P. A.; Wilson, J. W.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  15. Simulation Study to Improve Focalization of a Figure Eight Coil by Using a Conductive Shield Plate and a Ferromagnetic Block.

    PubMed

    Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao

    2015-07-01

    A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method.

  16. Preliminary Assessment of New Orbital Debris Shielding for Unmanned Satellites

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.; Stokes, H.; Walker, R.

    The numerous rocket launches and spacecraft deployments carried out since the dawn of the space age have generated a large orbiting population of man-made debris. Without the adoption of mitigation measures, it is likely that this population will continue to increase in the future. The ever-growing collision threat posed to operating spacecraft from these debris objects is therefore fast becoming a driver in the design of new spacecraft missions. DERA, under contract from the European Space Agency (ESA), is developing new techniques to provide mass- and cost-effective solutions to this spacecraft protection problem. Direct shielding methods such as enhancing a spacecraft's thermal blankets with strong materials and adapting the honeycomb panel structure are being investigated, as are indirect shielding methods such as reconfiguration of critical or susceptible units. This paper reports the latest results of the direct shielding research.

  17. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  18. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  19. Pretinning Nickel-Plated Wire Shields

    NASA Technical Reports Server (NTRS)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  20. Solar probe shield developmental testing

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    1991-01-01

    The objectives of the Solar Probe mission and the current status of the Solar Probe thermal shield subsystem development are described. In particular, the discussion includes a brief description of the mission concepts, spacecraft configuration and shield concept, material selection criteria, and the required material testing to provide a database to support the development of the shield system.

  1. Operation Desert Shield

    Science.gov Websites

    Bureau Iraq invades Kuwait, Aug. 2, 1990. Operation Desert Shield begins, Aug. 7, 1990. First U.S. forces Operation Desert Shield-related U.S. death, Aug. 12, 1990. President George Bush authorizes first call-up of Bureau Operation Desert Storm and air war phase begins, 3 a.m., Jan. 17, 1991 (Jan. 16, 7 p.m. Eastern

  2. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014

  3. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  4. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  5. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness.

  6. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  7. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  8. Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2002-01-01

    The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.

  9. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  10. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Lockheed Martin engineers and technicians prepare the Orion heat shield for Exploration Mission-1 for its move to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  11. Flexible Shields for Protecting Spacecraft Against Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Crews, Jeanne Lee

    2004-01-01

    A report presents the concept of Flexshield a class of versatile, lightweight, flexible shields for protecting spacecraft against impacts by small meteors and orbiting debris. The Flexshield concept incorporates elements of, but goes beyond, prior spacecraft-shielding concepts, including those of Whipple shields and, more recently, multi-shock shields and multi-shock blankets. A shield of the Flexshield type includes multiple outer layers (called bumpers in the art) made, variously, of advanced ceramic and/or polymeric fibers spaced apart from each other by a lightweight foam. As in prior such shields, the bumpers serve to shock an impinging hypervelocity particle, causing it to disintegrate vaporize, and spread out over a larger area so that it can be stopped by an innermost layer (back sheet). The flexibility of the fabric layers and compressibility of the foam make it possible to compress and fold the shield for transport, then deploy the shield for use. The shield can be attached to a spacecraft by use of snaps, hook-and-pile patches, or other devices. The shield can also contain multilayer insulation material, so that it provides some thermal protection in addition to mechanical protection.

  12. Lymphatic invasion and the Shields index in predicting melanoma metastases.

    PubMed

    Špirić, Zorica; Erić, Mirela; Eri, Živka

    2017-11-01

    Findings of the prognostic significance of lymphatic invasion are contradictory. To determine an as efficient cutaneous melanoma metastasis predictor as possible, Shields et al. created a new prognostic index. This study aimed to examine whether the lymphatic invasion analysis and the Shields index calculation can be used in predicting lymph node status in patients with cutaneous melanoma. Lymphatic invasion of 100 melanoma specimens was detected by dual immunohistochemistry staining for the lymphatic endothelial marker D2-40 and melanoma cell S-100 protein. The Shields index was calculated as a logarithm by multiplying the melanoma thickness, square of peritumoural lymphatic vessel density and the number "2" for the present lymphatic invasion. No statistically significant difference was observed between lymph node metastatic and nonmetastatic melanomas regarding the lymphatic invasion. Metastatic melanomas showed a significantly higher Shields index value than nonmetastatic melanomas (p = 0.00). Area under the receiver operator characteristic (ROC) curve (AUC) proved that the Shields index (AUC = 0.86, 95% confidence interval (CI) 0.79-0.93, p = 0.00) was the most accurate predictor of lymph node status, followed by the melanoma thickness (AUC = 0.76, 95% CI 0.67-0.86, p = 0.00) and American Joint Committee on Cancer (AJCC) staging (AUC = 0.75, 95% CI 0.66-0.85, p = 0.00), while lymphatic invasion was not successful in predicting (AUC = 0.56, 95% CI 0.45-0.67, p = 0.31). The Shields index achieved 81.3% sensitivity and 75% specificity (cut-off mean value). Our findings show that D2-40/S-100 immunohistochemical analysis of lymphatic invasion cannot be used for predicting the lymph node status, while the Shields index calculation predicts disease outcome more accurately than the melanoma thickness and AJCC staging. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights

  13. CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator

    PubMed Central

    Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.

    2008-01-01

    PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699

  14. Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.

    PubMed

    Weidlich, G A; Nuesch, C E; Fuery, J J

    1996-01-01

    An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.

  15. Composite Aerogel Multifoil Protective Shielding

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  16. Morphometric comparison of Icelandic lava shield volcanoes versus selected Venusian edifices

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Williams, Richard S., Jr.

    1993-01-01

    Shield volcanoes are common landforms on the silicate planets of the inner Solar System, and a wide variety have recently been documented on Venus by means of Magellan observations. In this report, we emphasize our recently completed morphometric analysis of three representative Icelandic lava shields: the classic Skjaldbreidur edifice, the low-reflief Lambahraun feature, and the monogenetic Sandfellshaed shield, as the basis for comparison with representative venusian edifices (greater than 60 km in diameter). Our detailed morphometric measurements of a representative and well-studied set of Icelandic volcanoes permits us to make comparisons with our measurements of a reasonable subset of shield-like edifices on Venus on the basis of Magellan global radar altimetry. Our study has been restricted to venusian features larger than approximately 60 km in basal diameter, on the basis of the minimum intrinsic spatial resolution (8 km) of the Magellan radar altimetry data. Finally, in order to examine the implications of landform scaling from terrestrial simple and composite shields to larger venusian varieties, we have considered the morphometry of the subaerial component of Mauna Loa, a type-locality for a composite shield edifice on Earth.

  17. Analytic Ballistic Performance Model of Whipple Shields

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2014-01-01

    with a mass and speed equal to or less than the original impactor. center dot Intermediate (shatter) velocity: impact velocities are sufficient to induce projectile fragmentation upon impact with the bumper plate, resulting in a coarse debris cloud with large solid fragments. Increasing velocity within the shatter regime results in increased fragmentation, and eventually melting, of the projectile and bumper fragments, generating a finer and more evenly dispersed debris cloud. Failure of the rear wall is a complicated combination of modes observed at low- and hypervelocity. center dot Hypervelocity: the projectile and holed-out bumper material is completely, or nearly completely, melted and/or vaporized by the initial impact. The resultant debris cloud impacts over a dispersed area of the rear wall, loading it impulsively and inducing failure through rupture or petalling. While each of these regimes are well observed with extensive empirical methods to describe these regions, differences in impactor materials, configurations of shields and questions about the limitations of the attainable impact speeds have left questions that are difficult to answer from completely empirical methods.

  18. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  19. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.

  20. Monte Carlo Shielding Comparative Analysis Applied to TRIGA HEU and LEU Spent Fuel Transport

    NASA Astrophysics Data System (ADS)

    Margeanu, C. A.; Margeanu, S.; Barbos, D.; Iorgulis, C.

    2010-12-01

    The paper is a comparative study of LEU and HEU fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for HEU spent fuel, available from the last stage of spent fuel repatriation fulfilled in the summer of 2008, is also presented. All geometrical and material data for the shipping cask were considered according to NAC-LWT Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface, and in air at 1 m and 2 m, respectively, from the cask, by means of 3D Monte Carlo MORSE-SGC code. Before loading into the shipping cask, TRIGA spent fuel source terms and spent fuel parameters have been obtained by means of ORIGEN-S code. Both codes are included in ORNL's SCALE 5 programs package. The actinides contribution to total fuel radioactivity is very low in HEU spent fuel case, becoming 10 times greater in LEU spent fuel case. Dose rates for both HEU and LEU fuel contents are below regulatory limits, LEU spent fuel photon dose rates being greater than HEU ones. Comparison between HEU spent fuel theoretical and measured dose rates in selected measuring points shows a good agreement, calculated values being greater than the measured ones both to cask wall surface (about 34% relative difference) and in air at 1 m distance from cask surface (about 15% relative difference).

  1. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  2. Supplemental heating of deposition tooling shields

    DOEpatents

    Ohlhausen, James A.; Peebles, Diane E.; Hunter, John A.; Eckelmeyer, Kenneth H.

    2000-01-01

    A method of reducing particle generation from the thin coating deposited on the internal surfaces of a deposition chamber which undergoes temperature variation greater than 100.degree. C. comprising maintaining the temperature variation of the internal surfaces low enough during the process cycle to keep thermal expansion stresses between the coating and the surfaces under 500 MPa. For titanium nitride deposited on stainless steel, this means keeping temperature variations under approximately 70.degree. C. in a chamber that may be heated to over 350.degree. C. during a typical processing operation. Preferably, a supplemental heater is mounted behind the upper shield and controlled by a temperature sensitive element which provides feedback control based on the temperature of the upper shield.

  3. Paddle-based rotating-shield brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimizationmore » with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D

  4. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  5. Optimization Shield Materials Trade Study for Lunar/Gateway Mission

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Anderson, B. M.; Simonsen, L. C.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. It is being proposed to use Moon and the Lagrange points as the hub for deep space missions. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  6. Correlating the EMC analysis and testing methods for space systems in MIL-STD-1541A

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    1990-01-01

    A study was conducted to improve the correlation between the electromagnetic compatibility (EMC) analysis models stated in MIL-STD-1541A and the suggested testing methods used for space systems. The test and analysis methods outlined in MIL-STD-1541A are described, and a comparative assessment of testing and analysis techniques as they relate to several EMC areas is presented. Suggestions on present analysis and test methods are introduced to harmonize and bring the analysis and testing tools in MIL-STD-1541A into closer agreement. It is suggested that test procedures in MIL-STD-1541A must be improved by providing alternatives to the present use of shielded enclosures as the primary site for such tests. In addition, the alternate use of anechoic chambers and open field test sites must be considered.

  7. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  8. Shielding Strategies for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)

    1997-01-01

    A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.

  9. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  10. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  11. Determination of shielding requirements for mammography.

    PubMed

    Okunade, Akintunde Akangbe; Ademoroti, Olalekan Albert

    2004-05-01

    Shielding requirements for mammography when considerations are to be given to attenuation by compression paddle, breast tissue, grid and image receptor (intervening materials) has been investigated. By matching of the attenuation and hardening properties, comparisons are made between shielding afforded by breast tissue materials (water, Lucite and 50%-50% adipose-glandular tissue) and some materials considered for shielding diagnostic x-ray beams, namely lead, steel and gypsum wallboard. Results show that significant differences exist between the thickness required to produce equal attenuation and that required to produce equal hardening of a given incident beam. While attenuation equivalent thickness produces equal exposure, it does not produce equal hardening. For shielding purposes, equivalence in exposure reduction without equivalence in penetrating power of an emerging beam does not amount to equivalence in shielding affordable by two different materials. Presented are models and results of sample calculations of additional shielding requirements apart from that provided by intervening materials. The shielding requirements for the integrated beam emerging from intervening materials are different from those for the integrated beam emerging from materials (lead/steel/gypsum wallboard) with attenuation equivalent thicknesses of these intervening materials.

  12. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom

    PubMed Central

    Davies, J; Horner, K; Theodorakou, C

    2015-01-01

    Objectives: The purpose of the study is to evaluate the effectiveness of thyroid shielding in dental CBCT examinations using a paediatric anthropomorphic phantom. Methods: An ATOM® 706-C anthropomorphic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA) representing a 10-year-old child was loaded with six thermoluminescent dosemeters positioned at the level of the thyroid gland. Absorbed doses to the thyroid were measured for five commercially available thyroid shields using a large field of view (FOV). Results: A statistically significant thyroid gland dose reduction was found using thyroid shielding for paediatric CBCT examinations for a large FOV. In addition, a statistically significant difference in thyroid gland doses was found depending on the position of the thyroid gland. There was little difference in the effectiveness of thyroid shielding when using a lead vs a lead-equivalent thyroid shield. Similar dose reduction was found using 0.25- and 0.50-mm lead-equivalent thyroid shields. Conclusions: Thyroid shields are to be recommended when undertaking large FOV CBCT examinations on young patients. PMID:25411710

  13. Efficacy of face shields against cough aerosol droplets from a cough simulator.

    PubMed

    Lindsley, William G; Noti, John D; Blachere, Francoise M; Szalajda, Jonathan V; Beezhold, Donald H

    2014-01-01

    available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables of the experiments performed, more detailed information about the aerosol measurement methods, photographs of the experimental setup, and summaries of the experimental data from the aerosol measurement devices, the qPCR analysis, and the VPA.].

  14. Heat Shield's Main Piece

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity caught this view of the main piece of the spacecraft's heat shield during the rover's 328th martian day, or sol (Dec. 25, 2004). A separation spring can be seen on the ground to the lower left side of the heat shield.

  15. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  16. An almost completely shielded microelectrode.

    PubMed

    Sachs, F; McGarrigle, R

    1980-12-01

    We present a new method of shielding microelectrodes to within 20 micron of the tip. Stray capacity is reduced to less than 50 fF. Ordinary microelectrodes are covered with silver in a vacuum evaporator. Silver is removed from the tip by contact with a ball of mercury. The microelectrode is then insulated with a glass barrel which is sealed by dipping the tip in diluted polystyrene in amyl acetate, or by dipping the electrode in melted wax. The latter method is quick, easy and reliable.

  17. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  18. Multihelix rotating shield brachytherapy for cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as amore » feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for

  19. Multihelix rotating shield brachytherapy for cervical cancer

    PubMed Central

    Dadkhah, Hossein; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.

    2015-01-01

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  20. Design of magnets inside cylindrical superconducting shields

    NASA Technical Reports Server (NTRS)

    Rigby, K. W.

    1988-01-01

    The design of magnets inside closed, cylindrical, superconducting shields is discussed. The Green function is given for the magnetic vector potential for cylindrically symmetric currents inside such a shield. The magnetic field everywhere inside the shield can be obtained from this function, which includes the effects of the induced shield currents exactly. The field is given for a thin solenoid as an example and the convergence of the series solution for this case is discussed. The shield can significantly reduce the strength and improve the homogeneity of a magnet. The improvement in homogeneity is of particular importance in the design of correction coils. These effects, and the maximum field on the shield, are examined for a typical solenoid. The results given are also useful, although not exact, for long shields with one or two open ends.

  1. Active magnetic compensation composed of shielding panels.

    PubMed

    Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M

    2004-11-30

    Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.

  2. Lunar Surface Reactor Shielding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less

  3. Spacecraft Solar Particle Event (SPE) Shielding: Shielding Effectiveness as a Function of SPE model as Determined with the FLUKA Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina

    2010-01-01

    Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event

  4. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  5. NEUTRON REACTOR HAVING A Xe$sup 135$ SHIELD

    DOEpatents

    Stanton, H.E.

    1957-10-29

    Shielding for reactors of the type in which the fuel is a chain reacting liquid composition comprised essentially of a slurry of fissionable and fertile material suspended in a liquid moderator is discussed. The neutron reflector comprises a tank containing heavy water surrounding the reactor, a shield tank surrounding the reflector, a gamma ray shield surrounding said shield tank, and a means for conveying gaseous fission products, particularly Xe/sup 135/, from the reactor chamber to the shield tank, thereby serving as a neutron shield by capturing the thermalized neutrons that leak outwardly from the shield tank.

  6. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less

  7. Integral Face Shield Concept for Firefighter's Helmet

    NASA Technical Reports Server (NTRS)

    Abeles, F.; Hansberry, E.; Himel, V.

    1982-01-01

    Stowable face shield could be made integral part of helmet worn by firefighters. Shield, made from same tough clear plastic as removable face shields presently used, would be pivoted at temples to slide up inside helmet when not needed. Stowable face shield, being stored in helmet, is always available, ready for use, and is protected when not being used.

  8. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  9. Dosimetric evaluation of internal shielding in a high dose rate skin applicator

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Carmona, Vicente; Pujades, M Carmen; Ballester, Facundo

    2011-01-01

    Purpose The Valencia HDR applicators are accessories of the microSelectron HDR afterloading system (Nucletron) shaped as truncated cones. The base of the cone is either 2 or 3 cm diameter. They are intended to treat skin lesions, being the typical prescription depth 3 mm. In patients with eyelid lesions, an internal shielding is very useful to reduce the dose to the ocular globe. The purpose of this work was to evaluate the dose enhancement from potential backscatter and electron contamination due to the shielding. Material and methods Two methods were used: a) Monte Carlo simulation, performed with the GEANT4 code, 2 cm Valencia applicator was placed on the surface of a water phantom in which 2 mm lead slab was located at 3 mm depth; b) radiochromic EBT films, used to verify the Monte Carlo results, positioning the films at 1.5, 3, 5 and 7 mm depth, inside the phantom. Two irradiations, with and without the lead shielding slab, were carried out. Results The Monte Carlo results showed that due to the backscatter component from the lead, the dose level raised to about 200% with a depth range of 0.5 mm. Under the lead the dose level was enhanced to about 130% with a depth range of 1 mm. Two millimeters of lead reduce the dose under the slab with about 60%. These results agree with film measurements within uncertainties. Conclusions In conclusion, the use of 2 mm internal lead shielding in eyelid skin treatments with the Valencia applicators were evaluated using MC methods and EBT film dosimetry. The minimum bolus thickness that was needed above and below the shielding was 0.5 mm and 1 mm respectively, and the shielding reduced the absorbed dose delivered to the ocular globe by about 60%. PMID:27877198

  10. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  11. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  12. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  13. Profile changes after conventional and chin shield genioplasty

    PubMed Central

    Singh, Stuti; Mehrotra, Divya; Mohammad, S.

    2014-01-01

    Introduction The aim of this study was to compare the profile changes after conventional and chin shield genioplasty. Material and method 20 patients with retruded chin were randomly allocated to two different groups. The experimental group had chin shield osteotomy with interposition of hydroxyapatite collagen graft soaked in platelet rich plasma, while the controls had a conventional genioplasty. The outcome variables evaluated were lip seal, chin thickness, mandibular base length, SNB, labiomental angle, anterior lower facial height, transverse chin shift, and complications. Results There was an increase in chin thickness among all, but a significant increase in anterior lower facial height was seen in the experimental group only. There was no statistically significant difference in satisfaction score in both groups. Conclusion Chin shield genioplasty provides horizontal as well as vertical lengthening of chin without deepening of the mentolabial fold. Hydroxyapatite collagen bone graft and platelet rich plasma promote healing, induce bone formation and reduce bone resorption. PMID:25737921

  14. Heat flow from the West African Shield

    NASA Astrophysics Data System (ADS)

    Brigaud, Frédéric; Lucazeau, Francis; Ly, Saidou; Sauvage, Jean François

    1985-09-01

    The heat flow over Precambrian shields is generally lower than over other continental provinces. Previous observations at 9 sites of the West African shield have shown that heat flow ranges from 20 mW m -2 in Niger to 38-42 mW m -2 in Liberia, Ghana and Nigeria. Since some of these values are lower than expected for Precambrian shields, it is important to find out whether or not they are representative of the entire shield before trying to derive its thermal structure. In this paper, we present new heat flow determinations from seven sites of the West African shield. These indicate that the surface heat flow is comparable with that of other Precambrian shields in the world.

  15. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  16. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  17. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  18. Crustal properties of the northern Scandinavian mountains and Fennoscandian shield from analysis of teleseismic Receiver Functions

    NASA Astrophysics Data System (ADS)

    Mansour, Walid Ben; England, Richard W.; Fishwick, Stewart; Moorkamp, Max

    2018-04-01

    The presence of high mountains along passive margins is not unusual, as shown by their presence in several regions (Scandinavia, Greenland, East US, SW Africa, Brazil, West India and SE Australia). However, the origin of this topography is not well understood. The mountain range between the Scandinavian passive margin and the Fennoscandian shield is a good example. A simple Airy isostatic model would predict a compensating root beneath the mountains but existing seismic measurements of variations in crustal thickness do not provide evidence of a root of sufficient size to produce the necessary compensation. In order to better constrain the physical properties of the crust in northern Scandinavia two broadband seismic networks were deployed between 2007 and 2009 and between 2013 and 2014. A new map of crustal thickness has been produced from P-receiver function analysis of teleseismic data recorded at 31 seismic stations. The map shows an increase in crustal thickness from the Atlantic coast (38.7 +/- 1.8 km) to the Gulf of Bothnia (43.5 +/- 2.4 km). This gradient in thickness demonstrates that the Moho topography does not mirror the variation in surface topography in this region. Thus, classical Airy isostatic models cannot explain how the surface topography is supported. New maps showing variation in Poisson's ratio and Moho sharpness together with forward and inverse modelling provide new information about the contrasting properties of the Fennoscandian shield and crust reworked by the Caledonian orogeny. A sharp Moho transition (R > 1) and low value of Vs (3.5 +/- 0.2 km.s-1) are observed beneath the orogen. The shield is characterised by a gradual transition across the Moho (R < 1) and Vs of (3.8 +/- 0.1 km.s-1) which is more typical of average continental crust. These observations are explained by a Fennoscandian shield underplated with a thick layer of high velocity, high density material. It is proposed that this layer has been removed or reworked beneath

  19. Remote Recession Sensing of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Stackpoole, Margaret; Nawaz, Anuscheh; Gonzales, Gregory Lewis; Ho, Thanh

    2014-01-01

    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RBR

  20. Shielded, Automated Umbilical Mechanism

    NASA Technical Reports Server (NTRS)

    Barron, Daniel R.; Morrill, Brion F.; Jasulaitis, Vytas

    1995-01-01

    Umbilical mechanism automatically connects and disconnects various fluid couplings and/or electrical contacts while shielding mating parts from debris. Reacts mating and demating loads internally, without additional supporting structures. All functions - extension of plug, mating, and movement of debris shields - actuated by single motor. If mechanism jams or fails at any point in sequence, override feature in drive train allows manual operation. Designed for service in outer space, where its shields protect against micrometeoroids, debris, ultraviolet radiation, and atomic oxygen. Used on Earth to connect or disconnect fluid or electrical utilities in harsh environments like those of nuclear powerplants or undersea construction sites, or in presence of radioactive, chemical, or biological hazards, for example.

  1. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  2. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  3. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  4. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  5. Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen

    2014-09-01

    As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.

  6. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  7. Crumpled Heat Shield

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Phoenix Mars Lander's Surface Stereo Imager took this image of the spacecraft's crumpled heat shield on Sept. 16, 2008, the 111th Martian day of the mission.

    The 2-1/2 meter (about 8-1/2 feet) heat shield landed southeast of Phoenix, about halfway between the spacecraft and its backshell/parachute. The backshell/parachute touched ground 300 meters (1,000 ft) to the south of the lander.

    The dark area to the right of the heat shield is the 'bounce mark' it made on impact with the Red Planet. This image is the highest-resolution image that will likely be taken by the lander, and is part of the 1,500-image 'Happily Ever After' panorama.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Stagnation-Point Shielding by Melting and Vaporization

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    An approximate theoretical analysis was made of the shielding mechanism whereby the rate of heat transfer to the forward stagnation point of blunt bodies is reduced by melting and evaporation. General qualitative results are given and a numerical example, the melting and evaporation of ice, is presented and discussed in detail.

  9. CSI-EPT in Presence of RF-Shield for MR-Coils.

    PubMed

    Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano

    2017-07-01

    Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.

  10. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  11. EMC Test Report Electrodynamic Dust Shield

    NASA Technical Reports Server (NTRS)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  12. Curiosity Heat Shield in Detail

    NASA Image and Video Library

    2012-08-08

    This color full-resolution image showing the heat shield of NASA Curiosity rover was obtained during descent to the surface of Mars. This image shows the inside surface of the heat shield, with its protective multi-layered insulation.

  13. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  14. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.

    PubMed

    de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M

    2017-02-14

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  15. Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.

    NASA Astrophysics Data System (ADS)

    Wong, Raymond Lee Man

    This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including

  16. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  17. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  18. Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortt, C. P.; Fanning, N. F.; Malone, L.

    2007-09-15

    Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in bothmore » groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for

  19. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  20. Shield Design for Lunar Surface Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory A.

    2006-01-01

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.

  1. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory for wing shielding

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1991-01-01

    A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.

  2. New applications and developments in the neutron shielding

    NASA Astrophysics Data System (ADS)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  3. Transparent thin shield for radio frequency transmit coils.

    PubMed

    Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert

    2015-02-01

    To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.

  4. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  5. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  6. Microscreen radiation shield for thermoelectric generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, T.K.; Novak, R.F.; McBride, J.R.

    1990-08-14

    This patent describes a radiation shield adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield comprises woven wire mesh screen, the spacing between the wires forming the mesh screen being such that the radiation shield reflects thermal radiation while permitting the passage of alkali metal vapor therethrough.

  7. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  8. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  9. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites

    NASA Astrophysics Data System (ADS)

    Bagheri, Kobra; Razavi, Seyed Mohammad; Ahmadi, Seyed Javad; Kosari, Mohammadreza; Abolghasemi, Hossein

    2018-05-01

    Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites was evaluated by 192Ir, 137Cs, and 60Co gamma radiation sources. Linear attenuation coefficient and mass attenuation coefficient of the composites were found to be increased with the increase of PbO content. Shielding efficiency of the prepared composites was compared with some conventional shielding materials regarding their half value layer thickness. UP/nanoclay/PbO composites were found to be suitable materials for the low-energy gamma radiation shielding applications.

  10. Behavior analysis in consumer affairs: encouraging dental professionals to provide consumers with shielding from unnecessary X-ray exposure.

    PubMed

    Greene, B F; Neistat, M D

    1983-01-01

    An unobtrusive observation system was developed to determine the extent to which dental professionals in two communities provided lead shielding to patients during X-ray exams. A lengthy baseline revealed low and irregular provision of shielding among half of these professionals. Subsequently, a program was undertaken by a consumer's group in which these professionals were requested to provide shielding and were given confidential feedback regarding its use during the baseline period. The provision of shielding dramatically increased at all offices and was maintained throughout a follow-up period extending to more than 9 months after the program's implementation. Little or no generalized effect was observed in the occurrence of three collateral behaviors that were also assessed throughout the study.

  11. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  12. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  13. Miniature, shielded electrical connector with strain relief

    NASA Technical Reports Server (NTRS)

    Diep, Chuong H. (Inventor)

    2006-01-01

    An electrical connector assembly includes a wire bundle having at least one wire with a metal shield surrounding at least a portion of the wire. The shield has an end portion and provides electromagnetic interference protection to the wire. A backshell includes a body and a cover secured to the body together defining an internal cavity with the wire at least partially arranged within the cavity. The backshell provides EMI protection for the portion of the wire bundle not covered by the shield. The backshell includes a hole in a wall of either the body or the cover with the end portion of the shield extending through the hole. The clamp is secured about the body and the cover with the end portion of the shield arranged between the clamp and the backshell grounding the shield to the backshell. The clamp forces the backshell into engagement with the wire bundle to provide strain relief for the wire bundle.

  14. Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka

    PubMed Central

    Froschauer, Alexander; Kube, Lisa; Kegler, Alexandra; Rieger, Christiane; Gutzeit, Herwig O.

    2015-01-01

    Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level. PMID:26148066

  15. Performance study of galactic cosmic ray shield materials

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  16. Passive Superconducting Shielding: Experimental Results and Computer Models

    NASA Technical Reports Server (NTRS)

    Warner, B. A.; Kamiya, K.

    2003-01-01

    Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.

  17. Field Penetration in a Rectangular Box Using Numerical Techniques: An Effort to Obtain Statistical Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Yu, Shih-Pin

    2006-01-01

    This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.

  18. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  19. A Proposed Method for Upper Eyelid and Infrabrow Tightening Using a Transcutaneous Temperature Controlled Radiofrequency Device With Opaque Plastic Eye Shields.

    PubMed

    Key, Douglas J; Boudreaux, Lauren

    2016-11-01

    Laxity of the eyelid and periorbital area, a common manifestation of aging, is usually addressed via blepharoplasty and/ or fat transfer. Given the trend toward safer, less invasive treatments preferred by those patients reticent to undergo more invasive procedures, viable alternatives have been sought. Transcutaneous temperature controlled radiofrequency (TTCRF) integrates non- invasive super cial RF treatment with automatic temperature feedback control of energy deposition, as a stimulator of overall collagen remodeling; however, the globe of the eye is particularly sensitive to RF energy. The purpose of the study was to propose a method by which TTCRF and other non-ablative modalities could be used to treat eyelid and infrabrow laxity, with autoclavable opaque black haptic scleral contact lenses protecting the globe of the eye. Subjects (n=40, 36 women and 4 men, age range, 33-72) with mild to moderate laxity of the eyelid and infrabrow were treated with TTCRF using black plastic eye shields (Oculoplastik, Montreal, Quebec, Canada) to protect the globe of the eye from heat and RF energy. With the shields in place subjects were treated with the 10 mm small monopolar emitter of the ThermiSmooth device (Thermi, Irving, Tex.), using small circular looping motions to safely elevate the temperature of target tissue to the therapeutically rel- evant range for approximately 6 minutes; tissue temperature was measured in real time using the device's forward-looking infrared imaging. No major adverse events were recorded. Treatment was safe and tolerable for all subjects. The use of autoclavable opaque black plastic eye shields provides a safe method of treating the upper eye lid and infrabrow using TTCRF. J Drugs Dermatol. 2016;15(11):1302-1305..

  20. PC based temporary shielding administrative procedure (TSAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.E.; Pederson, G.E.; Hamby, P.N.

    1995-03-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison`s six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative proceduremore » and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met.« less

  1. High Tc superconductors as thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    1990-06-01

    The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.

  2. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  3. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior bumper layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  4. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arises mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cubic cm, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  5. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  6. Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2000-01-01

    An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.

  7. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  8. Behavior analysis in consumer affairs: encouraging dental professionals to provide consumers with shielding from unnecessary X-ray exposure.

    PubMed Central

    Greene, B F; Neistat, M D

    1983-01-01

    An unobtrusive observation system was developed to determine the extent to which dental professionals in two communities provided lead shielding to patients during X-ray exams. A lengthy baseline revealed low and irregular provision of shielding among half of these professionals. Subsequently, a program was undertaken by a consumer's group in which these professionals were requested to provide shielding and were given confidential feedback regarding its use during the baseline period. The provision of shielding dramatically increased at all offices and was maintained throughout a follow-up period extending to more than 9 months after the program's implementation. Little or no generalized effect was observed in the occurrence of three collateral behaviors that were also assessed throughout the study. PMID:6833165

  9. Radiation environment and shielding for early manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.; Mccann, Michael E.

    1986-01-01

    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.

  10. 21 CFR 886.4750 - Ophthalmic eye shield.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic eye shield. 886.4750 Section 886.4750...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4750 Ophthalmic eye shield. (a) Identification. An ophthalmic eye shield is a device that consists of a plastic or aluminum eye covering intended to...

  11. 21 CFR 886.4750 - Ophthalmic eye shield.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic eye shield. 886.4750 Section 886.4750...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4750 Ophthalmic eye shield. (a) Identification. An ophthalmic eye shield is a device that consists of a plastic or aluminum eye covering intended to...

  12. Importance of resonance interference effects in multigroup self-shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowski, R.E.; Protsik, R.

    1995-12-31

    The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.

  13. Shielded cables with optimal braided shields

    NASA Astrophysics Data System (ADS)

    Homann, E.

    1991-01-01

    Extensive tests were done in order to determine what factors govern the design of braids with good shielding effectiveness. The results are purely empirical and relate to the geometrical relationships between the braid parameters. The influence of various parameters on the shape of the transfer impedance versus frequency curve were investigated step by step. It was found that the optical coverage had been overestimated in the past. Good shielding effectiveness results not from high optical coverage as such, but from the proper type of coverage, which is a function of the braid angle and the element width. These dependences were measured for the ordinary range of braid angles (20 to 40 degrees). They apply to all plaiting machines and all gages of braid wire. The design rules are largely the same for bright, tinned, silver-plated and even lacquered copper wires. A new type of braid, which has marked advantages over the conventional design, was proposed. With the 'mixed-element' technique, an optimal braid design can be specified on any plaiting machine, for any possible cable diameter, and for any desired angle. This is not possible for the conventional type of braid.

  14. Microscreen radiation shield for thermoelectric generator

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  15. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  16. Magnetic radiation shielding - An idea whose time has returned?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.

  17. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  18. Shielding techniques tackle EMI excesses. V - EMI shielding

    NASA Astrophysics Data System (ADS)

    Grant, P.

    1982-10-01

    The utilization of shielding gaskets in EMI design is presented in terms of seam design, gasket design, groove design, and fastener spacing. The main function of seam design is to minimize the coupling efficiency of a seam, and for effective shielding, seam design should include mating surfaces which are as flat as possible, and a flange width at least five times the maximum anticipated separation between mating surfaces. Seam surface contact with a gasket should be firm, continuous, and uniform. Gasket height, closure pressure, and compression set as a function of the applied pressure parameters are determined using compression/deflection curves. Environmental seal requirements are given and the most common materials used are neoprene, silicone, butadiene-acrylonitrile, and natural rubber. Groove design is also discussed, considering gasket heights and cross-sectional areas. Finally, fastener spacing is considered, by examining deflection as a percentage of gasket height.

  19. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  20. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  1. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    NASA Astrophysics Data System (ADS)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  2. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  3. Study on the bearing capacity of embedded chute on shield tunnel segment

    NASA Astrophysics Data System (ADS)

    Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu

    2018-05-01

    The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.

  4. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  5. Generation of the additional fluorescence radiation in the elastomeric shields used in computer tomography (CT).

    PubMed

    Szajerski, P; Zaborski, M; Bem, H; Baryn, W; Kusiak, E

    Two commercially available (EP, Z) and eight new elastomeric composites (M1-M4, G1-G4, of thickness ≈1 mm) containing mixtures of differing proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesised and examined as protective shields. The intensity of the X-ray fluorescence radiation generated in the typical elastomeric shields for CT, containing Bi and other heavy metal additives influence on the practical shielding properties. A method for assessing the radiation shielding properties of elastomeric composites used in CT examination procedures via X-ray spectrometry has been proposed. To measure the radiation reduction ability of the protective shields, the dose reduction factor (DRF) has been determined. The lead equivalents for the examined composites were within the ranges of 0.046-0.128 and 0.048-0.130 mm for 122.1 and 136.5 keV photons, respectively. The proposed method, unlike to the common approach, includes a dose contribution from the induced X-ray fluorescence radiation of the heavy metal elements in the protective shields. The results clearly indicate that among the examined compositions, the highest values DRF have been achieved with preparations containing Bi+W, Bi+W+Gd and Bi+W+Sb mixtures with gradually decreasing content of heavy metal additives in the following order: Bi, W, Gd and Sb. The respective values of DRF obtained for the investigated composites were 21, 28 and 27 % dose reduction for a 1 mm thick shield and 39 and ~50 % for a 2 mm thick layer (M1-M4).

  6. A preliminary study to metaheuristic approach in multilayer radiation shielding optimization

    NASA Astrophysics Data System (ADS)

    Arif Sazali, Muhammad; Rashid, Nahrul Khair Alang Md; Hamzah, Khaidzir

    2018-01-01

    Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.

  7. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  8. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    NASA Astrophysics Data System (ADS)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  9. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  10. The SRB heat shield: Aeroelastic stability during reentry

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Dowell, E. H.

    1977-01-01

    Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.

  11. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  12. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  13. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  14. Preparing Mars Science Laboratory Heat Shield

    NASA Image and Video Library

    2011-05-13

    Technicians at Lockheed Martin Space Systems, Denver, prepare the heat shield for NASA Mars Science Laboratory. With a diameter of 4.5 meters nearly 15 feet, this heat shield is the largest ever built for a planetary mission.

  15. Oxidative shielding or oxidative stress?

    PubMed

    Naviaux, Robert K

    2012-09-01

    In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed "oxidative shielding" response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health.

  16. ADEPT Heat Shield Testing

    NASA Image and Video Library

    2015-10-16

    NASA is developing the next generation of heat shield to enable astronauts to go to Mars and other deep space destinations. Called the Adaptive Deployable Entry and Placement Technology or ADEPT, the heat shield is mechanically deployable and uses a flexible woven carbon fabric as its skin. Recently, engineers successfully completed a series of tests in the Ames Arc Jet facility. Other tests conducted in wind tunnels at Ames demonstrated that the ADEPT materials and system perform well under planetary re-entry conditions.

  17. Top shield temperatures, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, J.D.

    1964-12-28

    A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less

  18. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Volume 3, phase 3: Full size TPS evaluation

    NASA Technical Reports Server (NTRS)

    Baer, J. W.; Black, W. E.

    1974-01-01

    The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.

  19. Gamma rays shielding parameters for white metal alloys

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  20. Magnet Architectures and Active Radiation Shielding Study - SR2S Workshop

    NASA Technical Reports Server (NTRS)

    Westover, Shane; Meinke, Rainer; Burger, William; Ilin, Andrew; Nerolich, Shaun; Washburn, Scott

    2014-01-01

    Analyze new coil configurations with maturing superconductor technology -Develop vehicle-level concept solutions and identify engineering challenges and risks -Shielding performance analysis Recent advances in superconducting magnet technology and manufacturing have opened the door for re-evaluating active shielding solutions as an alternative to mass prohibitive passive shielding.Publications on static magnetic field environments and its bio-effects were reviewed. Short-term exposure information is available suggesting long term exposure may be okay. Further research likely needed. center dotMagnetic field safety requirements exist for controlled work environments. The following effects have been noted with little noted adverse effects -Magnetohydrodynamic (MHD) effects on ionized fluids (e.g. blood) creating an aortic voltage change -MHD interaction elevates blood pressure (BP) center dot5 Tesla equates to 5% BP elevation -Prosthetic devises and pacemakers are an issue (access limit of 5 gauss).

  1. Influence of lead apron shielding on absorbed doses from panoramic radiography

    PubMed Central

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. Methods: A RANDO® full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA® three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax® 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. Results: A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = −0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. Conclusions: In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding. PMID:24174012

  2. [Trial manufacture of a plunger shield for a disposable plastic syringe].

    PubMed

    Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki

    2008-08-20

    A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.

  3. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    NASA Astrophysics Data System (ADS)

    Zughbi, A.; Kharita, M. H.; Shehada, A. M.

    2017-07-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide.

  4. Shielding analyses: the rabbit vs the turtle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadhead, B.L.

    1996-12-31

    This paper compares solutions using Monte Carlo and discrete- ordinates methods applied to two actual shielding situations in order to make some general observations concerning the efficiency and advantages/disadvantages of the two approaches. The discrete- ordinates solutions are performed using two-dimensional geometries, while the Monte Carlo approaches utilize three-dimensional geometries with both multigroup and point cross-section data.

  5. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.

    PubMed

    Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  6. Shrinkable sleeve eliminates shielding gap in RF cable

    NASA Technical Reports Server (NTRS)

    1965-01-01

    RF shielding gap between an RF cable and a multipin connector is eliminated by a sleeve assembly installed between the connector and the terminated portion of the shielding. The assembly is enclosed in a heat-shrinkable plastic sleeve which completes the continuous RF shield.

  7. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  8. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  9. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    NASA Astrophysics Data System (ADS)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  10. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Blome, J. C.; Drennan, D. N.; Schmitt, R. J.

    1974-01-01

    Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.

  11. Flexible shielding system for radiation protection

    NASA Technical Reports Server (NTRS)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  12. Radiation shielding of the Fermilab 16 GeV proton driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolai V. Mokhov, Alexander I. Drozhdin and Oleg E. Krivosheev

    2001-07-12

    The radiation transport analysis in the proposed Fermi-lab 1.2 MWProton Driver (PD) [1] is fundamentally important because of the impact on machine performance, conventional facility design, maintenance operations, and related costs. The strategy adopted in the PD design is that the beam losses in the machine are localized and controlled as much as possible via the dedicated beam collimation system, with a high loss rate localized in that section and drastically lower uncontrolled beam loss rate in the rest of the lattice. Results of thorough Monte Carlo calculations of prompt and residual radiation in and around the PD components aremore » presented for realistic assumptions and geometry under normal operation and accidental conditions. This allowed one to conduct shielding design and analysis to meet regulatory requirements [2] for external shielding, hands-on maintenance and ground-water activation.« less

  13. WriteShield: A Pseudo Thin Client for Prevention of Information Leakage

    NASA Astrophysics Data System (ADS)

    Kirihata, Yasuhiro; Sameshima, Yoshiki; Onoyama, Takashi; Komoda, Norihisa

    While thin-client systems are diffusing as an effective security method in enterprises and organizations, there is a new approach called pseudo thin-client system. In this system, local disks of clients are write-protected and user data is forced to save on the central file server to realize the same security effect of conventional thin-client systems. Since it takes purely the software-based simple approach, it does not require the hardware enhancement of network and servers to reduce the installation cost. However there are several problems such as no write control to external media, memory depletion possibility, and lower security because of the exceptional write permission to the system processes. In this paper, we propose WriteShield, a pseudo thin-client system which solves these issues. In this system, the local disks are write-protected with volume filter driver and it has a virtual cache mechanism to extend the memory cache size for the write protection. This paper presents design and implementation details of WriteShield. Besides we describe the security analysis and simulation evaluation of paging algorithms for virtual cache mechanism and measure the disk I/O performance to verify its feasibility in the actual environment.

  14. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  15. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  16. SU-E-T-670: Radiotherapy Vault Shielding Evaluation Method for a Flattening Filter-Free (FFF) Linac-Practical Considerations and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihailidis, D

    2015-06-15

    Purpose: To date, there isn’t formal approach for flattening filter-free (FFF) linac vault shielding evaluation, thus, we propose an extension to NCRP#151 to accommodate the recent large number of FFF linac installations.Methods and Materials: We extended the approach in NCRP#151 to design two Truebeam vaults in our new cancer center for hypofractionated treatments. Monte Carlo calculations have characterized primary, scattered, leakage and neutron radiations from FFF-modes. These calculations have shown that: a) FFF primary beam is softer on the central-axis compared to flattening filtered (FF), b) the lateral dose profile is peaked on the central axis and less integral targetmore » current is required to generate the same tumor dose with the FF beam. Thus, the TVLs for FFF mode are smaller than those of the FF mode and the scatter functions of the FF mode (NCRP#151) may not be appropriate for FFF-mode, c) the neutron source strength and fluence for 18X-FFF is smaller than 18X-FF, but it is not of a concern here, no 18X-FFF-mode is available on the linac under investigation. Results: These barrier thickness are smaller (12% reduction on the average) than those computed for conventional FF mode with same realistic primary workload since, the primary TVLs used here are smaller and the WL is smaller than the conventional (almost half reduced), keeping the TADR in tolerance. Conclusions: A comprehensive method for shielding barrier calculations based on dedicated data for FFF-mode linacs is highly desired. Meanwhile, we provide an extension to NCRP#151 to accommodate the shielding design of such installations. It is also shown that if a vault is already designed for IMRT/VMAT and SABR hypofractionated treatments with FFF-mode linac, the vault can also be used for a FFF mode linac replacement, leaving some leeway for slightly higher workload on the FFF linac.« less

  17. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  18. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Sai; Shen, Yong; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting

    2016-11-01

    The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV-vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1-5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27-31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz-3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.

  19. Add-On Shielding for Unshielded Wire

    NASA Technical Reports Server (NTRS)

    Koenig, J. C.; Billitti, J. W.; Tallon, J. M.

    1983-01-01

    Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.

  20. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  1. Low-cost electromagnetic shielding using drywall composites: results of RFI (radio-frequency interference) testing of a shielding effectiveness. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Heyen, K.K.; McCormack, R.G.

    1987-10-01

    Because of developments in electronics technology, the need for electromagnetic shielding has increased. To reduce the cost of this shielding, new materials are needed. The U.S. Army Corps of Engineers, Fort Worth District (FWD), and the U.S. Army Construction Engineering Research Laboratory (USA-CERL) have developed composite materials that use standard, construction-grade, aluminum foil-backed gypsum board in combination with either a metal mesh or lead foil. Special seams for these composites were designed by U.S. Gypsum Company. USA-CERL evaluated the adequacy of each material and seam design by using radio-frequency antennas and receivers to measure its shielding effectiveness when mounted inmore » the wall of a shielded room. These evaluations showed that the composite panels met the specified requirement of 60 decibels (dB) of shielding. The composites were also shown to be adequate for most communications security applications. However, the addition of a seam decreased shielding by as much as 10 dB.« less

  2. Self-Shielding Of Transmission Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christodoulou, Christos

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust componentmore » must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.« less

  3. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    . Platinum, titanium, helium 3, and other metals, elements and minerals are all high-value commodities in limited supply on Earth, and it may be profitable to mine these substances throughout the Solar System and return them to Earth, if an economical method can be found. To date, several private corporations have been launched to pursue these goals. Because the heat shield is the last element to be used in an Earth-return mission, a high penalty is paid in the propellant mass required to carry the heat shield to the destination and back. If the heat shield could be manufactured in space, and then outfitted on the spacecraft prior to the reentry at Earth, then significant propellant and mass savings could be achieved during launch and space operations. Preliminary mission architecture scenarios are described, which explain the potential benefits that may be derived from using an in-situ fabricated regolith heat shield. In order to prove that this is a feasible technology concept, this project successfully fabricated heat shield materials from mineral simulant materials of lunar and Martian regolith by two methods: 1) Sintering and 2) Binding the simulant with a "room-temperature vulcanizing" (RTV) silicone formulated to withstand high temperatures. Initially a third type of fabrication was planned using the hot waste stream from regolith ISRU processes. This fabrication method was discarded since the resulting samples would be too dense and brittle for heat shields. High temperature flame tests at KSC and subsequent arc jet tests at Ames Research Center (ARC) have proved promising. These coupon tests show favorable materials properties and have the potential to be a new way of fabricating heat shields for space entry into planetary atmospheres.

  4. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2013-01-01

    . Platinum, titanium, helium 3, and other metals, elements and minerals are all high-value commodities in limited supply on Earth, and it may be profitable to mine these substances throughout the Solar System and return them to Earth, if an economical method can be found. To date, several private corporations have been launched to pursue these goals. Because the heat shield is the last element to be used in an Earth-return mission, a high penalty is paid in the propellant mass required to carry the heat shield to the destination and back. If the heat shield could be manufactured in space, and then outfitted on the spacecraft prior to the reentry at Earth, then significant propellant and mass savings could be achieved during launch and space operations. Preliminary mission architecture scenarios are described, which explain the potential benefits that may be derived from using an in-situ fabricated regolith heat shield. In order to prove that this is a feasible technology concept, this project successfully fabricated heat shield materials from mineral simulant materials of lunar and Martian regolith by two methods: 1) Sintering and 2) Binding the simulant with a "room-temperature vulcanizing" (RTV) silicone formulated to withstand high temperatures. Initially a third type of fabrication was planned using the hot waste stream from regolith ISRU processes. This fabrication method was discarded since the resulting samples would be too dense and brittle for heat shields. High temperature flame tests at KSC and subsequent arc jet tests at Ames Research Center (ARC) have proved promising. These coupon tests show favorable materials properties and have the potential to be a new way of fabricating heat shields for space entry into planetary atmospheres.

  5. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding.

    PubMed

    Ciarmatori, Alberto; Nocetti, L; Mistretta, G; Zambelli, G; Costi, T

    2016-06-01

    The eye lens is considered to be among the most radiosensitive human tissues. Brain CT scans may unnecessarily expose it to radiation even if the area of clinical interest is far from the eyes. The aim of this study is to implement a bismuth eye lens shielding system for Head-CT acquisitions in these cases. The study is focused on the assessment of the dosimetric characteristics of the shielding system as well as on its effect on image quality. The shielding system was tested in two set-ups which differ for distance ("contact" and "4 cm" Set up respectively). Scans were performed on a CTDI phantom and an anthropomorphic phantom. A reference set up without shielding system was acquired to establish a baseline. Image quality was assessed by signal (not HU converted), noise and contrast-to-noise ratio (CNR) evaluation. The overall dose reduction was evaluated by measuring the CTDIvol while the eye lens dose reduction was assessed by placing thermoluminescent dosimeters (TLDs) on an anthropomorphic phantom. The image quality analysis exhibits the presence of an artefact that mildly increases the CT number up to 3 cm below the shielding system. Below the artefact, the difference of the Signal and the CNR are negligible between the three different set-ups. Regarding the CTDI, the analysis demonstrates a decrease by almost 12 % (in the "contact" set-up) and 9 % (in the "4 cm" set-up). TLD measurements exhibit an eye lens dose reduction by 28.5 ± 5 and 21.1 ± 5 % respectively at the "contact" and the "4 cm" distance. No relevant artefact was found and image quality was not affected by the shielding system. Significant dose reductions were measured. These features make the shielding set-up useful for clinical implementation in both studied positions.

  6. Technique for Configuring an Actively Cooled Thermal Shield in a Flight System

    NASA Technical Reports Server (NTRS)

    Barkfknecht, Peter; Mustafi, Shuvo

    2011-01-01

    system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.

  7. Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour

    NASA Astrophysics Data System (ADS)

    Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.

    2018-06-01

    Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.

  8. Acoustic Shielding for a Model Scale Counter-rotation Open Rotor

    NASA Technical Reports Server (NTRS)

    Stephens, David B.; Edmane, Envia

    2012-01-01

    The noise shielding benefit of installing an open rotor above a simplified wing or tail is explored experimentally. The test results provide both a benchmark data set for validating shielding prediction tools and an opportunity for a system level evaluation of the noise reduction potential of propulsion noise shielding by an airframe component. A short barrier near the open rotor was found to provide up to 8.5 dB of attenuation at some directivity angles, with tonal sound particularly well shielded. Predictions from two simple shielding theories were found to overestimate the shielding benefit.

  9. Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr

    A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less

  10. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c}more » (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.« less

  11. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  12. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  13. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  14. Magnetostriction measurement of a giant magnetoresistance film on a practical substrate covered by a shield layer

    NASA Astrophysics Data System (ADS)

    Okita, Kazuhiko; Ishiyama, Kazushi; Miura, Hideo

    2012-04-01

    Magnetostriction constant of a magnetic thin film is conventionally measured by detecting the deformation of a coupon sample that consists of the magnetic film deposited on a thin glass substrate (e.g., cover glass of size 10 mm × 25 mm) under an applied field using a laser beam [A. C. Tam and H. Schroeder, J. Appl. Phys. 64, 5422 (1988)]. This method, however, cannot be applied to films deposited on actual large-size substrates (wafers) with diameter from 3 to 6 in. or more. In a previous paper [Okita et al., J. Phys.: Conf. Ser. 200, 112008 (2010)], the authors presented a method for measuring magnetostriction of a magnetic thin film deposited on an actual substrate by detecting the change of magnetic anisotropy field, Hk, under mechanical bending of the substrate. It was validated that the method is very effective for measuring the magnetostriction constant of a free layer on the actual substrate. However, since a Ni-Fe shield layer usually covers a magnetic head used for a hard disk drive, this shield layer disturbs the effective measurement of R-H curve under minor loop. Therefore, a high magnetic field that can saturate the magnetic material in the shield layer should be applied to the head in order to measure the magnetostriction constant of a pinned layer under the shield layer. In this paper, this method was applied to the measurement of the magnetostriction constant of a pinned layer under the shield layer by using a high magnetic field up to 320 kA/m (4 kOe).

  15. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  16. Aluminum/vacuum multilayer configuration for spatial high-energy electron shielding via electron return effects induced by magnetic field.

    PubMed

    Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da

    2017-06-26

    Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.

  17. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    NASA Technical Reports Server (NTRS)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  18. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.

    PubMed

    Schoeber, Joost P H; van de Graaf, Stan F J; Lee, Kyu Pil; Wittgen, Hanneke G M; Hoenderop, Joost G J; Bindels, René J M

    2009-01-01

    A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic cell-permeant ligand (Shield-1) to mtFKBP reverses the instability, allowing conditional expression of mtFKBP-fused proteins. We adapted this strategy to study multimeric plasma membrane proteins using the ion channel TRPV5 as model protein. mtFKBP-TRPV5 forms functional ion channels and its expression can be controlled in a time- and dose-dependent fashion using Shield-1. Moreover, in the presence of Shield-1, mtFKBP-TRPV5 formed heteromultimeric channels with untagged TRPV5, which were codegraded upon washout of Shield-1, providing a strategy to study multimeric plasma membrane protein complexes without the need to destabilize all individual subunits.

  19. Effect on de-greasing solvents on conductive separable connector shields and semiconductive cable shields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, D.D.; Bolcar, J.P.

    1990-04-01

    A study has been conducted to determine the effects of commercial degreasing solvents on the conductivity of an EPDM separable connector shield and two types of cable shields based on EPR and XLPE, respectively. Solvents tested included a chlorinated solvent based on 1,1,1-trichloroethane and several so-called citrus solvents consisting of the natural terpene, limonene, or blends of limonene with other hydrocarbons. All the solvents significantly degraded the conductivity of the EPR and EPDM materials, but had little effect on the XLPE cable shield. The solvents differed, however, in the extent of their effects, the rate of recovery of conductivity aftermore » removal of the solvent, and the degree to which the original conductivity of the material was restored. The consequences of these results in terms of appropriate field use of these types of solvents by utility personnel are discussed.« less

  20. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  1. Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection.

    PubMed

    Velders, Aldrik H; Schoen, Cor; Saggiomo, Vittorio

    2018-02-01

    Loop-mediated isothermal amplification (LAMP) of DNA is gaining relevance as a method to detect nucleic acids, as it is easier, faster, and more powerful than conventional Polymerase Chain Reaction. However, LAMP is still mostly used in laboratory settings, because of the lack of a cheap and easy, one-button device that can perform LAMP experiments. Here we show how to build and program an Arduino shield for a LAMP and detection of DNA. The here described Arduino Shield is cheap, easy to assemble, to program and use, it is battery operated and the detection of DNA is done by naked-eye so that it can be used in field.

  2. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    NASA Astrophysics Data System (ADS)

    Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.

    2016-02-01

    The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  3. Rotary stripper for shielded and unshielded FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Rotary stripper removes narrow strips of insulation and shielding to any desired depth. Unshielded cables are stripped on both sides with one stroke, shielded cables are stripped in steps of different depths.

  4. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  5. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  6. Plasma shield lasertripsy: in vitro studies.

    PubMed

    Bhatta, K M; Rosen, D I; Dretler, S P

    1989-10-01

    A technique for safer and more effective pulsed laser lithotripsy of urinary and biliary calculi was investigated in vitro. The technique involves enclosing the distal end of the laser delivery fiber in a "plasma shield." The plasma shield is a specially designed metal cap that serves to transfer the laser-induced mechanical impulse to the calculus while shielding surrounding tissue from direct laser exposure and thermal radiation. The metal cap also offers the advantage of effectively blunting the sharp fiber tip and improving its visualization under fluoroscopy. Plasma shield lithotripsy using a 200 micron quartz fiber inserted into a section of a modified 0.034 in. diameter stainless steel guide wire was tested in vitro on a variety of calculi and compared with results obtained using a 200 micron laser fiber applied directly. Calculi tested included cystine, struvite and calcium oxalate dihydrate urinary stones and pigmented cholesterol gallstones. The laser source was a flashlamp-pumped dye laser producing pulses of 1.2 microsecond duration and operated at a wavelength of 504 nm and pulse repetition frequency of 5 Hz. The results show that plasma shield lasertripsy is as effective as direct lasertripsy for fragmenting gallstones, struvite and calcium oxalate dihydrate calculi, is potentially safer, and can fragment cystine calculi which the pulsed dye laser applied directly cannot.

  7. Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield

    NASA Astrophysics Data System (ADS)

    Cramer, S. N.; Roussin, R. W.

    1981-11-01

    A Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield is presented. The energy range covered in the analysis is 15-2 MeV for neutron source energies. The multigroup MORSE code was used with the VITAMIN C 171-36 neutron-gamma-ray cross-section data set. Both neutron and gamma-ray count rates and unfolded energy spectra are presented and compared, with good general agreement, with experimental results.

  8. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  9. Estimate of the shielding effect on secondary cancer risk due to cone-beam CT in image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun

    2014-09-01

    This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.

  10. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  11. Why do mothers use nipple shields and how does this influence duration of exclusive breastfeeding?

    PubMed

    Kronborg, Hanne; Foverskov, Else; Nilsson, Ingrid; Maastrup, Ragnhild

    2017-01-01

    The present study addressed the contentious discussions about the benefits and risks of nipple shield use. The objective was to explore self-reported reasons for using a nipple shield and examine associations pertaining to the mother, the infant and duration of breastfeeding. Data were collected from 4815 Danish mothers (68%) who filled out a self-administered questionnaire with open and closed question. Data were analyzed by content and statistical descriptive and multivariable analysis. Results showed that 22% of the mothers used nipple shields in the beginning and 7% used it the entire breastfeeding period. Primiparae used nipple shields more often than multiparae, and early breastfeeding problems as well as background factors like lower age, education and higher body mass index were associated with a higher likelihood of using nipple shields. Characteristics of infants associated with introducing nipple shields were lower- gestational age and birthweight. The use of nipple shields was furthermore found to be associated with a threefold increased risk of earlier cessation of exclusive breastfeeding: among primiparae odds ratio = 3.80 (confidence interval 2.61-5.53); among multiparae odds ratio = 3.33 (confidence interval 1.88-5.93). Mothers' own descriptions underlined how various early breastfeeding problems led to the use of nipple shields. Some mothers were helped through a difficult period; others described the use creating a kind of dependence. The results highlight how nipple shields may help breastfeeding mothers in the early period but is not necessarily a supportive solution to the inexperienced mother who needs extra support in the early process of learning to breastfeed. © 2016 John Wiley & Sons Ltd.

  12. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application

    NASA Astrophysics Data System (ADS)

    Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding

  13. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.

    PubMed

    Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well

  14. Large Heat Shield for Mars Science Laboratory

    NASA Image and Video Library

    2009-07-10

    This image shows NASA Mars Science Laboratory heat shield, and a spacecraft worker at Lockheed Martin Space Systems, Denver. It is the largest heat shield ever built for descending through the atmosphere of any planet.

  15. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  16. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Kim, Raymond H

    2017-02-01

    Stress shielding is a well-recognized complication associated with total knee arthroplasty. However, this phenomenon has not been thoroughly described. Specifically, no study to our knowledge has evaluated the radiographic impact of utilizing various tibial component compositions on tibial stress shielding. We retrospectively reviewed 3 cohorts of 50 patients that had a preoperative varus deformity and were implanted with a titanium, cobalt chromium (CoCr), or an all polyethylene tibial implant. A radiographic comparative analysis was performed to evaluate the amount of medial tibial bone loss in each cohort. In addition, a clinical outcomes analysis was performed on the 3 cohorts. The CoCr was noted to have a statistically significant increase in medial tibial bone loss compared with the other 2 cohorts. The all polyethylene cohort had a statistically significantly higher final Knee Society Score and was associated with the least amount of stress shielding. The CoCr tray is the most rigid of 3 implants that were compared in this study. Interestingly, this cohort had the highest amount of medial tibial bone loss. In addition, 1 patient in the CoCr cohort had medial soft tissue irritation which was attributed to a prominent medial tibial tray which required revision surgery to mitigate the symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Electromagnetic shielding effectiveness studies on polyaniline/CSA-WO3 composites at KU band frequencies

    NASA Astrophysics Data System (ADS)

    Sastry, D. Nagesa; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. Ravi; Raghavendra, S. C.

    2018-05-01

    This paper highlights the Electromagnetic Interference (EMI) Shielding Effectiveness and electromagnetic wave attenuation behavior of Polyaniline/Camphor Sulphonic Acid (PANI-CSA) - tungsten oxide (WO3) composites. Insitu polymerization of aniline monomer with camphor sulphonic acid (CSA) as a dopant was carried out in the presence of ammonium persulphate an oxidizing agent to synthesize PANI-CSA tungsten oxide composites (PANI/CSA-WO3) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of tungsten oxide in PANI/CSA matrix. The EMI shielding measurements were carried out in the broad microwave spectrum covering the frequency range from 12 to 18 GHz (Ku-Band). The results show the influence of tungsten oxide in PANI/CSA over the EMI shielding Effectiveness. The composites have shown excellent microwave absorption behavior confirmed by the EMI Shielding Effectiveness values of the order of -15 to -16 dB.

  18. 77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages.

  19. Nuclear magnetic shielding in boronlike ions

    NASA Astrophysics Data System (ADS)

    Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.

    2017-10-01

    The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.

  20. Predictions for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  1. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment.

    PubMed

    Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-08

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.

  2. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

    PubMed Central

    de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-01

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh

  3. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  4. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  5. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  6. Hot cell shield plug extraction apparatus

    DOEpatents

    Knapp, Philip A.; Manhart, Larry K.

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  7. Power converter having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-06-13

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  8. Utilizing electromagnetic shielding textiles in wireless body area networks.

    PubMed

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2010-01-01

    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area.

  9. ADVANCEMENTS IN TIME-SPECTRA ANALYSIS METHODS FOR LEAD SLOWING-DOWN SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Anderson, Kevin K.; Gesh, Christopher J.

    2010-08-11

    Direct measurement of Pu in spent nuclear fuel remains a key challenge for safeguarding nuclear fuel cycles of today and tomorrow. Lead slowing-down spectroscopy (LSDS) is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic mass with an uncertainty lower than the approximately 10 percent typical of today’s confirmatory assay methods. Pacific Northwest National Laboratory’s (PNNL) previous work to assess the viability of LSDS for the assay of pressurized water reactor (PWR) assemblies indicated that the method could provide direct assay of Pu-239 and U-235 (and possibly Pu-240 and Pu-241)more » with uncertainties less than a few percent, assuming suitably efficient instrumentation, an intense pulsed neutron source, and improvements in the time-spectra analysis methods used to extract isotopic information from a complex LSDS signal. This previous simulation-based evaluation used relatively simple PWR fuel assembly definitions (e.g. constant burnup across the assembly) and a constant initial enrichment and cooling time. The time-spectra analysis method was founded on a preliminary analytical model of self-shielding intended to correct for assay-signal nonlinearities introduced by attenuation of the interrogating neutron flux within the assembly.« less

  10. Face shields for infection control: A review

    PubMed Central

    Roberge, Raymond J.

    2016-01-01

    Face shields are personal protective equipment devices that are used by many workers (e.g., medical, dental, veterinary) for protection of the facial area and associated mucous membranes (eyes, nose, mouth) from splashes, sprays, and spatter of body fluids. Face shields are generally not used alone, but in conjunction with other protective equipment and are therefore classified as adjunctive personal protective equipment. Although there are millions of potential users of face shields, guidelines for their use vary between governmental agencies and professional societies and little research is available regarding their efficacy. PMID:26558413

  11. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  12. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  13. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  14. Cost Assessment for Shielding of C3 Type. Facilities

    DTIC Science & Technology

    1980-03-01

    imperfections and on penetrations . Long-conductor penetrants are assumed to enter the building through a one-quarter-inch thick entry plate and a shielded...Effects 21 3.2.3 Currents from Penetrants 21 3.2.4 Numerical Examples 23 3.3 Design Approach 23 3.3.1 Design Assuming Linear Behavior of Shield 23...General 36 4.1.1 Envelope Shield 36 4.1.2 Penetrations 41 4.2 Condition I, New Construction, External Shield 46 4.3 Condition II, New

  15. Self shielding in cylindrical fissile sources in the APNea system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.

    1997-02-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shieldingmore » effect is presented and its predictions are compared with the experimental results.« less

  16. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  17. Female gonadal shielding with automatic exposure control increases radiation risks.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  18. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source

    DOE PAGES

    Ghosh, Vinita J.; Schaefer, Charles; Kahnhauser, Henry

    2017-06-30

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. Thismore » entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project’s resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed in this paper. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Finally, post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.« less

  19. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    PubMed

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  20. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  1. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  2. 78 FR 26090 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing Regulatory Issue Summary (RIS) 2013-04, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages. The RIS does not impose any additional regulatory requirements on NRC licensees.

  3. Application of a dummy eye shield for electron treatment planning

    PubMed Central

    Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik

    2013-01-01

    Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by –19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. PMID:22915776

  4. Major uncertainties influencing entry probe heat shield design

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.

  5. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  6. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  7. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.

  8. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  9. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  10. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  11. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  12. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  13. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    PubMed

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-09

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  14. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  15. Twin jet shielding. [for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cuffel, R. F.; Massier, P. F.

    1979-01-01

    For an over-the-wing/under-the-wing engine configuration on an airplane, the noise produced by the upper jet flow is partially reflected by the lower jet. An analysis has been performed which can be used to predict the distribution of perceived noise levels along the ground plane at take-off for an airplane which is designed to take advantage of the over/under shielding concept. Typical contours of PNL, the shielding benefit in the shadow zone, and the EPNL values at 3.5 nautical miles from brake release as well as EPNL values at sideline at 0.35 nautical miles have been calculated. This has been done for a range of flow parameters characteristic of engines producing inverted velocity profile jets suitable for use in a supersonic cruise vehicle. Reductions up to 6.0 EPNdB in community noise levels can be realized when the over engines are operated at higher thrust and the lower engines simultaneously operated with reduced thrust keeping the total thrust constant.

  16. Assessing the shielding of engine noise by the wings for current aircraft using model predictions and measurements.

    PubMed

    Vieira, Ana; Snellen, Mirjam; Simons, Dick G

    2018-01-01

    Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

  17. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  18. MCG measurement in the environment of active magnetic shield.

    PubMed

    Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N

    2004-11-30

    MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.

  19. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    PubMed Central

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  20. Radiation fields from neutron generators shielded with different materials

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.