These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico  

SciTech Connect

The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

Not Available

1993-12-01

2

Summary of the engineering assessment of inactive uranium mill tailings, Shiprock Site, Shiprock, New Mexico  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of the stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and(c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

none,

1981-07-01

3

Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

Not Available

1981-07-01

4

Site Observational Work Plan for the UMTRA Project Site at Shiprock, New Mexico. Revision  

SciTech Connect

The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is one of the first documents for developing an approach for achieving ground water compliance at the site. This SOWP applies Shiprock site information to a regulatory compliance framework, which identifies strategies for meeting ground water compliance at the site. The compliance framework was developed in the UMTRA ground water programmatic environmental impact statement.

NONE

1995-07-01

5

Geophysical surveys at the UMTRA project Shiprock, New Mexico site  

SciTech Connect

Geophysical surveys were performed at the Uranium Mill Tailings Remedial Action (UMTRA) Shiprock site in New Mexico during February 1996. The surveys were designed to locate areas of ground water contamination, consisting largely of sulfate and nitrate salts and uranium. Electrical geophysical methods were used to locate areas of sulfate and nitrate concentrations since these products, when present in ground water, increase its electrical conductivity. These contaminants also increase the density of water, making the water with the highest concentrations of these salts sink to the bottom of the water column. At the Shiprock site, where alluvium is underlain by the impervious Mancos Shale, the saline water will tend to rest in depressions on the shale surface. Seismic refraction surveys were conducted on the floodplain. The site comprises two areas, the terrace and the floodplain, separated by a steep scarp of some 70 feet (ft) (20 meters [m]). Measurements of electrical conductivity were taken over these two areas, searching for possible pockets of saline ground water resting on top of the bedrock. Conductivity surveys were also run to identify fractures within the bedrock that may act as conduits for ground water movement. Several areas of higher than normal conductivity were found on the terrace, including halos of higher conductivities on three sides of the tailings cell. The conductivity measurements searching for fractures found only a small number of minor fracture-like anomalies. These are not considered important. On the floodplain, both conductivity and seismic refraction measurements were taken. The conductivity measurements clearly show areas of high conductivity interpreted to result from ground water contamination. The seismic refraction measurements identified bedrock depressions that may contain denser, and more saline ground water lenses. Generally, the areas of high conductivity coincide with the bedrock depressions.

Wightman, E.; Smith, B.; Newlin, B.

1996-03-01

6

Site observational work plan for the UMTRA project site at Shiprock, New Mexico  

SciTech Connect

The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the initial document for developing site-specific activities to achieve regulatory compliance in the UMTRA Ground Water Project. The regulatory framework used to select the proposed ground water compliance strategies is presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. The Shiprock site consists of two, interconnected hydrogeologic systems: the terrace system and the floodplain system. Separate compliance strategies are proposed for these two systems. The compliance strategy for the terrace aquifer is no remediation with the application of supplemental standards based on classification of the terrace aquifer as having Class III (limited-use) ground water. The compliance strategy for the floodplain aquifer is active remediation using a subsurface biological barrier. These strategies were selected by applying site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement (PEIS) (DOE, 1994a). The site conceptual model indicates that milling-related contamination has impacted the ground water in the terrace and floodplain aquifers. Ground water occurs in both aquifers in alluvium and in fractures in the underlying Cretaceous age Mancos Shale. A mound of ground water related to fluids from the milling operations is thought to exist in the terrace aquifer below the area where settling ponds were in use during the mill operations. Most of the water occurring in the floodplain aquifer is from recharge from the San Juan River.

Not Available

1994-09-01

7

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1  

SciTech Connect

This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

Not Available

1994-04-01

8

Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft  

SciTech Connect

This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

Not Available

1993-09-01

9

40 CFR 228.3 - Disposal site management responsibilities.  

...2014-07-01 false Disposal site management responsibilities. 228.3 Section... OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING 228.3 Disposal site management responsibilities....

2014-07-01

10

40 CFR 228.7 - Regulation of disposal site use.  

...228.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING 228.7 Regulation of disposal site use. Where necessary, disposal...

2014-07-01

11

Escarpment seeps at Shiprock, New Mexico. [Risk posed by seep water to human health and the environment  

SciTech Connect

The purpose of this report is to characterize the seeps identified at the Shiprock UMTRA Project site during the prelicensing custodial care inspection conducted in December of 1990, to evaluate the relationship between the seeps and uranium processing activities or tailings disposal, and to evaluate the risk posed by the seep water to human health and the environment. The report provides a brief description of the geology, groundwater hydrology, and surface water hydrology. The locations of the seeps and monitor wells are identified, and the water quality of the seeps and groundwater is discussed in the context of past activities at the site. The water quality records for the site are presented in tables and appendices; this information was used in the risk assessment of seep water.

Not Available

1991-10-01

12

40 CFR 228.9 - Disposal site monitoring.  

...228.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING 228.9 Disposal site monitoring. (a) The monitoring...

2014-07-01

13

40 CFR 228.11 - Modification in disposal site use.  

...228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING 228.11 Modification in disposal site use. (a)...

2014-07-01

14

10 CFR 61.50 - Disposal site suitability requirements for land disposal.  

Code of Federal Regulations, 2013 CFR

...for disposal shall not discharge ground water to the surface within the disposal site. (9) Areas must be avoided where tectonic processes such as faulting, folding, seismic activity, or vulcanism may occur with such frequency and extent to...

2013-01-01

15

10 CFR 61.50 - Disposal site suitability requirements for land disposal.  

Code of Federal Regulations, 2011 CFR

...for disposal shall not discharge ground water to the surface within the disposal site. (9) Areas must be avoided where tectonic processes such as faulting, folding, seismic activity, or vulcanism may occur with such frequency and extent to...

2011-01-01

16

10 CFR 61.50 - Disposal site suitability requirements for land disposal.  

Code of Federal Regulations, 2012 CFR

...for disposal shall not discharge ground water to the surface within the disposal site. (9) Areas must be avoided where tectonic processes such as faulting, folding, seismic activity, or vulcanism may occur with such frequency and extent to...

2012-01-01

17

10 CFR 61.50 - Disposal site suitability requirements for land disposal.  

...disposal below the water table if it can be conclusively shown that disposal site characteristics will result in molecular diffusion being the predominant means of radionuclide movement and the rate of movement will result in the performance objectives...

2014-01-01

18

10 CFR 61.50 - Disposal site suitability requirements for land disposal.  

Code of Federal Regulations, 2010 CFR

...disposal below the water table if it can be conclusively shown that disposal site characteristics will result in molecular diffusion being the predominant means of radionuclide movement and the rate of movement will result in the performance objectives...

2010-01-01

19

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31

20

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01

21

Site Selection for the Disposal of LLW in Taiwan  

SciTech Connect

This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potential candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)

Chuang, W.S.; Chi, L.M.; Tien, N.C.; Chang, F.L. [Institute of Nuclear Energy Research, P.O. Box 3-7, Lung-Tan 32500, Taiwan (China)

2006-07-01

22

Uranium waste disposal at the Savannah River Site  

SciTech Connect

The Savannah River Site generates waste containing depleted, natural, and enriched uranium residue. The past and current practice for disposal of this waste at the Savannah River Site have been assessed using radionuclide pathway analysis to estimate environmental impact of closure alternatives for existing disposal sites, and to assist in the development of improved disposal facilities in the near future. This paper outlines the status of uranium waste management technology as currently practiced to maintain the environmental impact within an acceptable limit at the Savannah River Site, and indicates those steps being taken to improve future operations.

Cook, J.R.; McDonell, W.R.; Wilhite, E.L.

1990-12-31

23

Uranium waste disposal at the Savannah River Site  

SciTech Connect

The Savannah River Site generates waste containing depleted, natural, and enriched uranium residue. The past and current practice for disposal of this waste at the Savannah River Site have been assessed using radionuclide pathway analysis to estimate environmental impact of closure alternatives for existing disposal sites, and to assist in the development of improved disposal facilities in the near future. This paper outlines the status of uranium waste management technology as currently practiced to maintain the environmental impact within an acceptable limit at the Savannah River Site, and indicates those steps being taken to improve future operations.

Cook, J.R.; McDonell, W.R.; Wilhite, E.L.

1990-01-01

24

CONVECTIVE-DISPERSIVE TRANSPORT MODEL FOR WASTES DISPOSED AT THE 106-MILE OCEAN DISPOSAL SITE  

EPA Science Inventory

A two-dimensional, convective-dispersive transport model was used to predict bounds on the expected long-term time-averaged dilutions for wastes disposed of at the 106-Mile Ocean Disposal Site (between 38 degrees 40' and 39 degrees 00'N, and 72 degrees 00' and 72 degrees 30'W). o...

25

Grassroots mobilisations against waste disposal sites in Greece  

Microsoft Academic Search

The government of Greece has gained notoriety for its failure to implement EU environmental directives in general, and is criticised specifically for its lack of an effective plan for the safe disposal of waste. Local mobilisations against a series of planned Sanitary Waste Disposal Sites (HETAs) in three municipalities of Attica are examined. Should such protests be classified as NIMBY

Iosif Botetzagias; John Karamichas

2009-01-01

26

EVALUATION OF ON-SITE WASTEWATER TREATMENT AND DISPOSAL OPTIONS  

EPA Science Inventory

A literature review of published and unpublished data was conducted to identify all conceivable alternative on-site systems, including wastewater manipulation, treatment and disposal options. Wastewater manipulation options included flow reduction, wasteload reduction and waste s...

27

HANDBOOK FOR REMEDIAL ACTION AT WASTE DISPOSAL SITES  

EPA Science Inventory

This handbook is directed toward technical personnel in federal, state, regional, and municipal agencies involved in the cleanup of hazardous waste disposal sites, industrial surface impoundments, and municipal, industrial, and combined landfills. It contains a summary of the flo...

28

Groundwater data analyses at utility waste disposal sites. Final report  

Microsoft Academic Search

A detailed technical analysis was made of waste and ground water data from six utility solid waste disposal sites. The six sites investigated were Allen (Duke Power Co.), Elrama (Duquesne Light Co.), Dave Johnston (Pacific Power and Light Co.), Powerton (Commonwealth Edison Co.), Sherco (Northern State Power Co.) and Lansing Smith (Gulf Power Co.). The sites included unlined ash ponds,

K. V. Summers; G. L. Rupp; G. F. Davis; S. A. Gherini

1985-01-01

29

Ocean dredged material disposal site management: An overview  

SciTech Connect

In 1992, the Marine Protection, Research, and Sanctuaries Act (MPRSA) was amended to require that site management plans (SMPs) be prepared for all 108 ocean dredged material disposal sites by January 1997. SMPs are to be jointly developed by EPA and the US Army Corps of Engineers and must include: a baseline assessment of conditions at the site; a program for monitoring the site; special management conditions or practices necessary for protection of the environment; consideration of the quantity of the material to be disposed of at the site, and the presence, nature, and bioavailability of contaminants in the material; consideration of the anticipated use of the site over the long term, including the anticipated closure date for the site, and any need for management of the site after closure; and a schedule for review and revision of the plan. SMPs and any revisions, must be made available for public comment.

Baker, B.; Buchholz, K.

1995-12-31

30

In Search of a Nuclear Waste Disposal Site  

Microsoft Academic Search

The choice of a site for high and intermediate level nuclear waste product material disposal in Jordan requires careful consideration of hydrology, hydrogeology, geological materials, seismicity, climate and other geological factors. The purpose of this paper is to explore how these factors in Jordan may affect the ultimate decision on where to site such a facility. Taking these factors into

Nizar Abu-Jaber

2011-01-01

31

43 CFR 2743.3-1 - Patent provisions for leased disposal sites.  

Code of Federal Regulations, 2013 CFR

...Patent provisions for leased disposal sites. Each patent for a leased disposal site will provide that...State laws applicable to the disposal, placement, or release of...legal liability or future costs that may arise out of...

2013-10-01

32

43 CFR 2743.3-1 - Patent provisions for leased disposal sites.  

Code of Federal Regulations, 2012 CFR

...Patent provisions for leased disposal sites. Each patent for a leased disposal site will provide that...State laws applicable to the disposal, placement, or release of...legal liability or future costs that may arise out of...

2012-10-01

33

43 CFR 2743.2-1 - Patent provisions for new disposal sites.  

Code of Federal Regulations, 2012 CFR

... Patent provisions for new disposal sites. For new disposal sites, each patent will provide...State laws applicable to the disposal, placement, or release of...any legal liability or future costs that may arise out of any...

2012-10-01

34

43 CFR 2743.2-1 - Patent provisions for new disposal sites.  

Code of Federal Regulations, 2011 CFR

... Patent provisions for new disposal sites. For new disposal sites, each patent will provide...State laws applicable to the disposal, placement, or release of...any legal liability or future costs that may arise out of any...

2011-10-01

35

43 CFR 2743.3-1 - Patent provisions for leased disposal sites.  

Code of Federal Regulations, 2011 CFR

...Patent provisions for leased disposal sites. Each patent for a leased disposal site will provide that...State laws applicable to the disposal, placement, or release of...legal liability or future costs that may arise out of...

2011-10-01

36

43 CFR 2743.2-1 - Patent provisions for new disposal sites.  

Code of Federal Regulations, 2013 CFR

... Patent provisions for new disposal sites. For new disposal sites, each patent will provide...State laws applicable to the disposal, placement, or release of...any legal liability or future costs that may arise out of any...

2013-10-01

37

Health effects of a thorium waste disposal site  

Microsoft Academic Search

A case-control study of 112 households residing in the vicinity of a thorium waste disposal site found a higher prevalence of birth defects (RR 2.1) and liver diseases (RR 2.3) among exposed than the unexposed group. The numbers were quite small and the confidence intervals wide, however, so that no definite conclusions can be drawn from these data.

G. R. Najem; L. K. Voyce

1990-01-01

38

TRACE METALS MONITORING AT TWO OCEAN DISPOSAL SITES  

EPA Science Inventory

The areal distributions of the concentration of cadmium, copper, nickel, and vanadium in sea scallop and ocean quahog tissue were examined in the vicinity of two ocean disposal sites located off the U.S. mid-Atlantic coast on four cruises conducted in 1974 and 1975. Incidental co...

39

Biological attributes of the west hackberry brine disposal site  

Microsoft Academic Search

A Strategic Petroleum Reserve brine disposal site is located 11.4 km off the southwest coast of Louisiana. A grid of stations centered at the brine diffuser was monitored monthly for biological attributes during a 12 month period. Temporal and spatial distributions in species abundances and diversity were measured for the following: 1) macrobenthic invertebrates, 2) fishes and nektonic macrocrustaceans, 3)

D. Casserly; M. Vecchione; R. Maples; R. Ilg; G. Gaston; D. Weston; J. Beck; J. Lascara

1982-01-01

40

Site characterization for LIL radioactive waste disposal in Romania  

SciTech Connect

Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background, unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.

Diaconu, D. R. (Daniela R.); Birdsell, K. H. (Kay H.); Witkowski, M. S. (Marc S.)

2001-01-01

41

36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.  

...that: (i) The solid waste is generated solely from...and (iii) the solid waste disposal site lacks road...existing landfill solid waste disposal site may convert that site to a transfer station only after...

2014-07-01

42

Remediation of Hanford's N-reactor liquid waste disposal sites.  

PubMed

Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10(7) m3 of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m2 and 9,300 m2, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10(8) kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are 60Co, 137Cs, 239Pu, and 90Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h-1. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12564346

Sitsler, Robert B; DeMers, Steven K

2003-02-01

43

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31

44

Characterizing plutonic rock sites for nuclear fuel waste disposal  

SciTech Connect

The Canadian Nuclear Fuel Waste Management Program is currently assessing the concept of disposal of nuclear fuel waste deep in plutonic rock formations. One of the primary objective of the Canadian program is to develop, evaluate, and demonstrate methods for characterizing the physical and chemical properties of potential disposal sites to produce reliable engineering designs and performance assessments of the disposal systems. Transport in groundwater at the site would be the primary mechanism that could bring any radionuclides released from the deep disposal vault to surface during the hazardous lifetime of the waste. Consequently, emphasis is placed on rock mass characterization methods that identify features that are potential pathways for radionuclide migration; quantify the hydrological and geochemical properties that control groundwater flow and radionuclide transport; and determine the geomechanical properties that control the excavation stability and the long-term stability of the rock mass. The methodology being developed consists of field and laboratory tests, in situ monitoring, and mathematical modeling and interpretation. The result is a description of site characteristics in quantitative and qualitative terms, which can be used to support engineering designs, licensing applications, and environmental and safety assessments.

Davison, C.C.; Dormuth, K.W.; Whitaker, S.H.

1988-01-01

45

1994 Characterization report for the state approved land disposal site  

SciTech Connect

This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford.

Swanson, L.C.

1994-09-19

46

Pyramiding tumuli waste disposal site and method of construction thereof  

DOEpatents

An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

Golden, Martin P. (Hamburg, NY)

1989-01-01

47

15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary  

Code of Federal Regulations, 2011 CFR

...Longitude Santa Cruz Harbor/Twin Lakes Dredge Disposal Site 1 36.9625 ?122... 36.96139 ?122.00083 SF-12 Dredge Disposal Site 1 36.80207 ?121... 36.80243 ?121.79295 SF-14 Dredge Disposal Site (circle with 500...

2011-01-01

48

15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary  

Code of Federal Regulations, 2012 CFR

...Longitude Santa Cruz Harbor/Twin Lakes Dredge Disposal Site 1 36.9625 ?122... 36.96139 ?122.00083 SF-12 Dredge Disposal Site 1 36.80207 ?121... 36.80243 ?121.79295 SF-14 Dredge Disposal Site (circle with 500...

2012-01-01

49

15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary  

Code of Federal Regulations, 2010 CFR

...Longitude Santa Cruz Harbor/Twin Lakes Dredge Disposal Site 1 36.9625 ?122... 36.96139 ?122.00083 SF-12 Dredge Disposal Site 1 36.80207 ?121... 36.80243 ?121.79295 SF-14 Dredge Disposal Site (circle with 500...

2010-01-01

50

15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary  

Code of Federal Regulations, 2013 CFR

...Longitude Santa Cruz Harbor/Twin Lakes Dredge Disposal Site 1 36.9625 ?122... 36.96139 ?122.00083 SF-12 Dredge Disposal Site 1 36.80207 ?121... 36.80243 ?121.79295 SF-14 Dredge Disposal Site (circle with 500...

2013-01-01

51

15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary  

...Longitude Santa Cruz Harbor/Twin Lakes Dredge Disposal Site 1 36.9625 ?122... 36.96139 ?122.00083 SF-12 Dredge Disposal Site 1 36.80207 ?121... 36.80243 ?121.79295 SF-14 Dredge Disposal Site (circle with 500...

2014-01-01

52

15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Dredged Material Disposal Sites Adjacent...M of Part 922Dredged Material Disposal Sites Adjacent...the U.S. Army Corps of Engineers operates the following dredged material disposal site adjacent...

2011-01-01

53

15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Dredged Material Disposal Sites Adjacent...M of Part 922Dredged Material Disposal Sites Adjacent...the U.S. Army Corps of Engineers operates the following dredged material disposal site adjacent...

2010-01-01

54

Application of studies on the overboard placement of dredged sediments to the management of disposal sites  

USGS Publications Warehouse

From the mid 1960's until 1991, dredging and disposal occurred in the northern Chesapeake Bay without guidelines to maximize the capacity and to minimize the spread of the deposits beyond the disposal sites, particularly toward the navigation channel. Planning for future dredging projects is dependant upon the remaining site capacity and the behavior of the disposed sediment. Recent studies have shown that the fate of the deposited sediments is determined primarily by the water depth and bathymetry in the vicinity of the disposal site, and the method of dredging and disposal utilized. Currently used open-water disposal sites in the northern Chesapeake Bay are reaching their maximum capacity. This makes the application of the information from these studies critical, both for the optimal use of current sites and for the evaluation of new sites. Management scenarios utilizing these studies are applied to a disposal site in the northern Chesapeake Bay.

Panageotou, William; Halka, Jeffrey

1994-01-01

55

Automated Monitoring System for Waste Disposal Sites and Groundwater  

SciTech Connect

A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

S. E. Rawlinson

2003-03-01

56

Evaluation of saprolite for on-site wastewater disposal  

SciTech Connect

Approximately 55% of the land in North Carolina is located in the Piedmont and Mountain regions, and over 50% of the people living in the state rely on on-site wastewater disposal systems for management of their household wastewater. A common characteristic of the soils in these two regions is the presence of saprolite at or near the surface. At present, certain saprolites are permitted for installation of septic systems. The rules and regulations for the use of saprolite for septic systems, however, are based less on scientific knowledge and more on the personal experience of those involved with the use of septic systems for on-site management of wastewater. A comprehensive study was undertaken to assess various physical, chemical, and morphological properties of twelve different soils and saprolites; and to study the performance of five septic systems in the Piedmont and Mountain regions of the state.

Amoozegar, A.; Hoover, M.T.; Kleiss, H.J.; Guertal, W.R.; Surbrugg, J.E.

1993-03-01

57

Studies of Current Circulation at Ocean Waste Disposal Sites  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

Klemas, V. (principal investigator); Davis, G.; Henry, R.

1976-01-01

58

Evaluating off-site disposal of low-level waste at LANL-9498  

SciTech Connect

Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

2009-01-01

59

DISPOSAL OF MIXED CERCLA WASTE AT THE OAK RIDGE RESERVATION IN AN ON-SITE DISPOSAL FACILITY  

Microsoft Academic Search

After several false starts dating back to the 1980s, on-site disposal at the Department of Energy's Oak Ridge Reservation (ORR) became a reality when a Record of Decision was signed in November 1999 authorizing an on-site disposal facility. The facility will be an integral part of the cleanup of the ORR, which is being conducted under the Comprehensive Environmental Response,

Joe Williams; Paul Corpstein; P. G. Marty Reif

2000-01-01

60

75 FR 22524 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...  

Federal Register 2010, 2011, 2012, 2013

...Disposal Sites Offshore of the Siuslaw River, Oregon AGENCY: Environmental Protection...finalizes the designation of the Siuslaw River ocean dredged material disposal sites pursuant...dispose of material dredged from the Siuslaw River navigation channel, and to provide a...

2010-04-29

61

10 CFR 61.51 - Disposal site design for land disposal.  

Code of Federal Regulations, 2012 CFR

10 Energy 2 2012-01-01 2012-01-01...61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION...LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for...water away from the disposed waste, and to resist...

2012-01-01

62

10 CFR 61.51 - Disposal site design for land disposal.  

10 Energy 2 2014-01-01 2014-01-01...61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION...LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for...water away from the disposed waste, and to resist...

2014-01-01

63

10 CFR 61.51 - Disposal site design for land disposal.  

Code of Federal Regulations, 2011 CFR

10 Energy 2 2011-01-01 2011-01-01...61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION...LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for...water away from the disposed waste, and to resist...

2011-01-01

64

10 CFR 61.51 - Disposal site design for land disposal.  

Code of Federal Regulations, 2013 CFR

10 Energy 2 2013-01-01 2013-01-01...61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION...LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for...water away from the disposed waste, and to resist...

2013-01-01

65

10 CFR 61.51 - Disposal site design for land disposal.  

Code of Federal Regulations, 2010 CFR

10 Energy 2 2010-01-01 2010-01-01...61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION...LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for...water away from the disposed waste, and to resist...

2010-01-01

66

Studies of Current Circulation at Ocean Waste Disposal Sites. [Delaware  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Circulation processes at the acid waste disposal site are highly event-dominated, with the majority of the water transport occurring during strong northeasters. There is a mean flow to the south alongshore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months, the ocean stratifies with warm water over cold water. A distinct thermocline was observed with expendable bathythermographs during all summer cruises at depths ranging from 10 to 21 meters. During stratified conditions, the near-bottom drogues showed very little movements. The duPont waste plume was observed in LANDSAT satellite imagery during dump up to 54 hours after dump.

Klemas, V. (principal investigator); Davis, G.; Henry, R.

1975-01-01

67

10 CFR 61.52 - Land disposal facility operation and disposal site closure.  

Code of Federal Regulations, 2011 CFR

...boundaries and locations of each disposal unit (e.g., trenches) must be accurately located and mapped by means of a...must be carried out as each disposal unit (e.g., each trench) is filled and covered. (10) Active waste disposal...

2011-01-01

68

10 CFR 61.52 - Land disposal facility operation and disposal site closure.  

Code of Federal Regulations, 2010 CFR

...boundaries and locations of each disposal unit (e.g., trenches) must be accurately located and mapped by means of a...must be carried out as each disposal unit (e.g., each trench) is filled and covered. (10) Active waste disposal...

2010-01-01

69

43 CFR 2743.3 - Leased disposal sites.  

Code of Federal Regulations, 2011 CFR

...development, for solid waste disposal or for any other purpose that...may result in or include the disposal, placement, or release of...regulations applicable to the disposal of solid wastes and hazardous...reimbursement from the lessee for the costs of the investigation....

2011-10-01

70

43 CFR 2743.3 - Leased disposal sites.  

Code of Federal Regulations, 2012 CFR

...development, for solid waste disposal or for any other purpose that...may result in or include the disposal, placement, or release of...regulations applicable to the disposal of solid wastes and hazardous...reimbursement from the lessee for the costs of the investigation....

2012-10-01

71

43 CFR 2743.2 - New disposal sites.  

Code of Federal Regulations, 2013 CFR

...determines may include the disposal, placement, or release of...applicable to lands used for the disposal, placement, or release...regulations applicable to the disposal of solid wastes and hazardous...from the applicant for the costs of the investigation....

2013-10-01

72

43 CFR 2743.2 - New disposal sites.  

Code of Federal Regulations, 2011 CFR

...determines may include the disposal, placement, or release of...applicable to lands used for the disposal, placement, or release...regulations applicable to the disposal of solid wastes and hazardous...from the applicant for the costs of the investigation....

2011-10-01

73

43 CFR 2743.2 - New disposal sites.  

Code of Federal Regulations, 2012 CFR

...determines may include the disposal, placement, or release of...applicable to lands used for the disposal, placement, or release...regulations applicable to the disposal of solid wastes and hazardous...from the applicant for the costs of the investigation....

2012-10-01

74

43 CFR 2743.3 - Leased disposal sites.  

Code of Federal Regulations, 2013 CFR

...development, for solid waste disposal or for any other purpose that...may result in or include the disposal, placement, or release of...regulations applicable to the disposal of solid wastes and hazardous...reimbursement from the lessee for the costs of the investigation....

2013-10-01

75

75 FR 19311 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation  

Federal Register 2010, 2011, 2012, 2013

...proposing to designate the Guam Deep Ocean Disposal Site (G-DODS...Washington, DC 20460. 10. EPA Web site: http://www.epa...is also typical of unaffected deep-ocean environments removed...temperature differences between the deep ocean disposal site and the...

2010-04-14

76

75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation  

Federal Register 2010, 2011, 2012, 2013

...is designating the Guam Deep Ocean Disposal Site...DC 20460. 10. EPA Web site: http://www...typical of unaffected deep-ocean environments removed...advising to check the Web site for that trip. This...previous monitoring of deep ocean disposal...

2010-09-08

77

Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal.  

PubMed Central

Clostridium perfringens, a marker of domestic sewage contamination, was enumerated in sediment samples obtained from the vicinity of the 106-Mile Site 1 month and 1 year after cessation of sewage disposal at this site. C. perfringens counts in sediments collected at the disposal site and from stations 26 nautical miles (ca. 48 km) and 50 nautical miles (ca. 92 km) to the southwest of the site were, in general, more than 10-fold higher than counts from an uncontaminated reference site. C. perfringens counts at the disposal site were not significantly different between 1992 and 1993, suggesting that sewage sludge had remained in the benthic environment at this site. At stations where C. perfringens counts were elevated (i.e., stations other than the reference station), counts were generally higher in the top 1 cm and decreased down to 5 cm. In some cases, C. perfringens counts in the bottom 4 or 5 cm showed a trend of higher counts in 1993 than in 1992, suggesting bioturbation. We conclude that widespread sludge contamination of the benthic environment has persisted for at least 1 year after cessation of ocean sewage disposal at the 106-Mile Site. PMID:8633872

Hill, R T; Straube, W L; Palmisano, A C; Gibson, S L; Colwell, R R

1996-01-01

78

Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site  

SciTech Connect

Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

Chu, M.S.Y.; Bernard, E.A.

1991-12-01

79

Groundwater hydrology study of the Ames Chemical Disposal Site  

SciTech Connect

The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine.

Stickel, T.

1996-05-09

80

Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

Wickline, Alfred

2005-12-01

81

Final long-term surveillance plan for the Spook, Wyoming, disposal site  

SciTech Connect

A general license for the custody and long-term care of DOE Uranium Mill Tailings Remedial Action (UMTRA) Project permanent disposal sites was issued by the US Nuclear Regulatory Commission (NRC), and became effective on November 29, 1990. The general license will be in effect for a specific disposal site when the NRC accepts the disposal site`s long-term surveillance plan (LTSP) and concurs that remedial action is complete at that site. This document describes in detail the long-term surveillance activities for the Spook, Wyoming, disposal site, including monitoring, maintenance, and emergency measures necessary to fulfill the conditions of the general license, and to ensure that the disposal cell continues to comply with the UMTRA design standards.

NONE

1993-01-01

82

Dungeness crab survey for the Southwest Ocean Disposal Site and addtiional sites off Grays Harbor, Washington, June 1991  

SciTech Connect

As part of the Grays Harbor Navigation Improvement Project, the US Army Corps of Engineers, Seattle District (USACE), has made active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. Disposal site boundaries were established to avoid an area where high densities of Young-of-the-Year (YOY) Dungeness crab, Cancer magister, were observed during the site selection surveys. To monitor possible impacts of disposal operations on Dungeness crab at the site, USACE recommended a crab distribution survey prior to disposal operations in the February 1989 environmental impact statement supplement (EISS) as part of a tiered monitoring strategy for the site. According to the tiered monitoring strategy, a preliminary survey is conducted to determine if the disposal site contains an exceptionally high density of YOY Dungeness crab. The trigger for moving to a more intensive sampling effort is a YOY crab density within the disposal site that is 100 times higher than the density in the reference area to the north. This report concerns a 1991 survey that was designed to verify that the density of YOY Dungeness crab present at the disposal site was not exceptionally high. Another objective of the survey was to estimate Dungeness crab densities at nearshore areas that are being considered as sediment berm sites by USACE.

Antrim, L.D.; Cullinan, V.I.; Pearson, W.H. [Battelle Marine Research Lab., Sequim, WA (United States)

1992-01-01

83

Hanford Site waste treatment/storage/disposal integration  

SciTech Connect

In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

MCDONALD, K.M.

1999-02-24

84

40 CFR 61.154 - Standard for active waste disposal sites.  

...POLLUTANTS National Emission Standard for Asbestos 61.154 Standard for active waste...active waste disposal site that receives asbestos-containing waste material from a source...any active waste disposal site where asbestos-containing waste material has...

2014-07-01

85

INCO-WBC-1-509173 Reintegration of coal ash disposal sites and mitigation of  

E-print Network

1 INCO-WBC-1-509173 RECOAL Reintegration of coal ash disposal sites and mitigation of pollution be involved in the decision-making process. The handbook provides a framework for coal ash pollution output of the RECOAL project ­ "Reintegration of coal ash disposal sites and mitigation of pollution

86

In situ radiological characterization to support a test excavation at a liquid waste disposal site  

SciTech Connect

An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed.

Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

1994-05-01

87

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01

88

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01

89

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01

90

STRATEGY FOR MONITORING OF CONTAMINANT DISTRIBUTIONS RESULTING FROM PROPOSED SEWAGE SLUDGE DISPOSAL AT THE 106-MILE OCEAN DISPOSAL SITE  

EPA Science Inventory

It has been proposed that future ocean disposal of sewage sludge from the US east coast be done at a site beyond the edge of the continental shelf. In anticipation of that, a monitoring strategy has been developed to determine the average spatial distribution of contamination. Th...

91

Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods  

SciTech Connect

According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

Veil, J.A.

1997-09-01

92

Long-term surveillance plan for the South Clive disposal site Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-09-01

93

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01

94

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado  

SciTech Connect

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-08-01

95

Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site near Rifle, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Estes Gulch disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01

96

Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990  

SciTech Connect

As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1991-09-01

97

40 CFR 228.9 - Disposal site monitoring.  

Code of Federal Regulations, 2012 CFR

...agencies, or contractors, special studies by permittees, and the analysis and interpretation of data from remote or automatic sampling and/or sensing devices. The primary purpose of the monitoring program is to evaluate the impact of disposal...

2012-07-01

98

40 CFR 228.9 - Disposal site monitoring.  

Code of Federal Regulations, 2013 CFR

...agencies, or contractors, special studies by permittees, and the analysis and interpretation of data from remote or automatic sampling and/or sensing devices. The primary purpose of the monitoring program is to evaluate the impact of disposal...

2013-07-01

99

40 CFR 228.9 - Disposal site monitoring.  

Code of Federal Regulations, 2011 CFR

...agencies, or contractors, special studies by permittees, and the analysis and interpretation of data from remote or automatic sampling and/or sensing devices. The primary purpose of the monitoring program is to evaluate the impact of disposal...

2011-07-01

100

Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

NONE

1997-02-01

101

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01

102

40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...  

...for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...POLLUTANTS National Emission Standard for Asbestos 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and...

2014-07-01

103

Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-01-01

104

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

Not Available

1994-03-01

105

UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office  

E-print Network

the Montlake Landfill Cedar Hills Landfill Landfill Maple Valley, WA Eastmont Transfer Station Landfill SeattleUW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal Washington State or UW contract vendors. For other waste streams that also cannot be disposed of as municipal

Wilcock, William

106

Sorption of strontium and fractal scaling of the heterogeneous media in a candidate VLLW disposal site  

E-print Network

used for dis- posing the very low level radioactive waste (VLLW). On the process of safety for a candidate very low level waste (VLLW) disposal site, with the grain size ranging from tens of microns to 75 between Kd and D was approximately linear. Keywords Heterogeneous media Á Waste disposal Á Fractal

Hu, Qinhong "Max"

107

Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic  

Microsoft Academic Search

Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research

Tomas

2003-01-01

108

Description and selection of soils at two oil shale disposal sites  

Microsoft Academic Search

This paper presents geologic soil descriptions of two oil shale areas selected for soil sampling. Soil samples are to be collected specifically from areas designated for spent shale disposal. One shale disposal site is the Colorado Rio Blanco lease tract C-a, 84 Mesa. The other area is adjacent to the Clegg Creek Member of the New Albany shale in southeast

McGowan

1985-01-01

109

RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008  

Microsoft Academic Search

The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to

ERB DB

2008-01-01

110

DREDGED MATERIAL TRANSPORT AT DEEP-OCEAN DISPOSAL SITES  

EPA Science Inventory

Assessment of environmental impact of dredged material disposal in deep ocean water calls for predictions of water column concentration, exposure time as well as the impacted area of the bottom (footprint). redictions based on vertical willing and horizontal advection of single p...

111

Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project  

SciTech Connect

Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

NSTec Environmental Management

2009-01-31

112

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01

113

Geographic factors related to site suitability of low-level waste disposal  

SciTech Connect

A number of factors related to the site suitability of low-level waste disposal sites are discussed. The factors are a combination of those which might be considered environmental and those dealing with site criteria. Among the factors covered are: possible population criteria, alternative site selection, transportation criteria and community involvement considerations. All these factors are discussed in a manner based on the premise that the technology exists to carry out low-level waste disposal in a manner such that public health and safety can be insured. The conclusion of the discussion is that problems encountered in siting low-level waste facilities will be largely societal and political in nature.

Zittel, H.E.

1981-01-01

114

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01

115

Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site.  

National Technical Information Service (NTIS)

This document establishes elements of the US Department of Energy's (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the lon...

1995-01-01

116

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01

117

Geological criteria for the selection of unconfined dredged material disposal sites in estuaries and lagoons  

E-print Network

GEOLOGIC CRITERIA FOR THE SELECTION OF UNCONFINED DREDGED MATERIAL DISPOSAL SITES IN ESTUARIES AND LAGOONS A Thesis ROBERT MICHAEL MCHAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the rectuirement... for the degree of MASTER OF SCIENCE December 1977 Ma jor Sub j ect: Geology GEOLOGIC CRITERIA FOR THE SELECTION OF UNCONFINED DREDGED MATERIAL DISPOSAL SITES IN ESTUARIES AND LAGOONS A Thesis ROBERT MICHAEL MCHAM Approved as to style and content by...

McHam, Robert Michael

2012-06-07

118

Flume experiments on sediment mixtures from the offshore dredged material disposal site, Galveston Texas  

E-print Network

FLUME EXP RIMENTS ON SED IliENT MIXTURES FROM 1'HE OFFSHORE DREDGED MATERIAL DISPOSAL SITE, GALVESTON, TEXAS A Thesis by ANTHONX JOSEPH MOHEREK Submitted t. o th' Graduate Co1lege of Iexas Atli University in partial Fulfillment... of the requirement for tht degree of MASTER OF SC:ENCE August 1977 Major Sub. :e . t: Oceanograghy FLUME EXPERIMENTS ON SEDIMENT MIXTURES FROM THE OFFSHORE DREDGED MATERIAL DISPOSAL SITE, GALVESTON, TEXAS A Thesis by ANTHONY JOSEPH MOHEREK Approved...

Moherek, Anthony Joseph

2012-06-07

119

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

SciTech Connect

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

None

2013-11-01

120

Safe disposal of radionuclides in low-level radioactive-waste repository sites  

Microsoft Academic Search

This paper reports on the status of land disposal of low-level radioactive waste: experience and performance of existing low-level radioactive-waste sites, geohydrologic sitting guidelines and regulatory requirements, characterization of the geology and hydrology of low-level radioactive-waste repository sites, and geohydrologic modeling of performance of low-level radioactive-waste repository sites.

M. S. Bedinger; P. R. Stevens

1990-01-01

121

Engineering geological aspects of replacing a solid waste disposal site with a sanitary landfill  

Microsoft Academic Search

The current solid waste disposal site in the Mamak district of Ankara is being engulfed by the growing city. All varieties of solid wastes, including medical wastes, are stored at the present site in an irregular manner. Topographical and geological conditions at Mamak waste site are favorable for constructing a sanitary landfill. Located at the edge of a topographical depression,

Kamil Kayabali

1996-01-01

122

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01

123

Use of DOE site selection criteria for screening low-level waste disposal sites on the Oak Ridge Reservation  

SciTech Connect

The proposed Department of Energy (DOE) site selection criteria were applied to the Oak Ridge Reservation, and the application was evaluated to determine the criteria's usefulness in the selection of a low-level waste disposal site. The application of the criteria required the development of a methodology to provide a framework for evaluation. The methodology is composed of site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site capable of satisfying the site selection criteria. The site characterization stage relies on a detailed site investigation to determine site acceptability. The site selection criteria were applied to the DOE Oak Ridge Reservation through the site screening stage. Results of this application were similar to those of a previous siting study on the Oak Ridge Reservation. The DOE site selection criteria when coupled with the methodology that was developed were easily applied and would be adaptable to any region of interest.

Lee, D.W.; Ketelle, R.H.; Stinton, L.H.

1983-09-01

124

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01

125

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

NONE

1996-05-01

126

Long-term surveillance plan for the Rifle, Colorado, Disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

NONE

1996-09-01

127

Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base  

SciTech Connect

This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512.

McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

1993-06-01

128

Low level radioactive waste disposal siting: a social and technical plan for Pennsylvania. Volume 3. Technical analyses  

Microsoft Academic Search

Volume III comprises 9 chapters: Definition of Low Level Radioactive Waste; A Perspective on the Relative Toxicity of Low Level Radioactive Waste; A Generic Low Level Radioactive Waste Disposal Facility Description; An Economic Analysis of a Generic Low Level Radioactive Waste Disposal Facility; Site Selection; Geology-Pennsylvania Specific; Technical Considerations; Disposal Cell Stability; and Site Monitoring Considerations.

G. Aron; R. J. Bord; F. A. Clemente; W. P. Dornsife; A. R. Jarrett; W. A. Jester; R. F. Schmalz; W. F. Witzig

1984-01-01

129

36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.  

Code of Federal Regulations, 2010 CFR

...operator of a solid waste disposal site located on lands or waters added to the...dispose of solid waste after expiration...the land's or water's designation...operator of a solid waste disposal site located on lands or waters...

2010-07-01

130

36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.  

Code of Federal Regulations, 2013 CFR

...operator of a solid waste disposal site located on lands or waters added to the...dispose of solid waste after expiration...the land's or water's designation...operator of a solid waste disposal site located on lands or waters...

2013-07-01

131

36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.  

Code of Federal Regulations, 2011 CFR

...operator of a solid waste disposal site located on lands or waters added to the...dispose of solid waste after expiration...the land's or water's designation...operator of a solid waste disposal site located on lands or waters...

2011-07-01

132

36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.  

Code of Federal Regulations, 2012 CFR

...operator of a solid waste disposal site located on lands or waters added to the...dispose of solid waste after expiration...the land's or water's designation...operator of a solid waste disposal site located on lands or waters...

2012-07-01

133

Investigations of subaqueous borrow pits as disposal sites for contaminated dredged material from New York Harbor  

SciTech Connect

Past underwater sand mining has left many large depressions, called subaqueous borrow pits, on the floor of the Lower Bay of New York Harbor. Research has shown that borrow pits are natural sinks for contaminant-laden sediment and that they contain stressed benthic communities different from those found in nonpit areas. The disposal and capping of contaminated dredged material into borrow pits would obviate possible impacts at the ocean disposal site while reclaiming lost portions of the sandy bottom of New York Harbor. A demonstration project to prove the feasibility of borrow pit disposal was begun by the New York District (NYD). The project was not completed because of litigation, although research in other parts of the country showed that borrow pit disposal was technically feasible. Based on this information, the NYD is implementing an operational program for dredged material disposal into existing or new borrow pits. A Federal EIS is being prepared.

Tavolaro, J.F.; Paula, M.A.

1992-04-01

134

Hydrogeologic setting east of a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

Core samples from 45 test wells and 4 borings were used to describe the glacial geology of the area east of the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Previous work has shown that shallow ground water beneath the disposal site flows east through a pebbly-sand unit of the Toulon Member of the Glasford Formation. The pebbly sand was found in core samples from wells in an area extending northeast from the waste-disposal site to a strip-mine lake and east along the south side of the lake. Other stratigraphic units identified in the study area are correlated with units found on the disposal site. The pebbly-sand unit of the Toulon Member grades from a pebbly sand on site into a coarse gravel with sand and pebbles towards the lake. The Hulick Till Member, a key bed, underlies the Toulon Member throughout most of the study area. A narrow channel-like depression in the Hulick Till is filled with coarse gravelly sand of the Toulon Member. The filled depression extends eastward from near the northeast corner of the waste-disposal site to the strip-mine lake. (USGS)

Foster, J. B.; Garklavs, George; Mackey, G. W.

1984-01-01

135

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01

136

Long-term surveillance plan for the Green River, Utah disposal site. Revision 1  

SciTech Connect

The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01

137

Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0  

Microsoft Academic Search

Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole'';

Laura Pastor

2006-01-01

138

MICROBIAL DEGRADATIVE ACTIVITY IN GROUND WATER AT A CHEMICAL WASTE DISPOSAL SITE  

EPA Science Inventory

The microbial fate and effects of toxic organic chemicals at the ambient concentration in leachates derived from a waste disposal landfill site are examined. roundwater downslope from the burial site contains high levels of dissolved organic chemicals such as toluene, xylene, ben...

139

Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA  

E-print Network

Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA E- to mid- term dredge material management strategies for the Federal Navigation Project at Grays Harbor dredging quantities. However, the most heavily used dredged material placement sites lie in proximity

US Army Corps of Engineers

140

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

NONE

1995-11-01

141

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01

142

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanfords system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program. However, the NNSA/NSO has identified DOE complex-wide issues: (1) the temporary closure of the Hanford facility to off-site generators leaves the NTS as the only Federal facility able to dispose of MLLW. If the Hanford facility is not permitted to accept waste from off-site generators after December 2010, the DOE complex will have no Federal facility to accept higher activity MLLW. It is not known if commercial disposal options for higher activities MLLW will be available by December 2010. (2) MLLW forecasts to the NTS do not fully utilize the 20,000 cubic meter capacity within five years. The DOE has urged generator facilities to re-prioritize projects and has conducted planning meetings to identify actions to increase the use of the NTS disposal capacity. (3) Generators have requested disposal of classified material in the MLLW disposal cell, however closure, safeguard termination, and irretrievability issues must be resolved.

Gary Pyles; Jhon Carilli

2007-02-01

143

Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-02-01

144

Long-term surveillance plan for the Tuba City, Arizona disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

NONE

1996-02-01

145

Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina  

USGS Publications Warehouse

This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

Speiran, G. K.; Belval, D. L.

1985-01-01

146

Utilizing gamma isotope tracers to determine sediment source at reef sites near the Charleston Ocean Dredged Material Disposal Site.  

PubMed

The Charleston, South Carolina Ocean Dredged Material Disposal Site (ODMDS) has been heavily utilized as a disposal site for dredged material resulting from maintenance and channel deepening in the Charleston Harbor. Continuous monitoring by the South Carolina Department of Natural Resources at the ODMDS has indicated the presence of fine-grained sediment within the monitoring zones. However, since the Charleston Harbor is formed by the conjunction of three rivers, it has been suggested that some of the fine-grained sediment surrounding the ODMDS could be due to river transport rather than solely by disposal activities. In order to trace the outflow of sediment from the harbor, natural and man-made isotopes were utilized. (7)Be (natural cosmogenic isotope) and (137)Cs (man-made isotope) are often associated with estuarine sediments. Both isotopes were used as tracers in an attempt to determine the extent of density driven sediment flow from the Charleston Harbor. (7)Be was detected in many of the offshore sampling stations indicating a direct correlation to the harbor. (137)Cs was only found in one sediment trap sample offshore, but none the less indicated some transport from the harbor. Further study for utilizing isotopic tracers in determining offshore sediment transport is still being conducted at the disposal site. It is anticipated that further (7)Be and (137)Cs isotopic monitoring offshore Charleston will aid in determining the role that tidal and density driven sediments play in the sediment budgets at the hard bottom reef sites. PMID:16359711

Noakes, Scott E; Jutte, Pamela C

2006-06-01

147

COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE  

SciTech Connect

Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.

Colarusso, Angela; Crowe, Bruce; Cochran, John R.

2003-02-27

148

The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site  

Microsoft Academic Search

A study was carried out at a sanitary waste disposal site for Kutsaga Tobacco Research Station, Zimbabwe, which uses large amounts of copper oxy chloride for sterilization of recycled float trays in flooded bench tobacco seedling production systems. Soil samples randomly collected from six stream bank zones (bands up the valley slope) varying in their distance ranges from the centre

J. Masaka; M. Muunganirwa

2007-01-01

149

Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation  

E-print Network

being used for coal ash deposits. Pollutants present in the ash can contaminate water resources and soil-cost methods for the remediation of coal ash deposits and affected water resources. An international consortium solutions. Pollution: m The high alkalinity of ash transport and disposal site discharge water (pH 10

150

MONITORING REPORT FOR 1995 AND 1996 - SAN FRANCISCO DEEP OCEAN DISPOSAL SITE (SF-DODS)  

EPA Science Inventory

This report documents the findings of Tier 1 monitoring activities at the San Francisco Deep Ocean Disposal Site (SF-DODS) for calendar years 1995 and 1996. The regional monitoring activities included: collection of regional physical oceanographic data; net sampling of plankton ...

151

Ecological survey for the siting of the Mixed and Low-Level Waste Disposal Facility  

Microsoft Academic Search

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Lab. (INEL) at two candidate locations for the siting of the Mixed and Low-Level Waste Disposal Facility (MLLWDF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate

Hoskinson

1994-01-01

152

Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois  

USGS Publications Warehouse

This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

Nicholas, J. R.; Healy, R. W.

1988-01-01

153

DRINK: a biogeochemical source term model for low level radioactive waste disposal sites  

Microsoft Academic Search

Interactions between element chemistry and the ambient geochemistry play a significant role in the control of radionuclide migration in the geosphere. These same interactions influence radionuclide release from near surface, low level radioactive waste, disposal sites once physical containment has degraded. In situations where LLW contains significant amounts of metal and organic materials such as cellulose, microbial degradation in conjunction

Paul Humphreys; Ray McGarry; Alex Hoffmann; Peter Binks

1997-01-01

154

RESTORATION OF FAILING ON-SITE WASTEWATER DISPOSAL SYSTEMS USING WATER CONSERVATION  

EPA Science Inventory

A study was made to determine the ability of existing water conservation hardware to correct malfunctioning on-site wastewater disposal systems resulting from soil clogging and to document, under actual use conditions, possible reduction of wastewater with water conservation hard...

155

1996 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01

156

Benthic resources assessment technique evaluation of potential dredged material disposal sites in Puget Sound. Pase 2 sites  

SciTech Connect

The U.S. Army Engineer District, Seattle is currently involved in a decision-making process regarding the designation of open-water dredged-material disposal sites in Puget Sound and adjacent waters. In 1985 a joint effort was initiated to examine long-term requirements and strategies for open-water disposal of dredged materials. The quality of benthic habitats at proposed disposal sites was identified as a major topic of interest in the PSDDA study because of potential impacts to demersal fish feeding habitat. One aspect of benthic habitat quality is the relative amount of trophic support that a given benthic habitat provides demersal bottom-feeding fishes. Analytical procedures have been developed to estimate this aspect of benthic-habitat quality. These procedures are collectively called the Benthic Resources Assessment Technique, or BRAT. The BRAT analysis involves the collection of two data sets; one which describes benthic biomass in terms of size and vertical distribution in sediments at selected sites, and a second which describes the foraging depth and prey size exploitation pattern of demersal fishes at those sites. The BRAT then estimates that portion of the total benthic infaunal biomass that is both available and vulnerable to predation by target fishes.

Clarke, D.G.; Kendall, D.

1987-12-01

157

Importance of geologic characterization of potential low-level radioactive waste disposal sites  

USGS Publications Warehouse

Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

Weibel, C. P.; Berg, R. C.

1991-01-01

158

Preliminary Hazard Classification for the Remediation of the 100-B/C Area Remaining Sites (Remove-Treat-Dispose).  

National Technical Information Service (NTIS)

This document provides the preliminary hazard classification for the sampling and characterization activities to be conducted at the 100-B/C remove-treat-dispose sites in support of remedial design and eventual remediation of these sites.

T. M. Routt

2000-01-01

159

Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic  

SciTech Connect

Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. This selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.

Tomas, J.

2003-02-25

160

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01

161

Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment  

NASA Astrophysics Data System (ADS)

In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy substrates amended with compost produced from locally available sewage sludge and saw dust can be improved. The metal content of grass grown in the various treatments was considered to be elevated compared to normal contents. However, metal uptake in compost treatments was lower than in untreated plots. A preliminary cost assessment, comparing the remediation technology tested on site Divkovici with a standard soil covering technique revealed financial benefits for the compost method due to significant lower application rates.

Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Httl, R. F.

2009-04-01

162

The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective  

SciTech Connect

For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

1994-04-01

163

Quantifying Deep Vadose Zone Soil Water Potential Changes at a Waste Disposal Site  

SciTech Connect

Recent advances in moisture monitoring using tensiometers has resulted in long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor soil water potential conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in soil water potential in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to above normal precipitation. These tensiometer data have the potential to effectively and rapidly validate that a remedial action such as placement of an ET cover would be successful in reducing the water moisture movement inside the disposal area to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

Joel M. Hubbell; Deborah L. McElroy

2007-08-01

164

Pilot study of dredging and disposal alternatives for the New Bedford Harbor, Massachusetts, Superfund site  

SciTech Connect

Bottom sediments in New Bedford Harbor are contaminated with polychlorinated biphenyls (PCB) and heavy metals to the extent that the site is considered one of the Nation's worst hazardous waste sites and is being studied by the US Environmental Protection Agency (EPA) under the Federal Superfund program. At the request of EPA, the Corps of Engineers has evaluated the feasibility of dredging and disposal alternatives for the upper estuary of New Bedford, an area where PCB concentrations in the percent levels have been detected in the sediments. Between May 1988 and February 1989 a pilot study was performed as part of this effort. This study involved the evaluation of three hydraulic pipeline dredges with the contaminated sediments being placed in a confined disposal facility and a contained aquatic disposal cell. This paper provides a comprehensive discussion of our approach and the results of this $6.5 million effort. The study provided for a site-specific technical evaluation of the methods used which has allowed the Corps of Engineers to make recommendations to EPA which will be critical in their final evaluation of remedial alternatives for the site.

Otis, M.J.

1992-03-01

165

Movement of tagged dredged sand at thalweg disposal sites in the upper Mississippi River  

SciTech Connect

Thalweg disposal experiments have been conducted at three sites on the upper Mississippi River. During normal channel maintenance, hydraulically dredged sand was tagged with sand coated with fluorescent dye prior to disposal as a pile in the thalweg. In postdisposal surveys surficial bottom sediment samples were collected in the disposal area and in the thalweg and border areas downstream to determine the movement of the dredged sand relative to environmentally sensitive river habitats. The experiments were initiated in successive years, and the tagged sand has been tracked for 1 to 3 years, depending on the site. Although the downstream movement of the dredged sand was not the same at each site, the general pattern of behavior was similar. Downstream movement was confined primarily to the main channel and occurred in response to periods of high river discharge. There was no statistically significant evidence of dredged sand dispersing out of the main channel into nearby border areas or sloughs. The distributions of dyed sand in cores from one site suggest that the dredged sand has been incorporated into natural bed forms. 7 refs., 5 figs.

Ditmars, J.D.; McCown, D.L.; Paddock, R.A.

1986-01-01

166

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanfords system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01

167

Description and selection of soils at two oil shale disposal sites  

SciTech Connect

This paper presents geologic soil descriptions of two oil shale areas selected for soil sampling. Soil samples are to be collected specifically from areas designated for spent shale disposal. One shale disposal site is the Colorado Rio Blanco lease tract C-a, 84 Mesa. The other area is adjacent to the Clegg Creek Member of the New Albany shale in southeast Indiana. Site descriptions are considered to be fundamental before sampling in order to collect samples that are representative of the major parent material. The dominant parent materials found near Rio Blanco are basalt, sandstone, and marlstone. The dominant parent material in southeast Indiana is glacial till. The soils weathered from these materials have different physical and chemical characteristics. Collected samples will be representative of these characteristics. 6 refs., 3 figs.

McGowan, L.J.

1985-06-01

168

Description of Site Operations at the Low-Level Radioactive Waste Disposal Site  

Microsoft Academic Search

The purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than

Y. T. Mohamed; M. A. Hasan; Y. F. Lasheen

2007-01-01

169

A temporal and spatial assessment of TBT concentrations at dredged material disposal sites around the coast of England and Wales.  

PubMed

Despite legislative interventions since the 1980s, contemporary concentrations of organotin compounds in marine sediments still impose restrictions on the disposal of dredged material in the UK. Here, we analyse temporal and spatial data to assess the effectiveness of the ban on the use of TBT paints in reducing concentrations at disposal sites. At a national scale, there was a statistically significant increase in the proportion of samples in which the concentration was below the limit of detection (LOD) from 1998 to 2010. This was observed for sediments both inside and outside the disposal sites. However, this temporal decline in organotin concentration is disposal site-specific. Of the four sites studied in detail, two displayed significant increases in proportion of samples below LOD over time. We argue that site-specificity in the effectiveness of the TBT ban results from variations in historical practices at source and unique environmental characteristics of each site. PMID:24368118

Bolam, Thi; Barry, Jon; Law, Robin J; James, David; Thomas, Boby; Bolam, Stefan G

2014-02-15

170

Treatment and disposal of high-level radioactive waste at the Hanford Site: The technical challenge  

SciTech Connect

The US Department of Energy`s (DOE) Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank waste in the US. A Tank Waste Remediation System (TWRS) Program was established in 1991 to safely store, treat, and dispose of those wastes. This paper describes the technical challenge in conducting the TWRS Program that will take more than 30 years and cost tens of billions of dollars to complete.

Wodrich, D.D.; Honeyman, J.O.; Wojtasek, R.D.

1994-07-01

171

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01

172

Potential overflow of Mojave Creek near disposal site, Edwards Air Force Base, California  

USGS Publications Warehouse

Sedimentological evidence in Mojave Creek near Edwards, California, indicates that the largest discharge in the last hundred years near the disposal site of the Main Base Landfill at Edwards Air Force Base was a few hundred cubic feet per second. The distal ends of two alluvial fans on the Mojave Creek floodplain near the Main Base Landfill have not been eroded substantially since sediment supply was cut off by a railroad grade completed in 1884. Previous estimates of flood discharges were 4,000 cubic feet per second and larger in this reach; the estimates were calculated by regression equations derived from regional characteristics. However, a 100-year rainfall in 1983 failed to produce erosion in Mojave Creek commensurate with discharges of greater than about 100 cubic feet per second. To test the potential for the creek to overflow and reach the disposal site, a hypothetical discharge was used to determine the depth of flooding at local cross sections. Although the access road from Mojave Boulevard to the Main Base Landfill may be inundated during a flood, the artificial grade at the disposal site would not be reached at a discharge of 2,000 cubic feet per second, which is an order of magnitude greater than the apparent flood discharges that occurred during the past hundred years in Mojave Creek near the present Main Base Landfill.

Dinehart, Randy L.; Harmon, Jerry G.

1998-01-01

173

Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: A case study in southern China  

Microsoft Academic Search

Near surface disposal of low- and intermediate-level radioactive wastes (LILW) requires evaluating the field conditions of the candidate site. However, assessment of the site conditions may be challenging due to the limited prior knowledge of some remote sites, and various multi-disciplinary data requirements at any given site. These situations arise in China as in the rest of the industrialized world,

Shuping Yi; Haiyi Ma; Chunmiao Zheng; Xuebin Zhu; Hua'an Wang; Xueshan Li; Xueling Hu; Jianbo Qin

174

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect

The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

NSTec Environmental Programs

2010-10-04

175

Quantifying Deep Vadose Zone Soil Water Potential Changes At A Waste Disposal Site  

SciTech Connect

Recent advances in moisture monitoring using tensiometers has allowed long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor moisture conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in moisture content presumably in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to normal to above normal precipitation. This tensiometer data can be used to evaluate the appropriateness of the current conceptual model of flow at this site. It also shows that a moisture monitoring system should be effective to rapidly validate that a proposed remedial action (such as placement of an ET cover) would be effective in reducing the moisture movement to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

Joel M. Hubbell; Deborah L. McElroy

2007-10-01

176

Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site  

SciTech Connect

This document establishes elements of the US Department of Energy`s (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the long-term surveillance of the Canonsburg site. The Canonsburg (CAN) site is located within the borough of Canonsburg, Washington County, in southwestern Pennsylvania. The Canonsburg site covers approximately 30 acres (74 hectares). The disposal cell contains approximately 226,000 tons (241,000 tons) of residual radioactive material (RRM). Area C is southeast of the Canonsburg site, between Strabane Avenue and Chartiers Creek. Contaminated soils were removed from Area C during the remedial action, and the area was restored with uncontaminated fill material.After this cleanup, residual quantities of thorium-230 were detected at several Area C locations. The remedial action plan did not consider the ingrowth of radium-226 from thorium-230 as part of the Area C cleanup, and only two locations contained sufficient thorium-230 concentrations to result in radium-226 concentrations slightly above the US Environmental Protection Agency (EPA) standards.

NONE

1995-10-01

177

Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report  

SciTech Connect

The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

Not Available

1993-08-01

178

Acoustic mapping of the regional seafloor geology in and around Hawaiian ocean dredged-material disposal sites  

USGS Publications Warehouse

During January and February 1998 the U.S. Geological Survey Coastal and Marine Geology Team (USGS) conducted regional high-resolution multibeam mapping surveys of the area surrounding EPA-designated ocean disposal sites located offshore of the Hawaiian Islands of Oahu, Kauai, Maui, and Hawaii. The sites are all located within 5 nautical miles of shore on insular shelves or slopes. Regional maps were required of areas much larger than the disposal sites themselves to assess both the regional seafloor geology and the immediate vicinity of the disposal sites. The purpose of the disposal site surveys was to delimit the extent of disposal material by producing detailed bathymetric and backscatter maps of the seafloor with a 1 m spatial accuracy and <1% depth error. The advantage of using multibeam over conventional towed, single-beam sidescan sonar is that the multibeam data are accurately georeferenced for precise location of all imaged features. The multibeam produces a coregistered acoustic-backscatter map that is often required to locate individual disposal deposits. These data were collected by the USGS as part of its regional seafloor mapping and in support of ocean disposal site monitoring studies conducted in cooperation with the US Environmental Protection Agency (EPA) and the US Army Corps of Engineers (COE).

Torresan, Michael E.; Gardner, James V.

2000-01-01

179

76 FR 26720 - Notice of Intent: Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off...  

Federal Register 2010, 2011, 2012, 2013

...Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off Fort Lauderdale...cooperation with the U.S. Army Corps of Engineers Jacksonville District (USACE), intends...in size, for the disposal of dredged material from the potential construction...

2011-05-09

180

Pennsylvania Public Education Program on the need for establishing a low-level radioactive waste disposal site  

Microsoft Academic Search

The Pennsylvania Public Education Program on the Need for Establishing a Low-Level Radioactive Waste Disposal Site (PELLRAD) is a public service program of the Pennsylvania State University. Its mission is to present to the public timely information and continuing education programs on all issues related to low-level radioactive waste management and disposal. The PELLRAD program monitors and reports on the

D. F. Ryan; W. A. Jester; J. J. Bonner; M. Shields

1994-01-01

181

UTILIZING A CHIRP SONAR TO ACCURATELY CHARACTERIZE NEWLY DEPOSITED MATERIAL AT THE CALCASIEU OCEAN DREDGED MATERIAL DISPOSAL SITE, LOUISIANA  

EPA Science Inventory

The distribution of dredged sediments is measured at the Calcasieu Ocean Dredged Material Disposal Site (ODMDS) using a chirp sonar immediately after disposal and two months later. ubbottom reflection data, generated by a chirp sonar transmitting a 4 to 20 kHz FM sweep, is proces...

182

Spatial patterns of serial murder: an analysis of disposal site location choice.  

PubMed

Although the murders committed by serial killers may not be considered rational, there is growing evidence that the locations in which they commit their crimes may be guided by an implicit, if limited rationality. The hypothesized logic of disposal site choice of serial killers led to predictions that (a) their criminal domains would be around their home base and relate to familiar travel distances, (b) they would have a size that was characteristic of each offender, (c) the distribution would be biased towards other non-criminal activities, and (d) the size of the domains would increase over time. Examination of the geographical distribution of the sites at which 126 US and 29 UK serial killers disposed of their victims' bodies supported all four hypotheses. It was found that rational choice and routine activity models of criminal behavior could explain the spatial choices of serial murderers. It was concluded that the locations at which serial killers dispose of their victims' bodies reflect the inherent logic of the choices that underlie their predatory activities. PMID:11568963

Lundrigan, S; Canter, D

2001-01-01

183

Fuzzy multicriteria disposal method and site selection for municipal solid waste  

SciTech Connect

The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

Ekmekcioglu, Mehmet, E-mail: meceng3584@yahoo.co [Istanbul Technical University, Department of Management Engineering, 34367 Macka, Istanbul (Turkey); Kaya, Tolga [Istanbul Technical University, Department of Management Engineering, 34367 Macka, Istanbul (Turkey); Kahraman, Cengiz [Istanbul Technical University, Department of Industrial Engineering, 34367 Macka, Istanbul (Turkey)

2010-08-15

184

Natural selection of PAH-degrading bacterial guilds at coal-tar disposal sites  

SciTech Connect

Microbial activity patterns at buried coal-tar disposal sites have been under investigation for several years to determine the response of naturally occurring microflora to polycyclic aromatic hydrocarbons (PAHs) at the sites. At one site in upstate New York, data have shown enrichment of PAH-degrading bacteria in subsurface contaminated zones but not in uncontaminated zones. Similar work at a Midwestern site showed that the same trends existed in a heterogeneous disposal site except that a borehole outside the plume showed some PAH-mineralization activity. Polymerase chain reaction amplification of DNA extracted from sediment samples from the New York site indicated the presence of naphthalene metabolism genes nahAc and nahR, similar to those found on the NAH7 plasmid of Pseudomonas putida G7. Significant sequence polymorphism was observed in amplified nahAc products, indicating that divergent homologs of nahAc were present in the native community. Protozoan numbers were elevated in sediment samples displaying relatively high PAH-degrading activity, suggesting that a food chain was established based on PAH-degrading bacteria. Removal of the coal-tar source at the site occurred in 1991. In 1992, sampling of three key borehole stations revealed that mixing and backfilling operations had introduced soil microorganisms into the source area and introduced 14C-PAH-mineralization activity into the previously inactive pristine area. Thus removal of the source of the contaminants and restoration at the site have altered the microbial activity patterns outside the contaminant plume as well as in the source area. 15 refs., 3 figs.

Ghiorse, W.C.; Herrick, J.B.; Sandoli, R.L.; Madsen, E.L. [Cornell Univ., Ithaca, NY (United States)

1995-06-01

185

The significance of natural ground-water recharge in site selection for mill tailings disposal  

SciTech Connect

Milling operations throughout the world have created vast amounts of waste by-products, or tailings, which are often disposed on the land surface. The wastes may be disposed behind dams, on untreated ground, or on compacted clay or synthetic liners of impoundments and trenches. Often one of the principle concerns of environmental regulatory agencies is whether seepage from the waste pile could move through the vadose zone to the water table and possibly contaminate an aquifer. The seepage may be generated by the drainage of liquids initially deposited along with the tailings or by infiltrating meteoric water which leaches soluted from the tailings. The purpose of this article is to discuss some of the commonly held assumptions regarding storage of seepage wastes in the unsaturated zone. The significance of recent studies of water movement in dry climates which pertain to tailings site selection are presented.

Stephens, D.B.

1985-01-01

186

Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate  

SciTech Connect

Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

Al Yaqout, Anwar F

2003-07-01

187

Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site  

SciTech Connect

The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

1994-01-01

188

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01

189

Subsurface-monitoring programs at sites for disposal of low-level radioactive waste  

SciTech Connect

This report, the third of a series, explains the many factors involved in planning, establishing, and conducting a subsurface monitoring program at any site for disposal of low-level radioactive waste. The factors are complexly interrelated, but each aspect is addressed separately to facilitate the decisions that must be made at an early stage. The importance of site characterization is emphasized as a prerequisite to planning the monitoring program. The monitoring program should be fitted to the specific site details, in particular key pathways in the hydrological flow system. Emphasis is placed on sampling and measuring installations to obtain adequate information suitable for use in selecting radionuclide transport models, in verifying model predictive accuracy, and detecting migration of radionuclides. Early monitoring develops a baseline prior to operation, whereas subsequent monitoring during and after operations is concentrated on detection, and less frequent samplings are needed.

Lutton, R.J.; Strohm, W.E. Jr.; Strong, A.B.

1983-04-01

190

Probabilistic Performance Assessment of a Low-Level Radioactive Waste Disposal Site on the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site on the Nevada Test Site has been disposing of low-level, mixed low-level, and transuranic radioactive waste since 1961. In 1988, the U.S. Department of Energy implemented performance objectives for low-level radioactive waste disposal site performance and required all site operators to prepare a performance assessment. Since then, an iterative performance assessment process has been implemented that consists of repeated cycles of site characterization, conceptual model formation/revision, and performance assessment modeling. At the end of each cycle uncertainty and sensitivity analysis are used to determine the need for revision and to identify topics requiring additional research and development. The performance assessment model is implemented in the GoldSim{reg_sign} probabilistic simulation platform. The current site conceptual model, based on site characterization data and process model results, assumes that there is no groundwater pathway under current climatic conditions and that radionuclide releases are predominately upward to the land surface. Radionuclides are released to the land surface by upward liquid advection/diffusion, gas diffusion, biointrusion, and inadvertent human intrusion. The model calculates dose for four members of public exposure scenarios and two intruder scenarios. The highest mean-dose, 0.04 mSv yr{sup -1}, is expected for a low-probability exposure scenario: establishment of a rural community at the site boundary at the end of institutional control. At the end of institutional control, doses are contributed primarily by {sup 3}H in agricultural products produced onsite. After approximately 300 years, the doses are contributed equally by {sup 99}Tc and {sup 210}Pb ingested in vegetables grown at the residence. Technetium is released to the surface by the coupled processes of liquid advection/diffusion occurring deep in the cover and plant uptake/animal burrowing occurring at shallower depths. Lead-210 is deposited in shallow cover soil by the radioactive decay of {sup 222}Rn diffusing in the gas phase. The highest mean dose for the more likely exposure scenario of transient recreational use of the site is 0.002 mSv yr{sup -1}. The transient visitor's dose is contributed predominantly by external irradiation from {sup 214}Pb and {sup 214}Bi, deposited in the cover by diffusion of {sup 222}Rn.

G. J. Shott; V. Yucel; L. T. Desotell

2008-03-01

191

Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)  

SciTech Connect

During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

NONE

1996-11-01

192

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01

193

Geohydrologic aspects for siting and design of low-level radioactive-waste disposal  

USGS Publications Warehouse

The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action. Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

Bedinger, M. S.

1989-01-01

194

CLASSIFICATION OF THE MGR SITE-GENERATED HAZAROUS NONHAZARDOUS & SANITARY WASTE DISPOSAL SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site generated hazardous, non-hazardous and sanitary waste disposal system system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

J.A. Ziegler

1999-08-31

195

Radionuclide disequilibria studies for investigating the integrity of potential nuclear waste disposal sites: subseabed studies.  

SciTech Connect

This study of subseabed sediments indicates that natural radionuclides can be employed to define past long-term migration rates and thereby evaluate the integrity of potential disposal sites in ocean sediments. The study revealed the following conclusions: (1) the sedimentation rate of both the long and short cores collected in the North Pacific is 2.5 mm/1000 yr or 2.5 m/m.yr in the upper 3 meters; (2) the sedimentation rate has been rather constant over the last one million years; and (3) slow diffusive processes dominate within the sediment. Reworking of the sediment by physical processes or organisms is not observed.

Laul, J.C.; Thomas, C.W.; Petersen, M.R.; Perkins, R.W.

1981-09-01

196

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY1999  

Microsoft Academic Search

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the

Barnett

1999-01-01

197

Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options  

SciTech Connect

A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

Jantzen, C.M.

2000-04-10

198

Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco  

SciTech Connect

The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct a study of physical oceanographic and sediment transport processes at the candidate sites, B1B and 1M. The results of that study are presented in this report. 40 refs., 27 figs., 10 tabs.

Sherwood, C.R.; Denbo, D.W.; Downing, J.P. (Pacific Northwest Lab., Richland, WA (USA)); Coats, D.A. (Marine Research Specialists, Ventura, CA (USA))

1990-10-01

199

Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.  

PubMed

There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; <1.4-100, <1.2-100, and <0.5-20 ng/L, respectively). Interestingly, there were specific PFC profiles: perfluoroheptanoic acid and perfluorohexanoic acid (88 and 77 ng/L, respectively) were almost as abundant as PFOA in MD leachate (100 ng/L), whereas PFNA was prevalent in ER and BR (mean, 17 and 6.2 ng/L, respectively) and PFUDA was the most abundant in municipal wastewater (mean, 5.6 ng/L), indicating differences in PFC contents in different waste materials. PMID:22773082

Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

2013-04-01

200

Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.  

PubMed

The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

Feo, Giovanni De; Gisi, Sabino De

2014-11-01

201

Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site  

SciTech Connect

This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Price, L.L. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); [Beta Inc. (United States)

1997-09-01

202

APPLICATION OF A HAZARD-ASSESSMENT RESEARCH STRATEGY FOR WASTE DISPOSAL AT 106-MILE OCEAN DISPOSAL SITE  

EPA Science Inventory

An application of a hazard-assessment research strategy was made using waste disposal at Deepwater Dumpsite-l06 (DWD-106) as an example. The strategy involved the synthesis of results from separate exposure and effects components in order to provide a scientific basis for estimat...

203

Dose and risk assessment for intrusion into mixed waste disposal sites  

SciTech Connect

Sites previously used for disposal of radioactive and hazardous chemical materials have resulted in situations that pose a potential threat to humans from inadvertent intrusion. An example generic scenario analysis was developed to demonstrate the evaluation of potential exposure to either cleanup workers or members of the public who intrude into buried waste containing both radioactive and hazardous chemical contaminants. The example scenarios consist of a collection of exposure routes (or pathways) with specific modeling assumptions for well-drilling and for excavation to construct buildings. These scenarios are used to describe conceptually some potential patterns of activity by non-protected human beings during intrusion into mixed-waste disposal sites. The dose from exposure to radioactive materials is calculated using the GENII software system and converted to risk by using factors from ICRP Publication 60. The hazard assessment for nonradioactive materials is performed using recent guidelines from the US Environmental Protection Agency (EPA). The example results are in the form of cancer risk for carcinogens and radiation exposure.

Kennedy, W.E. Jr.; Aaberg, R.L.

1991-10-01

204

Characterization of dredged river sediments in 10 upland disposal sites of Alabama  

SciTech Connect

The US Bureau of Mines, Tuscaloosa Research Center in cooperation with the US Army Corps of Engineers under interagency Agreement No. 14-09-0078-1510, conducted a comprehensive sampling program of 10 upland disposal sites along the Alabama, Black Warrior, and Tombigbee River systems in Alabama. Samples from each site were characterized according to particle size, chemical analysis, mineralogical content, and potential end use. Additionally, samples were subjected to the Toxic Characteristic Leachate Procedure to determine the presence of potentially harmful heavy metals. Based on the results of these studies, each sample was determined to have properties amenable for use as aggregate in general-purpose portland cement concretes and certain asphalt concrete applications.

Smith, C.W.

1995-09-01

205

Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site  

SciTech Connect

Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations.

Apps, J.A.; Zhu, M. [Lawrence Berkeley Lab., CA (United States); Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S. [Stanford Univ., CA (United States). Dept. of Civil Engineering

1991-04-01

206

Negotiated compensation for solid-waste disposal facility siting: An analysis of the Wisconsin experience  

SciTech Connect

Since enacting a unique facility siting law in 1981, Wisconsin has had unusual success in siting solid-waste management facilities. The law mandates a state-level technical review and licensing process and a local-level negotiation/arbitration process that deals with host community impacts and concerns. Data from the negotiated compensation agreements, a survey of facility proposers, and secondary data for the host communities are analyzed in relation to compensation levels. Concerns with community image and health risks and with facility management and equity issues are found to significantly and substantially increase negotiated compensation levels. In contrast, a focus on logistics and transportation concerns is associated with lower levels of compensation. Compensation increases with facility capacity but at a less than proportional rate. Higher levels of compensation are obtained by communities that accept compensation in kind in the form of free or reduced fees for host community waste disposal.

Nieves, L.A. (Argonne National Lab., IL (United States)); Himmelberger, J.J.; Ratick, S.J. (Clark Univ., Worcester, MA (United States)); White, A.L. (Clark Univ., Worcester, MA (United States) Tellus Institute, Boston, MA (United States))

1992-12-01

207

Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory  

SciTech Connect

This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

Reneau, S.L.; Raymond, R. Jr. [eds.

1995-12-01

208

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

2008-03-01

209

Study of contaminant transport at an open-tipping waste disposal site.  

PubMed

Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options. PMID:23292199

Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

2013-07-01

210

Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site  

SciTech Connect

This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

Not Available

1994-12-01

211

76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...  

Federal Register 2010, 2011, 2012, 2013

...Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology...Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treatment Issued to Chemical...concentration-based treatment standard for selenium established under the Land Disposal...

2011-05-24

212

1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997.

Fuchs, R. L.

1998-08-01

213

1995 Report on Hanford site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01

214

Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong.  

PubMed

Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. PMID:23122205

Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara

2013-01-01

215

Definition of intrusion scenarios and example concentration ranges for the disposal of near-surface waste at the Hanford Site  

SciTech Connect

The US Department of Energy (DOE) is in the process of conducting performance assessments of its radioactive waste sites and disposal systems to ensure that public health and safety are protected, the environment is preserved, and that no remedial actions after disposal are required. Hanford Site low-level waste performance assessments are technical evaluations of waste sites or disposal systems that provide a basis for making decisions using established criteria. The purpose of this document is to provide a family of scenarios to be considered when calculating radionuclide exposure to individuals who may inadvertently intrude into near-surface waste disposal sites. Specific performance assessments will use modifications of the general scenarios described here to include additional site/system details concerning the engineering design, waste form, inventory, and environmental setting. This document also describes and example application of the Hanford-specific scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. 24 refs., 2 figs., 5 tabs.

Aaberg, R.L.; Kennedy, W.E. Jr.

1990-10-01

216

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

NSTec Environmental Restoration

2006-09-01

217

The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site  

SciTech Connect

A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site.

Crowe, B.M.; Hansen, W. [Los Alamos National Lab., NM (United States); Hechnova, A. [Univ. of Nevada, Las Vegas, NV (United States). Harry Reid Center of Environmental Studies; Jacobson, R. [Desert Research Inst., Reno, NV (United States); Voss, C. [Golder Associates, Inc. (United States); Waters, R. [Sandia National Labs., Albuquerque, NM (United States); Sully, M.; Levitt, D. [Bechtel Nevada, Las Vegas, NV (United States)

1999-03-01

218

Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663  

SciTech Connect

The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01

219

Greater Confinement Disposal Test at the Nevada Test Site, Final Technology Report  

SciTech Connect

The Greater Confinement Disposal Test (GCDT) was conducted at the Nevada Test Site to demonstrate an alternative method for management of high-specific-activity (HSA) low-level waste (LLW). The GCDT was initially conceived as a method for managing small volumes of highly concentrated tritium wastes, which, due to their environmental mobiilty, are considered unsuitable for routine shallow land disposal. Later, the scope of the GCDT was increased to address a variety of other "problem" HSA wastes including isotope sources and thermal generating wastes. The basic design for the GCDT evolved from a series of studies and assessments. Operational design objectives were to (1) emplace the wastes at a depth sufficient to minimize or eliminate routine environmental transport mechanisms and instrusion scenarios and (2) provide sufficient protection for operations personnel in the handling of HSA sources. To achieve both objectives, a large diameter borehole was selected. The GCDT consisted of a borehole 3 meters (10 feet) in diameter and 36 meters (120 feet) deep, surrounded by nine monitoring holes at varying radii. The GCDT was instrumented for the measurement of temperature, moisture, and soil-gas content. Over one million curies of HSA LLW were emplaced in GCDT. This report reviews the development of the GCDT project and presents analyses of data collected.

Dickman, P. T.

1989-01-01

220

Message development for surface markers at the Hanford Radwaste Disposal sites  

SciTech Connect

At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on the surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.

Kaplan, M.F.

1984-12-31

221

1997 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

Black, D.G.

1997-04-07

222

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09

223

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13

224

Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited.

Not Available

1991-03-01

225

Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2  

SciTech Connect

The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent. Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

Krauss, Mark J

2007-03-01

226

1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

Fuchs, R.L.

1996-09-01

227

1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

Fuchs, R.L.

1997-09-01

228

1994 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1994 and a comparison of waste volumes and radioactivity by state for 1990 through 1994; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1994. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

NONE

1995-09-01

229

1993 State-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1993 and a comparison of waste volumes and radioactivity by state for 1989 through 1993; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1993. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

Fuchs, R.L.

1994-09-01

230

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01

231

Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site  

SciTech Connect

This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

BROWN,THERESA J.; WIRTH,SHARON

1999-09-01

232

Water balance at a low-level radioactive-waste disposal site  

USGS Publications Warehouse

The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

Healy, R. W.; Gray, J. R.; De Vries, G. M.; Mills, P. C.

1989-01-01

233

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01

234

1994 Report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

Black, D.G.

1994-04-01

235

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site  

SciTech Connect

In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

Gregory J. Shott; Vefa Yucel

2009-07-16

236

77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...  

Federal Register 2010, 2011, 2012, 2013

...Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology...Nevada for the treatment of a hazardous selenium- bearing waste generated by the Owens-Brockway...Disposal Restrictions treatment standard for selenium-bearing wastes, and as such...

2012-08-22

237

Health effects of hazardous chemical waste disposal sites in New Jersey and in the United States: a review  

SciTech Connect

The hazardous chemical waste disposal issue is a widespread problem. Large quantities of chemical wastes have been produced by the chemical industries in the past forty years. Estimates now number disposal sites in the United States at least 30,000. The public and scientists have grown increasingly concerned about the effects of these waste disposal sites not only on the environment, but also on the human body. In this article, we review the number of hazardous chemical waste disposal sites (HCWDS), their construction, difficulties in defining their contents, and the establishment of the Superfund Act. We then discuss various studies in the literature that have attempted to define adverse health effects of HCWDS, particularly those examining Love Canal and sites in New Jersey. In our conclusions, we note the difficulties in establishing direct causal links between HCWDS and dangerous health effects. We suggest that more epidemiological studies are needed, with improved methodology for gathering complete data and studying large samples. Both positive and negative findings of epidemiological studies are important. Positive results will substantiate an association of health effects with HCWDS. Negative results may reduce the concerns of people living near HCWDS. Future investigators need sufficient information about HCWDS materials, possible routes of exposure, and measurements of exposure, as well as sufficient statistical power to detect even modest associations of health effects with HCWDS exposure.71 references.

Najem, G.R.; Cappadona, J.L. (Department of Preventive Medicine and Community Health, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark (United States))

1991-11-01

238

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, year 1 report. Volume 1. Executive summary. Final report  

Microsoft Academic Search

The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site located 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. During the study period, the daily discharge

L. R. DeRouen; R. W. Hann; D. M. Casserly; C. Giammona; V. J. Lascara

1983-01-01

239

15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary  

...S. Army Corps of Engineers operates the following dredged material disposal site adjacent to the Sanctuary off of the Golden Gate: Point ID No. Latitude Longitude 1 37.76458 ?122.56900 2 37.74963 ?122.62281 3 37.74152...

2014-01-01

240

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site  

Microsoft Academic Search

The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant

W. J. Waugh; M. K. Kastens; L. R. L. Sheader; C. H. Benson; W. H. Albright; P. S. Mushovic

2008-01-01

241

Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco  

SciTech Connect

The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct studies of physical oceanographic and sediment transport processes at the candidate sites. Details of the methods and complete listing or graphical representation of the results are contained in this second volume of the two-volume report. Appendix A describes the methods and results of a pre-disposal bathymetric survey of Site B1B, and provides an analysis of the accuracy and precision of the survey. Appendix B describes the moorings and instruments used to obtain physical oceanographic data at the candidate sites, and also discussed other sources of data used in the analyses. Techniques used to analyze the formation, processed data, and complete results of various analyses are provided in tabular and graphical form. Appendix C provides details of the sediment transport calculations. Appendix D describes the format of the archived current meter data, which is available through the National Oceanographic Data Center. 43 refs., 54 figs., 58 tabs.

Sherwood, C.R.; Denbo, D.W.; Downing, J.P. (Pacific Northwest Lab., Richland, WA (USA)); Coats, D.A. (Marine Research Specialists, Ventura, CA (USA))

1990-10-01

242

Ecological survey for the siting of the Mixed and Low-Level Waste Disposal Facility  

SciTech Connect

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Lab. (INEL) at two candidate locations for the siting of the Mixed and Low-Level Waste Disposal Facility (MLLWDF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate locations were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning in System (GPS) measurements of the marker stakes were made, and input to the Arc/Info geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data were overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Two species of rare vascular plants have previously been reported to occur in the vicinity of the candidate locations. Two C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. No significant ecological impact is anticipated if the MLLWDF were constructed on either candidate location. However, both candidate locations are in the central area of the INEL where there is minimal disturbance to the ecosystem by facilities or humans.

Hoskinson, R.L.

1994-05-01

243

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

SciTech Connect

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31

244

Use of geophysical monitoring systems and data to identify and designate ocean sites for disposal of low-level radioactive wastes. Final report  

SciTech Connect

The report provides information applicable to using geophysical instruments and survey methods, and the data collected, in the process of designating sites for ocean disposal of low level radioactive wastes. The geophysical ocean survey methods described in the report are envisioned as preceding any sediment sampling required to characterize disposal sites.

Neiheisel, J.

1988-07-01

245

Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste  

USGS Publications Warehouse

In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

Fischer, John N.

1986-01-01

246

Nematodes as Sensitive Indicators of Change at Dredged Material Disposal Sites  

Microsoft Academic Search

Demonstration of the recovery of marine habitats from perturbation, or of the effectiveness of protective measures, is dependent on the sensitivity of the target group in responding to change. This paper highlights the utility of the nematode component of the meiofauna as a tool for assessing disturbance from dredgings disposal. Transect surveys were conducted at three major dredged material disposal

S. E. Boyd; H. L. Rees; C. A. Richardson

2000-01-01

247

Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.  

NASA Technical Reports Server (NTRS)

Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

Liang, T.; Mcnair, A. J.; Philipson, W. R.

1977-01-01

248

Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico  

SciTech Connect

The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration.

Nyhan, J.; Barnes, F.

1989-02-01

249

Arsenic concentration in porewater of an alkaline coal ash disposal site: Roles of siderite precipitation/dissolution and soil cover.  

PubMed

The geochemical behavior of As in porewaters of an alkaline coal ash disposal site was investigated using multilevel samplers. The disposal site was in operation from 1983 until 1994 and was covered with 0.3-0.5m thick soils in 2001 when this study was initiated. Sequential extraction analyses and batch leaching experiments were also performed using the coal ash samples collected from the disposal site. The results suggest the important roles of siderite (FeCO(3)) precipitation/dissolution and soil cover, which have been ignored previously. Arsenic levels in the porewater were very low (average of 10microgL(-1)) when the site was covered with soil due to coprecipitation with siderite. The soil cover enabled the creation of anoxic conditions, which raised the Fe concentration by the reductive dissolution of Fe-(hydr)oxides. Because of the high alkalinity generated from the alkaline coal ash, even a small increase in the Fe concentration (0.66mgL(-1) on average) could cause siderite precipitation. When the soil cover was removed, however, an oxidizing condition was created and triggered the precipitation of dissolved Fe as (hydr)oxides. As a result, the dissolution of previously precipitated As-rich siderite caused higher As concentration in the porewater (average of 345microgL(-1)). PMID:19682722

Kim, Kangjoo; Park, Sung-Min; Kim, Jinsam; Kim, Seok-Hwi; Kim, Yeongkyoo; Moon, Jeong-Tae; Hwang, Gab-Soo; Cha, Wang-Seog

2009-09-01

250

Volatile organic compound emissions from municipal solid waste disposal sites: a case study of Mumbai, India.  

PubMed

Improper solid waste management leads to aesthetic and environmental problems. Emission ofvolatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography-mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under hazardous air pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad. PMID:22616282

Majumdar, Dipanjali; Srivastava, Anjali

2012-04-01

251

RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008  

SciTech Connect

The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from the SALDS have been detected in the tritium-tracking wells. Concentrations of all chemical constituents were within Permit limits or were below method detection limits when sampled during FY08. A summary of the chemical constituent concentrations or method detection limits is provided in Table 3-2 in the main text discussion. This report presents the results of groundwater monitoring and tritium-tracking samples from the SALDS facility during FY08. Due to the 30-day laboratory turnaround for analysis of proximal well groundwater samples, this report addresses available date extending from August 1, 2007, through September 30, 2008 (August 2007 data were not included in the FY07 report). Updated background information, which is necessary to understand the results of the groundwater analyses, is also provided on facility operations. Interpretive discussions and recommendations for future monitoring are also provided, where possible.

ERB DB

2008-11-19

252

76 FR 18921 - Land Disposal Restrictions: Nevada and California; Site Specific Treatment Variances for...  

Federal Register 2010, 2011, 2012, 2013

...Specific Treatment Variances for Hazardous Selenium Bearing Waste AGENCY: Environmental...concentration-based treatment standard for selenium established under the Land Disposal Restrictions...alternative treatment standard of 59 mg/L for selenium as measured by the Toxicity...

2011-04-06

253

76 FR 19003 - Land Disposal Restrictions: Nevada and California; Site Specific Treatment Variances for...  

Federal Register 2010, 2011, 2012, 2013

...Specific Treatment Variances for Hazardous Selenium Bearing Waste AGENCY: Environmental...concentration-based treatment standard for selenium established under the Land Disposal Restrictions...alternative treatment standard of 59 mg/L for selenium as measured by the Toxicity...

2011-04-06

254

TRANSPORT OF LOW-LEVEL RADIOACTIVE SOIL AT DEEP-OCEAN DISPOSAL SITE  

EPA Science Inventory

Transport studies were conducted to assess ocean disposal of soil contaminated with low-level natural radioisotopes. he experimental approach involved characterization of the soil for parameters affecting transport and fate of radionuclides- Radioactivity was associated with disc...

255

A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites  

NASA Astrophysics Data System (ADS)

In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 ?M U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.

Dittrich, T. M.; Reimus, P. W.

2013-12-01

256

Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history. [From Niagara Falls storage site  

SciTech Connect

There are 180,000 m/sup 3/ of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is present

Stull, E.A.; Merry-Libby, P.

1985-01-01

257

1992 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites. National Low-Level Waste Management Program  

Microsoft Academic Search

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of

R. L. Fuchs; S. D. McDonald

1993-01-01

258

1991 State-by-state assessment of low-level radioactive wastes received at commercial disposal sites. National Low-Level Waste Management Program  

Microsoft Academic Search

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed of in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution

R. L. Fuchs; K. Culbertson-Arendts

1992-01-01

259

Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.  

PubMed

Near surface disposal of low- and intermediate-level radioactive wastes (LILW) requires evaluating the field conditions of the candidate site. However, assessment of the site conditions may be challenging due to the limited prior knowledge of some remote sites, and various multi-disciplinary data requirements at any given site. These situations arise in China as in the rest of the industrialized world, particularly since a regional strategy for LILW disposal has been implemented to protect humans and the environment. This paper presents a demonstration of the site assessment process through a case study focusing mainly on the geologic, hydrogeologic and geochemical characteristics of the candidate site. A joint on-site and laboratory investigation, supplemented by numerical modeling, was implemented in this assessment. Results indicate that no fault is present in the site area, although there are some minor joints and fractures, primarily showing a north-south trend. Most of the joints are filled with quartz deposits and would thus function hydraulically as impervious barriers. Investigation of local hydrologic boundaries has shown that the candidate site represents an essentially isolated hydrogeologic unit, and that little or no groundwater flow occurs across its boundaries on the north or east, or across the hilly areas to the south. Groundwater in the site area is recharged by precipitation and discharges primarily by evapo-transpiration and surface flow through a narrow outlet to the west. Groundwater flows slowly from the hilly area to the foot of the hills and discharges mainly into the inner brooks and marshes. Some groundwater circulates in deeper granite in a slower manner. The vadose zone in the site was investigated specially for their significant capability for restraining the transport of radionuclides. Results indicate that the vadose zone is up to 38m in thickness and is made up of alluvial clay soils and very highly weathered granite. The vadose zone has low saturated hydraulic conductivities on the order of 10(-5)cm/s and in this respect is well-suited for the disposal of LILW. The saturated formations are primarily made up of silt and moderately-to-slightly weathered granite, which exhibit even lower hydraulic conductivities, on the order of 10(-6)cm/s, also favorable for restraining the transport of radionuclides. Chemical analyses indicate that the groundwaters at the site are of the HCO(3)-Na Ca and HCO(3) SO(4)-Na Ca types and are weakly corrosive to concrete and steel. Geochemical analyses indicate that the rock and soil materials (particularly weathered granite) at the site contain very small fractions of colloidal particles and exhibit low Cation Exchange Capacities (CEC), and would therefore have limited capacity for sorption of radionuclides. Groundwater flow and solute transport models of the candidate site have been developed using MODFLOW and MT3DMS, incorporating the data obtained during the assessment program. Calibration was based on the available measured groundwater level fluctuations and tracer concentrations from in situ dispersion tests. The longitudinal dispersion coefficient as determined in calibration is equal to 5.0 10(-3) m(2)/d. Numerical sensitivity analyses indicate that the hydraulic conductivity and the longitudinal dispersion coefficient are the key parameters controlling the transport of radionuclides, while the numerical model is not sensitive to changes in the effective porosity and the specific yield. Preliminary predictions have been performed with the calibrated model both for the natural setting of the site and the graded site in which the valleys of the site are backfilled with low permeable materials. Results indicate that the proposed site grading increases the safety of the site for disposal of LILW by reducing both the groundwater level and the hydraulic gradient and that radionuclide transport would not likely be a problem or cause groundwater contamination. Although there are some problems remaining to be addressed in future work, the conclusion

Yi, Shuping; Ma, Haiyi; Zheng, Chunmiao; Zhu, Xiaobin; Wang, Hua'an; Li, Xueshan; Hu, Xueling; Qin, Jianbo

2012-01-01

260

Utilization of the Baker soil test in synthetic soil preparation for reclamation of coal ash disposal sites  

SciTech Connect

Application of procedures developed for preparation of synthetic soils for reclamation of two coal ash disposal sites in Pennsylvania is presented. These procedures include determination of water holding properties, lime requirement, and the Baker Soil Test (BST) for chemical element analysis. Results from soil and plant analyses following establishment of vegetation on the sites have shown that the BST predicts plant incorporation of chemical elements from the synthetic soils. The results confirm the utility of the BST in planning and executing successful reclamation on disturbed lands in a manner which protects the soil-plant-animal food chain.

Senft, J.P.; Baker, D.E.; Amistadi, M.K. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Agronomy

1993-12-01

261

Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois  

USGS Publications Warehouse

From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65 percent of that normally expected under clear skies. Net radiation averaged 70.1 watts per square meter and was highest in July and negative during some winter months. Wind direction varied but was predominately south-southeasterly. Wind speed at the 2-meter height averaged 3.5 meters per second and was slightly higher in winter months than the rest of the year. The amount of water stored within the soil zone was greatest in early spring and least in late summer. Seasonal and diurnal trends of evapotranspiration rates mirrored those of net radiation; July was usually the month with the highest evapotranspiration rate. The ratio of sensible- to latentheat fluxes (commonly called the Bowen ratio) for the 2-year study period was 0.38, as averaged from the three methods. Monthly Bowen ratios fluctuated somewhat but averaged about 0.35 for late spring through summer. In fall, the ratio declined to zero or to slightly negative values. When the ratio was negative, the latent-heat flux was slightly greater than the net radiation because of additional energy supplied by' the cooling soil and air. Evapotranspiration calculated by the three methods averaged 75 percent of potential evapotranspiration, as estimated by the Penman equation. There was no apparent seasonal trend in the relation between actual and potential evapotranspiration rates.

Healy, R. W.; DeVries, M. P.; Sturrock, Alex M., Jr.

1989-01-01

262

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

SciTech Connect

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01

263

Sampling and analyses of colloids at the Drigg low level radioactive waste disposal site.  

PubMed

Water samples have been extracted from inside (from standpipes) and from outside (from boreholes) of the trenches at the low level radioactive waste disposal site at Drigg in Cumbria, UK. The samples were taken anaerobically from between 8.5 and 10.0 m below the surface using a submersible pump at low flow rates to ensure that the waters in the standpipes and boreholes were maintained at constant levels. To ensure representative samples, the Eh, pH. conductivity, temperature, iron and dissolved oxygen concentrations of the waters were taken during initial purging and during sampling. The gross tritium, gross non-tritium beta, gross alpha and gamma activities of each sample were determined using suitable sample preparation and counting techniques. Samples were then anaerobically, sequentially filtered through 12 microm, 1 microm, 30 kDa and 500 Da filter membranes. The filtrates were analysed for gross alpha, gross non-tritium beta and gamma activities. SEM and STEM analyses were used to determine the colloid population. An energy dispersive analyser on the SEM was used to determine the major elements present in the colloids. UV-visible spectrophotometry, fluorescence spectrophotometry and high performance size exclusion liquid chromatography were used to analyse the waters before and after treatment with ion exchange materials to determine whether natural organic matter was present in the waters. Results showed that two major types of colloids (iron containing colloids and silicon containing colloids) were present in the waters. There were also a small number of other colloids that contain, as major elements, aluminium, calcium and chromium. Organic colloids were also present. The majority of the radioactivity in the waters was due to tritium. Waters taken from outside the trenches contained low levels of non-tritium beta activities and alpha activities which were lower than the minimum detectable amount. Waters taken from the trenches contained non-tritium beta activities and low levels of alpha emitters. Filtration of the trench waters showed that some of the alpha activity was retained by the 30 kDa and 500 Da membranes suggesting that this activity was associated with small colloids. Radioactivity was not found to be associated with colloids present in the waters taken from outside the trenches. Possible reasons for this observation could be that radionuclide bearing colloids have not yet reached the far-field or that the radionuclide concentration is diluted to below the minimum detectable amount. After concentrating two of the samples by factors of x20 and x 16 respectively, 2.4+/-0.1 and 0.6+/-0.1 Bq dm(-3) of 137Cs were measured. PMID:11993761

Warwick, P; Allinson, S; Beckett, K; Eilbeck, A; Fairhurst, A; Russel-Flint, K; Verrall, K

2002-04-01

264

Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas  

SciTech Connect

Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

2002-02-26

265

Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois  

USGS Publications Warehouse

From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65 percent of that normally expected under clear skies. Net radiation averaged 70.1 watts per square meter and was highest in July and negative during some winter months. Wind direction varied but was predominately out of the south-southeast. Wind speed at the 2-meter height averaged 3.5 meters per second and was slightly higher in winter months than the rest of the year. The amount of water stored within the soil zone was greatest in early spring and least in late summer. Seasonal and diurnal trends in evapotranspiration rates mirrored those in net radiation; July was usually the month with the highest rate. The ratio of sensible- to latent-heat fluxes (commonly called the Bowen ratio) for the 2-year period was 0.38, as averaged from the three methods. Monthly Bowen ratios fluctuated somewhat but averaged about 0.35 for late spring through summer. In fall, the ratio declined to zero or to slightly negative values. When the ratio was negative, the latent-heat flux was slightly greater than the net radiation because of additional energy supplied by the cooling soil and air. Evapotranspiration calculated by the three methods averaged 75 percent of potential evapotranspiration, as estimated by the Penman equation. There was no apparent seasonal trend in the relation between actual and potential evapotranspiration rates.

Healy, R. W.; DeVries, M. P.; Sturrock, A. M.

1987-01-01

266

Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content.  

PubMed

AV Milj is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH(4)) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH(4) (70%) and carbon dioxide (CO(2)) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH(4) (27%) and nitrogen (N(2)) (71%), containing no CO(2). The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH(4) mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH(4) generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH(4) emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH(4) emission from the disposal site was found to be 820 202 kg CH(4)d(-1). The total emission rate through the leachate collection system at AV Milj was found to be 211 kg CH(4)d(-1). This showed that approximately of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely. PMID:21186118

Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Samuelsson, Jerker; Kjeldsen, Peter

2011-05-01

267

1999 Report on Hanford Site land disposal restriction for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

BLACK, D.G.

1999-03-25

268

Microorganisms in a Disposal Site for Liquid Radioactive Wastes and Their Influence on Radionuclides  

Microsoft Academic Search

Deep subsurface horizons used for the disposal of liquid low- and intermediate-level radioactive wastes of the Siberian Chemical Complex (SCC, Russia) were studied by microbiological, radioisotope, and molecular biological methods. It was shown that a diverse microbial community inhabited the groundwater. The cell numbers of microorganisms of the major metabolic groups and the rates of sulfate reduction, denitrification, and methanogenesis

Tamara N. Nazina; Evgenya A. Lukyanova; Elena V. Zakharova; Larisa I. Konstantinova; Stepan N. Kalmykov; Andrei B. Poltaraus; Andrei A. Zubkov

2010-01-01

269

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH03, Shiprock, NM, July-November 1982  

SciTech Connect

A comprehensive survey of the vicinity property designated as SH03 was conducted on an intermittent basis from July 26 to November 11, 1982. At the time of the survey, three structures were located on the property - a residential trailer, the main structure, and an old gas pump housing. The lands surrounding the structures were either sparsely covered with arid vegetation or paved. The assessment activities included determination of indoor and outdoor surface radiation levels, for both fixed and removable contamination, through direct instrument and smear (indoor only) surveys; measurement of ambient external penetrating radiation levels at 1-meter heights; and analyses of air, soil, and other material samples. No evidence of radioactive contamination was found inside the trailer. However, the results of the radiological assessment did indicate the occurrence of elevated levels of gamma, surface alpha, and radon daughter radioactivity within the main structure. The short-term radon daughter measurements exceeded the limit of 0.02 Working Level for average annual concentration including background. The assessment also indicated elevated levels of radioactivity in the outdoor environs, encompassing about 32,000 ft/sup 2/ of the grounds adjacent to and surrounding the main structure on the east, south, and west sides. The contamination appeared to be due to the presence of unprocessed uranium ore. Analysis of surface soil samples collected from the environs indicated radium concentrations in excess of the limit of 5 pCi/g above background specified in the EPA Standard. Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered.

Flynn, K F; Justus, A L; Sholeen, C M; Smith, W H; Wynveen, R A

1984-04-01

270

Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites  

SciTech Connect

This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

1996-01-01

271

Water and solute distributions in the soil/saprolite continuum under on-site wastewater disposal systems  

SciTech Connect

The expansion of housing developments in rural areas of North Carolina has created an increasing need to identify suitable soil and saprolite for on-site wastewater disposal. Physical, chemical, and hydraulic characteristics of soil and saprolite were assessed at three operating on-site wastewater disposal systems in the Piedmont region of North Carolina. The distribution patterns of selected inorganic wastewater chemicals, soil pH, and soil electrical conductivity (EC) were determined within the drainfields at all three sites. Chemical concentrations of NH[sub 4]-N, NO[sub 3]-N, NO[sub 3]-N, Ca, Mg, Na, K, and Cl in the drainfield soils were compared to background concentrations in similar soils outside each drainfield. The hydraulic performance was evaluated. Soil particle size was an important soil physical property influencing water movement, especially in the deeper C (saprolite) horizon. Specific surface area appeared to be related to CEC and inferred the possibility for limited attenuation of wastewater pollutants in coarse-textured saprolite. Lower concentrations of some inorganic chemicals in the drainfield soils were related to leaching of cations and anions by the wastewater and the low soil CEC. Significantly higher concentrations of some chemicals were found in one drainfield, presumably because of a low hydraulic conductivity in the clayey textured Bt and BC horizons, reduced nitrification rates, and higher wastewater chemical concentrations. On-site wastewater disposal systems installed in soils that are shallow to saprolite appear to function properly in treating wastewater when the soil and saprolite horizons have suitable soil textures, CEC's, and hydraulic conductivities.

Surbrugg, J.E.

1992-01-01

272

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Status report, October 1980September 1981  

Microsoft Academic Search

The prime consideration for continued use of shallow land burial practices for the disposal of low-level radioactive waste is the containment of radionuclides. Before additional disposal sites for commercial low-level waste can be licensed, the existing sites must be evaluated in terms of their effectiveness for retaining radionuclides. This study is an attempt to monitor the behavior of existing low-level

R. Pietrzak; K. S. Czyscinski; A. J. Weiss

1982-01-01

273

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01

274

Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.  

PubMed

This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 C and 5 to 11.5 C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring. PMID:25150051

Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

2014-12-01

275

Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Laura Pastor

2006-05-01

276

Movement of tagged dredged sand at thalweg disposal sites in the Upper Mississippi River. Volume 3. Additional results at Gordon's Ferry and Whitney Island sites  

SciTech Connect

During routine channel maintenance, hydraulically dredged sand was tagged with sand coated with fluorescent dye before being deposited as a pile in the thalweg at three sites on the Upper Mississippi River. As discussed in the first two volumes of this report, bathymetry was measured and surface sediments were sampled to study changes in the topography of the disposal pile and the downstream movement of the tagged sand. At all three sites, topographic evidence of the pile disappeared after the first period of high river flow, which was followed by redevelopment of dunes in the disposal area. The tagged sand did not migrate into nearby border areas, backwaters, or sloughs, remaining in the main channel as it moved downstream. This volume presents the results of additional surveys at the Gordon's Ferry and Whitney Island sites. At Gordon's Ferry, 25 bottom cores were taken to examine the three-dimensional distribution of tagged sand in the bottom sediments. The core analyses indicated that much of the tagged sand had been incorporated into the dune structure and that it resided primarily in the crests of the dunes.

McCown, D.L.; Paddock, R.A.

1985-04-01

277

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site--Fiscal Year 2001  

SciTech Connect

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium, and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 22 wells surrounding the facility. During FY 2001, tritium activities in the SALDS proximal well 699-48-77A increased (maximum 670,000 pCi/L) as a result of the resumption of tritium disposal in September 2000, following a 16-month hiatus in significant tritium discharges. Well 699-48-77C, where tritium results reached a maximum value of 980,000 pCi/L, is reflecting the result of the delayed penetration of effluent deeper into the aquifer from 1999 SALDS tritium discharges. Speculation in FY 2000 (Barnett 2000b) that tritium may have reached two wells due south of the facility is probably premature. FY 2001 results indicate no departures from historical levels of tritium in these wells.

Barnett, D. Brent; Rieger, Joanne T.

2001-10-12

278

CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS  

SciTech Connect

Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

Alan R. Dutton; H. Seay Nance

2003-06-01

279

Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site  

SciTech Connect

The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

1993-12-01

280

Hydrologic data for the Weldon Spring radioactive waste-disposal sites, St. Charles County, Missouri; 1984-1986  

USGS Publications Warehouse

Hydrologic and water quality data were collected during an investigation of the Weldon Spring radioactive waste disposal sites and surroundings area in St. Charles County, Missouri, from 1984 to 1986. The data consists of water quality analyses of samples collected from 45 groundwater and 27 surface water sites. This includes analyses of water from four raffinate pits and from the Weldon Spring quarry. Also included in the report are the results of a seepage run on north flowing tributaries to Dardenne Creek from Kraut Run to Crooked Creek. Mean daily discharge from April 1985 to April 1986 is given for two springs located about 1.5 mi north of the chemical plant. (USGS)

Kleeschulte, M. J.; Emmett, L. F.; Barks, J. H.

1986-01-01

281

Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)

Garklavs, George; Healy, R. W.

1986-01-01

282

Summary of treatment, storage, and disposal facility usage data collected from U.S. Department of Energy sites  

SciTech Connect

This report presents an analysis for the US Department of Energy (DOE) to determine the level and extent of treatment, storage, and disposal facility (TSDF) assessment duplication. Commercial TSDFs are used as an integral part of the hazardous waste management process for those DOE sites that generate hazardous waste. Data regarding the DOE sites` usage have been extracted from three sets of data and analyzed in this report. The data are presented both qualitatively and quantitatively, as appropriate. This information provides the basis for further analysis of assessment duplication to be documented in issue papers as appropriate. Once the issues have been identified and adequately defined, corrective measures will be proposed and subsequently implemented.

Jacobs, A.; Oswald, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Trump, C. [EG and G Rocky Flats, Golden, CO (United States)

1995-04-01

283

Ancient Glass Studies: Potential Archaeological Sites Relevant to Low-Activity Waste Disposal at Hanford  

SciTech Connect

In this document we identify several archaeological sites that may be of use in validating the ILAW performance assessment. Glasses that might be recovered at these sites would be recovered with the surrounding soil. This soil would be analyzed and the distribution of elements released from the glass to the soil would be mapped. Coincidence of the actual migration and the modeled migration would constitute a validation exercise of the current performance assessment model for the Hanford Site.

Strachan, Denis M.

2003-03-24

284

Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992  

SciTech Connect

The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. [Battelle Marine Research Lab., Sequim, WA (United States)

1992-12-01

285

Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee  

SciTech Connect

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1994-12-31

286

Chemical Disposal Site & Radiation Disposal Site  

E-print Network

/L cleanup objective in monitoring wells RDS-11WS and RDS-13WS south of Snyder Road, continuing the trend extent. Peak concentrations remained within a long-term downward trend. Surface water samples taken exhibited low levels of Trichloroethene at concentrations below the NYSDEC AWQS of 5 ppb. Remedial Measures

Pawlowski, Wojtek

287

Pilot study of dredging and disposal alternatives for the New Bedford Harbor, Massachusetts, Superfund site  

Microsoft Academic Search

Bottom sediments in New Bedford Harbor are contaminated with polychlorinated biphenyls (PCB) and heavy metals to the extent that the site is considered one of the Nation's worst hazardous waste sites and is being studied by the US Environmental Protection Agency (EPA) under the Federal Superfund program. At the request of EPA, the Corps of Engineers has evaluated the feasibility

Otis

1992-01-01

288

EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS  

SciTech Connect

This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

H. Seay Nance

2003-03-01

289

Low-Level Radioactive Waste Disposal Facility Closure. Part 1. Long-Term Environmental Conditions Affecting Low-Level Waste Disposal Site Performance. Part 2. Performance Monitoring to Support Regulatory Decisions.  

National Technical Information Service (NTIS)

Part I of the report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Part II of the report contains guidance on the design and impleme...

G. J. White, T. W. Ferns, M. D. Otis, S. T. Marts, M. S. DeHaan

1990-01-01

290

The patterning of test scores of children living in proximity to an inactive toxic waste disposal site who are classified as neurologically impaired  

Microsoft Academic Search

This study investigated the relationship between the pattern of impairment on test scores of the neurologically impaired children and proximity to an inactive toxic waste disposal site. Subjects (N = 147) were students, ages 6-16, classified as neurologically impaired. Seventy-six who lived within six miles of the site served as the experimental group and 71 who did not live near

Licata

1992-01-01

291

Geohydrologic aspects for siting and design of low-level radioactive-waste disposal  

Microsoft Academic Search

The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by groundwater. Low-level radioactive waste may need to

Bedinger

1991-01-01

292

NORM disposal options, costs vary  

Microsoft Academic Search

Petroleum producers have various options with different associated costs for disposing of oil field waste containing naturally occurring radioactive material (NORM). NORM can be disposed of both on the lease site and at offsite commercial disposal facilities.

J. A. Veil; K. Smith

1999-01-01

293

Radionuclides in soil and water near a low-level disposal site and potential ecological and human health impacts.  

PubMed

Material Disposal Area G is the primary low-level radioactive waste disposal site at Los Alamos National Laboratory, New Mexico, and is adjacent to Pueblo of San Ildefonso lands. Pueblo residents and Los Alamos scientists are concerned about radiological doses resulting from uptake of Area G radionuclides by mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus), then consumption of deer and elk meat by humans. Tissue samples were collected from deer and elk accidentally killed near Area G and were analyzed for 3H, 90Sr, total U, 238Pu, 239,240Pu, 241Am, and 137Cs. These data were used to estimate human doses based on meat consumption of 23 kg y(-1). Human doses were also modeled using RESRAD, and dose rates to deer and elk were estimated with a screening model. Dose estimates to humans from tissue consumption were 2.9 x 10(-3) mSv y(-1) and 1.6 x 10(-3) mSv y(-1) from deer and elk, respectively, and RESRAD dose estimates were of the same order of magnitude. Estimated dose rates to deer and elk were 2.1 x 10(-4) mGy d(-1) and 4.7 x 10(-4) mGy d(-1), respectively. All estimated doses were significantly less than established exposure limits or guidelines. PMID:11944797

Ferenbaugh, J K; Fresquez, P R; Ebinger, M H; Gonzales, G J; Jordan, P A

2002-03-01

294

Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

Striegl, Robert G.

1988-01-01

295

Comparison of Olkiluoto (Finland) and Forsmark (Sweden) candidate sites for radioactive-waste disposal  

NASA Astrophysics Data System (ADS)

Site characterizations for deep radioactive-waste repositories consider rock properties, groundwater conditions, and the influences of regional settings and site-specific evolution. We present a comparison of these aspects for two candidate repository sites that have similar rocks and coastal settings, but are 200 km apart on opposite sides of the Gulf of Bothnia. The Olkiluoto site in Finland and the Forsmark site in Sweden are both in hard crystalline rock (migmatite gneiss and metagranite, respectively) with groundwater flow mainly via fractures. Both sites are undergoing licensing for a high-level radioactive-waste repository. The licensing is stepwise in Finland, and operation in both countries will be strictly regulated, but all responsibility lies with the implementers until accepted closure. The comparison reveals many expected similarities but also unexplained differences, which illustrate the complexities of site characterization in fractured crystalline rock. Both sites underwent a similar sequence of hydrologic conditions over the Weichselian and earlier glacial cycles. Hydrogeologically, Forsmark has more conductive upper bedrock, contributing to a very flat water table. Deep bedrock at Olkiluoto is more fractured in the horizontal plane. At repository depth and below, Forsmark likely contains larger volumes of low-conductivity rock. At both sites, the local model is connected to regional-scale boundaries via submarine deformation zones which (especially at Olkiluoto) are poorly characterized. Stress measurements at the two sites have shown that vertical stress is in agreement with the weight of overburden while horizontal stresses differ in magnitude and orientation. Interpreted overcoring stress measurements from Forsmark are almost twice the magnitudes estimated from hydraulic methods. Rock mechanical differences include the possibility that Olkiluoto bedrock is more prone to spalling than Forsmark. Olkiluoto bedrock is more anisotropic in terms of thermal properties. Groundwater salinities at proposed repository depth are similar at the two sites, though the salinity gradient at greater depths is steeper at Olkiluoto. Differing depths of penetration of post-glacial groundwater components, and differing patterns of salinity between groundwaters in fractures and pore waters in rock matrix, indicate paleohydrogeological differences. While having broadly similar redox and pH conditions, there is more dissolved methane and lower sulfate below 300 m depth at Olkiluoto than at Forsmark. Water-rock reaction modeling does not explain these and other differences in groundwater compositions and secondary minerals at the two sites. Many of the similarities and differences can be attributed to known regional and local conditions such as stress fields, rock types, fractured-rock hydrodynamics and paleohydrogeology. The processes accounting for some differences are not yet understood, illustrating the limitations of existing models for regional-scale variability in fractured crystalline rock. Site characterization, with the possibility for improved understanding, is expected to continue at both sites in the event of licensing.

Geier, J. E.; Bath, A.; Stephansson, O.; Luukkonen, A.

2012-12-01

296

Grout for closure of waste-disposal vaults at the US DOE Hanford Site  

SciTech Connect

For permanent disposal of radioactive wastes from reprocessing, the US Department of Energy (DOE) has chosen to grout wastes in concrete vaults within a subsurface multiple-barrier system. The subject of this research is the non-radioactive, or ``cold cap`` grout, which fills the upper 120 cm of these vaults, and provides support for overlying barriers. Because of the heat evolved by the wasteform, this void-filling grout must perform at temperatures higher than those of usual large-volume grouting operations. It must have: low potential for thermal expansion and heat retention; a low modulus to withstand thermal and mechanical stresses without cracking; strength adequate to support overlying barrier-system components; and minimal potential for shrinkage. In addition, it must be pumpable, self-leveling, and non-segregating. Materials for formulation included a large percentage of Class F fly ash, and coarsely ground oil-well cement. Grout development included chemical and physical characterization, and physical and thermal modeling.

Wakeley, L.D.; Ernzen, J.J. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States); McDaniel, E.W. [Oak Ridge National Lab., TN (United States); Voogd, J. [Westinghouse Hanford Co., Richland, WA (United States)

1991-12-31

297

Grout for closure of waste-disposal vaults at the US DOE Hanford Site  

SciTech Connect

For permanent disposal of radioactive wastes from reprocessing, the US Department of Energy (DOE) has chosen to grout wastes in concrete vaults within a subsurface multiple-barrier system. The subject of this research is the non-radioactive, or cold cap'' grout, which fills the upper 120 cm of these vaults, and provides support for overlying barriers. Because of the heat evolved by the wasteform, this void-filling grout must perform at temperatures higher than those of usual large-volume grouting operations. It must have: low potential for thermal expansion and heat retention; a low modulus to withstand thermal and mechanical stresses without cracking; strength adequate to support overlying barrier-system components; and minimal potential for shrinkage. In addition, it must be pumpable, self-leveling, and non-segregating. Materials for formulation included a large percentage of Class F fly ash, and coarsely ground oil-well cement. Grout development included chemical and physical characterization, and physical and thermal modeling.

Wakeley, L.D.; Ernzen, J.J. (Army Engineer Waterways Experiment Station, Vicksburg, MS (United States)); McDaniel, E.W. (Oak Ridge National Lab., TN (United States)); Voogd, J. (Westinghouse Hanford Co., Richland, WA (United States))

1991-01-01

298

Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report  

SciTech Connect

Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

Beedlow, P.A.

1984-05-01

299

Modeling a potential atmospheric release from a waste disposal facility at the savannah river site as an area source.  

PubMed

The Saltstone Facility was designed at the Savannah River Site (SRS) to treat and dispose of certain low-level liquid radioactive wastes. The final product of Saltstone is several large concrete vaults. As part of the performance assessment for Saltstone, reduction of dose to receptors downwind of the vaults have been estimated for treating the vaults as an area atmospheric source as opposed to a point source. The CAP88 model has the ability to handle area sources, but the methods are not appropriate for receptors close to the source such as those modeled at 100 m. Use of the area source as opposed to the point source can reduce the dose by as much as a factor of 5 depending on vault size. A method for quickly assessing the dose from an area source for near-in exposures is demonstrated here. PMID:16823269

Simpkins, A A; Lee, P L

2006-08-01

300

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0  

SciTech Connect

The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-05-03

301

Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site  

SciTech Connect

An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.

Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

1988-04-01

302

Treatment and disposal of a mixed F006 plating line sludge at the Savannah River Site  

Microsoft Academic Search

The Westinghouse Savannah River Company (WSRC), as the operating contractor for the Department of Energy (DOE) at the Savannah River Site (SRS) is implementing a program to treat and stabilize approximately 750,000 gallons of an F006 mixed (radioactive\\/hazardous) plating line wastewater sludge. The uraniun contaminated sludge resulted from nickel plating of depleted uranium targets, which were subsequently irradiated to produce

J. B. Pickett; J. C. Musall; H. L. Martin

1993-01-01

303

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01

304

Rooting depths of plants on low-level waste disposal sites  

Microsoft Academic Search

In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and

T. S. Foxx; G. D. Tierney; J. M. Williams

1984-01-01

305

1992 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites. National Low-Level Waste Management Program  

SciTech Connect

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1992 and a comparison of waste volumes and radioactivity by state for 1988 through 1992; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1992. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

Fuchs, R.L.; McDonald, S.D.

1993-09-01

306

Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

Foster, J. B.; Erickson, J. R.; Healy, R. W.

1984-01-01

307

Rooting depths of plants on low-level waste disposal sites  

SciTech Connect

In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass (Koeleria cristata (L.) Pers.) (76 cm) was the shallowest rooting grass and side-oats grama (Bouteloua curtipendula (Michx.) Torr.) was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper (Juniperus monosperma (Engelm) Sarg.) (>6000 cm). Apache plume (Fallugia paradoxa (D. Don) Endl.) rooted to 140 cm, whereas fourwing saltbush (Atriplex canecens (Pursh) Nutt.) rooted to 762 cm.

Foxx, T.S.; Tierney, G.D.; Williams, J.M.

1984-11-01

308

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY1999  

SciTech Connect

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter.

Barnett, D.B.

1999-10-20

309

A method for the processing and analysis of digital terrain elevation data. [Shiprock and Gallup Quadrangles, Arizona and New Mexico  

NASA Technical Reports Server (NTRS)

A method is presented for the processing and analysis of digital topography data that can subsequently be entered in an interactive data base in the form of slope, slope length, elevation, and aspect angle. A discussion of the data source and specific descriptions of the data processing software programs are included. In addition, the mathematical considerations involved in the registration of raw digitized coordinate points to the UTM coordinate system are presented. Scale factor considerations are also included. Results of the processing and analysis are illustrated using the Shiprock and Gallup Quadrangle test data.

Junkin, B. G. (principal investigator)

1979-01-01

310

Geochemical survey of an illegal waste disposal site under a waste emergency scenario (Northwest Naples, Italy).  

PubMed

Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1mgkg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain. PMID:22766923

Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M

2013-03-01

311

Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste  

SciTech Connect

The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

1997-04-01

312

Preliminary report on the hydrogeology of a low-level radioactive waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

The Sheffield low-level radioactive-waste disposal site is located on 20 acres of rolling terrain about 3 miles southwest of Sheffield, Illinois. Twenty-one trenches were constructed and filled with radioactive waste from August 1967 through April 1978. Forty-three test wells were installed by the U.S. Geological Survey on and adjacent to the site. Continuous cores were collected from 36 wells to help in defining the subsurface geology. The wells have been used for water sample collection and to monitor water-level changes. A tunnel, 6.5 feet in diameter by 290 feet in length, was constructed beneath four burial trenches to provide access for collection of hydrologic and geologic data. Pennsylvanian shale and mudstone deposits are overlain by Pleistocene glacial deposits consisting of the Teneriffe Silt, Glasford Formation, Roxana Silt, Peoria Loess, Parkland Sand, Cahokia Alluvium, and Henry Formation. Three till units of the Glasford Formation, the Hulick Till Member, the Radnor Till Member, and Till A have been identified on the site. Stratigraphic position indicates that the Hulick Till Member and Till A are probably variations of the same till. A continuous pebbly sand deposit, classified as part of the Toulon Member, extends across the middle of the site and continues off site on the northeast and southwest corners. Because of its relatively high hydraulic conductivity, this deposit will be a controlling factor in shallow groundwater movement and in any radionuclide migration. Ground water at the site is derived through infiltration of precipitation and as underflow from adjacent highlands. Precipitation averages 35 inches per year, 1 or 2 inches of which probably recharge the ground water. Runoff is estimated to be 12 to 15 inches per year and evapotranspiration about 20 inches. The fluctuation of water levels has been about 2.5 feet in hilltop wells, 3.6 feet in sidehill wells, and 5.9 feet in valley wells. Hydraulic conductivity of the materials comprising the hydrogeologic system vary widely from about 2.8 to 2.8 x 10^-6 feet/day. Tritium in ground water near the southeast corner of the site has moved about 25 feet per year since June 1975.

Foster, J. B.; Erickson, J. R.

1980-01-01

313

Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California  

NASA Astrophysics Data System (ADS)

In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community.

Leenheer, Jerry A.; Hsu, John; Barber, L. B.

2001-10-01

314

Results of hydrologic research at a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water budget. Although monthly totals for each method differed, estimated annual evapotranspiration averages ranged from 630 to 693 millimeters or about 70 percent of precipitation. Tritium concentrations in leaf water from on-site plants were determined for 125 vegetation samples collected during the summers of 1982 through 1986. Concentrations varied significantly among some locations and plant types. Tritium concentrations ranged from the detection limit of 0 .2 to 1,330 nanocuries per liter, with alfalfa (Medicago sativa) having the highest concentrations, followed by brome grass (Bromus inermis), and then red clover (Trifoleum pratense); these variations in concentration are most likely a result of root depth. Runoff and sediment transport were measured from July 1982 through December 1985 in four basins--three comprising almost two-thirds of the 8.1-hectare site and one comprising a 1.4-hectare undisturbed area. Volumes and equivalent weights of collapses were estimated from records of site surficial conditions from October 1978 through December 1985. Runoff showed a direct relation to degree of land modification; lowest mean yields were measured at the undisturbed area, and highest mean yields were measured from the basin composed wholly of trench and intertrench areas. Sediment yield measured onsite averaged 3.4 megagrams per hectare. A total of 315 collapse cavities, corresponding to a cumulative volume of about 500 cubic meters, were documented. Most collapses were recorded after periods of rainfall or snowmelt when soil moisture was near maximum. Almost two-thirds of the collapses, corresponding to 63 percent of the cumulative cavity volume, occurred during February through April. Data for the study of water movement through a trench cover were collected from July 1982 through June 1934. Pressure-head data were collected at four different clusters at depths ranging from 50 to 1,850 millimeters within a selected trench cover. Soil-moisture content f

Edited by Ryan, Barbara J.

1989-01-01

315

Organizational approach to estimating public resistance at proposed disposal sites for radioactive and hazardous wastes  

SciTech Connect

This paper was intended to present an organizational approach to predicting collective action and then to apply that approach to the issue of siting of a nuclear or other hazardous waste repository. Borrowing largely from two previously developed models (one by Perry et al. at Battelle's Human Affairs Research Center and one by Charles Tilly), I developed a theoretical model. Indicators were identified for many of the variables, but they are not easily measured, requiring a number of decisions on thresholds which were not clarified in the paper. What remains is further discussion of these measurement problems, evaluation of the confirmation status of the propositions, and empirical tests of the model. In the meantime, however, the discussion should provide assessors of public resistance with a theoretical basis for their thinking and a guide to some revealing indicators of the potential for collective action.

Payne, B.A.

1982-01-01

316

Evaluation of liners for a uranium-mill tailings disposal site: a status report  

SciTech Connect

The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, and acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.

Buelt, J.L.; Hale, V.Q.; Barnes, S.M.; Silviera, D.J.

1981-05-01

317

Ordnance Reef (HI-06) served as a disposal site for discarded military munitions (DMM) after World War II. Since then, a number of incidents of munitions retrieval and  

E-print Network

iv Abstract Ordnance Reef (HI-06) served as a disposal site for discarded military munitions (DMM in the Ordnance Reef (HI-06) area. The predominantly marine carbonate sediments found in the Ordnance Reef (HI-06 it is clear that the DMM do release certain trace elements into the environment at Ordnance Reef (HI-06

Luther, Douglas S.

318

Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax\\/bl at the Nevada Test Site  

Microsoft Academic Search

In October 2000, final closure was initiated of U-3ax\\/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to

Daniel G. Levitt; Thomas M. Fitzmaurice

2001-01-01

319

Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles  

NASA Astrophysics Data System (ADS)

Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a ?-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and ?-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

2010-12-01

320

Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

Zettwoch, Douglas D.

2002-01-01

321

Public health assessment for C and J Disposal Site, Hamilton, Madison County, New York, Region 2. Cerclis No. NYD981561954. Final report  

SciTech Connect

The C J Disposal National Priority List (NPL) site is in the Town of Eaton in Madison County, New York. The site consists of a trench that was dug and filled with paint sludges and solid and liquid industrial wastes, including 75-100 barrels, in the mid-1970s. The primary waste-related contaminants are phthalates, which were found in on-site soils and groundwater. A preliminary health assessment for the site was completed in February 1991 and concluded that the site posed a potential human health concern to users of private wells downgradient of the site. Additionally, contamination of Woodman Pond which is about 3,000 feet downgradient of the site, was also identified as a potential concern as it is a supplemental potable water supply source for the Village of Hamilton.

Not Available

1994-01-12

322

40 CFR 228.10 - Evaluating disposal impact.  

...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING 228.10 Evaluating disposal...impacted by materials disposed of at an ocean disposal site: (1) Movement of...

2014-07-01

323

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26

324

Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model  

NASA Astrophysics Data System (ADS)

Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In addition modules are included for human intrusion scenarios. Inputs and parameters for the hydrogeologic model are developed from a more detailed, numerical, vadose zone model (implemented in HYDRUS 2D). The Vadose zone model calculates fluxes through the waste under various climatic and cover-degradation scenarios. Uncertainty related to model parameters and boundary/initial conditions is also incorporated in the flux distribution through sensitivity analyses in the vadose zone model. Doses are calculated for onsite and offsite receptors through ingestion, inhalation, and external exposure, for comparison with regulatory dose standards. This modeling is part of an ongoing licensing effort to demonstrate compliance with low-level waste site performance objectives.

Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

2011-12-01

325

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

SciTech Connect

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01

326

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State Approved Land Disposal SiteFiscal Year 2003  

SciTech Connect

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which is not removed by the ETF, and is discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During fiscal year (FY) 2003 to date (through August 31, 2003), approximately 96-million liters (25.3-million gallons) of water have been discharged to the SALDS. Groundwater monitoring for tritium and other constituents, and water-level measurements are required by the state-issued permit at the SALDS. The current network consists of 3 proximal monitoring wells and 16 tritium-tracking wells. Proximal wells were sampled in October 2002, and January, February, April, and September of 2003. Tritium-tracking wells were sampled in January and September of 2003, but September results were delayed because of fire hazards near the wellheads. Water-level measurements in three wells nearest the SALDS indicate the continuation of a small hydraulic mound beneath the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. This condition also places several wells south of the SALDS hydraulically downgradient of the facility. Some of the wells south of the SALDS in the tritium-tracking network have dried or are projected to soon be dry. Wells 299-W7-6 went dry during FY 2003, preventing collection of the September sample from this well. Tritium activities decreased in all three SALDS proximal wells during FY 2003, compared with FY 2002. Timing between detections of tritium and other constituents in well 699-48-77C suggest a delay of approximately 3 years from detection in wells 699-48-77A and 699-48-77D. Sporadic detections in well 299-W7-5 suggest that tritium from SALDS may be reaching the northern edge of the 200 West Area, south of the facility and may be at the extreme southern edge of the plume. Comparison of head distribution in March 2003 and reported FY 2003 tritium activities, with numerical predictions of these quantities for 2000 and 2005, suggests that modeling performed in 1997 only slightly overestimated the areal spread of tritium around the SALDS to date.

Barnett, D BRENT.; Rieger, JoAnne T.; Thornton, Edward C.

2003-11-30

327

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site Fiscal Year 2000  

SciTech Connect

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium, and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 22 wells surrounding the facility. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the networks currently adequate for tracking potential effects of the SALDS on the groundwater. During FY 2000, average tritium activities inmost wells declined from average activities in 1999. The exceptions are deep well 699-48-77C, where tritium results reached a maximum value of 710,000 pCi/L as a result of the delayed penetration of effluent deeper into the aquifer, and in well 299-W7-3, along the northern boundary of the 200 West Area, which has apparently been affected for the first time by the SALDS tritium plume, with a tritium activity of 1,400 pCi/L measured in August 2000. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within groundwater limitations during FY 2000. The arrival of tritium at well 299-W7-3 demonstrates excellent agreement with the current numerical groundwater model, by virtue of both arrival time and predicted tritium concentration. Analyses for conductivity, total dissolved solids, sulfate, chloride, sulfate, dissolved calcium, and dissolved sodium indicate that well 699-48-77A and, to a lesser extent, well 699-48-77D show the effects of dilute effluent entering groundwater, resulting in a depression of concentrations of these constituents below natural background levels. Recommendations for future monitoring include temporarily increasing the frequency of tritium sampling at wells 299-W7-3, 299-W7-5, 299-W7-6, and 299-W7-7 to quarterly. This measure will assist in a more accurate determination of the southern bounds of the SALDS-generated tritium plume, provide estimates of travel time for model comparisons, and help preserve the distinction between this plume and the older 200 West tritium plume further east. Because of the accurate numerical model predictions thus far, reapplication of the model will occur only after a recognizable departure from model predictions is observed through the increased frequency in well monitoring.

DB Barnett

2000-09-26

328

77 FR 77076 - Notice of Intent: Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off...  

Federal Register 2010, 2011, 2012, 2013

...an expanded ODMDS off Charleston, South Carolina...expanded ODMDS offshore Charleston, South Carolina. An EA will provide the...existing disposal zone and ODMDS to the north, south and east. Scoping: EPA is...

2012-12-31

329

Evaluation and Quantification of Uncertainty in the Modeling of Contaminant Transport and Exposure Assessment at a Radioactive Waste Disposal Site  

Microsoft Academic Search

The disposal of low-level radioactive waste (LLW) in the United States (U.S.) is a highly regulated undertaking. The U.S. Department of Energy (DOE), itself a large generator of such wastes, requires a substantial amount of analysis and assessment before permitting disposal of LLW at its facilities. One of the requirements that must be met in assessing the performance of a

J. Tauxe; P. Black; J. Carilli; K. Catlett; B. Crowe; M. Hooten; S. Rawlinson; A. Schuh; T. Stockton; V. Yucel

2002-01-01

330

Well-construction and hydrogeologic data for observation wells in the vicinity of a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.

Mansue, Lawrence J.; Mills, Patrick C.

1991-01-01

331

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary  

SciTech Connect

A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

NONE

1996-03-01

332

Work plan for monitor well/groundwater elevation data recorder installation at the Cheney Disposal site, Grand Junction, Colorado  

SciTech Connect

In May 1990, during the excavation for the Grand Junction, Colorado, Cheney Reservoir disposal cell (Cheney), a water bearing paleochannel was encountered along the northern boundary of the excavation (designated the Northwest Paleochannel). To ensure the long-term integrity of the disposal embankment, remedial actions were taken including the excavation of the paleochannel and underlying material to bedrock, backfilling of the trapezoidal trench with granular material, and placement of a geotextile liner above the granular material. Compacted clay backfill was placed above the reconstructed paleochannel trench, and the northwest corner was restored to the designated grade. Investigation of other paleochannels determined that ground water flow terminated before it migrated as far west as the disposal cell. Therefore, flow in these paleochannels would have no impact on the disposal cell. Although characterization efforts did not indicate the presence of a ground water-bearing paleochannel south of the disposal cell, the potential could not be ruled out. As a best management practice for long-term monitoring at Cheney, two monitor wells will be installed within the paleochannels. One well will be installed within 50 feet (ft) west of the reconstructed Northwest Paleochannel. The second well will be installed near the southwestern (downgradient) corner of the disposal cell. The purposes of these wells are to characterize ground water flow (if any) within the paleochannels and to monitor the potential for water movement (seepage) into or out of the disposal cell. Initial monitoring of the paleochannels will consist of water level elevation measurement collection and trend analysis to evaluate fluctuations in storage. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of two ground water monitor wells and two ground water elevation data recorders (data loggers) at Cheney.

Not Available

1994-09-01

333

Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site  

SciTech Connect

In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

Dwyer, B.P.; Gilbert, J.; Heiser, J.

1999-01-01

334

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

SciTech Connect

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26

335

Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

1993-06-01

336

Development of the Remedial Action Priority System: an improved risk assessment tool for prioritizing hazardous and radioactive-mixed waste disposal sites  

SciTech Connect

The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap that exists between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment, and remediation efforts. The HRS was designed as an initial screening tool to discriminate between hazardous waste sites that do not and those that are likely to pose significant problems to human health, safety, and/or the environment. The HRS is used by the US Environmental Protection Agency to identify sites for nomination to the National Priorites List (NPL). Because the HRS is not designed to evaluate sites containing radionuclides, a modified Hazard Ranking System (mHRS) addressing both hazardous and radioactive mixed wastes was developed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). Neither the HRS nor the mHRS was designed to prioritize sites that are nominated to the NPL according to their potential risks. 15 refs., 6 figs., 3 tabs.

Whelan, G.; Strenge, D.L.; Steelman, B.L.; Hawley, K.A.

1985-08-01

337

Effect of On-Site Wastewater Disposal on Quality of Ground Water and Base Flow - A Pilot Study in Chester County, Southeastern Pennsylvania, 2005  

USGS Publications Warehouse

On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.

Senior, Lisa A.; Cinotto, Peter J.

2007-01-01

338

Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.  

PubMed

The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ?4.0/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. PMID:23792820

Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

2013-10-15

339

Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois  

USGS Publications Warehouse

Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

Foster, J. B.; Garklavs, George; Mackey, G. W.

1984-01-01

340

Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes  

SciTech Connect

This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

Heuze, F.E.

1981-02-01

341

An electrical resistivity logging study of the marine sediments at the offshore dredge disposal site, Galveston, Texas  

E-print Network

and in the disposal area. They were collected prior to the time of the dredging operation. This analysis showed that in the Ship Channel the clays are composed of 45 to 60 percent montmorillonite and 30 to 40 percent illite, which both act as colloidal electrolytes..., and 1 D%%d to 205 kaolinite. As was expected the samples taken directly within the dredged material dumping area (Buoy D flat and MNM of Buoy D) dis- played higher concentrations of illite rather than montmorilloni te. This occurance was found...

Hill, Gerhard William

2012-06-07

342

Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence  

SciTech Connect

The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

Faria, Bruna Fernanda de; Moreira, Silvana [University of Campinas, Civil Engineering College, P.O. BOX 6021 Zip Code 13083-952, Campinas, Sao Paulo State (Brazil)

2011-12-13

343

Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence  

NASA Astrophysics Data System (ADS)

The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

de Faria, Bruna Fernanda; Moreira, Silvana

2011-12-01

344

Superfund Record of Decision (EPA Region 5): Forest Waste Disposal Site, Genesee County,, Michigan (action memorandum for initial remedial measure), February 1984. Final report  

SciTech Connect

Forest Waste Disposal is located on a 112-acre tract of land, in a rural, residential area in the southeast quarter of Forest Township, Genesee County, Michigan. This location is approximately 12 miles northeast of Flint, and approximately 2 miles northwest of the city of Otisville. Forest Waste Disposal is a closed, 15-acre landfill which was licensed from 1972 to 1978 to accept general refuse and industrial wastes. During the course of operations, the facility accepted a variety of industrial wastes, including plating wastes, paint sludges, and waste oils. The facility also accepted PBB and PCB-contaminated wastes, refuse from a chemical warehouse fire, and unidentified barrels from Berlin and Farro hazardous waste site in Swartz Creek, Michigan. Although the landfill was permitted by the Michigan Department of Natural Resources to accept most of these wastes, the facility was run in a haphazard manner. County Health Department records on the site state that trenches were dug randomly, industrial wastes were buried with general refuse, and liquid wastes were discharged into the landfill and onto the ground throughout the landfill's operation.

Not Available

1984-02-29

345

Results of bulk sediment analysis and bioassay testing on selected sediments from Oakland Inner Harbor and Alcatraz disposal site, San Francisco, California  

SciTech Connect

The Battelle/Marine Sciences Laboratory (MSL) was contracted by the US Army Corps of Engineers, San Francisco District, to perform bulk sediment analysis and oyster larvae bioassays (elutriate) on sediments from Inner Oakland Harbor, California. Analysis of sediment characteristics by MSL indicated elevated priority pollutants, PAHs, pesticides, metals, organotins, and oil and grease concentrations, when compared to Alcatraz Island Dredged Material Disposal Site sediment concentrations. Larvae of the Pacific oyster, Crassostrea gigas, were exposed to seawater collected from the Alcatraz Island Site water, and a series of controls using water and sediments collected from Sequim Bay, Washington. Exposure of larvae to the Alcatraz seawater and the 50% and 100% elutriate concentrations from each Oakland sediment resulted in low survival and a high proportion of abnormal larvae compared to Sequim Bay control exposures. MSL identified that field sample collection, preservation, and storage protocols used by Port of Oakland contractors were inconsistent with standard accepted practices. 23 refs., 10 figs., 40 tabs.

Word, J Q; Ward, J A; Woodruff, D L

1990-09-01

346

Use of strategic environmental assessment in the site selection process for a radioactive waste disposal facility in Slovenia.  

PubMed

The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. PMID:20846780

Dermol, Urka; Konti?, Branko

2011-01-01

347

Disposal methods  

NASA Technical Reports Server (NTRS)

A number of disposal options for space nuclear reactors and the associated risks, mostly in the long term, based on probabilities of Earth reentry are discussed. The results are based on a five year study that was conducted between 1978 and 1983 on the space disposal of high level nuclear waste. The study provided assessment of disposal options, stability of disposal or storage orbits, and assessment of the long term risks of Earth reentry of the nuclear waste.

Friedlander, Alan

1991-01-01

348

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01

349

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31

350

Chemical Stockpile Disposal Program  

SciTech Connect

As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

1990-10-01

351

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Status report through September 30, 1979. [West Valley, NY; Maxey-Flats, KY; Barnwell, SC; Sheffield, IL  

Microsoft Academic Search

This study is designed to provide an understanding of and to monitor the behavior of existing low-level sites and to provide experimental research support to the US Nuclear Regulatory Commission (NRC) for development of criteria for the selection and licensing of solid low-level radioactive waste disposal sites. One of the significant factors in the development of these criteria is the

A. J. Weiss; P. Colombo

1980-01-01

352

Genesis and continuity of quaternary sand and gravel in glacigenic sediment at a proposed low-level radioactive waste disposal site in east-central Illinois  

USGS Publications Warehouse

The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20-200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units. ?? 1991 Springer-Verlag New York Inc.

Troost, K.G.; Curry, B.B.

1991-01-01

353

40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.  

...Information System database of waste characterization...EPA will conduct a baseline compliance inspection...has conducted a baseline compliance inspection and provided a Baseline Compliance Decision...site to the WWIS database; and a...

2014-07-01

354

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543 primarily consist of sanitary and process waste collection, storage, and distribution systems (e.g., storage tanks, sumps, and piping). Existing information on the nature and extent of potential contamination at these sites is insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

David A. Strand

2004-05-01

355

Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0  

SciTech Connect

Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: 01-19-01, Waste Dump 02-08-02, Waste Dump and Burn Area 03-19-02, Debris Pile 05-62-01, Radioactive Gravel Pile 12-23-09, Radioactive Waste Dump 22-19-06, Buried Waste Disposal Site 23-21-04, Waste Disposal Trenches 25-08-02, Waste Dump 25-23-21, Radioactive Waste Dump 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological surveys. Perform exploratory excavations. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. Collect samples of source material to determine the potential for a release. Collect samples of potential remediation wastes. Collect quality control samples.

Grant Evenson

2008-07-01

356

Oil field waste disposal costs at commercial disposal facilities  

Microsoft Academic Search

The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site

Veil

1997-01-01

357

Modeling of radionuclide and heavy metal sorption around low and high pH waste disposal sites at Oak Ridge, Tennessee: Classification review package  

SciTech Connect

Modeling of mineral precipitation and metal sorption reactions using MINTEQA2 and the iron oxyhydroxide diffuse-layer model has provided insights into geochemical processes governing contaminant migration from low-level radioactive waste disposal sites at the US Department of Energy`s Oak Ridge National Laboratory and Y-12 Plant at Oak Ridge, Tennessee. Both acidic and basic nuclear-fuel reprocessing wastes, locally mixed with decontamination solvents, were disposed of in unlined trenches and lagoons. Model results show that as wastes move toward neutral pH due to reactions with surrounding soils and saprolite, mineral precipitation and sorption can limit the solubility of heavy metals and radionuclides. However, observed contaminant levels in monitoring wells indicate that at least locally, wastes are moving in faults and fractures and are not retarded by sorption reactions along such flow paths. Model results also support previous studies that have indicated organic complexing agents used in decontamination procedures can enhance radionuclide and heavy metal solubility when mixed with nuclear fuel reprocessing wastes. However, complex interactions between metal-organic complexes and mineral surfaces and natural organic matter, biodegradation, and fracture flow complicate the interpretation of contaminant mobility.

Saunders, J.A. [Auburn Univ., AL (United States). Dept of Geology; Toran, L.E. [Oak Ridge National Lab., TN (United States)

1994-10-01

358

Development of improved risk assessment tools for prioritizing hazardous and radioactive-mixed waste disposal sites. [Atmospheric and overland pathways  

SciTech Connect

It is the intent of all environmental regulations to minimize the risks to man and his environment that arise from a regulated activity. Because lower levels of risk are generally accompanied by higher environmental control costs, optimum management is achieved by balancing risks and costs. Currently, the US Environmental Protection Agency employs the Hazard Ranking System (HRS) to evaluate the environmental risks associated with inactive hazardous waste sites for the purpose of establishing the National Priorities List. Recently, investigators modified the HRS to more realistically evaluate the risks posed by radioactive waste constituents. Although results from applying the modified HRS will be useful for comparing the priority of DOE sites to non-DOE sites, the methodology is still overly subjective. To provide DOE with a better management tool for prioritizing funding allocations for further site investigations and possible remediations, Pacific Northwest Laboratory is developing a more objective, scientifically based, risk assessment methodology called the Remedial Action Priority System (RAPS). This methodology will be developed using empirically, analytically, and semianalytically based mathematical algorithms to predict the potential for contaminant migration from a site to receptors of concern using pathways analyses. Four major pathways for contaminant migration will be considered in the RAPS methodology: groundwater, overland, surface water, and atmospheric. Using the predictions of contaminant transport, simplified exposure assessments will be performed for receptors of interest. The risks associated with the sites will then be calculated relative to other sites for each pathway and for all pathways together. The RAPS methodology will require minimum user knowledge of risk assessment and the least possible amount of input data, and is being designed to operate on a personal computer. 17 references, 3 figures, 1 table.

Whelan, G.; Steelman, B.L.

1984-10-01

359

Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India  

NASA Astrophysics Data System (ADS)

Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.

Basavarajappa, T. H.

2012-07-01

360

The patterning of test scores of children living in proximity to an inactive toxic waste disposal site who are classified as neurologically impaired  

SciTech Connect

This study investigated the relationship between the pattern of impairment on test scores of the neurologically impaired children and proximity to an inactive toxic waste disposal site. Subjects (N = 147) were students, ages 6-16, classified as neurologically impaired. Seventy-six who lived within six miles of the site served as the experimental group and 71 who did not live near a site comprised the control group. Research was based on existing data available through the Child Study Team evaluation process. Attention was given to the ACID cluster of the WISC-R, the Arithmetic and Reading subtests on the WRAT, and the Koppitz scores of the Bender Visual Motor Gestalt Test. No significant difference was found between the experimental and control groups. Sex differences within the experimental group were not significant. Time of exposure and patterning of scores in the experimental group were investigated. Time had a significant main effect on WISC-R Arithmetic and Digit Span subtests, the ACID cluster and the Bender Test for the total group. Main effect for sex was significant for the WISC-R Information subtest. An interaction effect was found to be significant on the WRAT Arithmetic subtest WRAT. The longer the girls lived within the site area the lower they scored on the WISC-R Information subtest and the WRAT Arithmetic subtest. The variable exposure (interaction of distance and time) was related to lower scores on the WISC-R Arithmetic and Digit Span subtest. A two-way interaction was found on the WRAT Arithmetic subtest. The longer the females were exposed to the waste site area, the lower they scored on the WRAT Arithmetic subtest. A comparison of those children in the site area from birth and those in the area three years prior to the evaluation was done. A significant main effect was found for the Bender Gestalt.

Licata, L.

1992-01-01

361

Simulation of radionuclides in the saturated zone at the E-Area low- level radioactive waste disposal facility, Savannah River Site  

SciTech Connect

Numerical simulation of migration of Technetium-99 and Tritium beneath a proposed low-level radioactive waste disposal facility at the Savannah River Site was conducted utilizing the Porflow code. These species were selected for preliminary analysis based upon screening exercises designed to identify species of concern and because each has contrasting properties in regard to adsorption and half-life. Numerous field data describing the three-layered aquifer system were utilized to set up the model and for comparison to simulated results to achieve calibration. Results of initial simulations indicate that contaminants migrate laterally toward discharge zones at local streams. Vertically the Technetium-99 plume reached the lowermost aquifer in one small area in the vicinity of the surface water discharge zone. Maximum simulated radionuclide concentrations were reached at different times and locations but were both below levels that would pose a health threat to either the general public or inadvertent intruders.

Hiergesell, R.A.; Kearl, P.M. [Westinghouse Savannah River Co., Aiken, SC (United States)]|[Oak Ridge National Lab., Grand Junction, CO (United States)

1993-05-01

362

Biological intrusion barriers for large-volume waste-disposal sites. [Rocks and chemical barriers, trifluralin beads  

SciTech Connect

intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables.

Hakonson, T.E.; Cline, J.F.; Rickard, W.H.

1982-01-01

363

75 FR 39523 - Notice of Intent: Designation of an Ocean Dredged Material Disposal Site (ODMDS) Off the Mouth of...  

Federal Register 2010, 2011, 2012, 2013

...Site (ODMDS) Off the Mouth of the St. Johns River, FL AGENCY: U.S. Environmental...designation of an ODMDS off the mouth of the St. Johns River, Florida...new ODMDS offshore the mouth of the St. Johns River. The EIS will provide the...

2010-07-09

364

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report  

Microsoft Academic Search

The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are

L. R. DeRouen; R. W. Hann; D. M. Casserly; C. Giammona; V. J. Lascara

1983-01-01

365

Assessment report on the effects of waste dumping in 106-mile ocean waste disposal site: dumpsite evaluation report  

SciTech Connect

Individual investigations carried out under NOAA funding by various Federal and university scientists are summarized. Field and laboratory studies of the heavy and transition metals in the major wastes dumped at 106-Mile Site are emphasized. Field and laboratory studies of the effects of the wastes on bacteria, plankton, fish eggs, and fish are considered.

Not Available

1981-05-01

366

Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea  

USGS Publications Warehouse

Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

Bothner, M. H.; Gill, P. W.; Boothman, W. S.; Taylor, B. B.; Karl, H. A.

1998-01-01

367

A hybrid modeling approach to evaluate the groundwater flow system at the low- and intermediate-level radioactive waste disposal site in Gyeong-Ju, Korea  

NASA Astrophysics Data System (ADS)

The development and implementation of a hybrid discrete fracture network/equivalent porous medium (DFN/EPM) approach to groundwater flow at the Gyeong-Ju low- and intermediate-level radioactive waste (LILW) disposal site in the Republic of Korea is reported. The geometrical and hydrogeological properties of fractured zones, background fractures and rock matrix were derived from site characterization data and implemented as a DFN. Several DFN realizations, including the deterministic fractured zones and the stochastic background fractures, whose statistical properties were verified by comparison with in-situ fracture and hydraulic test data, were suggested, and they were then upscaled to continuums using a fracture tensor approach for site-scale flow simulations. The upscaled models were evaluated by comparison to in-situ pressure monitoring data, and then used to simulate post-closure hydrogeology for the LILW facility. Simulation results demonstrate the importance of careful characterization and implementation of fractured zones. The study highlighted the importance of reducing uncertainty regarding the properties and variability of natural background fractures, particularly in the immediate vicinity of repository emplacement.

Ji, Sung-Hoon; Park, Kyung Woo; Lim, Doo-Hyun; Kim, Chunsoo; Kim, Kyung Su; Dershowitz, William

2012-11-01

368

Processes controlling the variations of pH, alkalinity, and CO2 partial pressure in the porewater of coal ash disposal site.  

PubMed

Alkalinity, pH, and pCO2 are generally regarded as the most important parameters affecting trace element leaching from coal ashes. However, little is known about how those parameters are actually regulated in the field condition. This study investigated the processes controlling those parameters by observing undisturbed porewater chemistry in a closed ash disposal site. The site is now covered with 30-50 cm thick soils according to the management scheme suggested by the Waste Management Law of Korea and our results show the important role of soil cover regulating those parameters in the shallow porewater. Without the soil cover, the shallow porewater shows low pCO2 and alkalinity, and highly alkaline pH. In contrast, the porewater shows much higher alkalinity and near neutral pH range when the site was covered with the low permeability soils. This difference was caused by the CO2 supply condition changes associated with the changes in infiltration rate. The geochemical modeling shows that the calcite precipitations induced by porewater aging, dolomitization, and weathering of solid phases are the main processes controlling alkalinity, pH, and pCO2 in the deep saline porewaters. The weathering of coal ash plays the most important role decreasing the alkalinity in the deep porewater. PMID:20627567

Kim, Kangjoo; Kim, Seok-Hwi; Park, Sung-Min; Kim, Jinsam; Choi, Mansik

2010-09-15

369

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report  

SciTech Connect

The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01

370

Initial field trials of the site characterization and analysis penetrometer system (SCAPS). Reconnaissance of Jacksonville Naval Air Station waste oil and solvents disposal site. Final report  

SciTech Connect

At the request of the Naval Facilities Engineering Command (NAVFAC), Southern Division, Charleston, SC, the U.S. Army Engineer Waterways Experiment Station (WES) conducted the initial field trial of the Site Characterization and Analysis Penetrometer System (SCAPS) at Jacksonville Naval Air Station (NAS), Jacksonville FL. This work was carried out by a field crew consisting of personnel from WES and the Naval Ocean Systems Center during the period of 16 July 1990 to 14 August 1990. The SCAPS investigation at the Jacksonville NAS has two primary objectives: (a) to provide data that could be useful in formulating remediation plans for the facility and (b) to provide for the initial field trial of the SCAPS currently under development by WES for the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), now the U.S. Army Environmental Center. The original concepts for the SCAPS was to develop an integrated site screening characterization system whose capabilities would include (a) surface mapping, (b) geophysical surveys using magnetic, induced electromagnetic, and radar instruments, (c) measurements of soil strength, soil electrical resistivity, and laser-induced soil fluorometry Cone penetrometer, Site Characterization and Analysis Laser Induced Fluorescence(LIF), Penetrometer System(SCAPS) POL Contamination, using screening instrumentation mounted in a soil penetrometer, (d) soil and fluid samplers, and (e) computerized data acquisition, interpretation, and visualization. The goal of the SCAPS program is to provide detailed, rapid, and cost-effective surface and subsurface data for input to site assessment/remediation efforts.

Cooper, S.S.; Douglas, D.H.; Sharp, M.K.; Olsen, R.A.; Comes, G.D.

1993-12-01

371

A criticism of applications with multi-criteria decision analysis that are used for the site selection for the disposal of municipal solid wastes  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The existing structure of the multi-criteria decision analysis for site selection is criticized. Black-Right-Pointing-Pointer Fundamental problematic points based on the critics are defined. Black-Right-Pointing-Pointer Some modifications are suggested in order to provide solutions to these problematical points. Black-Right-Pointing-Pointer A new structure for the decision making mechanism is proposed. Black-Right-Pointing-Pointer The feasibility of the new method is subjected to an evaluation process. - Abstract: The main aim of this study is to criticize the process of selecting the most appropriate site for the disposal of municipal solid wastes which is one of the problematic issues of waste management operations. These kinds of problems are pathological symptoms of existing problematical human-nature relationship which is related to the syndrome called ecological crisis. In this regard, solving the site selection problem, which is just a small part of a larger entity, for the good of ecological rationality and social justice is only possible by founding a new and extensive type of human-nature relationship. In this study, as a problematic point regarding the discussions on ecological problems, the existing structure of the applications using multi-criteria decision analysis in the process of site selection with three main criteria is criticized. Based on this critique, fundamental problematic points (to which applications are insufficient to find solutions) will be defined. Later, some modifications will be suggested in order to provide solutions to these problematical points. Finally, the criticism addressed to the structure of the method with three main criteria and the feasibility of the new method with four main criteria is subjected to an evaluation process. As a result, it is emphasized that the new structure with four main criteria may be effective in solution of the fundamental problematic points.

Kemal Korucu, M., E-mail: kemal.korucu@kocaeli.edu.tr [University of Kocaeli, Department of Environmental Engineering, 41380 Kocaeli (Turkey); Erdagi, Bora [University of Kocaeli, Department of Philosophy, 41380 Kocaeli (Turkey)

2012-12-15

372

Attenuation properties of soils from the waste disposal site of a Texas lignite-fired power plant  

SciTech Connect

Samples of soil and plant solid wastes were collected at the site of a lignite-fired electrical generation facility near San Antonio, Texas. Ranging studies provided information on the chemical constituents of both the matrices and leachates. For this particular site the overburden soils are slightly basic (pH approx. =7.5). A large (approx. =200 kg) composite overburden sample was collected. The chemical composition was characterized by both neutron activation and analysis of leachates. Columnar studies were performed to determine the attenuation characteristics of the soil. Both arsenic and selenium readily penetrate the soil samples. Selenium, which was introduced to the column at an influent concentration of 673 ..mu..g/L was initially observed in the effluent at a concentration of <1 ..mu..g/L. After the passage of 10 L of artificial leachate solution per kg of soil, the effluent concentration was approx.200 ..mu..g/L. The effluent concentration rose to approx. =500 ..mu..g/L after exposure of the sample to approx. = 30 L/kg.

McFarland, A.R.; Ortiz, C.A.; Slowey, J.F.; Rivera, G.M.

1984-11-01

373

Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report  

SciTech Connect

On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

1981-01-01

374

Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites  

NASA Astrophysics Data System (ADS)

Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions extracted from the total vertical and hori- zontal gradient respectively, both shaded from the 5 northeast to 355 northwest. The dip of multi-layer surfaces indicates the down -"gradient" direction in the fields. The methodology of 3D STSI is based on the analysis of vertical and horizontal anisotropy of gravity and magnetic fields, as well as of multi-layer 3D space-time surface model (3D STSM) of the stress fields. The 3D STSM is multi-layer topology structure of 1 lineaments or gradients (edges) and surfaces calculated by uniform matrices of the geophysical fields. One of the information components of the stress fields character- istics is the aspects and slopes for compressive and tensile stresses. Overlaying of the 3D STSI and lineaments with maps of multi-layer gradients enables to create highly reliable 3D Space-Time Kinematic Model "3D STKM". The analysis of 3D STKM in- cluded: - the space-time reconstruct of forces direction and strain distribution scheme during formation of geological structures and structural paragenesis (lineaments) of potential fields; - predict the real location of expected tectonic dislocations, zones of rock fracturing and disintegration, and mass-stable blocks. Based on these data, the 3D STSM are drawn which reflect the geodynamics of territory development on the ground of paleotectonic reconstruction of successive activity stages having formed the present-day lithosphere. Thus three-dimensional STSM allows to construct an un- mixing geodynamic processes in any interval of fixed space-time in coordinates x, y, t(z). The integrated of the 3D STSM and 3D seismic models enables also to create structural-kinematic and geodynamic maps of the Earth's crust at different depth. As a result, the classification of CNPP areas is performed into zones of compressive and tensile stresses characterized by enhanced permeability of rocks, and zones of consoli- dation with minimal rocks permeability. In addition, the vertically alternating zones of extension and consolidation are identified. These data correlate with res

Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

375

Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85  

USGS Publications Warehouse

The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 L (liters). Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 mm/mm (millimeter per millimeter). Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concen

Mills, Patrick C.; Healy, Richard W.

1993-01-01

376

Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85  

USGS Publications Warehouse

The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be 3.4 millicuries per year. Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to 3.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 liters. Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 millimeters per millimeter. Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concentrations of tritium with incre

Mills, Patrick C.; Healy, R. W.

1991-01-01

377

Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois  

USGS Publications Warehouse

A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the fractures and the aquifer matrix. Ground-water velocity through the lower flow pathway was calculated to be 15.4 feet per day under hydrostatic conditions.

Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark

1999-01-01

378

Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.  

PubMed

Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. PMID:22578842

Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; ?erne, M; Howard, B J; Kamboj, S; Keum, D-K; Smodi, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

2012-06-15

379

Estimated duration of the subsurface reduction environment produced by the salt-stone disposal facility on the Savannah River Site  

SciTech Connect

The formula for Savannah River Site (SRS) salt-stone includes {approx}25 wt% slag to create a reducing environment for mitigating the subsurface transport of several radionuclides, including Tc-99. Based on laboratory measurements and two-dimensional reactive transport calculations, it was estimated that the SRS salt-stone waste form will maintain a reducing environment, and therefore its ability to sequester Tc-99, for well over 10,000 years. For example, it was calculated that {approx}16% of the salt-stone reduction capacity would be consumed after 213,000 years. For purposes of comparison, a second calculation was presented that was based on entirely different assumptions (direct spectroscopic measurements and diffusion calculations). The results from this latter calculation were near identical to those from this study. Obtaining similar conclusions by two extremely different calculations and sets of assumptions provides additional credence to the conclusion that the salt-stone will likely maintain a reducing environment in excess of 10,000 years. (authors)

Kaplan, D.I.; Hang, T. [Savannah River National Laboratory, Carolina (United States)

2007-07-01

380

Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, November 1, 1985--March 31, 1986  

SciTech Connect

This progress report contains an account of recent research efforts carried out at the Oak Ridge Research Institute, to raise antibodies in New Zealand White Rabbits which are specific for various strains of Thiobacillus ferrooxidans bacteria. It is then intended to use the antibodies, in a subsequent phase of the project, to develop one or more ELISAs, which would be used to analyze, both in the laboratory and in the field, the numbers and extent of dispersion of these microorganisms at acid mine drainage sites. This is important because it is the metabolic consequences of unrestricted dissemination of these bacteria which are responsible in large measure for the environmentally damaging acid run-off. Efforts to control the proliferation of these microorganisms have been relatively unfocused up to the present, because of the lack of suitably discriminating methods of assaying the effects of treatment. In this report, the authors describe the work carried out in the first section of the project, which has been concerned with the raising of the antibodies to the Thiobacillus ferrooxidans cultures. They given an account of how the various cultures were grown, how they were treated before being injected into rabbits, the injection protocol, how the animals were bled, and how the formation of IgG and its degree of specificity was assessed. Finally, they describe how large quantities of the various IgG fractions were prepared, and how and where they were stored.

Blake, R.; Revis, N.

1986-12-31

381

A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal  

USGS Publications Warehouse

A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

Flanigan, Vincent J.

1979-01-01

382

Concepts and data-collection techniques used in a study of the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois  

USGS Publications Warehouse

A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)

Healy, R.W.; DeVries, M.P.; Striegl, R.G.

1986-01-01

383

Lung cancer in relation to residence in census tracts with toxic-waste disposal sites: a case-control study in Niagara County, New York  

SciTech Connect

Nine selected census tracts containing 12 toxic-waste disposal sites with known or suspected lung carcinogens were identified in Niagara County, New York. Analysis of death certificates of 339 lung cancer cases (decedents) and 676 controls who died of other causes excluding respiratory diseases in 1978-1981 showed no association between death from lung cancer and residence in the selected census tracts (odds ratio = 0.95; 95% confidence interval = 0.65-1.38). Analysis of mail questionnaires from surrogate respondents for 209 lung cancer decedents and 417 controls showed no significant association between lung cancer and a history of ever having resided in the selected census tracts (age-adjusted odds ratio = 1.17; 95% CI = 0.78-1.76) and no significant interaction between such residence and cigarette smoking. Duration of residence in the selected census tracts did not differ between cases and controls. The limitations of this low-cost study design, in terms of response rates and potential misclassification of exposure, were discussed along with its value in interim studies of potentially hazardous dumpsites (prior to more intensive case-control or other studies using better exposure data).

Polednak, A.P.; Janerich, D.T.

1989-02-01

384

Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory  

SciTech Connect

A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium ({sup 90}Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant--one plant, in particular, contained 3.35 x 10{sup 6} Bq kg{sup {minus}1} ash (9.05 x 10{sup 4} pCi g{sup {minus}1} ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels (> 218 Bq kg{sup {minus}1} dry [5.90 pCi g{sup {minus}1} dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace areas. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations.

Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr. [Los Alamos National Lab., NM (United States). Environment, Safety and Health Div.

1996-06-01

385

Human intrusion in geologic disposal  

SciTech Connect

This report discusses the possibility of human intrusion into the WIPP facility, an undergound disposal facility for alpha-bearing wastes. The probability of exploratory drilling occurring at the site is described.

Not Available

1993-12-31

386

Adequacy of Nasqan data to describe areal and temporal variability of water quality of the San Juan River Drainage basin upstream from Shiprock New Mexico  

USGS Publications Warehouse

Analyses indicate that water quality in the San Juan River drainage basin upstream from Shiprock, New Mexico, is quite variable from station to station. Analyses are based on water quality data from the U.S. Geological Survey WATSTORE files and the New Mexico Environmental Improvement Division 's files. In the northeastern part of the basin, most streams are calcium-bicarbonate waters. In the northwestern and southern part of the basin, the streams are calcium-sulfate and sodium-sulfate waters. Geology, climate, and land use and water use affect the water quality. Statistical analysis shows that streamflow, suspended-sediment, dissolved-iron, dissolved-orthophosphate-phosphorus, dissolved-sodium, dissolved-sulfate, and dissolved-manganese concentrations, specific conductance, and pH are highly variable among most stations. Dissolved-radium-226 concentration is the least variable among stations. A trend in one or more water quality constituents for the time period, October 1, 1973, through September 30, 1981, was detected at 15 out of 36 stations tested. The NASQAN stations Animas River at Farmington and San Juan River at Shiprock, New Mexico, record large volumes of flow that represent an integration of the flow from many upstream tributaries. The data collected do not represent what is occurring at specific points upstream in the basin, but do provide accurate information on how water quality is changing over time at the station location. A water quality, streamflow model would be necessary to predict accurately what is occurring simultaneously in the entire basin. (USGS)

Goetz, C. L.; Abeyta, Cynthia G.

1987-01-01

387

FFTF disposable solid waste cask  

SciTech Connect

Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

Thomson, J. D.; Goetsch, S. D.

1983-01-01

388

HNPF LIQUID WASTE DISPOSAL COST STUDY  

Microsoft Academic Search

The HNPF cost analysis for waste disposal was made on the basis of ; 10,000 gallons of laundry waste and 9,000 gallons of other plant waste per year. ; The costs are compared for storage at HNPF site for 10 yr, packaging and shipment ; to AEC barial ground, packaging and shipment for sea disposal, and disposal by ; licensed

Piccot

1959-01-01

389

Waste disposal options report. Volume 1  

SciTech Connect

This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01

390

Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland  

SciTech Connect

This study`s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management.

Schulz, R.K.; Ridky, R.W.; O`Donnell, E.

1997-09-01

391

Disposal rabbit  

DOEpatents

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, L.C.; Trammell, D.R.

1983-10-12

392

Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites  

USGS Publications Warehouse

One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

Glynn, P.D.

2003-01-01

393

Biological assessment of proposed US Army Corps of Engineers navigation dredging and disposal on freshwater mussels at sites downstream from Cordell Hull Dam, Cumberland River miles 303. 8 to 309. 2  

SciTech Connect

Preimpoundment survey data indicate that at least four freshwater mussel species now listed as endangered by the US Fish and Wildlife Service (Dromus dromas, Lampsilis orbiculata, Plethobasus cooperianus and Pleurobema plenum) once occurred in or near CRM 303 to 309. Post impoundment surveys, including this study, indicate the L. orbiculata is widespread but uncommon throughout at least a 40 mile reach of the upper Cumberland River while the other three species persist only as rare old individuals. This survey of potential dredge, disposal and adjacent sites in CRM 305.8 to 309.1 indicated that the mussel fauna consisted of 22 species and was not particularly abundant. Lampsilis orbiculata was found to occur in proposed dredge sites at CRM 305.3, 306.5 and 307.0. The diversity and density of other species at CRM 305.5 suggested that L. orbiculata also may occur at that proposed dredge site. The single potential disposal site where L. orbiculata was found is located at CRM 305.1 to .5. Pleurobema plenum was found only at the proposed dredge site at CRM 307.0. Extensive habitat modification at any of the five dredge or disposal sites where endangered species were found or suspected, could be expected to eliminate resident specimens. Loss of L. orbiculata specimens at these sites would not constitute a substantial impact to the species throughout its range or in this reach of the Cumberland River. Loss of P. plenum at CRM 307.0 would eliminate a few of the surviving specimens of this species in the river. 10 references, 2 figures, 4 tables.

Jenkinson, J.J.; Hickman, G.D.

1983-10-01

394

Temporal changes in the composition and abundance of the macro-benthic invertebrate communities at dredged material disposal sites in the anse Beaufils, baie des Chaleurs, eastern Canada  

Microsoft Academic Search

Temporal changes in the composition and abundance of the macro-benthic invertebrate communities were studied at dredged sediment disposal sites located near L'Anse--Beaufils, baie des Chaleurs, Qubec, Canada, in July and September 1994. A total of 5109 m3, 2485 m3 and 6002 m3 of dredged material from L'Anse--Beaufils harbour were damped within the study area in 1992, 1993 and 1994, respectively.

Michel Harvey; Daniel Gauthier; Jean Munro

1998-01-01

395

Evaluation of brine disposal from the Bryan Mound Site of the Strategic Petroleum Reserve Program. Final report of predisposal studies. Chapter 4. Appendix 7  

Microsoft Academic Search

This report describes nekton communities off Freeport, Texas prior to brine disposal based on trawl studies in the period October 1977 to February 1980. Trawling was conducted aboard chartered commercial shrimp trawlers along a transect in depths of 3 to 25 fathoms to describe the general background of nekton communities off Freeport. An array of stations were occupied at the

R. W. Jr. Hann; R. E. Randall

1981-01-01

396

Shrimp and redfish studies, bryan mound brine disposal site off Freeport, Texas, 1979-1981. Volume IV. Interview sampling survey of shrimp catch and effort. Technical memo  

Microsoft Academic Search

An interview sampling survey of shrimp catch and fishing effort was conducted at specified ports along the Texas coast to strengthen the information base required to determine the effect of the disposal of brine from the Bryan Mound salt dome off Freeport, Texas on commercial brown shrimp (Penaeus aztecus) and white shrimp (Penaeus setiferus) populations in the Gulf of Mexico.

Johnson

1981-01-01

397

CONTROL OF WATER INFILTRATION THROUGH COVERS AT RADIOACTIVE WASTE DISPOSAL FACILITIES, URANIUM MILL TAILINGS SITES, AND DECOMMISSIONING SITES -- RESULTS OF 13 YEARS OF COVER PERFORMANCE IN LYSIMETERS AT A HUMID REGION SITE, BELTSVILLE, MARYLAND  

Microsoft Academic Search

This project addresses a need for confirming methods of keeping water from waste. The concepts under investigation are applicable to near surface facilities as well as mined caverns. The project is significant in that it presents results of 13 years of actual cover performance at a humid region site. Long-term field projects on this scale are rare because of cost.

Edward O'Donnell; Peter Godwin

2000-01-01

398

Determination of tritium and 14C concentration in two hydrostratigraphic units below the University of California, Davis, waste burial holes at the Laboratory for Energy-Related Health Research/South Campus Disposal Site (LEHR/SCDS).  

PubMed

The Laboratory for Energy-Related Health Research site at the University of California at Davis was used as a disposal site for tritium and 14C waste generated by campus related research. This low-level radioactive waste was disposed of by shallow land burial from 1956 to 1974 in waste burial holes and resulted in extensive contamination of soils and groundwater at the LEHR/SCDS. In part, due to this contamination, the LEHR/SCDS was placed on the National Priority List in May of 1994. In 1999, soils in the vicinity of the waste burial holes were subject to a CERCLA Removal Action. To this day elevated tritium and 14C concentrations are found in two groundwater monitoring wells that are located down gradient from the waste burial holes. The Bioscreen, Natural Attenuation Decision Support System software program was used, along with site-specific hydrogeologic conditions, to estimate the maximum source zone concentrations in the water bearing intervals below the waste burial holes. The first order decay process, and assumptions of horizontal flow provided reasonably accurate estimates of contaminant concentrations in the unconfined portion of the water bearing interval, but results for the confined portion of the water bearing intervals were mixed. Dose estimates for the time period of maximum contaminant concentration in the aquifer below the waste burial holes, predicted by modeling, suggested that the 4 mrem drinking water standard had not been exceeded at this site. PMID:12865745

Pay, Stephen

2003-08-01

399

Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.  

PubMed

Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface. PMID:20573429

Hughes, C E; Cendn, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

2011-10-01

400

The 1987 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Radioactive Waste Management Program  

Microsoft Academic Search

The Low-Level Waste Management Program has published nine annual State-by-State Assessment Reports since 1979. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator categories, waste classes, volumes, and activities. Included in this report are tables showing a distribution of wastes by state for 1987 and a comparison of

A. K. Tyron-Hopko; C. B. Ozaki

1988-01-01

401

1989 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Waste Management Program  

Microsoft Academic Search

The National Low-Level Waste Management Program has published eleven annual state-by-state assessment reports. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1989 and a comparison of waste

R. L. Fuchs; K. Culbertson-Arendts

1990-01-01

402

36 CFR 13.1008 - Solid waste disposal.  

...NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept...

2014-07-01

403

36 CFR 13.1008 - Solid waste disposal.  

Code of Federal Regulations, 2010 CFR

...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve 13.1008 Solid waste disposal. (a) A solid waste disposal site may...

2010-07-01

404

36 CFR 13.1008 - Solid waste disposal.  

Code of Federal Regulations, 2011 CFR

...Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve 13.1008 Solid waste disposal. (a) A solid waste disposal site may...

2011-07-01