Science.gov

Sample records for short lived isotopes

  1. Emission Channeling with Short-Lived Isotopes (EC-SLI) at CERN's ISOLDE Facility

    NASA Astrophysics Data System (ADS)

    Wahl, U.; Correia, J. G.; Costa, A.; David-Bosne, E.; Pereira, L. M. C.; Amorim, L. M.; Augustyns, V.; Temst, K.; Vantomme, A.; da Silva, M. R.; Silva, D. J.; Araújo, J. P.; Miranda, P.; Bharuth-Ram, K.

    2015-11-01

    We give an overview on the historical development and current program for lattice location studies at CERN's ISOLDE facility, where the EC-SLI (Emission Channeling with Short-Lived Isotopes) collaboration maintains several setups for this type of experiments. We illustrate that the three most decisive factors for the success of the technique are access to facilities producing radioactive isotopes, position-sensitive detectors for the emitted decay particles, and reliable simulation codes which allow for quantitative analysis.

  2. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  3. New Short-Lived Isotope 221U and the Mass Surface Near N =126

    NASA Astrophysics Data System (ADS)

    Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brand, H.; Cox, D. M.; Even, J.; Forsberg, U.; Golubev, P.; Hartmann, W.; Herzberg, R.-D.; Heßberger, F. P.; Hoffmann, J.; Hübner, A.; Jäger, E.; Jeppsson, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Maiti, M.; Minami, S.; Mistry, A. K.; Mrosek, Ch. M.; Pysmenetska, I.; Rudolph, D.; Sarmiento, L. G.; Schaffner, H.; Schädel, M.; Schausten, B.; Steiner, J.; De Heidenreich, T. Torres; Uusitalo, J.; Wegrzecki, M.; Wiehl, N.; Yakusheva, V.

    2015-12-01

    Two short-lived isotopes 221U and 222U were produced as evaporation residues in the fusion reaction 50Ti + 176Yb at the gas-filled recoil separator TASCA. An α decay with an energy of Eα=9.31 (5 ) MeV and half-life T1 /2=4.7 (7 ) μ s was attributed to 222U. The new isotope 221U was identified in α -decay chains starting with Eα=9.71 (5 ) MeV and T1 /2=0.66 (14 ) μ s leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N =126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α -decay reduced width.

  4. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  5. Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

    SciTech Connect

    Stolzenberg, H.; Becker, S.; Bollen, G.; Kern, F.; Kluge, H.; Otto, T.; Savard, G.; Schweikhard, L. ); Audi, G. ); Moore, R.B. ); The ISOLDE Collaboration

    1990-12-17

    A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for {sup 118}Cs--{sup 137}Cs. A resolving power of over 10{sup 6} and an accuracy of 1.4{times}10{sup {minus}7} have been achieved, corresponding to about 20 keV.

  6. New Short-Lived Isotope ^{221}U and the Mass Surface Near N=126.

    PubMed

    Khuyagbaatar, J; Yakushev, A; Düllmann, Ch E; Ackermann, D; Andersson, L-L; Block, M; Brand, H; Cox, D M; Even, J; Forsberg, U; Golubev, P; Hartmann, W; Herzberg, R-D; Heßberger, F P; Hoffmann, J; Hübner, A; Jäger, E; Jeppsson, J; Kindler, B; Kratz, J V; Krier, J; Kurz, N; Lommel, B; Maiti, M; Minami, S; Mistry, A K; Mrosek, Ch M; Pysmenetska, I; Rudolph, D; Sarmiento, L G; Schaffner, H; Schädel, M; Schausten, B; Steiner, J; De Heidenreich, T Torres; Uusitalo, J; Wegrzecki, M; Wiehl, N; Yakusheva, V

    2015-12-11

    Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5)  MeV and half-life T_{1/2}=4.7(7)  μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5)  MeV and T_{1/2}=0.66(14)  μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced width. PMID:26705628

  7. MIXING AND TRANSPORT OF SHORT-LIVED AND STABLE ISOTOPES AND REFRACTORY GRAINS IN PROTOPLANETARY DISKS

    SciTech Connect

    Boss, Alan P.

    2013-08-10

    Analyses of primitive meteorites and cometary samples have shown that the solar nebula must have experienced a phase of large-scale outward transport of small refractory grains as well as homogenization of initially spatially heterogeneous short-lived isotopes. The stable oxygen isotopes, however, were able to remain spatially heterogeneous at the {approx}6% level. One promising mechanism for achieving these disparate goals is the mixing and transport associated with a marginally gravitationally unstable (MGU) disk, a likely cause of FU Orionis events in young low-mass stars. Several new sets of MGU models are presented that explore mixing and transport in disks with varied masses (0.016 to 0.13 M{sub Sun }) around stars with varied masses (0.1 to 1 M{sub Sun }) and varied initial Q stability minima (1.8 to 3.1). The results show that MGU disks are able to rapidly (within {approx}10{sup 4} yr) achieve large-scale transport and homogenization of initially spatially heterogeneous distributions of disk grains or gas. In addition, the models show that while single-shot injection heterogeneity is reduced to a relatively low level ({approx}1%), as required for early solar system chronometry, continuous injection of the sort associated with the generation of stable oxygen isotope fractionations by UV photolysis leads to a sustained, relatively high level ({approx}10%) of heterogeneity, in agreement with the oxygen isotope data. These models support the suggestion that the protosun may have experienced at least one FU Orionis-like outburst, which produced several of the signatures left behind in primitive chondrites and comets.

  8. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  9. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  10. ON THE INJECTION OF SHORT-LIVED RADIONUCLIDES FROM A SUPERNOVA INTO THE SOLAR NEBULA: CONSTRAINTS FROM THE OXYGEN ISOTOPES

    SciTech Connect

    Liu, Ming-Chang

    2014-02-01

    Injection of short-lived radionuclides from a nearby core-collapse Type II supernova into the already-formed solar protoplanetary disk was proposed to account for the former presence of {sup 26}Al, {sup 41}Ca, and {sup 60}Fe in the early solar system inferred from isotopic analysis of meteoritic samples. One potential corollary of this ''late-injection'' scenario is that the disk's initial (pre-injection) oxygen isotopic composition could be significantly altered, as supernova material that carried the short-lived radionuclides would also deliver oxygen components synthesized in that given star. Therefore, the change in the oxygen isotopic composition of the disk caused by injection could in principle be used to constrain the supernova injection models. Previous studies showed that although supernova oxygen could result in a wide range of shifts in {sup 17}O/{sup 16}O and {sup 18}O/{sup 16}O of the disk, a couple of cases existed where the calculated oxygen changes in the disk would be compatible with the meteoritic and solar wind data. Recently, the initial abundances of {sup 41}Ca and {sup 60}Fe in the solar system were revised to lower values, and the feasibility of supernova injection as a source for the three radionuclides was called into question. In this study, supernova parameters needed for matching {sup 26}Al, {sup 41}Ca, and {sup 60}Fe to their early solar system abundances were reinvestigated and then were used to infer the pre-injection O-isotope composition of the disk. The result suggested that a supernova undergoing mixing fallback might be a viable source for the three radionuclides.

  11. Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination

    SciTech Connect

    Noertershaeuser, W.; Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A.; Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M.; Bushaw, B. A.; Drake, G. W. F.; Pachucki, K.; Puchalski, M.; Yan, Z.-C.

    2011-01-15

    Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

  12. Mass measurements of short-lived isotopes in a penning trap

    SciTech Connect

    Kern, F.; Egelhof, P.; Hilberath, T.; Kalinowsky, H.; Kluge, H.h.; Kunz, K.; Schweikhard, L.; Stolzenberg, H.; Moore, R.B.; Audi, G.; and others

    1987-12-10

    A mass spectrometer has been set up at the on-line isotope separator ISOLDE at CERN/Geneva. Mass-separated radioactive ions are stored in a Penning trap. Their mass is determined by a measurement of the cyclotron frequency in the magnetic field of a superconducting magnet. A resolving power of up to 300.000 and a precision of some 10 keV were determined in case of mass measurements of neutron-deficient RB and Cs isotopes. The resonance of the isobars /sup 88/Sr and /sup 88/Rb were clearly resolved and evidence was obtained for an isomer in /sup 122/Cs.

  13. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  14. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge

    USGS Publications Warehouse

    Krest, J.M.; Harvey, J.W.

    2003-01-01

    Radium activity in pore water of wetland sediments often differs from the amount expected from local production, decay, and exchange with solid phases. This disequilibrium results from vertical transport of radium with groundwater that flows between the underlying aquifer and surface water. In situations where groundwater recharge or discharge is significant, the rate of vertical water flow through wetland sediment can be determined from the radium disequilibrium by a combined model of transport, production, decay, and exchange with solid phases. We have developed and tested this technique at three sites in the freshwater portion of the Everglades by quantifying vertical advective velocities in areas with persistent groundwater recharge or discharge and estimating a coefficient of dispersion at a site that is subject to reversals between recharge and discharge. Groundwater velocities (v) were determined to be between 0 and -0.5 cm d-1 for a recharge site and 1.5 ?? 0.4 cm d-1 for a discharge site near Levee 39 in the Everglades. Strong gradients in 223Ra and 224Ra usually occurred at the base of the peat layer, which avoided the problems of other tracers (e.g., chloride) for which greatest sensitivity occurs near the peat surface - a zone readily disturbed by processes unrelated to groundwater flow. This technique should be easily applicable to any wetland system with different production rates of these isotopes in distinct sedimentary layers or surface water. The approach is most straightforward in systems where constant pore-water ionic strength can be assumed, simplifying the modeling of radium exchange.

  15. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  16. [Short-lived disorders].

    PubMed

    Artigas-Pallares, Josep

    2012-02-29

    Over the years, most of the mental disorders that are dealt with in everyday clinical practice have changed not only their names but also their conceptualisation. Furthermore, as some disorders disappear or are forgotten, others come into being. Seen from a historical perspective and unlike many of the diseases included within classical medicine, it can be stated that one of the basic characteristics of mental disorders is their short-lived presence in the scientific literature. In this study we analyse the causes underlying the transitory nature of mental disorders. The disappearance of a disorder or the modification of how it is conceptualised may be linked to several different motives. Sometimes they may be due to an evolution of the construct, as a result of new findings. On other occasions the disorder falls into disuse owing to the weakness of the theoretical construct or the clinical research upholding it. Lastly, because the Diagnostic and Statistical Manual of Mental Disorders and the International Classification of Diseases require updates that incorporate new contributions and correct faults in the current model, they give rise to new denominations and definitions in mental disorders. This article analyses these three situations and offers an illustrative example in each case. PMID:22374762

  17. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  18. Precision Test of Many-Body QED in the Be+ 2p Fine Structure Doublet Using Short-Lived Isotopes.

    PubMed

    Nörtershäuser, Wilfried; Geppert, Christopher; Krieger, Andreas; Pachucki, Krzysztof; Puchalski, Mariusz; Blaum, Klaus; Bissell, Mark L; Frömmgen, Nadja; Hammen, Michael; Kowalska, Magdalena; Krämer, Jörg; Kreim, Kim; Neugart, Rainer; Neyens, Gerda; Sánchez, Rodolfo; Yordanov, Deyan T

    2015-07-17

    Absolute transition frequencies of the 2s 2S{1/2}→2p2P{1/2,3/2} transitions in Be^{+} were measured for the isotopes ^{7,9-12}Be. The fine structure splitting of the 2p state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of mα(6) and mα(7) ⁢ln α. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents one of the most accurate tests of quantum electrodynamics for many-electron systems, being insensitive to nuclear uncertainties. PMID:26230786

  19. Precision Test of Many-Body QED in the Be+ 2 p Fine Structure Doublet Using Short-Lived Isotopes

    NASA Astrophysics Data System (ADS)

    Nörtershäuser, Wilfried; Geppert, Christopher; Krieger, Andreas; Pachucki, Krzysztof; Puchalski, Mariusz; Blaum, Klaus; Bissell, Mark L.; Frömmgen, Nadja; Hammen, Michael; Kowalska, Magdalena; Krämer, Jörg; Kreim, Kim; Neugart, Rainer; Neyens, Gerda; Sánchez, Rodolfo; Yordanov, Deyan T.

    2015-07-01

    Absolute transition frequencies of the 2 s 1/2S2 →2 p 1/2,3/2P2 transitions in Be+ were measured for the isotopes 7,9,-12Be. The fine structure splitting of the 2 p state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of m α6 and m α7 ⁢ln α ⁡ . Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents one of the most accurate tests of quantum electrodynamics for many-electron systems, being insensitive to nuclear uncertainties.

  20. Assessing and modeling sediment mobility in estuarine and coastal settings due to extreme climate events from natural short-lived isotope distribution

    NASA Astrophysics Data System (ADS)

    Ghaleb, Bassam; Hillaire-Marcel, Claude; Ruiz Fernandez, Ana-Carolina; Sanchez Cabeza, Joan-Albert

    2016-04-01

    Climatic events (e.g. floods, storminess) and management activities (e.g. dredging) may result in the burial or removal and re-suspension of sediments in estuaries and coastal areas. When such sediments are contaminated, such processes may either help restoring better chemical environments or lead to their long-term contamination. Geochemical signatures in surface sediments may help identifying such sedimentological events. However, short-lived isotope data are generally required to set time-constraints on their occurrence. Whereas 210Pb and radioactive fallout isotope contents can help setting time constraints at ~50 to ~100 yr-time scales, natural disequilibria in the 232Th-228Ra-228Th sequence do provide information on processes which occurred within the last 30 yrs, as illustrated in the present study. Box-cored sediments from the Saguenay Fjord and lower estuary of the St. Lawrence (Canada) as well as from estuaries and lagoons from the Sinaloa Coast (Mexico) are used to document the behavior of these isotopes either under relatively steady conditions (St. Lawrence estuary) or under high-frequency extreme climate events (storms and floods; Saguenay Fjord, Coastal Sinaloa). 228Th/232Th activity ratios were determined by chemical extraction of Th and alpha counting of unspiked samples, rapidly after sampling (228Th/232Th). The activity of the intermediate isotope 228Ra was then estimated based on replicate measurements on aliquot samples made a few years later. Under steady conditions, core-top sediment shows an excess in 228Th vs 232Th (AR ~ 1.6), whereas the intermediate 228Ra depicts a deficit vs its parent 232Th (AR ~0.6). Downcore, radioactive decay carries rapidly 228Th-activities to those of the parent 228Ra within about 10 yrs (i.e., ~ 5 half-lives of 228Th), then both move during the next ~20 yrs (~ i.e., ~ 5 half-lives of 228Ra, when added to the 10 yrs of 228Th-excess) towards secular equilibrium with the parent long-lived 232Th. A few algorithms

  1. Degassing processes and eruptive activity at Merapi volcano: The bearing of short-lived U-series isotopes.

    NASA Astrophysics Data System (ADS)

    Gauthier, P. J.; Le Cloarec, M. F.

    2003-04-01

    For more than 20 years, volcanic gases have been regularly collected at Merapi volcano (Central Java, Indonesia) and subsequently analyzed for their radionuclide (210Pb, 210Bi, and 210Po) and SO_2 contents. Gas sampling was carried out during various periods of contrasted volcanic activity and at different locations: high-temperature fumarolic fields (Woro: 600^oC; Gendol 850^oC), main plume released through fractures within the summit crater, and active growing lava domes. These new results show the high volatility of the three radionuclides in andesitic gases, although their emanation coefficients (0.94%, 3.5%, and <= 53% for 210Pb, 210Bi, and 210Po, respectively) are significantly lower than those observed at basaltic volcanoes. This emphasizes the major role of magma temperature on the degassing of these metals, which are mainly transported in volcanic gases as Pb-chloride compounds, and Bi- and Po-metallic species. 210Pb--210Bi--210Po radioactive disequilibria in the gas phase at Merapi appear to be characteristic of the degassing processes and gas paths within the edifice. Gases released at both Gendol and Woro fumarolic fields are clearly of magmatic origin, but their 210Pb--210Bi--210Po isotopic signature is strongly altered by secondary processes: condensation and transformation of gases crossing brines (Woro); deposition and subsequent degassing of sublimates according to temperature variations in the ground (Woro, Gendol). High-temperature gases collected in the main plume are of pure primary magmatic origin. They are likely directly tapped in the degassing reservoir and escape through the main fractures with little interaction with the dome-forming host rocks. On the other hand, gases arising from the growing dome are strongly depleted in the most volatile isotopes and gas species. We conclude from these observations that lava is almost completely degassed prior to its emission at the surface, and that magmatic degassing at Merapi is an open

  2. Isotope shifts of the 6d{sup 2} D{sub 3/2}-7 p{sup 2} P{sub 1/2} transition in trapped short-lived {sup 209-214}Ra{sup +}

    SciTech Connect

    Giri, G. S.; Versolato, O. O.; Berg, J. E. van den; Boell, O.; Dammalapati, U.; Hoek, D. J. van der; Jungmann, K.; Kruithof, W. L.; Mueller, S.; Nunez Portela, M.; Onderwater, C. J. G.; Santra, B.; Timmermans, R. G. E.; Wansbeek, L. W.; Willmann, L.; Wilschut, H. W.

    2011-08-15

    Laser spectroscopy of short-lived radium isotopes in a linear Paul trap has been performed. The isotope shifts of the 6d{sup 2} D{sub 3/2} -7 p{sup 2} P{sub 1/2} transition in {sup 209-214}Ra{sup +}, which are sensitive to the short-range part of the atomic wave functions, were measured. The results are essential experimental input for improving the precision of atomic structure calculations. This is indispensable for parity violation in Ra{sup +} aiming at the determination of the weak mixing angle.

  3. The behaviour of short-lived radiogenic lead isotopes ( 214Pb and 212Pb) in groundwaters and laboratory leaching experiments

    NASA Astrophysics Data System (ADS)

    Hussain, N.; Krishnaswami, S.

    1982-05-01

    The concentrations of 214Pb ( half-life=26.4minutes) and 22Rn ( half-life=3.84days) have been measured in deep groundwaters of Gujarat, India. The results show that the abundance of 214Pb in the water is only ˜25% of that expected from its production through the radioactive decay of dissolved 222Rn. This deficiency if modelled in terms of a first-order removal, yields a residence time of ˜10 minutes for 214Pb in these waters. The estimated residence time for 214Pb is the shortest observed for any nuclide in natural water systems and suggests that reactive nuclides lead like could be removed from aqueous phases to adjoining solid surfaces on extremely short time scales. Results of laboratory experiments using the 212Pb- 224Ra pair are compatible with the observed fast removal of 214Pb from groundwaters. Re-evaluation of 234Th residence times in these waters using a model with a recoil flux of 234Th into aqueous phase, the same as that of 222Rn, yields values in the range of 23 to <176 minutes, very similar to that of 214Pb. This "concordancy" in the residence times seems to suggest that the geochemical behaviour of 234Th and 214Pb in these waters is quite similar.

  4. Short-lived radioactivity and magma genesis.

    PubMed

    Gill, J; Condomines, M

    1992-09-01

    Short-lived decay products of uranium and thorium have half-lives and chemistries sensitive to the processes and time scales of magma genesis, including partial melting in the mantle and magmatic differentiation in the crust. Radioactive disequilibrium between (238)U, (230)Th, and (226)Ra is widespread in volcanic rocks. These disequilibria and the isotopic composition of thorium depend especially on the extent and rate of melting as well as the presence and composition of vapor during melting. The duration of mantle melting may be several hundred millennia, whereas ascent times are a few decades to thousands of years. Differentiation of most magmas commonly occurs within a few millennia, but felsic ones can be tens of millennia old upon eruption. PMID:17738278

  5. Oxygen isotopic and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains, Russia

    USGS Publications Warehouse

    Gazis, C.; Taylor, H.P., Jr.; Hon, K.; Tsvetkov, A.

    1996-01-01

    Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was

  6. Short-Lived Climate Pollution

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.

    2014-05-01

    Although carbon dioxide emissions are by far the most important mediator of anthropogenic climate disruption, a number of shorter-lived substances with atmospheric lifetimes of under a few decades also contribute significantly to the radiative forcing that drives climate change. In recent years, the argument that early and aggressive mitigation of the emission of these substances or their precursors forms an essential part of any climate protection strategy has gained a considerable following. There is often an implication that such control can in some way make up for the current inaction on carbon dioxide emissions. The prime targets for mitigation, known collectively as short-lived climate pollution (SLCP), are methane, hydrofluo-rocarbons, black carbon, and ozone. A re-examination of the issues shows that the benefits of early SLCP mitigation have been greatly exaggerated, largely because of inadequacies in the methodologies used to compare the climate effects of short-lived substances with those of CO2, which causes nearly irreversible climate change persisting millennia after emissions cease. Eventual mitigation of SLCP can make a useful contribution to climate protection, but there is little to be gained by implementing SLCP mitigation before stringent carbon dioxide controls are in place and have caused annual emissions to approach zero. Any earlier implementation of SLCP mitigation that substitutes to any significant extent for carbon dioxide mitigation will lead to a climate irreversibly warmer than will a strategy with delayed SLCP mitigation. SLCP mitigation does not buy time for implementation of stringent controls on CO2 emissions.

  7. Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain)

    NASA Astrophysics Data System (ADS)

    Baudron, Paul; Cockenpot, Sabine; Lopez-Castejon, Francisco; Radakovitch, Olivier; Gilabert, Javier; Mayer, Adriano; Garcia-Arostegui, José Luis; Martinez-Vicente, David; Leduc, Christian; Claude, Christelle

    2015-06-01

    In highly anthropized watersheds, surface water tributaries may carry unexpected high quantities of radon and radium to coastal lagoons. Investigating submarine groundwater discharge (SGD) with radionuclide tracers is therefore a complex task. In order to quantify SGD and decipher the influence of the different water sources, we combined a radon (222Rn) and short-lived radium (223Ra, 224Ra) survey with the hydrodynamic modeling of a lagoon. We applied it to the Mar Menor lagoon (SE Spain) where surface water tributaries and undocumented emissaries carry water from groundwater drainage and brines from groundwater desalinization. We identified the areas of influence of the plume of radionuclides from the river, located major areas of SGD and proposed a location for two submarine emissaries. Porewater, i.e. interstitial water from underlying sediments, was found to be the most representative SGD end member, compared to continental groundwater collected from piezometers. Mass balances in winter and summer seasons provided yearly SGD fluxes of water of 0.4-2.2 ṡ 108 m3/y (222Rn), 4.4-19.0 ṡ 108 m3/y (224Ra) and 1.3 ṡ 108 m3/y (223Ra, measured in winter only). Tidal pumping was identified as a main driver for recirculated saline groundwater, while fresh submarine groundwater discharge from the aquifer ranged between 2% and 23% of total SGD.

  8. Short-lived Supershear Rupture

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Xu, S.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2015-12-01

    Fukuyama and Olsen (2002) computed the supershear rupture initiation, propagation and termination process due to a passage of high stress drop area (called asperity) using a boundary integral equation method. They found that supershear rupture continued to propagate after the passage through high stress drop area but it died after a certain propagation distance, which depends on the elastic energy released at the high stress drop area. Here, we could reproduce a similar phenomenon in the laboratory. We conducted large-scale biaxial friction experiments using a pair of meter-scaled metagabbro rock specimens (VP=6.9km/s, VS=3.6km/s) at the National Research institute for Earth Science and Disaster Prevention (NIED). We observed several stick slip rupture events that initiated close to an asperity and immediately became supershear ruptures. But after propagating certain distance they died out and co-existing subshear ruptures became prominent. If we look into details, during the supershear rupture, we could see a sequence of rupture acceleration, its short rest and re-acceleration. This feature reminds us of a sequential breakage of small high stress patches as predicted by Fukuyama and Madariaga (2000). These observations might be interpreted under a concept of energy balance where the energy transmission from strain energy released by the asperity to fracture energy consumed at the crack tip was not instantaneously balanced in space. This could be related to the fact that earthquake rupture velocity is rather smooth reported from the finite fault analysis of large earthquakes with seismic waveforms. References Fukuyama, E. and R. Madariaga (2000) Dynamic propagation and interaction of a rupture front on a planar fault, PAGEOPH, 257, 1959-1979. Fukuyama, E. and K.B. Olsen (2002) A condition for super-shear rupture propagation in a heterogeneous stress field, PAGEOPH, 159, 2047-2056.

  9. Skylab short-lived event alert program

    NASA Technical Reports Server (NTRS)

    Citron, R. A.

    1974-01-01

    During the three manned Skylab missions, the Center for Short-Lived Phenomena (CSLP) reported a total of 39 significant events to the Johnson Space Center (JSC) as part of the Skylab Short-Lived Event Alert Program. The telegraphed daily status reports included the names and locations of the events, the track number and revolution number during which the event could be observed, the time (GMT) to within plus or minus 2 sec when Skylab was closest to the event area, and the light condition (daylight or darkness) at that time and place. The messages sent to JSC during the Skylab 4 mission also included information pertaining to ground-truth studies and observations being conducted on the events. Photographic priorities were assigned for each event.

  10. EVOLUTION OF THE SOLAR NEBULA. IX. GRADIENTS IN THE SPATIAL HETEROGENEITY OF THE SHORT-LIVED RADIOISOTOPES {sup 60}Fe AND {sup 26}Al AND THE STABLE OXYGEN ISOTOPES

    SciTech Connect

    Boss, Alan P.

    2011-10-01

    Short-lived radioisotopes (SLRIs) such as {sup 60}Fe and {sup 26}Al were likely injected into the solar nebula in a spatially and temporally heterogeneous manner. Marginally gravitationally unstable (MGU) disks, of the type required to form gas giant planets, are capable of rapid homogenization of isotopic heterogeneity as well as of rapid radial transport of dust grains and gases throughout a protoplanetary disk. Two different types of new models of an MGU disk in orbit around a solar-mass protostar are presented. The first set has variations in the number of terms in the spherical harmonic solution for the gravitational potential, effectively studying the effect of varying the spatial resolution of the gravitational torques responsible for MGU disk evolution. The second set explores the effects of varying the initial minimum value of the Toomre Q stability parameter, from values of 1.4 to 2.5, i.e., toward increasingly less unstable disks. The new models show that the basic results are largely independent of both sets of variations. MGU disk models robustly result in rapid mixing of initially highly heterogeneous distributions of SLRIs to levels of {approx}10% in both the inner (<5 AU) and outer (>10 AU) disk regions, and to even lower levels ({approx}2%) in intermediate regions, where gravitational torques are most effective at mixing. These gradients should have cosmochemical implications for the distribution of SLRIs and stable oxygen isotopes contained in planetesimals (e.g., comets) formed in the giant planet region ({approx}5 to {approx}10 AU) compared to those formed elsewhere.

  11. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  12. Sinusoidal Regge Oscillations from Short Lived Resonances

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.; Felfli, Z.; Msezane, A. Z.

    2007-06-01

    It is well known that a resonance with a large angular life can produce sharp Breit-Wigner peaks in the energy dependence of integral cross sections [1,2]. Here we show that a short-lived resonance whose angular life is of order of one full rotation may produce a different kind of contribution to the integral cross section. This contribution has a sinousoidal form and its frequency is determined by the rotational constant of the complex. As one of the examples, we analyze the Regge oscillations observed in numerical simulations of the F+H2(v=0,j=0,φ=0) ->FH(v'=2,j'=0,φ'=0) + H reaction. In particular, we show that these oscillations are produced by two overlapping resonances located near the transition state and the van der Waals well, respectively [3]. [1] J. H. Macek, et al., Phys. Rev. Lett., 93, 183202, (2004). [2] Z. Felfli et al., J. Phys. B 39, L353 (2006) [3] D. Sokolovski, D. De Fazio, S. Cavalli and V. Aquilanti, J. Chem. Phys. (2007) (submitted).

  13. Studies of images of short lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The program to study short-lived events with the ERTS-1 satellite has evaluated 97 events reported by the Center for Short-Lived Phenomena. Forty-eight of these events were listed as candidates for ERTS-1 coverage and 8 of these were considered significant enough to immediately alert the ERTS operation staff by telephone. Studies of the images received from six events indicate that useful data on short-lived events can be obtained from ERTS-1 that would be difficult or impossible to obtain by other methods.

  14. Caffeine's Jolt Can Sometimes Be Short-Lived

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159413.html Caffeine's Jolt Can Sometimes Be Short-Lived Stimulant effect ... 17, 2016 THURSDAY, June 16, 2016 (HealthDay News) -- Caffeine no longer improves alertness or mental performance after ...

  15. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  16. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Day, Shelley A.; Rathburn, Anthony E.; Perez, M. Elena; Mahn, Chris; Gieskes, Joris

    2004-04-01

    Fossil foraminifera are critical to paleoceanographic reconstructions including estimates of past episodes of methane venting. These reconstructions rely on benthic foraminifera incorporating and retaining unaltered the ambient isotopic compositions of pore fluids and bottom waters. Comparisons are made here of isotopic compositions of abundant live and fossil foraminifera (Uvigerina peregrina, Epistominella pacifica, Bulimina mexicana, and Globobulimina pacifica) collected in Monterey Bay, CA from two cold seeps (Clam Flats and Extrovert Cliffs) and from sediments ˜5 m outside of the Clam Flats seep. Clam Flats has steep δ13CDIC gradients (to <-45‰), but DIC at Extrovert Cliffs is less enriched in 12C (to approximately -22‰). Oxygen isotope values of fossil foraminifera at Clam Flats are ˜1.5‰ enriched in 18O over the living foraminifera, as well as those of both live and fossil foraminifera at Extrovert Cliffs, suggesting they may have lived during the last glacial maximum. Statistical comparisons (Student's t and Kolmogorov-Smirnov tests) of δ13C and δ18O values indicate that live and fossil foraminifera come from different populations at both Clam Flats and Extrovert Cliffs. At Clam Flats, the difference appears to result from alteration enriching some fossil foraminifera in 12C over live foraminifera. At Extrovert Cliffs, the fossil foraminifera are enriched in 13C over the live foraminifera, suggesting they lived prior to the onset of venting and thus that venting began recently. The short time of venting at Extrovert Cliffs may be responsible for the less alteration there compared with Clam Flats. These results indicate that preservation of foraminifera is likely to be poor within long-lived cold seeps, but that foraminifera living in the surrounding sediment may incorporate and preserve broad basin-wide changes in isotopic compositions of the ambient water.

  17. Overview of the methods for the measurement and interpretation of short-lived radioisotopes and their limits

    NASA Astrophysics Data System (ADS)

    Ghaleb, B.

    2009-01-01

    The daughter products of the uranium and thorium series consist of several radioactive isotopes with half-lives varying from less than a second to 105 years. Combining their half-live with their geochemical behaviour some of these radioisotopes could be used as tracers and/or chronometers of sedimentary processes. For example, thorium isotopes, and to a lesser extent polonium isotopes are characterized by very low solubility and very high affinity for the surface of particles. Consequently, thorium isotopes can be used to document scavenging and adsorption processes. On the other hand, radium isotopes tend to remain in solution and can be used to document diffusion processes. In the following, we present the analytical methods for the measurement and analysis of the most common short-lived isotopes and throughout their utility in studying sedimentary processes will be illustrated by a few examples of applications. These examples will focus essentially on the applications of short lived thorium isotopes (notably 234Th) and the use of 210Pb as chronometer for recent sedimentary accumulation.

  18. Experimental Measurements of Short-Lived Fission Products from Uranium, Neptunium, Plutonium and Americium

    SciTech Connect

    Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.

    2009-11-01

    Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on the short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve ~108 fissions. The samples were placed on a HPGe (high purity germanium) detector to begin counting in less than 3 minutes post irradiation. The samples were counted for various time intervals ranging from 5 minutes to 1 hour. The data was then analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.

  19. Short-lived oxygen diffusion during hot, deep-seated meteoric alteration of anorthosite

    PubMed

    Mora; Riciputi; Cole

    1999-12-17

    Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite. PMID:10600738

  20. Prospects for baryon instability search with long-lived isotopes

    SciTech Connect

    Efremenko, Yu.; Bugg, W.; Cohn, H.; Kamyshkov, Yu.; Parker, G.; Plasil, F.

    1996-12-31

    In this paper we consider the possibility of observation of baryon instability processes occurring inside nuclei by searching for the remnants of such processes that could have been accumulated in nature as mm long-lived isotopes. As an example, we discuss here the possible detection of traces of {sup 97}Tc, {sup 98}Tc, and {sup 99}Tc in deep-mined nonradioactive tin ores.

  1. Soot and short-lived pollutants provide political opportunity

    NASA Astrophysics Data System (ADS)

    Victor, David G.; Zaelke, Durwood; Ramanathan, Veerabhadran

    2015-09-01

    Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process.

  2. Measures Urged to Cut Short-Lived Climate Pollutants

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    To produce significant near-term climate benefits, the Obama administration should take a series of actions under existing authorities to reduce greenhouse gases that have relatively short atmospheric lifetimes of weeks to a few decades, according to a 12 March study by the nonprofit Center for Climate and Energy Solutions (C2ES). The report, "Domestic Policies to Reduce the Near-Term Risks of Climate Change," notes that recent estimates suggest that about 30-40% of warming experienced to date can be attributed to these short-lived pollutants, which include black carbon, methane, and hydrofluorocarbons (HFCs).

  3. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE PAGESBeta

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; Kapsimalis, Roger J.

    2016-06-23

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  4. A GENERALIZED METHOD FOR CHARACTERIZATION OF 235U AND 239PU CONTENT USING SHORT-LIVED FISSION PRODUCT GAMMA SPECTROSCOPY

    SciTech Connect

    Knowles, Justin R; Skutnik, Steven E; Glasgow, David C; Kapsimalis, Roger J

    2016-01-01

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.

  5. Short-lived positron emitter labeled radiotracers - present status

    SciTech Connect

    Fowler, J.S.; Wolf, A.P.

    1982-01-01

    The preparation of labelled compounds is important for the application of positron emission transaxial tomography (PETT) in biomedical sciences. This paper describes problems and progress in the synthesis of short-lived positron emitter (/sup 11/C, /sup 18/F, /sup 13/N) labelled tracers for PETT. Synthesis of labelled sugars, amino acids, and neurotransmitter receptors (pimozide and spiroperidol tagged with /sup 11/C) is discussed in particular. (DLC)

  6. Short-lived proton radioactivity studies at HRIBF

    SciTech Connect

    Batchelder, J. C.; Bingham, C. R.; Ginter, T. N.; Gross, C. J.; Grzywacz, R.; Karny, M.; Janas, Z.; Mas, F.; McConnell, J. W.; Rykaczewski, K.; Toth, K. S.; Piechaczek, A.; Zganjar, E. F.; Semmes, P.

    1999-11-16

    An accurate determination of the experimental spectroscopic factor of proton emitting nuclei precisely defines the main component of the proton wave function for the unbound state. However, this has proven difficult for nuclei with Z{<=}71 due to the unknown beta-branching ratios involved. One way to solve this problem is to study proton-emitters with half-lives far too short for beta-emission to compete. Recent work at the Holifield Radioactive Ion Beam Facility has produced information on {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu, all of which have half-lives in the {mu}s region. A comparison between calculated and experimental spectroscopic factors for these nuclei is given.

  7. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  8. ``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products

    SciTech Connect

    Jerde, E.A.; Glasgow, D.C.

    1998-09-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate counting leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.

  9. SPATIAL Short Courses Build Expertise and Community in Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.; Bowen, G. J.

    2015-12-01

    The SPATIAL short course at the University of Utah is designed for graduate students and professionals in the earth and environmental sciences from around the globe. An integral part of the broader, NSF-funded Inter-university Training for Continental-scale Ecology (ITCE) project, the course is an intensive two-week field, classroom and laboratory experience with internationally-known researchers as instructors. The course focuses on stable isotope geochemistry coupled with spatial analysis techniques. Participants do not typically know each other or this research community well upon entering. One of the stated goals of the overall project is to build a community of practice around these techniques. This design is common in many professional fields, but is not often applied at the graduate level nor formally assessed in the earth sciences. Paired pre- and post-tests were administered before the start and after the close of the short courses over 3 years. The survey is a set of instruments adapted from social-cognitive psychology measuring changes in identity and community with other items to measure content knowledge outcomes. We see a subtle, consistent convergence of identities between large-scale isotope geochemistry and participants' research areas. Results also show that the course generates an increase in understanding about stable isotopes' use and application. The data show the SPATIAL course is very effective at bringing students together socially with each other and with faculty to create an environment that fosters community and scientific cooperation. Semi-structured pre-and post- interviews were conducted to understand the program elements that generated gains in learning and community. Participants were selected based on initial responses on the pre-survey to capture the range of initial conditions for the group. Qualitative analysis shows that the major factors for participants were 1) ready access to researchers in an informal setting during the

  10. SHORT-LIVED RADIO BURSTS FROM THE CRAB PULSAR

    SciTech Connect

    Crossley, J. H.; Eilek, J. A.; Hankins, T. H.; Kern, J. S.

    2010-10-20

    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or in the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as {nu}{sup -2}, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.

  11. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  12. Laser spectroscopy of trapped short-lived Ra{sup +} ions

    SciTech Connect

    Versolato, O. O.; Giri, G. S.; Wansbeek, L. W.; Berg, J. E. van den; Hoek, D. J. van der; Jungmann, K.; Kruithof, W. L.; Onderwater, C. J. G.; Sahoo, B. K.; Santra, B.; Shidling, P. D.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2010-07-15

    As an important step toward an atomic parity violation experiment in one single trapped Ra{sup +} ion, laser spectroscopy on short-lived {sup 212,213,214}Ra{sup +} ions was conducted. The isotope shift of the 6 {sup 2}D{sub 3/2}-7 {sup 2}P{sub 1/2} and 6 {sup 2}D{sub 3/2}-7 {sup 2}P{sub 3/2} transitions and the hyperfine structure constants of the 7 {sup 2}P{sub 1/2} and 6 {sup 2}D{sub 3/2} states in {sup 213}Ra{sup +} were measured, which provides a benchmark for the required atomic theory. A lower limit of 232(4) ms for 6 {sup 2}D{sub 5/2} state lifetime was determined.

  13. Studies of images of short-lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Significant results are the continued detection of short-lived events. The following have been detected and analyzed: forest fires, oil spills, vegetation damage, volcanoes, storm ridges, and earthquakes. It is hoped that the Mississippi River flood scenes will arrive shortly and then floods be added to the list of identified short-lived events.

  14. Quantifying Short-Lived Events in Multistate Ionic Current Measurements

    PubMed Central

    2015-01-01

    We developed a generalized technique to characterize polymer–nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule’s residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution. PMID:24397836

  15. A multi-proxy approach to identifying short-lived marine incursions in the Early Carboniferous

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Davies, Sarah; Leng, Melanie; Snelling, Andrea; Millward, David; Kearsey, Timothy; Marshall, John; Reves, Emma

    2015-04-01

    This study is a contribution to the TW:eed Project (Tetrapod World: early evolution and diversification), which examines the rebuilding of Carboniferous ecosystems following a mass extinction at the end of the Devonian. The project focuses on the Tournaisian Ballagan Formation of Scotland and the Borders, which contains rare fish and tetrapod material. The Ballagan Formation is characterised by sandstones, dolomitic cementstones, paleosols, siltstones and gypsum deposits. The depositional environment ranges from fluvial, alluvial-plain to marginal-marine environments, with fluvial, floodplain and lacustrine deposition dominant. A multi-proxy approach combining sedimentology, palaeontology, micropalaeontology, palynology and geochemistry is used to identify short-lived marine transgressions onto the floodplain environment. Rare marginal marine fossils are: Chondrites-Phycosiphon, Spirorbis, Serpula, certain ostracod species, rare orthocones, brachiopods and putative marine sharks. More common non-marine fauna include Leiocopida and Podocopida ostracods, Mytilida and Myalinida bivalves, plants, eurypterids, gastropods and fish. Thin carbonate-bearing dolomitic cementstones and siltstone contain are the sedimentary deposits of marine incursions and occur throughout the formation. Over 600 bulk carbon isotope samples were taken from the 500 metre thick Norham Core (located near Berwick-Upon-Tweed), encompassing a time interval of around 13 million years. The results range from -26o to -19 δ13Corg, with an average of -19o much lighter than the average value for Early Carboniferous marine bulk organic matter (δ13C of -28 to -30). The isotope results correspond to broad-scale changes in the depositional setting, with more positive δ13C in pedogenic sediments and more negative δ13C in un-altered grey siltstones. They may also relate to cryptic (short-lived) marine incursions. A comparison of δ13C values from specific plant/wood fragments, palynology and bulk

  16. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Montzka, S. A.; Rap, A.; Dhomse, S.; Feng, W.

    2015-03-01

    Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas. Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens. Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m-2 to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes or continued anthropogenic emissions, could be important for future climate.

  17. Constraints on the Origin of Chondrules and CAIs from Short-Lived and Long-Lived Radionuclides

    SciTech Connect

    Kita, N T; Huss, G R; Tachibana, S; Amelin, Y; Nyquist, L E; Hutcheon, I D

    2005-10-24

    The high time resolution Pb-Pb ages and short-lived nuclide based relative ages for CAIs and chondrules are reviewed. The solar system started at 4567.2 {+-} 0.6Ma inferred from the high precision Pb-Pb ages of CAIs. Time scales of CAIs ({le}0.1Myr), chondrules (1-3Myr), and early asteroidal differentiation ({ge}3Myr) inferred from {sup 26}Al relative ages are comparable to the time scale estimated from astronomical observations of young star; proto star, classical T Tauri star and week-lined T Tauri star, respectively. Pb-Pb ages of chondrules also indicate chondrule formation occur within 1-3 Myr after CAIs. Mn-Cr isochron ages of chondrules are similar to or within 2 Myr after CAI formation. Chondrules from different classes of chondrites show the same range of {sup 26}Al ages in spite of their different oxygen isotopes, indicating that chondrule formed in the localized environment. The {sup 26}Al ages of chondrules in each chondrite class show a hint of correlation with their chemical compositions, which implies the process of elemental fractionation during chondrule formation events.

  18. Chernobyl-related thyroid cancer: what evidence for role of short-lived iodines?

    PubMed Central

    Bleuer, J P; Averkin, Y I; Abelin, T

    1997-01-01

    Over 500 cases of thyroid cancer were diagnosed in Belarus between 1986 and 1995 among persons exposed as children (under 15 years of age) to radioactive contamination from the Chernobyl nuclear accident. There is little doubt that radioactive iodine isotopes emitted during the nuclear explosion and subsequent fire were instrumental in causing malignancy in this particular organ. Comparison of the observed geographic distribution of Chernobyl-associated thyroid cancer incidence rates by districts with contamination maps of radioactive fallout shows a better fit for estimated 131I contamination than for 137Cs. Because 131I used for medical purposes had not been considered carcinogenic in humans in the past, and in view of the unusually short latency period between exposure and clinical manifestation of cancer, it is suspected that not only 131I but also energy-rich shorter-lived radioiodines may have played a role in post-Chernobyl thyroid carcinogenesis. Measurements of iodine isotopes are not available, but reconstruction of geographic distributions and estimations of radioactive fallout based on meteorological observations immediately following the accident could provide a basis for comparison with the distribution of thyroid cancer cases. In this paper, data from the Epidemiological Cancer Register for Belarus will be used to show geographic and time trends of thyroid cancer incidence rates in the period from 1986 to 1995 among persons who were exposed as children, and these will be compared with the estimated contamination by radioiodines. Tentative conclusions are drawn from the available evidence and further research requirements discussed. PMID:9467068

  19. Measurement of Short-Lived Fission-Product Yields of URANIUM-235 Using High-Resolution Gamma Spectra.

    NASA Astrophysics Data System (ADS)

    Tipnis, Sameer Vijay

    Independent yields of short-lived fission products produced by the thermal neutron induced fission of ^{235}U were determined from the measurements of high resolution gamma spectra. Comparisons were made to the recommended yield values tabulated in the ENDF/B-VI evaluated fission-product data base. Measurements of the gamma spectra were made with a high purity germanium detector (HPGe) using a NaI(Tl) annulus for Compton suppression. Use of beta-gamma coincidence reduced the random background and also allowed a precise definition of the delay time. The experiment was carried out at the 5.5 MV Van de Graaff facility at the University of Massachusetts Lowell. Rapid transfer of the fission fragments to a low background counting environment, a crucial factor in determining the yields of short-lived fission products, was enabled by a helium -jet tape transport system. The recommended yields in the evaluated data file are a combination of experimental and model-predicted values. The latter source is used since data from many short-lived fission products is still missing or poorly known. The results presented here, especially the ones for the very short-lived isotopes may be used to reduce the uncertainties associated with some of the existing values or to replace model-predicted yields. Gaussian distributions of elemental yields, based on the set of experimentally determined independent yields were examined. The feasibility of predicting unmeasured yields on the basis of charge and mass complementarity was also addressed.

  20. Crantor, a short-lived horseshoe companion to Uranus

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-03-01

    Context. Stable co-orbital motion with Uranus is vulnerable to planetary migration, but temporary co-orbitals may exist today. So far, only two candidates have been suggested, both moving on horseshoe orbits: 83982 Crantor (2002 GO9) and 2000 SN331. Aims: (83982) Crantor is currently classified in the group of the Centaurs by the MPC although the value of its orbital period is close to that of Uranus. Here we revisit the topic of the possible 1:1 commensurability of (83982) Crantor with Uranus, explore its dynamical past, and look into its medium-term stability and future orbital evolution. Methods: Our analysis is based on the results of N-body calculations that use the most updated ephemerides and include perturbations by the eight major planets, the Moon, the barycenter of the Pluto-Charon system, and the three largest asteroids. Results: (83982) Crantor currently moves inside Uranus' co-orbital region on a complex horseshoe orbit. The motion of this object is primarily driven by the influence of the Sun and Uranus, although Saturn plays a significant role in destabilizing its orbit. The precession of the nodes of (83982) Crantor, which is accelerated by Saturn, controls its evolution and short-term stability. Although this object follows a temporary horseshoe orbit, more stable trajectories are possible and we present 2010 EU65 as a long-term horseshoe librator candidate in urgent need of follow-up observations. Available data indicate that the candidate 2000 SN331 is not a Uranus' co-orbital. Conclusions: Our calculations confirm that (83982) Crantor is currently trapped in the 1:1 commensurability with Uranus but it is unlikely to be a primordial 1:1 librator. Although this object follows a chaotic, short-lived horseshoe orbit, longer term horseshoe stability appears to be possible. We also confirm that high-order resonances with Saturn play a major role in destabilizing the orbits of Uranus co-orbitals. Figures 2 and 6 (animations) are available in

  1. Convective transport of very short lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-06-01

    We use the NASA Goddard Earth Observing System (GEOS) Chemistry Climate Model (GEOSCCM) to quantify the contribution of the two most important brominated very short lived substances (VSLSs), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLSs from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the tropical western Pacific, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ~8 ppt total bromine to the base of the tropical tropopause layer (TTL, ~150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (~7.8-8.4 ppt) in the active convective lofting regions mentioned above. Of the total ~8 ppt VSLS bromine that enters the base of the TTL at ~150 hPa, half is in the form of organic source gases and half in the form of inorganic product gases. Only a small portion (<10%) of the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On average, globally, CHBr3 and CH2Br2 together contribute ~7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep-convection strength between maximum (strongest) and minimum (weakest) convection conditions can introduce a ~2.6 pptv uncertainty in the contribution of VSLSs to inorganic bromine in the stratosphere (BryVSLS). Contrary to conventional wisdom, the minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, and thus a significant increase in product gas injection (2-3 ppt), greatly exceeds the relatively minor decrease in source gas injection (a few 10ths ppt).

  2. Effects of salience are both short- and long-lived.

    PubMed

    Orquin, Jacob L; Lagerkvist, Carl Johan

    2015-09-01

    A salient object can attract attention irrespective of its relevance to current goals. However, this bottom up effect tends to be short-lived (e.g. <150 ms) and it is generally assumed that top down processes such as goals or task instructions operating in later time windows override the effect of salience operating in early time windows. While the majority of studies on visual search and scene viewing comply with the assumptions of top down and bottom up processes operating in different time windows and that the former overrides the latter, we point to some possible anomalies in decision research. To explore these anomalies and thereby test the two key assumptions, we manipulate the salience and valence of one information cue in a decision task. Our analyses reveal that in decision tasks top down and bottom up processes do not operate in different time windows as predicted, nor does the former process necessarily override the latter. Instead, we find that the maximum effect of salience on the likelihood of making a saccade to the target cue is delayed until about 20 saccades after stimulus onset and that the effects of salience and valence are additive rather than multiplicative. Further, we find that in the positive and neutral valence conditions, salience continues to exert pressure on saccadic latency, i.e. the interval between saccades to the target with high salience targets being fixated faster than low salience targets. Our findings challenge the assumption that top down and bottom up processes operate in different time windows and the assumption that top down processes necessarily override bottom up processes. PMID:26188691

  3. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  4. First use of high charge states for mass measurements of short-lived nuclides in a Penning trap.

    PubMed

    Ettenauer, S; Simon, M C; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed β emitter 74Rb (T(1/2)=65  ms). The determination of its atomic mass and an improved Q(EC) value are presented. PMID:22243307

  5. Design Study for a Multi-Reflection Time-of-Flight Mass Spectrograph for Very Short Lived Nuclei

    NASA Astrophysics Data System (ADS)

    Yoon, Jin Woo; Park, Young-Ho; Im, Kang-Bin; Kim, Gi Dong; Kim, Yong Kyun

    The multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been designed for the high precision mass measurement system in RAON accelerator facility, which will be constructed in Korea. Mirror-electrode potentials were numerically optimized by Nelder-Mead algorithm. The temporal spread and the mass-resolving power were calculated for the 132Sn+ ions with an energy spread of 20 eV and an emittance of 3 π mm mrad; the mass resolving power over 105 was achieved. MR-TOF-MS will be used for the isobar separation and the mass measurement for very short-lived isotopes.

  6. Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes

    SciTech Connect

    Marinov, A.; Kashiv, Y.; Rodushkin, I.; Halicz, L.; Segal, I.; Pape, A.; Miller, H. W.; Kolb, D.; Brandt, R.

    2007-08-15

    Four long-lived neutron-deficient Th isotopes with atomic mass numbers 211 to 218 and abundances of (1-10)x10{sup -11} relative to {sup 232}Th have been found in a study of naturally-occurring Th using inductively coupled plasma-sector field mass spectrometry. It is deduced that long-lived isomeric states exist in these isotopes. The hypothesis that they might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.

  7. Multibeam emitters as joint optical laser complex and ion-optical system for laser selection of atoms, molecules, isotopes, isomers, long-lived and short-lived radionuclides in different spheres from γ-laser and atomic energetics to medicine and gene engineering

    NASA Astrophysics Data System (ADS)

    Karyagin, Stanislav V.

    2001-03-01

    The SPTEN-(gamma) -laser's development leads to the essentially new principles for the effective converting of the nuclear radiation (neutrons, gamma, etc.) into the well controlling and focusing broad formatted atomic (ionic, molecular, etc.) beams which are fit for the creation of the active medium of the (gamma) -laser and for the other aims, e.g., for the acceleration by many orders of the selection of atoms, molecules, isotopes, isomers, radionuclides, for high precision methods in the spectroscopy-chromatography of the macromolecules, etc. The appropriate Multi Beam Emitter systems, MBE, are based on the dividing of the broad formatted beam of nuclei into a big amount approximately 105 - 109 of the collinear microbeams with use of the especial deeply engraved gratings together with ad hoc ion and laser optics. MBE will be realized in a non-(gamma) - laser sphere before the first direct (gamma) -lasing demonstration experiments.

  8. Short-lived isomers in 192Po and 194Po

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Hofmann, S.; Huyse, M.; Kalaninová, Z.; Kindler, B.; Kojouharov, I.; Kuusiniemi, P.; Lommel, B.; Nishio, K.; Page, R. D.; Sulignano, B.; Van Duppen, P.

    2016-06-01

    Isomeric states in 194Po and 192Po were studied at the velocity filter SHIP. The isotopes were produced in the fusion-evaporation reactions 141Pr(56Fe, p 2 n )194Po and 144Sm(51V, p 2 n )192Po . Several new γ -ray transitions were attributed to the isomers and γ -γ coincidences for both isomers were studied for the first time. The 459-keV transition earlier, tentatively proposed as de-exciting the isomeric level in 194Po, was replaced by a new 248-keV transition, and the spin of this isomer was reassigned from (11-) to (10-). The de-excitation of the (11-) isomeric level in 192Po by the 154-keV transition was confirmed and a parallel de-excitation by a 733-keV (E 3 ) transition to (8+) level of the ground-state band was suggested. Moreover, side feeding to the (4+) level of the ground-state band was proposed. The paper also discusses strengths of transitions de-exciting 11- isomers in neighboring Po and Pb isotopes.

  9. First demonstration of electron scattering using a novel target developed for short-lived nuclei.

    PubMed

    Suda, T; Wakasugi, M; Emoto, T; Ishii, K; Ito, S; Kurita, K; Kuwajima, A; Noda, A; Shirai, T; Tamae, T; Tongu, H; Wang, S; Yano, Y

    2009-03-13

    We carried out a demonstrative electron scattering experiment using a novel ion-trap target exclusively developed for short-lived highly unstable nuclei. Using stable 133Cs ion as a target, this experiment completely mimicked electron scattering off short-lived nuclei. Achieving a luminosity higher than 10;{26} cm;{-2} s;{-1} with around only 10;{6} trapped ions on the electron beam, the angular distribution of elastic scattering was successfully measured. This experiment clearly demonstrates that electron scattering off rarely produced short-lived nuclei is practical with this target technique. PMID:19392108

  10. First Demonstration of Electron Scattering Using a Novel Target Developed for Short-Lived Nuclei

    SciTech Connect

    Suda, T.; Wakasugi, M.; Emoto, T.; Ito, S.; Wang, S.; Yano, Y.; Ishii, K.; Kurita, K.; Kuwajima, A.; Tamae, T.; Noda, A.; Shirai, T.; Tongu, H.

    2009-03-13

    We carried out a demonstrative electron scattering experiment using a novel ion-trap target exclusively developed for short-lived highly unstable nuclei. Using stable {sup 133}Cs ion as a target, this experiment completely mimicked electron scattering off short-lived nuclei. Achieving a luminosity higher than 10{sup 26} cm{sup -2} s{sup -1} with around only 10{sup 6} trapped ions on the electron beam, the angular distribution of elastic scattering was successfully measured. This experiment clearly demonstrates that electron scattering off rarely produced short-lived nuclei is practical with this target technique.

  11. Sediment Dating With Short-Lived Radioisotopes In Monterey Canyon, California Imply Episodes Of Rapid Deposition And Erosion

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Swarzenski, P. W.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; Sumner, E.; Symons, W. O.

    2015-12-01

    Submarine canyons are a major conduit for terrestrial material to the deep sea. To better constrain the timing and rates in which sediment is transported down-canyon, we collected a series of sediment cores along the axis of Monterey Canyon, and quantified mass accumulation rates using short-lived radio-isotopes. A suite of sediment cores were carefully collected perpendicular to the canyon thalweg in water depths of approximately 300m, 500m, 800m, and 1500m using a remotely operated vehicle (ROV). We choose cores that were between 60m and 75m above the canyon thalweg on canyon side bench features for correlation with moored instrument deployments. The sediment cores reveal a complex stratigraphy that includes copious bioturbation features, sand lenses, subtle erosional surfaces, subtle graded bedding, and abrupt changes sediment texture and color. Downcore excess 210Pb and 137Cs profiles imply episodic deposition and remobilization cycles on the canyon benches. Excess 210Pb activities in cores reach depths of up to 1m, implying very rapid sedimentation. Sedimentation rates vary with water depth, generally with the highest sedimentation rate in closest to land, but vary substantially on adjacent canyon benches. Preliminary results demonstrate that sediment movement within Monterey Canyon is both dynamic and episodic on human time-scales and can be reconstructed used short-lived radio-isotopes.

  12. Developments in precison mass measurements of short-lived r-process nuclei with CARIBU

    NASA Astrophysics Data System (ADS)

    Marley, S. T.; Aprahamian, A.; Mumpower, M.; Nystrom, A.; Paul, N.; Siegl, K.; Strauss, S.; Surman, R.; Clark, J. A.; Perez Galvan, A.; Savard, G.; Morgan, G.; Orford, R.

    2013-10-01

    The confluence of new radioactive beam facilities and modern precision mass spectrometry techniques now make it possible to measure masses of many neutron-rich nuclei important to nuclear structure and astrophysics. A recent mass sensitivity study (S. Brett et al., Eur. Phys. J., A 48, 184 (2012)) identified the nuclear masses that are the most influential to the final rapid-neutron capture process abundance distributions under various astrophysical scenarios. This work motivated a campaign of precision mass measurements using the Canadian Penning Trap (CPT) installed at the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. In order to measure the weakest and most short-lived (t1/2 < 150 ms) of these influential nuclei, a series of upgrades to the CARIBU and CPT systems have been developed. The implementation of these upgrades, the r-process mass measurements, and the status of CARIBU facilty will be discussed. This work performed under the auspices of NSERC, Canada, appl. # 216974, the U.S. DOE, Office of Nuclear Physics, under contracts DE-AC02-06CH11357, DE-FG02-91ER-40609, DE-FG02-98ER41086, & DE-AC52-07NA27344, and NSF Grants PHY08-22648 and PHY-106819.

  13. Studies of images of short-lived events using ERTS data

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Of significance are the continued detection and analysis of such short-lived events as forest fires, oil spills, vegetation damage, volcanoes, storm ridges, and earthquakes.

  14. Zirovski Vrh: A short-lived uranium producer

    SciTech Connect

    Pool, T.C.

    1993-09-01

    The Zirovski Vrh uranium deposit, located in Slovenia, formerly a province of Yugoslavia, was discovered and explored in an era of increasing interest in the commercial possibilities of nuclear power. Its development and exploitation were planned and designed specifically to provide fuel for the country's only nuclear reactor; Krsko, a 632-MWe pressurized water reactor, during a period when uranium seemed in short supply. It was designed as a model of compact efficiency, state of the art technology, and environmental sensitivity. By the time it achieved production, however, uranium prices were rapidly declining and production facilities were under increasing pressure from environmental activists. Even its status as a state-supported enterprise failed to insulate it from the economic pressures of the marketplace. Was the mine a victim of bad timing or poor fundamentals In short, the Zirovski Vrh mine was founded upon a low-grade, conventional underground mining situation with limited flexibility. Even with prices at $40 per pound, the mine was a marginal producer.

  15. {beta}-decay half-lives of new neutron-rich lanthanide isotopes

    SciTech Connect

    Ichikawa, S.; Tsukada, K.; Asai, M.; Nishinaka, I.; Nagame, Y.; Osa, A.; Sakama, M.; Oura, Y.; Kojima, Y.; Shibata, M.; Kawade, K.

    1998-12-21

    New neutron-rich lanthanide isotopes produced in the proton-induced fission of {sup 238}U have been identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The observed K x-rays following the {beta}{sup -}decay of products in the mass separated fraction provided direct isotopic identifications. New isotopes observed, with values of their half-lives given in parentheses, are {sup 159}Pm(2{+-}1 s), {sup 161}Sm(4.8{+-}0.8 s), {sup 165}Gd(10.3{+-}1.6 s), {sup 166}Tb(21{+-}6 s), {sup 167}Tb(19.4{+-}2.7 s) and {sup 168}Tb(8.2{+-}1.3 s). The half-life values are compared to the results of theoretical predictions.

  16. Short-term carbon isotopic fractionation in plants

    SciTech Connect

    Rooney, M.A.

    1988-01-01

    A system was developed for measuring carbon isotopic fractionation in plants over a time interval of 1-3 hours, in contrast to leaf combustion studies which give long-term, integrated discrimination measurements. The system was used to study environmental effects on soybean (Glycine max) and corn (Zea mays) discrimination. Changes in leaf temperature, photon flux density (PFD), O{sub 2} concentration, and CO{sub 2} concentration produced little or no change in measured discrimination ({Delta}). For soybean, {Delta} increased with decreasing PFD. For corn, {Delta} decreased with decreasing O{sub 2} concentration. For both soybean and corn, {Delta} increased with increasing CO{sub 2} concentration. These changes in {Delta} were interpreted as environmental effects on stomatal conductance and photosynthetic capacity, which indirectly affect {Delta} by altering C{sub i}/C{sub a}. Respiratory discrimination in the dark and light was also investigated. Respired CO{sub 2} was 5{per thousand} and 0-1{per thousand} more positive than leaf carbon for soybean and corn, respectively. Photorespiratory discrimination was 6-7{per thousand} for soybean, supporting the contention that glycine decarboxylase may be the source of discrimination in the photorespiratory pathway.

  17. A technique for the measurement of electron attachment to short-lived excited species

    SciTech Connect

    Christophorou, L.G.; Pinnaduwage, L.A. ); Bitouni, A.P. . Dept. of Physics)

    1990-01-01

    A technique is described for the measurement of electron attachment to short-lived ({approx lt}10{sup {minus}9} s) excited species. Preliminary results are presented for photoenhanced electron attachment to short-lived electronically-excited states of triethylamine molecules produced by laser two-photon excitation. The attachment cross sections for these excited states are estimated to be >10{sup {minus}11} cm{sup 2} and are {approximately}10{sup 7} larger compared to those for the unexcited (ground-state) molecules. 8 refs., 4 figs.

  18. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  19. Relatively Long-Lived Dubnium Isotopes and Chemical Identification of Superheavy Elements

    SciTech Connect

    Tereshatov, E. E.; Voronyuk, M. G.; Starodub, G. Ya.; Petrushkin, O. V.; Dmitriev, S. N.; Bruchertseifer, H.

    2010-04-30

    The present study has been performed within the framework of experiments aimed at the investigation of chemical properties of long-lived Db isotopes in aqueous solutions. The isocratic anion exchange separations of group V elements in the solutions containing HF have been considered. Parameters of separation of dubnium homologues (Pa, Nb and Ta) in HF/HNO{sub 3} mixed solutions have been optimized. The procedure of separation of group V elements from multicomponent system has been suggested.

  20. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes

    PubMed Central

    Matzkin, María Eugenia; Miquet, Johanna Gabriela; Fang, Yimin; Hill, Cristal Monique; Turyn, Daniel; Calandra, Ricardo Saúl; Bartke, Andrzej; Frungieri, Mónica Beatriz

    2016-01-01

    Aged testes undergo profound histological and morphological alterations leading to a reduced functionality. Here, we investigated whether variations in longevity affect the development of local inflammatory processes, the oxidative state and the occurrence of apoptotic events in the testis. To this aim, well-established mouse models with delayed (growth hormone releasing hormone-knockout and Ames dwarf mice) or accelerated (growth hormone-transgenic mice) aging were used. We hereby show that the testes of short-lived mice show a significant increase in cyclooxygenase 2 expression, PGD2 production, lipid peroxidation, antioxidant enzymes expression, local macrophages and TUNEL-positive germ cells numbers, and the levels of both pro-caspase-3 and cleaved caspase-3. In contrast, although the expression of antioxidant enzymes remained unchanged in testes of long-lived mice, the remainder of the parameters assessed showed a significant reduction. This study provides novel evidence that longevity confers anti-inflammatory, anti-oxidant and anti-apoptotic capacities to the adult testis. Oppositely, short-lived mice suffer testicular inflammatory, oxidative and apoptotic processes. PMID:26805572

  1. Systematic study on α-decay half-lives of Bi isotopes

    NASA Astrophysics Data System (ADS)

    Cui, J. P.; Zhang, Y. L.; Zhang, S.; Wang, Y. Z.

    2016-07-01

    Systematic calculations on α-decay half-lives of Bi isotopes are performed by using the generalized liquid drop model (GLDM) and several sets of Royer’s analytic formulas. In calculations, the α transitions include the ones of (i) ground state (g.s.) to g.s., (ii) g.s. to isomeric state (i.s.), (iii) i.s. to g.s., (iv) i.s. to i.s. According to the comparison between the calculated half-lives and the experimental data, it is found that the experimental half-lives are reproduced well by the GLDM with the cluster-like mode. This indicates that the nuclear structure details play important roles in the α-decay half-lives. In addition, it is found that the experimental half-lives are not reproduced well by these analytic formulas because the parameters are obtained by fitting the experimental half-lives of g.s. to g.s. transitions. To give better predictions on α-decay half-lives, the parameters in these formulas should be refitted by including the experimental α-transition of (ii)-(iv) mentioned above.

  2. Developing role of short-lived radionuclides in nuclear medical practice. DOE symposium series; 56

    SciTech Connect

    Paras, P.; Thiessen, J.W.

    1985-01-01

    The purpose was to define the developing role and state-of-the-art development of short-lived radionuclides (SLR's) in current nuclear medical practice. Special emphasis was placed on radionuclides with general-purpose labeling capabilities. The need for high-purity labeling-grade iodine-123 was emphasized in the program. Papers have been separately abstracted for the data base. (ACR)

  3. Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri.

    PubMed

    Graf, Michael; Hartmann, Nils; Reichwald, Kathrin; Englert, Christoph

    2013-01-01

    A major challenge in age research is the absence of short-lived vertebrate model organisms. The turquoise killifish Nothobranchius furzeri has the shortest known lifespan of a vertebrate that can be bred in captivity. The short lived GRZ strain only reaches a maximum age of 3-4 months, whereas other strains (MZM) reach 6-10 months. Most importantly, the short lifespan is associated with typical signs of ageing. To find out more about possible cellular factors that might contribute to the short lifespan and to the difference in lifespan between strains, we analyzed the expression of markers for cellular senescence. Expression of Tp53, Cdkn1a and Cdkn2a/b in skin revealed no change in the short-lived GRZ but increased expression of the cell cycle inhibitors Cdkn1a and Cdkn2a/b in the long-lived MZM strain with age. This suggests that expression of distinct cell cycle inhibitors reflects rather chronological than biological age in N. furzeri. To study the relationship of organismal life span and in vitro life span of cells, we established a primary cell culture model. For both strains we demonstrate here the absence of replicative senescence as analysed by morphology, expression of Cdkn1a and Cdkn2a/b, population doubling times and γH2AFX in long-term and short-term cultured cells. We reason this to be on account of sustained telomerase activity and maintained telomeric length. Hence, we propose that differences in maximum life span of different N. furzeri strains is not reflected by differences in proliferation speed or replicative potential of the respective cultured cells. PMID:22445733

  4. New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation

    NASA Astrophysics Data System (ADS)

    Madurga, M.; Surman, R.; Borzov, I. N.; Grzywacz, R.; Rykaczewski, K. P.; Gross, C. J.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Cartegni, L.; Hamilton, J. H.; Hwang, J. K.; Liu, S. H.; Ilyushkin, S. V.; Jost, C.; Karny, M.; Korgul, A.; Królas, W.; Kuźniak, A.; Mazzocchi, C.; Mendez, A. J., II; Miernik, K.; Padgett, S. W.; Paulauskas, S. V.; Ramayya, A. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2012-09-01

    The β decays of neutron-rich nuclei near the doubly magic Ni78 were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of Zn82 (228±10ms), Zn83 (117±20ms), and Ga85 (93±7ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the Ni78 region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A>140 nuclei.

  5. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    PubMed

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  6. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    PubMed Central

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  7. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages.

    PubMed

    Baumann, Florian M; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  8. Properties of short-living ball lightning produced in the laboratory

    NASA Astrophysics Data System (ADS)

    Egorov, A. I.; Stepanov, S. I.

    2008-06-01

    An experimental setup for highly reproducible generation of artificial ball lightnings is implemented. Thousands of floating glowing plasmoids 12-20 cm in diameter are produced. Research facilities for studying the plasmoids are developed. It is found that short-lived ball lightnings live for about 1 s and carry an electric charge. The lightnings are shown to have a complex structure: a central kernel containing a rich variety of hydrated ions and aerosol of decay products is surrounded by a thin negatively charged shell.

  9. Cross Sections Needed for the Interpretation of Long-Lived and Short-Lived Cosmogenic Nuclide Production in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Sisterson, J. M.; Beverding, A.; Kim, K. J.; Englert, P. A. J.; Jull, A. J. T.; Donahue, D. J.; Cloudt, S.; Castaneda, C.; Vincent, J.; Caffee, M. W.; Osazuwa, C. O.; Reedy, R. C.

    1995-09-01

    Radionuclides produced by cosmic rays in extraterrestrial materials archive information that can be used to determine cosmic-ray fluxes and to study the history of the irradiated object. Long-lived radionuclides give information about the last ~5 Myr; short-lived radionuclides give information about recent events. To calculate the solar cosmic ray (SCR) flux from measured depth profiles for cosmogenic radionuclides produced in lunar rocks, accurate and precise cross section values for the production of these radionuclides from all relevant elements are needed. About 98% of SCR and ~87% of galactic cosmic rays (GCR) falling on extraterrestrial materials are protons. Cross section measurements were made using three proton accelerators to cover the energy range ~20 - 500 MeV. Thin target techniques used in the irradiations minimized the number of protons scattered out of the stack and the neutron production within the stack. After irradiation, the short-lived radionuclides e.g. 22Na, 7Be, 24Na, 54Mn, and 56Co were determined using gamma-ray spectroscopy. 14C, 10Be, and 26Al were determined using Accelerator Mass Spectrometry. Our main objective is to measure the production cross sections of long-lived radionuclides. We have reported new cross section values for making 10Be from O and 14C from O, Mg, Al, Si, Fe, and Ni [1,2]. Using these new results, better estimates for the solar proton flux over several time periods in the past were determined [3]. However, no single value for the SCR flux could explain the measured data from different time periods. Further cross section measurements are being made to verify that the values used in these estimates were accurate. Irradiations designed to give good cross section measurements for long-lived radionuclides also give good cross section measurements for short-lived radionuclides. Results will be presented for proton production cross sections of 22Na from Mg, Al and Si, and 54Mn and 56Co from Fe and Ni; some values at low

  10. Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri.

    PubMed

    Polačik, Matej; Blažek, Radim; Reichard, Martin

    2016-08-01

    Turquoise killifish, Nothobranchius furzeri, have an intrinsically short life span, with a median life span of <6 months and a maximum (90%) life span of 9 months. This short life span, which is unique among vertebrates, evolved naturally and has resulted in N. furzeri becoming a widely used laboratory model species in aging research and other disciplines. Here, we describe a protocol for the maintenance and breeding of the species under laboratory conditions. We provide details for egg incubation, hatching, everyday care of juvenile and adult fish, breeding and treatment of most common diseases. Emphasis is given to the fact that the requirements of N. furzeri substantially differ from those of other fish model taxa; N. furzeri live brief lives and in nature undergo nonaquatic embryo development, with consequences for their laboratory culture. PMID:27388556

  11. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy: The MISTRAL program at ISOLDE

    SciTech Connect

    Monsanglant, C.; Audi, G.; Conreur, G.; Cousin, R.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Lunney, D.; Saint Simon, M. de; Thibault, C.; Toader, C.; Bollen, G.; Lebee, G.; Scheidenberger, C.; Borcea, C.; Duma, M.; Kluge, H.-J.; Le Scornet, G.

    1999-11-16

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na, Mg, Al, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  12. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  13. Corrections for the combined effects of decay and dead time in live-timed counting of short-lived radionuclides.

    PubMed

    Fitzgerald, R

    2016-03-01

    Studies and calibrations of short-lived radionuclides, for example (15)O, are of particular interest in nuclear medicine. Yet counting experiments on such species are vulnerable to an error due to the combined effect of decay and dead time. Separate decay corrections and dead-time corrections do not account for this issue. Usually counting data are decay-corrected to the start time of the count period, or else instead of correcting the count rate, the mid-time of the measurement is used as the reference time. Correction factors are derived for both those methods, considering both extending and non-extending dead time. Series approximations are derived here and the accuracy of those approximations are discussed. PMID:26682893

  14. Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodriguez, Nicolas; Cribier, Sophie; Pincet, Frédéric

    2006-12-01

    We have observed large pores in the membrane of giant vesicles in an aqueous medium. The lifetime of the pores can reach 2min and their size (a few micrometers) enables their visualization by fluorescence microscopy. These pores are obtained thanks to a destabilization of the membrane due to the synergistic action of a cone-shaped and nitrobenzodiazole (NBD) labeled phospholipid illuminated in the presence of dithionite. The opening of the pore occurs immediately after illumination starts so that it can be accurately triggered. A concomitant decrease of the vesicle radius is observed; we interpret it as a solubilization of the membrane. Depending on the rate of this solubilization, long- or short-lived pores were observed. At the transition between both regimes for a 30μm vesicle, the solubilization rate was about 1/300s-1 . In order to interpret these observations, we have revisited the current model of pore opening to take into account this solubilization. This proposed model along with simulations enables us to prove that solubilization explains why the large long-lived pores are observed even in an aqueous medium. The model also predicts the solubilization rate at the transition between a single long-lived pore and a cascade of short-lived pores.

  15. Short-Term Protein Stable Isotope Probing of Microbial Communities to Associate Functions with Taxa (Invited)

    NASA Astrophysics Data System (ADS)

    Lipton, M. S.; Slysz, G. W.; Steinke, L. A.; Ward, D. M.; Klatt, C. G.; Clauss, T. R.; Purvine, S. O.; Anderson, G. A.; Payne, S. H.; Bryant, D. A.

    2013-12-01

    Determining which taxa in a community perform which functions is essential for understanding metabolite fluxes and metabolic interactions among community members. Specific taxa will alter their metabolism in order to acclimate to changing environmental factors such as light through the diel cycle, changing temperature and other factors. Monitoring which proteins are being expressed, and the quantitative protein expression patterns in the individual taxa as a response to external stimuli is key to understanding these mechanisms. Protein stable isotope probing (Pro-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. In Pro-SIP studies, label incorporation is determined by the extent of the change in the isotopic profile of peptides when measured by mass spectrometry. While most Pro-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism(s), these techniques have not been applied to short term in situ studies due to the small degree of partial labeling of the proteins. We have applied Pro-SIP to study the assimilation of a labeled substrate into proteins to determine which taxa are responsible for sequestration of dissolved inorganic carbon in microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park. This community is fueled by sunlight as it transitions from dark to light; the aim was to understand the light-dependent pathway of inorganic carbon incorporation into different taxa during the early morning hours when the mat was in low light and anoxic. Each mat sample was incubated with 13C-bicarbonate for 3 h. Substrate assimilation was determined through standard proteomic techniques along with the use of SIPPER, a collection of algorithms that sensitively measure small changes in peptide isotopic patterns, allowing the determination of which taxa assimilated the substrate during this period. For the

  16. Classification of short-lived objects using an interactive adaptable assistance system

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Peinsipp-Byma, Elisabeth

    2015-05-01

    "Although we know that it is not a familiar object, after a while we can say what it resembles". The core task of an aerial image analyst is to recognize different object types based on certain clearly classified characteristics from aerial or satellite images. An interactive recognition assistance system compares selected features with a fixed set of reference objects (core data set). Therefore it is mainly designed to evaluate durable single objects like a specific type of ship or vehicle. Aerial image analysts on missions realized a changed warfare over the time. The task was not anymore to classify and thereby recognize a single durable object. The problem was that they had to classify strong variable objects and the reference set did not match anymore. In order to approach this new scope we introduce a concept to a further development of the interactive assistance system to be able to handle also short-lived, not clearly classifiable and strong variable objects like for example dhows. Dhows are the type of ships that are often used during pirate attacks at the coast of West Africa. Often these ships were build or extended by the pirates themselves. They follow no particular pattern as the standard construction of a merchant ship. In this work we differ between short-lived and durable objects. The interactive adaptable assistance system is supposed to assist image analysts with the classification of objects, which are new and not listed in the reference set of objects yet. The human interaction and perception is an important factor in order to realize this task and achieve the goal of recognition. Therefore we had to model the possibility to classify short-lived objects with appropriate procedures taking into consideration all aspects of short-lived objects. In this paper we will outline suitable measures and the possibilities to categorize short-lived objects via simple basic shapes as well as a temporary data storage concept for shortlived objects. The

  17. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  18. Using stable isotopes to understand survival strategies of the living fossil, Welwitschia mirabilis

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Henschel, J.; Macko, S. A.

    2011-12-01

    The Namib Desert along the southwestern coast of Africa is hyper-arid in terms of rainfall (<25 mm/yr), but experiences coastal fog deposition up to 100 days each year. The Namib is also home to the biologically anomalous, very long-lived and evolutionarily ancient gymnosperm Welwitschia mirabilis. Due to its perennial broad green leaves that apparently demand around 1 L of water per day, some have suggested that this living fossil survives on fog deposition. We have investigated this hypothesis using stable isotopes of water (δ18O, δ2H) and found that W. mirabilis shows no evidence of fog uptake. Rather, its stem water looks much like that of large trees that tap into an alluvial aquifer, and nothing like the stem water of shrubs that are endemic to the fog zone and have been shown elsewhere to take up and translocate fog water. We also investigated some biogeochemical aspects of W. mirabilis through δ13C, δ15N and δ34S analysis of stem organic matter. These data revealed a large amount of variability in δ13C and δ15N among plants growing in close proximity to one another, indicating the possibility of micro-environmental control on the C and N cycles. The δ34S data provided a necessary additional constraint on the water isotope investigation.

  19. Demography of short-tailed shrew populations living on polychlorinated biphenyl-contaminated sites.

    PubMed

    Boonstra, Rudy; Bowman, Lanna

    2003-06-01

    In ecological risk assessment, a key necessity is to understand how contaminants known to have negative impact on laboratory mammals affect the population demography of mammals living in their natural environment. We examined the demography of six local populations of the short-tailed shrew (Blarina brevicauda) living in eastern deciduous forest palustrine habitat along the Housatonic River (MA, USA) on soils contaminated with a range of polychlorinated biphenyl (PCB) concentrations (1.5-38.3 ppm). The objective of the study was to assess whether PCBs adversely affect the population demography of these small mammals living in their natural environment. Blarina were selected for study because they would be expected to readily bioaccumulate PCBs from the soil. Populations were intensively live trapped on 1-ha grids from spring to autumn 2001. There was no relationship between any demographic parameter and PCB soil concentrations. Densities were high (usually exceeding 20/ha, and on two grids exceeded 60/ha in summer); survival was good (typically 60-75% per 30 d); and sex ratio, reproduction rates, growth rates, and body mass were within the ranges reported in the literature. Thus, these shrew populations showed no detectable impact on their population demography from living on PCB-contaminated sites. PMID:12785599

  20. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  1. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  2. Establishing appropriate measures for monitoring aging in birds: comparing short and long lived species

    USGS Publications Warehouse

    Ottinger, M.A.; Reed, E.; Wu, J.; Thompson, N.; French, J.B.

    2003-01-01

    In order to reveal patterns of reproductive aging in birds we focus on a short lived species, the Japanese quail and the American kestrel, which has a life span of medium length. Quail have been studied extensively in the laboratory as models for understanding avian endocrinology and behavior, and as a subject for toxicological research and testing. In the lab, Japanese quail show age-related deterioration in endocrine, behavioral, and sensory system responses; the American kestrel is relatively long lived and shows moderate evidence of senescence in the oldest birds. Using data collected from captive kestrels at the Patuxent Wildlife Research Center, a database was designed to document selected parameters over the life cycle of the kestrels. Life table data collated from many species indicate that longer lived species of birds show senescence in survival ability but this pattern has not been established for reproductive function. We suggest that useful comparisons among species can be made by identifying stages in reproductive life history, organized on a relative time scale. Preliminary data from quail and kestrels, admittedly only two species, do not yet indicate a pattern of greater reproductive senescence in longer-lived birds.

  3. Inter-laboratory comparisons of short-lived gamma-emitting radionuclides in nuclear reactor water.

    PubMed

    Klemola, S K

    2008-01-01

    Inter-laboratory comparisons of gamma-emitting nuclides in nuclear power plant coolant water have been carried out in Finland since 1994. The reactor water samples are taken and prepared by one of the two nuclear power plants and delivered to the participants. Since all the participants get their sample within just a few hours it has been possible to analyse and compare results of nuclides with half-lives shorter than 1h. The total number of short-lived nuclides is 26. All the main nuclides are regularly identified and the activities have been obtained with reasonable accuracy throughout the years. The overall deviation of the results has decreased in 13 years. The effects of true coincidence summing and discrepancies in nuclear data have been identified as potential sources of remaining discrepancies. All the participants have found this type of comparison very useful. PMID:18378157

  4. The role of short-lived climate pollutants in meeting temperature goals

    NASA Astrophysics Data System (ADS)

    Bowerman, Niel H. A.; Frame, David J.; Huntingford, Chris; Lowe, Jason A.; Smith, Stephen M.; Allen, Myles R.

    2013-12-01

    Some recent high-profile publications have suggested that immediately reducing emissions of methane, black carbon and other short-lived climate pollutants (SLCPs) may contribute substantially towards the goal of limiting global warming to 2 °C above pre-industrial levels. Although this literature acknowledges that action on long-lived climate pollutants (LLCPs) such as CO2 is also required, it is not always appreciated that SLCP emissions in any given decade only have a significant impact on peak temperature under circumstances in which CO2 emissions are falling. Immediate action on SLCPs might potentially 'buy time' for adaptation by reducing near-term warming; however early SLCP reductions, compared with reductions in a future decade, do not buy time to delay reductions in CO2.

  5. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  6. Tantalum-178--a short-lived nuclide for nuclear medicine: development of a potential generator system.

    PubMed

    Neirinckx, R D; Jones, A G; Davis, M A; Harris, G I; Holman, B L

    1978-05-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T 1/2 = 9 min). The parent nuclide W-178 (T 1/2 = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution. PMID:641574

  7. Quantum non-locality in a two-slit interferometer for short-lived particles

    SciTech Connect

    Klein, Spencer R.; Nystrand, Joakim

    2001-12-01

    We describe a new test of quantum nonlocality, using an interferometer for short-lived particles. The separation is large compared with the particle lifetimes. This interferometer is realized by vector meson production in distant heavy ion collisions. The mesons decay before waves from the two sources (ions) can overlap, so interference is only possible among the decay products. The post-decay wave function must retain amplitudes for all possible decays. The decay products are spatially separated, necessitating a non-local wave function. The interference is measurable by summing the product momenta. Alternately, the products positions could be observed, allowing new tests of the EPR paradox.

  8. An effective technique for the storage of short lived radioactive gaseous waste.

    PubMed

    Schweiger, Lutz

    2011-09-01

    An effective technique is described to deal with volatile, short lived radioactive waste generated as a result of the routinely produced positron emission tomography (PET) radiopharmaceutical 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG). All radioactive gases and aerosols created during the synthesis are collected and stored safely in commercially available TEDLAR gas sampling bags. Once these collected PET by-products decay, the TEDLAR gas bags can be easily emptied and reused. This improved technique is effective, safe, reliable and economical. PMID:21592805

  9. Mass Measurement of Short-lived Nuclei at HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Wang, M.; Xu, H. S.; Zhang, Y. H.; Tu, X. L.; Litvinov, Yu. A.

    2014-03-01

    Four campaigns of mass measurements for short-lived nuclei have been conducted using an isochronous mass spectrometry (IMS) technique at HIRFL-CSR(Cooler Storage Ring) in Lanzhou. The radioactive nuclei were produced by projectile fragmentation and injected into the experimental storage ring CSRe. Revolution times of the ions stored in the CSRe were measured from which masses of 78Kr, 58Ni, 86Kr and 112Sn fragments have been determined with a relative uncertainty of about 10-6-10-7. The experimental results are presented and their impacts on nucleosynthesis in the rp process and nuclear structure are discussed.

  10. Inducible transgenic expression in the short-lived fish Nothobranchius furzeri.

    PubMed

    Allard, J B; Kamei, H; Duan, C

    2013-05-01

    This study demonstrates inducible transgenic expression in the exceptionally short-lived turquoise killifish Nothobranchius furzeri, which is a useful vertebrate model for ageing research. Transgenic N. furzeri bearing a green fluorescent protein (Gfp) containing construct under the control of a heat shock protein 70 promoter were generated, heat shock-induced and reversible Gfp expression was demonstrated and germline transmission of the transgene to the F1 and F2 generations was achieved. The availability of this inducible transgenic expression system will make the study of ageing-related antagonistically pleiotropic genes possible using this unique vertebrate model organism. PMID:23639168

  11. Nanoelectrochemical approach to detecting short-lived intermediates of electrocatalytic oxygen reduction.

    PubMed

    Zhou, Min; Yu, Yun; Hu, Keke; Mirkin, Michael V

    2015-05-27

    Development of better catalysts for the oxygen reduction reaction (ORR) and other electrocatalytic processes requires detailed knowledge of reaction pathways and intermediate species. Here we report a new methodology for detecting charged reactive intermediates and its application to the mechanistic analysis of ORR. A nanopipette filled with an organic phase that is immiscible with the external aqueous solution was used as a tip in the scanning electrochemical microscope to detect and identify a short-lived superoxide (O2(●-)) intermediate and to determine the rate of its generation at the catalytic Pt substrate and its lifetime in neutral aqueous solution. The voltammogram of the O2(●-) anion transfer to the organic phase provides a unique signature for unambiguous identification of superoxide. The extremely short attainable separation distance between the pipette tip and substrate surface (∼1 nm) makes this technique suitable for detecting and identifying charged intermediates of catalytic processes with a lifetime of a few nanoseconds. PMID:25978070

  12. 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    PubMed Central

    Holst, Jesper C.; Olsen, Mia B.; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K.; Connelly, James N.; Jørgensen, Jes K.; Krot, Alexander N.; Nordlund, Åke; Bizzarro, Martin

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of 26Al corresponding to 26Al/27Al of ∼5 × 10−5, rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and 26Al/27Al of <5 × 10−6, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al of ∼3 × 10−6. The decoupling between 182Hf and 26Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for 182Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for 26Al. Admixing of stellar-derived 26Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the 26Al–26Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support 182Hf homogeneity and chronological significance of the 182Hf–182W clock. PMID:23671077

  13. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    PubMed

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock. PMID:23671077

  14. A new methodology involving stable isotope tracer to compare short- and long- term selenium mobility in soils

    NASA Astrophysics Data System (ADS)

    Tolu, Julie; Thiry, Yves; Potin-gautier, Martine; Le hécho, Isabelle; Bueno, Maïté

    2013-04-01

    Selenium is an element of environmental concern given its dual beneficial and toxic character to animal and human health. Its radioactive isotope 79Se, a fission product of 235U, is considered critical in safety assessment of nuclear waste repositories in case of leakage and hypothetical soil contamination. Therefore, Se species transformations and interactions with soil components have to be clearly understood to predict its dispersion in the biosphere (e.g., accumulation in soils, migration to waters, transfer to living organisms). While natural Se interactions with soils run over centuries to millennia time scales, transformations and partitioning are generally studied with short-term experiments (often inferior to 1 month) after Se addition. The influence of slower, long-term processes involved in Se speciation and mobility in soils is thus not properly accounted for. We tested if using ambient Se would be relevant for long-term risk assessment while added Se would be more representative of short-term contamination impact. For that purpose, we developed a new methodology to trace the differential reactivity of ambient and spiked Se at trace level (µg kg-1) in soils. It combined the use of a stable isotopically enriched tracer with our previous published analytical method based on specific extractions and HPLC-ICP-MS to determine trace Se species partition in different soil phases. Given that soil extracts contains very high concentrations of various elements interfering Se (e.g., Fe, Cl, Br), the ICP-MS parameters and mathematical corrections were optimized to cope with such interferences. Following optimization, three correct and accurate (<2%) isotope ratios were obtained with 77Se, 78Se, 80Se and 82Se. The optimized method was then applied to an arable and a forest soil submitted to an aging process (drying/wetting cycles) during three months, to which 77Se(IV) was previously added. The results showed that ambient Se was at steady state in terms of water

  15. Al-26 and Be-10 in Efremovka and Acfer CAIs: Constraints on the Origin of Short-lived Radionuclides

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Chaussidon, M.; Bischoff, A.

    2007-03-01

    In this abstract we present aluminum-26 and beryllium-10 abundances in Efremovka and Acfer CAIs. These measurements help us to constrain the origin of short-lived radionuclides aluminum-26, beryllium-10.

  16. Very short-lived and stable mRNAs from resting human lymphocytes.

    PubMed Central

    Berger, S L; Cooper, H L

    1975-01-01

    The kinetics of degradation of newly synthesized cytoplasmic poly(A)-bearing RNA have been examined in resting human lymphocytes. Two classes were identified, a very labile component with a half-life of less than 17 min and a stable component which remains apparently undiminished during 24 hr of observation. Both classes have molecular weights between 2.5 and 3.5 x 10(5) but the stable material has a narrower size distribution and a slightly lower average molecular weight than the short-lived component. The fate of stable RNA synthesized in the resting cell was also examined after growth stimulation with phytohemagglutinin after 2 and 6 hr of treatment. No transfer of stable material into the labile pool could be discerned; the amount of stable material remained constant. The existence of two species of mRNAs with different lifetimes in animal cells provides a potential means for regulation of protein synthesis by controlling the supply of specific messages. Furthermore, such a short-lived mRNA species may explain the observed disparity between the amount of poly(A)-bearing heterogeneous RNA produced in the nucleus and the amount of mature message found in the cytoplasm. PMID:1060069

  17. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies

    SciTech Connect

    Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

    2007-09-24

    Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

  18. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids.

    PubMed

    Camacho, Alfredo; Lee, James K W; Hensen, Bastiaan J; Braun, Jean

    2005-06-30

    Collision tectonics and the associated transformation of continental crust to high-pressure rocks (eclogites) are generally well-understood processes, but important contradictions remain between tectonothermal models and petrological-isotopic data obtained from such rocks. Here we use 40Ar-39Ar data coupled with a thermal model to constrain the time-integrated duration of an orogenic cycle (the burial and exhumation of a particular segment of the crust) to be less than 13 Myr. We also determine the total duration of associated metamorphic events to be approximately 20 kyr, and of individual heat pulses experienced by the rocks to be as short as 10 years. Such short timescales are indicative of rapid tectonic processes associated with catastrophic deformation events (earthquakes). Such events triggered transient heat advection by hot fluid along deformation (shear) zones, which cut relatively cool and dry subducted crust. In contrast to current thermal models that assume thermal equilibrium and invoke high ambient temperatures in the thickened crust, our non-steady-state cold-crust model satisfactorily explains several otherwise contradictory geological observations. PMID:15988516

  19. Seeds of alpine plants are short lived: implications for long-term conservation

    PubMed Central

    Mondoni, Andrea; Probert, Robin J.; Rossi, Graziano; Vegini, Emanuele; Hay, Fiona R.

    2011-01-01

    Background and Aims Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. Methods Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p50) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. Key Results Across species, p50 at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p50 values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. Conclusions Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic. PMID:21081585

  20. Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2009-06-01

    Red-toothed (soricine) shrews are consummate predators exhibiting the highest energy turnovers and shortest life spans (ca. 18 months) of any mammal, yet virtually nothing is known regarding their physiological aging. We assessed the emerging pattern of skeletal muscle senescence (contractile/connective tissue components) in sympatric species, the semi-aquatic water shrew (WS), Sorex palustris, and the terrestrial short-tailed shrew (STS), Blarina brevicauda, to determine if muscle aging occurs in wild, short-lived mammals (H(0): shrews do not survive to an age where senescence occurs), and if so, whether these alterations are species-specific. Gracilis muscles were collected from first-year (n=17) and second-year (n=17) field-caught shrews. Consistent with typical mammalian aging, collagen content (% area) increased with age in both species (S. palustris: approximately 50%; B. brevicauda: approximately 60%). Muscle was dominated by stiffer Type I collagen, and the ratio of collagen Type I:Type III more than doubled with age. The area ratio of muscle:collagen decreased with age in both species, but was considerably lower in adult STS, suggesting species-specificity of senescence. Extracellular space was age-elevated in B. brevicauda, but was preserved in S. palustris ( approximately 50 vs. 10% elevation). Though juvenile interspecific comparisons revealed no significance, adult WS myocytes had 68% larger cross-sectional area and occurred at 28% lower fibers/area than those of adult STS. We demonstrate that age-related muscle senescence does occur in wild-caught, short-lived mammals, and we therefore reject this classic aging theory tenet. Our findings moreover illustrate that differential age adjustments in contractile/connective tissue components of muscle occur in the two species of wild-caught shrews. PMID:19296507

  1. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182

  2. Implicit short-lived motor representations of space in brain damaged and healthy subjects.

    PubMed

    Rossetti, Y

    1998-09-01

    This article reviews experimental evidence for a specific sensorimotor function which can be dissociated from higher level representations of space. It attempts to delineate this function on the basis of results obtained by psychophysical experiments performed with brain damaged and healthy subjects. Eye and hand movement control exhibit automatic features, such that they are incompatible with conscious control. In addition, they rely on a reference frame different from the one used by conscious perception. Neuropsychological cases provide a strong support for this specific motor representation of space, which can be spared in patients with lesions of primary sensory systems who have lost conscious perception of visual, tactile or proprioceptive stimuli. Observation of these patients also showed that their motor behavior can be "attracted" by a goal only under specific conditions, that is, when the response is immediate and when no cognitive representation of this goal is elaborated at the same time. Beyond the issue of the dissociation between an implicit motor representation and more cognitive processing of spatial information, the issue of the interaction between these two systems is thus a matter of interest. It is suggested that the conscious, cognitive representation of a stimulus can contaminate or override the short-lived motor representation, but no reciprocal influence seem to occur. The interaction observed in patients can also be investigated in normals. The literature provides examples of interaction between sensorimotor and cognitive framing of space, which confirm that immediate action is not mediated by the same system as delayed action, and that elaborating a categorial representation of the action goal prevents the expression of the short-lived sensorimotor representation. It is concluded that action can be controlled by a sensory system which is specialized for on-line processing of relevant goal characteristics. The temporal constraints of this

  3. Long- and short-lived nuclide constraints on the recent evolution of permafrost soils

    NASA Astrophysics Data System (ADS)

    Bagard, M.; Chabaux, F. J.; Rihs, S.; Pokrovsky, O. S.; Prokushkin, A. S.; Viers, J.

    2011-12-01

    Frozen permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series. Two soil profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (234U), (232Th), (230Th), (226Ra), (228Ra), (228Th) and (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structure (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  4. Are baseline and short-term corticosterone stress responses in free-living amphibians repeatable?

    PubMed

    Narayan, Edward J; Cockrem, John F; Hero, Jean-Marc

    2013-01-01

    Amphibians respond to environmental stressors by secreting corticosterone, a stress hormone which promotes physiological and behavioral responses. Capture handling can be used to stimulate physiological stress response in amphibians. The use of single blood sampling and presentation of mean data often limits the quantification of within and between individual variation in baseline and short-term corticosterone stress responses in amphibians. It is important for studies of amphibian physiological ecology to determine whether baseline and short-term corticosterone stress responses are consistent or not. We quantified repeatability (r), a statistical measure of consistency, in baseline and short-term corticosterone stress responses to a standard capture and handling stress protocol in free-living adult male cane toads (Rhinella marina). Corticosterone metabolite concentrations were measured entirely non-invasively in male toad urine samples via an enzyme-immunoassay. During the first sampling occasion, urine samples were collected manually from individual male toads (n=20) immediately upon field capture. Toads were handled for 5min then transferred to plastic bags (constituting a mild stressor), and urine samples were collected hourly over 8h in the field. The toads were resampled for baseline (0h) urine corticosterone with hourly urine sampling over 8h (for quantification of the stress induced corticosterone) at 14 day intervals on three consecutive occasions. Within and between sample variations in urinary corticosterone metabolite concentrations were also quantified. All toads expressed a corticosterone stress response over 8h to our standard capture and handling stress protocol. Variations both within and between toads was higher for corrected integrated corticosterone concentrations than corticosterone concentrations at baseline, 3 or 6h. Baseline urinary corticosterone metabolite concentration of the male toads was highly repeatable (r=0.877) together with high

  5. Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)

    NASA Astrophysics Data System (ADS)

    Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola

    2016-04-01

    Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near

  6. New Developments for Isochronous Mass Measurements of Short-Lived Nuclei

    SciTech Connect

    Knoebel, R.; Litvinov, S. A.; Boutin, D.; Chen, L.; Geissel, H.; Litvinov, Yu. A.; Scheidenberger, C.; Winckler, N.; Sun, B.; Beckert, K.; Beller, P.; Bosch, F.; Brandau, C.; Dimopoulou, C.; Dolinskii, A.; Kozhuharov, C.; Mazzocco, M.; Montes, F.; Muenzenberg, G.; Nociforo, C.

    2007-02-26

    The combination of the in-flight separator FRS and the storage-ring ESR at GSI offers unique possibilities for high accuracy mass and lifetime measurements of bare and few-electron fragments. Operating the ESR in the isochronous mode allows for measurements of revolution frequencies of stored ions without cooling. Isochronous Mass Spectrometry (IMS) can be applied to fragments with half-lives as short as several tens of microseconds. Newly developed magnetic rigidity tagging increases the resolving power of IMS to about 500000. IMS can be used to measure masses of nuclei with rates even lower than one ion per day, a property also needed for the purpose of the ILIMA project at the future facility FAIR.

  7. Short-lived radioisotopes scaling with energy in plasma focus device

    NASA Astrophysics Data System (ADS)

    Kakavandi, Javad A.; Roshan, Mahmood V.; Habibi, Morteza

    2016-03-01

    The computational investigation of the correlation between the achievable reaction yield and discharge energy for a plasma focus device (PFD) is presented. Radioisotope production in PFDs with applicable activities is highly dependent on establishing the related scaling law. Carbon target is bombarded by high energy deuterons and short-lived radioisotope of 13N is produced through 12C(d,n)13N in which the threshold energy is not very high. Both computed and measured ion energy spectra are used to estimate and optimize the scaling law. It is shown that the number of ions emitted from the pinch region for a device operating under optimized conditions is linearly proportional to the discharge energy of the PFD.

  8. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  9. The short-lived African turquoise killifish: an emerging experimental model for ageing

    PubMed Central

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-01-01

    ABSTRACT Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  10. Power-density spectrum of non-stationary short-lived light curves

    NASA Astrophysics Data System (ADS)

    Guidorzi, Cristiano

    2011-08-01

    The power-density spectrum of a light curve is often calculated as the average of a number of spectra derived on individual time intervals the light curve is divided into. This procedure implicitly assumes that each time interval is a different sample function of the same stochastic ergodic process. While this assumption can be applied to many astrophysical sources, there remains a class of transient, highly non-stationary and short-lived events, such as gamma-ray bursts, for which this approach is often inadequate. The power spectrum statistics of a constant signal affected by statistical (Poisson) noise are known to be a χ22 in the Leahy normalization. However, this is no more the case when a non-stationary signal is also present. As a consequence, the uncertainties on the power spectrum cannot be calculated on the basis of the χ22 properties, as assumed by tools such as XRONOS POWSPEC. We generalize the result in the case of a non-stationary signal affected by uncorrelated white noise and show that the new distribution is a non-central χ22(λ), whose non-central value λ is the power spectrum of the deterministic function describing the non-stationary signal. Finally, we test these results in the case of synthetic curves of gamma-ray bursts. We end up with a new formula for calculating the power spectrum uncertainties. This is crucial in the case of non-stationary short-lived processes affected by uncorrelated statistical noise, for which ensemble averaging does not make any physical sense.

  11. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  12. CARIBIC observations of short-lived halocarbons and carbonyl sulphide over Asia

    NASA Astrophysics Data System (ADS)

    Leedham, E.; Wisher, A.; Oram, D.; Baker, A. K.; Brenninkmeijer, C. A.

    2013-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) aims to investigate the spatial and temporal distribution of a wide-range of compounds, including those of marine origin/influence, via ~monthly flights to collect in situ data and whole air samples aboard a commercial Lufthansa aircraft. CARIBIC measures up to an altitude of 12 km, allowing the influence of marine compounds on the upper troposphere/lower stratosphere (UTLS) to be explored. In particular, CARIBIC is a useful tool for exploring the impact of very short lived halocarbons (e.g. CH2Br2, CHBr3), whose impact on stratospheric ozone is dependent on convective uplift to the UTLS, a process which is not yet fully quantified. As part of the suite of CARIBIC measurements, whole air samples are analysed at the University of East Anglia (UEA) via gas chromatography mass spectrometry for carbonyl sulphide (OCS) and up to 40 halocarbons (accounting for virtually 100% of organic chlorine, bromine and iodine in the UTLS). Here we present an overview of short-lived halocarbons and OCS measured by CARIBIC. We focus on two regions of particular interest. (1) measurements made in 2012 over the tropical west Pacific to link with UEA measurements made during the SHIVA campaign. (2) measurements made during a collection of flights over India in 2008. Flights over India investigated the impact of monsoon circulation on the distribution of these compounds; for example, elevated concentrations of OCS were seen in CARIBIC samples taken over India during the summer monsoon (July - September). These flights, along with a wider range of flights over Asia (from Frankfurt to Guangzhou, Manila, Bangkok and Kuala Lumpur) can provide unique information on the influence of tropical convection and monsoon circulation on halocarbon and OCS transport within this region.

  13. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    SciTech Connect

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  14. The origin and disappearance of the late Pleistocene-early Holocene short-lived coastal wetlands along the Carmel coast, Israel

    NASA Astrophysics Data System (ADS)

    Sivan, Dorit; Greenbaum, Noam; Cohen-Seffer, Ronit; Sisma-Ventura, Guy; Almogi-Labin, Ahuva

    The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene-early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ 18O and δ 13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.

  15. THE DEAD-LIVING-MOTHER: MARIE BONAPARTE'S INTERPRETATION OF EDGAR ALLAN POE'S SHORT STORIES.

    PubMed

    Obaid, Francisco Pizarro

    2016-06-01

    Princess Marie Bonaparte is an important figure in the history of psychoanalysis, remembered for her crucial role in arranging Freud's escape to safety in London from Nazi Vienna, in 1938. This paper connects us to Bonaparte's work on Poe's short stories. Founded on concepts of Freudian theory and an exhaustive review of the biographical facts, Marie Bonaparte concluded that the works of Edgar Allan Poe drew their most powerful inspirational force from the psychological consequences of the early death of the poet's mother. In Bonaparte's approach, which was powerfully influenced by her recognition of the impact of the death of her own mother when she was born-an understanding she gained in her analysis with Freud-the thesis of the dead-living-mother achieved the status of a paradigmatic key to analyze and understand Poe's literary legacy. This paper explores the background and support of this hypothesis and reviews Bonaparte's interpretation of Poe's most notable short stories, in which extraordinary female figures feature in the narrative. PMID:27194275

  16. Large Differences in Aging Phenotype between Strains of the Short-Lived Annual Fish Nothobranchius furzeri

    PubMed Central

    Benedetti, Mauro; Roncaglia, Paola; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2008-01-01

    Background A laboratory inbred strain of the annual fish Nothobranchius furzeri shows exceptionally short life expectancy and accelerated expression of age markers. In this study, we analyze new wild-derived lines of this short-lived species. Methodology/Principal Findings We characterized captive survival and age-related traits in F1 and F2 offspring of wild-caught N. furzeri. Wild-derived N. furzeri lines showed expression of lipofuscin and neurodegeneration at age 21 weeks. Median lifespan in the laboratory varied from to 20 to 23 weeks and maximum lifespan from 25 to 32 weeks. These data demonstrate that rapid age-dependent decline and short lifespan are natural characteristics of this species. The N. furzeri distribution range overlaps with gradients in altitude and aridity. Fish from more arid habitats are expected to experience a shorter survival window in the wild. We tested whether captive lines stemming from semi-arid and sub-humid habitats differ in longevity and expression of age-related traits. We detected a clear difference in age-dependent cognitive decline and a slight difference in lifespan (16% for median, 15% for maximum lifespan) between these lines. Finally, we observed shorter lifespan and accelerated expression of age-related markers in the inbred laboratory strain compared to these wild-derived lines. Conclusions/Significance Owing to large differences in aging phenotypes in different lines, N. furzeri could represent a model system for studying the genetic control of life-history traits in natural populations. PMID:19052641

  17. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.

    2016-06-01

    The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.

  18. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument

    PubMed Central

    LaKind, Judy S.; Sobus, Jon R.; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J.; Arbuckle, Tye E.; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P.

    2015-01-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument – the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument – for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. PMID:25137624

  19. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument.

    PubMed

    LaKind, Judy S; Sobus, Jon R; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J; Arbuckle, Tye E; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P

    2014-12-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument--the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument--for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. PMID:25137624

  20. ASTROPHYSICAL SHRAPNEL: DISCRIMINATING AMONG NEAR-EARTH STELLAR EXPLOSION SOURCES OF LIVE RADIOACTIVE ISOTOPES

    SciTech Connect

    Fry, Brian J.; Fields, Brian D.; Ellis, John R.

    2015-02-10

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10{sup 5}-10{sup 8} yr that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGB) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the {sup 60}Fe and {sup 26}Al signatures, and extend these estimates to include {sup 244}Pu and {sup 53}Mn. We discuss interpretations of the {sup 60}Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ∼2.2 Myr ago, showing that (1) the {sup 60}Fe yield rules out the TNSN and KN interpretations, (2) the {sup 60}Fe signals highly constrain SAGB interpretations but do not completely them rule out, (3) are consistent with a CCSN origin, and (4) are highly compatible with an ECSN interpretation. Future measurements could resolve the radioisotope deposition over time, and we use the Sedov blast wave solution to illustrate possible time-resolved profiles. Measuring such profiles would independently probe the blast properties including distance, and would provide additional constraints for the nature of the explosion.

  1. First Results Using a New Technology for Measuring Masses of Very Short-Lived Nuclides with Very High Accuracy: the MISTRAL Program at ISOLDE

    SciTech Connect

    C. Monsanglant; C. Toader; G. Audi; G. Bollen; C. Borcea; G. Conreur; R. Cousin; H. Doubre; M. Duma; M. Jacotin; S. Henry; J.-F. Kepinski; H.-J. Kluge; G. Lebee; G. Le Scornet; D. Lunney; M. de Saint Simon; C. Scheidenberger; C. Thibault

    1999-12-31

    MISTRAL is an experimental program to measure masses of very short-lived nuclides (T{sub 1/2} down to a few ms), with a very high accuracy (a few 10{sup -7}). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na{clubsuit}, Mg, Al{clubsuit}, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8x10{sup -7}, allowing to come close to the expected accuracy. Even for the very weakly produced {sup 30}Na (1 ion at the detector per proton burst), the final accuracy is 7x10{sup -7}.

  2. First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u

    NASA Astrophysics Data System (ADS)

    Purushothaman, S.; Reiter, M. P.; Haettner, E.; Dendooven, P.; Dickel, T.; Geissel, H.; Ebert, J.; Jesch, C.; Plass, W. R.; Ranjan, M.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kurcewicz, J.; Lang, J.; Moore, I. D.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfützner, M.; Pietri, S.; Prochazka, A.; Rink, A.-K.; Rinta-Antila, S.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-11-01

    A cryogenic stopping cell (CSC) has been commissioned with 238U projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100 K). A helium stopping gas density of up to 0.05\\ \\text{mg/cm}^3 was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24 ms were achieved for heavy α-decaying uranium fragments. Mass spectrometry with a multiple-reflection time-of-flight mass spectrometer has demonstrated the excellent cleanliness of the CSC. This setup has opened a new field for the spectroscopy of short-lived nuclei.

  3. The Effects of Stratospheric Chemistry and Transport on the Isotopic Compositions of Long-Lived Gases Measured at Earth's Surface

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Boering, K. A.

    2014-12-01

    The isotopic compositions of a number of long-lived gases in Earth's atmosphere, including those for carbon dioxide (δ18O, Δ17O, and Δ14C), nitrous oxide (δ15N, δ15Nα, and δ18O), methane (δ13C and δD), and molecular hydrogen (δD) undergo large changes in the stratosphere. These changes arise from the often unique photochemical isotope fractionation occurring there as well as the long residence times and mean ages of stratospheric air with respect to exchange with the troposphere of up to 5 years. Stratospheric air then returns to the troposphere and, in each case, can affect the isotopic composition of these gases measured at Earth's surface. In this work, we estimate the effect of stratospheric isotope fractionation on free tropospheric isotope compositions of CO2, N2O, CH4, and H2 on an annual and global mean basis. To do so, we calculate net isotope fluxes between the stratosphere and troposphere empirically from the correlation of the measured isotope compositions of these species with measured N2O mixing ratios on whole air samples collected in the stratosphere from stratospheric aircraft and balloons coupled with independent information on the global, annually-averaged loss rate of N2O. In each case, the effect is large enough to include in global models. In addition, we present arguments and evidence that deconvolving the stratospheric influence on surface measurements from source (or other) signals on higher spatial and temporal scales than 'global' and 'annually-averaged' is also necessary when using surface measurements of isotopic compositions to constrain the magnitudes and geographic distributions of the sources of these gases to the atmosphere.

  4. The impacts of short-lived ozone precursors on climate and air quality

    NASA Astrophysics Data System (ADS)

    Fry, Meridith McGee

    Human emissions of short-lived ozone precursors not only degrade air quality and health, but indirectly affect climate via chemical effects on ozone, methane, and aerosols. Some have advocated for short-lived air pollutants in near-term climate mitigation strategies, in addition to national air quality programs, but their radiative forcing (RF) impacts are uncertain and vary based on emission location. In this work, global chemical transport modeling is combined with radiative transfer modeling to study the impacts of regional ozone precursor emissions (NOx, CO, and NMVOCs) on climate, via changes in ozone, methane, and sulfate, and on regional and global air quality. The first study evaluates NOx, CO, and NMVOC emission reductions from four regions across an ensemble of models, finding that NMVOC and CO reductions from all four regions cool climate (negative RF) by decreasing ozone and methane, while improving air quality. NOx and NMVOC global warming potentials (GWPs), a measure of the relative radiative effects of individual climate forcers, vary strongly among regions, while CO GWPs show less variability. The second and third studies investigate further the RF and air quality impacts of CO and NMVOC emission reductions from 10 world regions. The greatest benefits to RF and air quality (per unit emissions) are achieved by CO reductions from the tropics, due to more active photochemistry and convection. CO GWPs are fairly independent of the reduction region (GWP20: 3.71 to 4.37; GWP100: 1.26 to 1.44), while NMVOC GWPs are more variable (GWP 20: -1.13 to 18.9; GWP100: 0.079 to 6.05). Accounting for additional forcings from CO and NMVOC emissions would likely change RF and GWP estimates. Regionally-specific GWPs for NOx and NMVOCs and a globally-uniform GWP for CO may allow these gases to be included in a multi-gas emissions trading framework, and enable comprehensive strategies for meeting climate and air quality goals simultaneously. Future research could

  5. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  6. {beta}-decay half-lives of new neutron-rich isotopes of elements from Pm to Tb

    SciTech Connect

    Ichikawa, S.; Asai, M.; Tsukada, K.; Nishinaka, I.; Nagame, Y.; Osa, A.; Sakama, M.; Oura, Y.; Kojima, Y.; Shibata, M.; Kawade, K.

    1999-11-16

    Eight new neutron-rich lanthanide isotopes produced in the proton-induced fission of {sup 238}U have been identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. For six of these, each half-life was determined: {sup 159}Pm (2{+-}1 s), {sup 161}Sm (4.8{+-}0.8 s), {sup 165}Gd (10.3{+-}1.6 s), {sup 166}Tb (21{+-}6 s), {sup 167}Tb (19.4{+-}2.7 s) and {sup 168}Tb (8.2{+-}1.3 s). The observed half-lives were compared with theoretical calculations. The recent calculation by the gross theory with the new one-particle strength function shows quite good agreement with the experimental half-lives.

  7. {beta}-Decay Half-Lives of New Neutron-Rich Isotopes of Elements from Pm to Tb

    SciTech Connect

    S. Ichikawa; M. Asai; K. Tsukada; A. Osa; M. Sakama; Y. Kojima; M. Shibata; I. Nishinaka; Y. Nagame; Y. Oura; K. Kawade

    1999-12-31

    Eight new neutron-rich lanthanide isotopes produced in the proton-induced fission of {sup 238}U have been identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. For six of these, each half-life was determined: {sup 159}Pm (2 {+-} 1 s), {sup 161}Sm (4.8 {+-} 0.8 s), {sup 165}Gd (10.3 {+-} 1.6 s), {sup 166}Tb (21 {+-} 6 s), {sup 167}Tb (19.4 {+-} 2.7 s) and {sup 168}Tb (8.2 {+-} 1.3 s). The observed half-lives were compared with theoretical calculations. The recent calculation by the gross theory with the new one-particle strength function shows quite good agreement with the experimental half-lives.

  8. Metrics for comparing climate impacts of short- and long-lived climate forcing agents

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, J.; Berntsen, T.

    2013-12-01

    Human activities emit a wide variety of gases and aerosols, with different characteristics that influence both air quality and climate. The emissions affect climate both directly and indirectly and operate on both short and long timescales. Tools that allow these emissions to be placed on a common scale in terms of climate impact, i.e. metrics, have a number of applications (e.g. agreements and emission trading schemes, when considering potential trade-offs between changes in emissions). The Kyoto Protocol compares greenhouse gas (GHG) emissions using the Global Warming Potential (GWP) over a 100 year time-horizon. The IPCC First Assessment Report states the GWP was presented to illustrate the difficulties in comparing GHGs. There have been many critiques of the GWP and several alternative emission metrics have been proposed, but there has been little focus on understanding the linkages between, and interpretations of, different emission metrics. Furthermore, the capability to compare components with very different lifetimes and temporal behaviour needs consideration. The temperature based metrics (e.g. the Global Temperature change Potential (GTP)) require a model for the temperature response, and additional uncertainty is thus introduced. Short-lived forcers may also give more spatially heterogeneous responses, and the possibilities to capture these spatial variations by using other indicators than global mean RF or temperature change in metrics will be discussed. The ultimate choice of emission metric(s) and time-horizon(s) should, however, depend on the objectives of climate policy. Alternatives to the current 'multi-gas and single-basket' approach will also be explored and discussed (e.g. how a two-target approach may be implemented using a two-basket approach). One example is measures to reduce near-term rate of warming and long-term stabilization which can be implemented through two separate targets and two baskets with separate set of metrics for each

  9. Higher Accuracy Measurements of Photochemical Properties of Very Short-Lived Substances.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Kurylo, M. J., III

    2015-12-01

    Despite the broad applicability of simple fully halogenated hydrocarbons in various industries, the production and use of bromo(chloro)fluorocarbons (Halons) and chlorofluorocarbons (CFCs) has been phased out because of the danger they pose to the Earth's stratospheric ozone layer. In addition, all halogen-containing hydrocarbons are infrared active gases because of their strong absorption bands in the region of the atmospheric transparency window between ca. 8 and 12 mm that can affect the Earth's radiation balance. However, the effort to find replacements continues to return to bromine (chlorine)-containing compounds because of their excellent properties as industrial solvents and cleaning agents and especially because of bromine efficiency as a chemically active flame suppressant. The primary approach to this problem has been to test candidate replacement compounds that have very short atmospheric lifetimes and therefore substantially reduced ozone depleting and radiative impacts. Reactions with hydroxyl radicals (OH) and photolysis are the main processes dictating the compound residence time in the atmosphere for a majority of trace gases. In case of very short-lived substances (VSLS) their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the purpose of comprehensive atmospheric modeling of compound's impact on the atmosphere, such as in ozone depletion and climate change. We demonstrated the ability to determine the OH reaction rate constants over the temperature range of atmospheric interest with the total uncertainty of ~2-3%, thus making laboratory measurements a negligible source of uncertainty in atmospheric modeling. These studies revealed the different reactivity of molecular isomers toward OH and a non-Arrhenius behavior of the temperature dependence to be a rather common kinetic feature of the OH reactivity, which can be accounted for in

  10. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  11. Early auxin-induced genes encode short-lived nuclear proteins.

    PubMed Central

    Abel, S; Oeller, P W; Theologis, A

    1994-01-01

    The plant growth hormone indoleacetic acid (IAA) transcriptionally activates gene expression in plants. Some of the genes whose expression is induced by IAA encode a family of proteins in pea (PS-IAA4 and PS-IAA6) and Arabidopsis (IAA1 and IAA2) that contain putative nuclear localization signals that direct a beta-glucuronidase reporter protein into the nucleus. Pulse-chase and immunoprecipitation experiments have defined the t1/2 of the PS-IAA4 and PS-IAA6 proteins to be 8 and 6 min, respectively. Their most prominent feature is the presence of a beta alpha alpha motif similar to the beta-sheet DNA-binding domain found in prokaryotic repressors of the Arc family. Based on these data, we suggest that plant tissues express short-lived nuclear proteins as a primary response to IAA. We propose that these proteins act as activators or repressors of genes responsible for mediating the various auxin responses. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278386

  12. A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model

    NASA Astrophysics Data System (ADS)

    Qiao, Changjian; Li, Jiansong; Tian, Zongshun

    2016-09-01

    There are many researches to simulate the fluid which adopt the traditional particle-based approach and the grid-based approach. However, it needs massive storage in the traditional particle-based approach and it is very complicated to design the grid-based approach with the Navier-Stokes Equations or the Shallow Water Equations (SWEs) because of the difficulty of solving equations. This paper presents a new model called the Short-lived Water Cuboid Particle model. It updates the fluid properties (mass and momentum) recorded in the fixed Cartesian grids by computing the weighted sum of the water cuboid particles with a time step life. Thus it is a two-type-based approach essentially, which not only owns efficient computation and manageable memory like the grid-based approach, but also deals with the discontinuous water surface (wet/dry fronts, boundary conditions, etc.) with high accuracy as well as the particle-based approach. The proposed model has been found capable to simulate the fluid excellently for three laboratory experimental cases and for the field case study of the Malpasset dam-break event occurred in France in 1959. The obtained results show that the model is proved to be an alternative approach to simulate the fluid dynamics with a fair accuracy.

  13. Integrated measurements of short-lived 222Rn progeny by rotating filters.

    PubMed

    Pressyanov, D S; Guelev, M G; Pentchev, O J

    1993-05-01

    The dependence of the risk from inhalation of radon progeny on their disequilibrium suggests that the measurements of the time-integrated concentrations of each of the short-lived radon progeny are necessary for complete risk estimations. This paper presents a method that, in principle, allows the determination of the integrated specific volume activities in air of each of the radionuclides 218Po, 214Pb, 214Bi, 212Pb, and 212Bi. The method employs thermoluminescence detectors positioned around uniformly rotating filters. Two prototypes that are suitable for practical applications are described and mathematical expressions for data processing are given. Experiments with these "rotating filter dosimeters" were conducted in atmospheres radiologically dominated by 222Rn progeny. The comparison between the results obtained by the proposed method and those given by simultaneously conducted series of instantaneous grab-sampling measurements support the conclusion that the method works for 222Rn progeny. The method can be experimentally extended for 220Rn progeny as well as for unattached fractions. PMID:8387983

  14. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri

    PubMed Central

    Wendler, Sebastian; Hartmann, Nils; Hoppe, Beate; Englert, Christoph

    2015-01-01

    The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short-lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle-aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age-related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β-catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish. PMID:26121607

  15. Recovery of short-lived chemical species in a couette flow reactor

    SciTech Connect

    Ouyang, Q.; Swinney, H.L. ); Roux, J.C.; Kepper, P.; Boissonade, J. )

    1992-04-01

    This paper reports on a new technique for studying and recovering short-lived chemical intermediate species that has been developed using a Couette reactor, which is an open one-dimensional reaction-diffusion system. Reaction occurs in the annulus between concentric cylinders with the inner one rotating and the outer one at rest. Fresh reagents are in contact with the ends of the annulus, but there is no net axial flow. The axial transport arising from the hydrodynamic motion is effectively diffusive, but has a diffusion coefficient 3 to 5 order of magnitude larger than that of molecular diffusion. The oxidant (ClO{sub 2}{sup {minus}}) and reductant (I{sup {minus}}) of an autocatalytic reaction are fed at opposite ends of the reactor. The reactants diffuse toward each other and react, forming a steady, sharp chemical front and a stable spatial concentration band of unstable intermediate species (HOCl) in the front region. Unstable intermediate species are thus stabilized at a well-defined spatial position where they can be recovered and studied. The experiments and numerical simulations demonstrate that the faster the reaction rate, the stabler the chemical front and the more effective the recovery of unstable intermediate species.

  16. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Fuglestvedt, J.; Shine, K. P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. How could global society prepare for, and react to, such emergencies? One possibility is deliberate, coordinated emissions of short-lived greenhouse gases, along a pathway designed to match the climate responses to the eruption. We estimate such an emission pathway, countering a hypothetical eruption three times the size of Mt Pinatubo in 1991. Using a global climate model to evaluate global and regional responses to the eruption, with and without counter emissions, we show that it may be possible to counteract its climate effects, significantly dampening the abrupt impact of the eruption. We then raise practical, financial and ethical aspects related to such a strategy. Designed emissions to counter temporary global cooling would not have the disadvantages associated with more commonly discussed geoengineering to avoid long-term warming. Nevertheless, implementation would still face significant challenges.

  17. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate

    PubMed Central

    Harel, Itamar; Benayoun, Bérénice A.; Machado, Ben; Singh, Param Priya; Hu, Chi-Kuo; Pech, Matthew F.; Valenzano, Dario R.; Zhang, Elisa; Sharp, Sabrina C.; Artandi, Steven E.; Brunet, Anne

    2015-01-01

    Summary Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2–3 months. As a proof-of-principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high throughput manner and for investigating candidates arising from human genome-wide studies. PMID:25684364

  18. Mitigation of short-lived climate pollutants slows sea-level rise

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Xu, Yangyang; Tebaldi, Claudia; Washington, Warren M.; Ramanathan, Veerabhadran

    2013-08-01

    Under present growth rates of greenhouse gas and black carbon aerosol emissions, global mean temperatures can warm by as much as 2°C from pre-industrial temperatures by about 2050. Mitigation of the four short-lived climate pollutants (SLCPs), methane, tropospheric ozone, hydrofluorocarbons and black carbon, has been shown to reduce the warming trend by about 50% (refs , ) by 2050. Here we focus on the potential impact of this SLCP mitigation on global sea-level rise (SLR). The temperature projections under various SLCP scenarios simulated by an energy-balance climate model are integrated with a semi-empirical SLR model, derived from past trends in temperatures and SLR, to simulate future trends in SLR. A coupled ocean-atmosphere climate model is also used to estimate SLR trends due to just the ocean thermal expansion. Our results show that SLCP mitigation can have significant effects on SLR. It can decrease the SLR rate by 24-50% and reduce the cumulative SLR by 22-42% by 2100. If the SLCP mitigation is delayed by 25 years, the warming from pre-industrial temperature exceeds 2°C by 2050 and the impact of mitigation actions on SLR is reduced by about a third.

  19. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Saiz-Lopez, A.; Harrison, J. J.; Glasow, R.; Sommariva, R.; Atlas, E.; Navarro, M.; Montzka, S. A.; Feng, W.; Dhomse, S.; Harth, C.; Mühle, J.; Lunder, C.; O'Doherty, S.; Young, D.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Bernath, P. F.

    2015-06-01

    We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short-lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( ClyVSLS) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl3), dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane (CH2ClCH2Cl), we infer a 2013 ClyVSLS mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ˜83% of the total. The remainder comes from VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric ClyVSLS increased by ˜52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH2Cl2—the most abundant chlorinated VSLS not controlled by the Montreal Protocol.

  20. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    PubMed

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean. PMID:25723123

  1. Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Daskalakis, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2015-04-01

    The ability of six global and one regional model to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over Asia in summer 2008 is evaluated using satellite and in-situ observations. Whilst ozone precursors (NO2 and CO) are generally underestimated by the models in the troposphere, surface NO2 concentrations are overestimated, suggesting that emissions of NOx are too high. Ozone integrated columns and vertical profiles are generally well modeled, but the global models face difficulties simulating the ozone gradient at the surface between urban and rural environments, pointing to the need to increase model resolution. The accuracy of simulated aerosol patterns over eastern China and northern India varies between the models, and although most of the models reproduce the observed pollution features over eastern China, significant biases are noted in the magnitude of optical properties (aerosol optical depth, aerosol backscatter). These results have important implications for accurate prediction of pollution episodes affecting air quality and the radiative effects of these short-lived climate pollutants over Asia.

  2. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  3. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions.

    PubMed

    Cai, Wenjia; Wan, Liyang; Jiang, Yongkai; Wang, Can; Lin, Lishen

    2015-12-15

    This paper has changed the vague understanding that "the short-lived buildings have huge environmental footprints (EF)" into a concrete one. By estimating the annual floor space of buildings demolished and calibrating the average building lifetime in China, this paper compared the EF under various assumptive extended buildings' lifetime scenarios based on time-series environmental-extended input-output model. Results show that if the average buildings' lifetime in China can be extended from the current 23.2 years to their designed life expectancy, 50 years, in 2011, China can reduce 5.8 Gt of water withdrawal, 127.1 Mtce of energy consumption, and 426.0 Mt of carbon emissions, each of which is equivalent to the corresponding annual EF of Belgium, Mexico, and Italy. These findings will urge China to extend the lifetime of existing and new buildings, in order to reduce the EF from further urbanization. This paper also verifies that the lifetime of a product or the replacement rate of a sector is a very important factor that influences the cumulative EF. When making policies to reduce the EF, adjusting people's behaviors to extend the lifetime of products or reduce the replacement rate of sectors may be a very simple and cost-effective option. PMID:26561867

  4. Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends

    NASA Astrophysics Data System (ADS)

    Sinnhuber, Björn-Martin; Meul, Stefanie

    2015-04-01

    Bromine from very short lived substances (VSLS), primarily from natural oceanic sources, contributes substantially to the stratospheric bromine loading. This source of stratospheric bromine has so far been ignored in most chemistry climate model calculations of stratospheric ozone trends. Here we present a transient simulation with the chemistry climate model EMAC for the period 1960-2005 including emissions of the five brominated VSLS CHBr3, CH2Br2, CH2BrCl, CHBrCl2, and CHBr2Cl. The emissions lead to a realistic stratospheric bromine loading of about 20 pptv for present-day conditions. Comparison with a standard model simulation without VSLS shows large differences in modeled ozone in the extratropical lowermost stratosphere and in the troposphere. Differences in ozone maximize in the Antarctic Ozone Hole, resulting in more than 20% less ozone when VSLS are included. Even though the emissions of VSLS are assumed to be constant in time, the model simulation with VSLS included shows a much larger ozone decrease in the lowermost stratosphere during the 1979-1995 period and a faster ozone increase during 1996-2005, in better agreement with observed ozone trends than the standard simulation without VSLS emissions.

  5. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  6. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    SciTech Connect

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  7. A Proposal for Assessing Study Quality: Biomonitoring, Environmental Epidemiology, and Short-Lived Chemicals (BEES-C) Instrument

    EPA Science Inventory

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals...

  8. A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice.

    PubMed

    Tsukasaki, Y; Komatsuzaki, A; Mori, Y; Ma, Q; Yoshioka, Y; Jin, T

    2014-11-28

    For the non-invasive visualization of cell migration in deep tissues, we synthesized a short-wavelength infrared (SWIR) emitting multimodal probe that contains PbS/CdS quantum dots, rhodamine 6G and iron oxide nanoparticles. This probe enables multimodal (SWIR fluorescence/magnetic resonance) imaging of phagocyte cell migration in living mice. PMID:25296382

  9. Sizes and shapes of short-lived nuclei via laser spectroscopy. Progress report, May 1, 1980-January 31, 1981

    SciTech Connect

    Lewis, D.A.

    1981-02-01

    The first stage of the program to study the sizes and shapes of short-lived nuclei through their atomic hyperfine structure is to develop a movable laser spectroscopy system. This system is now almost complete and is described in this report along with plans for measurements at Argonne National Laboratory and Brookhaven National Laboratory.

  10. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  11. Detection of 210Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room.

    PubMed

    Abu-Jarad, F; Fazal-ur-Rehman

    2003-01-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m(3) test room, resulting in an initial radon concentration of 15 kBq m(-3). Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10(2)-10(5) particles cm(-3) in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, (210)Po (T(1/2)=138 days). This isotope is separated from the short-lived progeny by (210)Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter (210)Po on the same filter papers measured in the year 2000 were studied. The results of the (210)Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and (210)Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker. PMID:12633999

  12. Short-lived radionuclide production by non-exploding Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1997-05-01

    This paper presents an extension and update of previous calculations of the production by non-exploding Wolf-Rayet stars of radionuclides that could be responsible for certain isotopic anomalies discovered in meteoritic inclusions, or in meteoritic grains of probable circumstellar origin. Quantitative predictions of the time dependence of the radionuclide composition of the wind of Wolf-Rayet stars with initial masses in the wide 25<=M_i_<=120Msun_ range and for metallicities 0.001<=Z<=0.04 are obtained from a set of revised stellar evolution models. Special emphasis is put on the radionuclides with half-lives between about 10^5^ and 10^8^yr that could be produced by neutron captures during central helium burning and ejected during the WC-WO evolutionary phases. We stress that the radionuclide yield predictions are much more secure for Wolf-Rayet stars than for any other potential source of these species that has been contemplated up to now. This relates directly to the simplicity of these stars compared to highly difficult to model objects like Asymptotic Giant Branch stars, novae or supernovae. Our abundance predictions are confronted with existing observational data, or are hoped to help unravelling cases of potential interest for further laboratory quest when observations are lacking. The case of ^26^Al, of special interest for γ-ray line astronomy as well as for cosmochemistry, is also briefly revisited. In contrast to the other considered radionuclides, ^26^Al is produced during hydrogen burning, and is ejected at the WN evolutionary phase of the Wolf-Rayet stars. Our computed yields are also used as the basis for a qualitative discussion of the astrophysical plausibility of the contamination of the protosolar nebula with the radionuclides loading the Wolf-Rayet winds. Our calculations indicate that ^26^Al, ^41^Ca and ^107^Pd can be produced at a level compatible with the observations from a large variety of Wolf-Rayet stars with different masses and initial

  13. Trace element and isotopic geochemistry of Franciscan graywackes with implications for short time of recycling of detritus and interaction of continental sediments with metabasites during subduction

    NASA Astrophysics Data System (ADS)

    Ghatak, A.; Basu, A. R.; Wakabayashi, J.

    2011-12-01

    Franciscan isotopic compositions resembling older Great Valley Group rocks. Although there is much scatter in the collective dataset, these results suggest that the burial-exhumation cycles that recycled Franciscan clastic material were short lived. A comparison of the trace element and isotopic ratios of the Franciscan graywackes with those of Franciscan metabasites reaffirms the conclusion in several of our recent studies that the metabasites were not chemically modified by interaction with fluids derived from continental sediments during subduction and exhumation.

  14. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  15. "Short Courses Shouldn't Be Short-Lived!" Enhancing Longer-Term Impact of Short English as a Foreign Language INSET Initiatives in China

    ERIC Educational Resources Information Center

    Yan, Chunmei; He, Chuanjun

    2015-01-01

    Short in-service teacher development (INSET) programmes have been globally used as a form of teacher development, but their impact has been under question. This study sought to examine teacher participants' perceptions of short INSET programmes to come up with better solutions to enhancing their effect on teachers' professional learning. A…

  16. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.

    2015-07-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are

  17. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.

    2015-02-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the

  18. Response of Arctic temperature to changes in emissions of short-lived climate forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T. K.; von Salzen, K.; Flanner, M. G.; Langner, J.; Victor, D. G.

    2016-03-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased at twice the global rate, largely as a result of ice-albedo and temperature feedbacks. Although deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short-lived climate forcers (SLCFs; refs ,). Politically, action on SLCFs may be particularly promising because the benefits of mitigation are seen more quickly than for mitigation of CO2 and there are large co-benefits in terms of improved air quality. This Letter is one of the first to systematically quantify the Arctic climate impact of regional SLCFs emissions, taking into account black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), organic carbon (OC) and tropospheric ozone (O3), and their transport processes and transformations in the atmosphere. This study extends the scope of previous works by including more detailed calculations of Arctic radiative forcing and quantifying the Arctic temperature response. We find that the largest Arctic warming source is from emissions within the Asian nations owing to the large absolute amount of emissions. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible mitigation scenario for SLCFs, phased in from 2015 to 2030, could cut warming by 0.2 (+/-0.17) K in 2050.

  19. Distributions of Short-lived Radioactive Nuclei Produced by Young Embedded Star Clusters

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Fatuzzo, Marco; Holden, Lisa

    2014-07-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (l ~ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (l ~ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ~10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of 26Al and 60Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM ⊙ (where 1 pM ⊙ = 10-12 M ⊙). The corresponding ionization rate due to SLRs typically falls in the range ζSLR ~ 1-5 × 10-19 s-1. This ionization rate is smaller than that due to cosmic rays, ζCR ~ 10-17 s-1, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).

  20. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  1. Convective transport of very-short-lived bromocarbons to the stratosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Atlas, E.; Blake, D.; Dorf, M.; Pfeilsticker, K.; Schauffler, S.

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies ∼8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, ∼150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (∼7.8-8.4 ppt) in the above active convective lofting regions. Of the total ∼8 ppt VSLS-originated bromine that enters the base of TTL at ∼150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute ∼7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a ∼2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt).

  2. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  3. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  4. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2007-08-01

    A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.

  5. Upper limits for the existence of long-lived isotopes of roentgenium in natural gold

    SciTech Connect

    Dellinger, F.; Kutschera, W.; Forstner, O.; Golser, R.; Priller, A.; Steier, P.; Wallner, A.; Winkler, G.

    2011-01-15

    A sensitive search for isotopes of a superheavy element (SHE) in natural gold materials has been performed with accelerator mass spectrometry at the Vienna Environmental Research Accelerator, which is based on a 3-MV tandem accelerator. Because the most likely SHE in gold is roentgenium (Rg, Z = 111), the search concentrated on Rg isotopes. Two different mass regions were explored: (i) For the neutron-deficient isotopes {sup 261}Rg and {sup 265}Rg, abundance limits in gold of 3x10{sup -16} were reached (no events observed). This is in stark contrast to the findings of Marinov et al.[Int. J. Mod. Phys. E 18, 621 (2009)], who reported positive identification of these isotopes with inductively coupled plasma sector field mass spectrometry in the (1-10)x10{sup -10} abundance range. (ii) Theoretical models of SHEs predict a region of increased stability around the proton and neutron shell closures of Z = 114 and N = 184. We therefore investigated eight heavy Rg isotopes, {sup A}Rg, A = 289, 290, 291, 292, 293, 294, 295, and 296. For six isotopes no events were observed, setting limits also in the 10{sup -16} abundance range. For {sup 291}Rg and {sup 294}Rg we observed two and nine events, respectively, which results in an abundance in the 10{sup -15} range. However, pileup of a particularly strong background in these cases makes a positive identification as Rg isotopes--even after pileup correction--unlikely.

  6. Vertical Distribution and Isotopic Composition of Living Planktonic Foraminifera in the Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Fairbanks, Richard G.; Wiere, Peter H.; Be, Allan W. H.

    1980-01-01

    Thirteen species of planktonic foraminifera collected with vertically stratified zooplankton tows in the slope water, Gulf Stream cold core ring, and northern Sargasso Sea show significant differences in their vertical distributions in the upper 200 meters of these different hydrographic regimes. Gulf Stream cold core rings may be responsible for a southern displacement of the faunal boundary associated with the Gulf Stream when reconstructed from the deep-sea sediment record. Oxygen isotope analyses of seven species reveal that nonspinose species (algal symbiont-barren) apparently calcify in oxygen isotope equilibrium, whereas spinose species usually calcify out of oxygen isotope equilibrium by approximately -0.3 to -0.4 per mil in δ 18O values. The isotope data indicate that foraminifera shells calcify in depth zones that are significantly narrower than the overall vertical distribution of a species would imply.

  7. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic

    SciTech Connect

    Fairbanks, R.G.; Wiebe, P.H.; Be, A.W.H.

    1980-01-04

    Thirteen species of planktonic foraminifera collected with vertically stratified zooplankton tows in the slope water, Gulf Stream cold core ring, and northern Sargasso Sea show significant differences in their vertical distributions in the upper 200 meters of these different hydrographic regimes. Gulf Stream cold core rings may be responsible for a southern displacement of the faunal boundary associated with the Gulf Stream when reconstructed from the deep-sea sediment record. Oxygen isotope analyses of seven species reveal that nonspinose species (algal symbiont-barren) apparently calcify in oxygen isotope equilibrium, whereas spinose species usually calcify out of oxygen isotope equilibrium by approximately -0.3 to -0.4 per mil in delta/sup 18/O values. The isotope data indicate that foraminifera shells calcify in depth zones that are significantly narrower than the overall vertical distribution of a species would imply.

  8. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at

  9. SU-C-204-07: The Production of Short-Lived Positron Emitters in Proton Therapy

    SciTech Connect

    Buitenhuis, H J T; Dendooven, P; Biegun, A K; Goethem, M-J van; Graaf, E R van der; Brandenburg, S; Diblen, F

    2015-06-15

    Purpose: To investigate the production and effect of short-lived positron emitters when using PET for in-vivo range verification during a proton therapy irradiation. Methods: The integrated production of short-lived positron emitters in the stopping of 55 MeV protons was measured in water, carbon, phosphorus and calcium targets. The experimental production rates are used to calculate the production on PMMA and a representative set of 4 tissue materials. The number of decays integrated over an irradiation in these materials is calculated as function of the duration of the irradiation, considering irradiations with the same total number of protons. Results: The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12-N (T1/2 = 11 ms) on carbon (9.5% of the 11-C production), 29-P (T1/2 = 4.1 s) on phosphorus (20% of the 30-P production) and 38m-K (T1/2 = 0.92 s) on calcium (113% of the 38g-K production). No short-lived nuclides are produced on water. The most noticeable Result is that for an irradiation in (carbon-rich) adipose tissue, 12-N will dominate the PET image up to an irradiation duration of 70 s. On bone tissue, 15-O dominates over 12-N after 7–15 s (depending on the carbon-to-oxygen ratio). Conclusions: The presence of 12-N needs to be considered in PET imaging during proton beam irradiations as, depending on tissue composition and PET scanning protocol, it may noticeably deteriorate image quality due to the large positron range blurring. The results presented warrant investigations into the energy-dependent production of 12-N, 29-P and 38m-K and their effect on PET imaging during proton irradiations.

  10. A Lower Initial Abundance of Short-lived 41Ca in the Early Solar System and Its Implications for Solar System Formation

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang; Chaussidon, Marc; Srinivasan, Gopalan; McKeegan, Kevin D.

    2012-12-01

    The short-lived radionuclide 41Ca plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of 41Ca/40Ca in the solar system was determined to be (1.41 ± 0.14) × 10-8, primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of 41Ca/40Ca to be (2.6 ± 0.9) × 10-9 and (1.4 ± 0.6) × 10-9 (2σ), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower 26Al/27Al ratios in the two CAIs, we propose that the true solar system initial value of 41Ca/40Ca should have been ~4.2 × 10-9. Synchronicity could have existed between 26Al and 41Ca, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial 41Ca abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, 41Ca could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of 41Ca.

  11. Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats.

    PubMed

    Schmidt, Katharina; Steiner, Kurt; Petrov, Boyan; Georgiev, Oleg; Schaffner, Walter

    2016-06-01

    Non-essential "heavy" metals such as cadmium tend to accumulate in an organism and thus are a particular threat for long-lived animals. Here we show that two unrelated, short-lived groups of mammals (rodents and shrews, separated by 100 Mio years of evolution) each have independently acquired mutations in their metal-responsive transcription factor (MTF-1) in a domain relevant for robust transcriptional induction by zinc and cadmium. While key amino acids are mutated in rodents, in shrews an entire exon is skipped. Rodents and especially shrews are unique regarding the alterations of this region. To investigate the biological relevance of these alterations, MTF-1s from the common shrew (Sorex araneus), the mouse, humans and a bat (Myotis blythii), were tested by cotransfection with a reporter gene into cells lacking MTF-1. Whereas shrews only live for 1.5-2.5 years, bats, although living on a very similar insect diet, have a lifespan of several decades. We find that bat MTF-1 is similarly metal-responsive as its human counterpart, while shrew MTF-1 is less responsive, similar to mouse MTF-1. We propose that in comparison to most other mammals, the short-lived shrews and rodents can afford a "lower-quality" system for heavy metal homeostasis and detoxification. PMID:27067444

  12. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  13. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  14. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  15. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  16. Short-lived chemical heterogeneities in the archean mantle with implications for mantle convection.

    PubMed

    Blichert-Toft, J; Albarede, F

    1994-03-18

    The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust. PMID:17744788

  17. Regional emission metrics for short-lived climate forcers from multiple models

    NASA Astrophysics Data System (ADS)

    Aamaas, Borgar; Berntsen, Terje K.; Fuglestvedt, Jan S.; Shine, Keith P.; Bellouin, Nicolas

    2016-06-01

    For short-lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemical-transport or coupled chemistry-climate) models. We distinguish between emissions during summer (May-October) and winter (November-April) for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3), as well as ozone precursors (NOx, CO, VOCs), which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP) and global temperature change potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation policy package is

  18. Distributions of short-lived radioactive nuclei produced by young embedded star clusters

    SciTech Connect

    Adams, Fred C.; Fatuzzo, Marco; Holden, Lisa

    2014-07-01

    Most star formation in the Galaxy takes place in clusters, where the most massive members can affect the properties of other constituent solar systems. This paper considers how clusters influence star formation and forming planetary systems through nuclear enrichment from supernova explosions, where massive stars deliver short-lived radioactive nuclei (SLRs) to their local environment. The decay of these nuclei leads to both heating and ionization, and thereby affects disk evolution, disk chemistry, and the accompanying process of planet formation. Nuclear enrichment can take place on two spatial scales: (1) within the cluster itself (ℓ ∼ 1 pc), the SLRs are delivered to the circumstellar disks associated with other cluster members. (2) On the next larger scale (ℓ ∼ 2-10 pc), SLRs are injected into the background molecular cloud; these nuclei provide heating and ionization to nearby star-forming regions and to the next generation of disks. For the first scenario, we construct the expected distributions of radioactive enrichment levels provided by embedded clusters. Clusters can account for the SLR mass fractions inferred for the early Solar Nebula, but typical SLR abundances are lower by a factor of ∼10. For the second scenario, we find that distributed enrichment of SLRs in molecular clouds leads to comparable abundances. For both the direct and distributed enrichment processes, the masses of {sup 26}Al and {sup 60}Fe delivered to individual circumstellar disks typically fall in the range 10-100 pM {sub ☉} (where 1 pM {sub ☉} = 10{sup –12} M {sub ☉}). The corresponding ionization rate due to SLRs typically falls in the range ζ{sub SLR} ∼ 1-5 × 10{sup –19} s{sup –1}. This ionization rate is smaller than that due to cosmic rays, ζ{sub CR} ∼ 10{sup –17} s{sup –1}, but will be important in regions where cosmic rays are attenuated (e.g., disk mid-planes).

  19. Multimodel emission metrics for regional emissions of short lived climate forcers

    NASA Astrophysics Data System (ADS)

    Aamaas, B.; Berntsen, T. K.; Fuglestvedt, J. S.; Shine, K. P.; Bellouin, N.

    2015-09-01

    For short lived climate forcers (SLCFs), the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF) values calculated in four different (chemistry-transport or coupled-chemistry climate) models. We distinguish between emissions during summer (May-October) and winter season (November-April) for emissions from Europe, East Asia, as well as the global shipping sector. The species included in this study are aerosols and aerosols precursors (BC, OC, SO2, NH3), and ozone precursors (NOx, CO, VOC), which also influence aerosols, to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated relative to CO2, using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramp up period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies. For the aerosols, the emission metric values are larger in magnitude for Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values in East Asia and winter for CO and in Europe and summer for VOC. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of a mitigation policy package is robust even when accounting for correlations. For

  20. Recent activities for β-decay half-lives and β-delayed neutron emission of very neutron-rich isotopes

    SciTech Connect

    Dillmann, Iris; Abriola, Daniel; Singh, Balraj

    2014-05-02

    Beta-delayed neutron (βn) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material β-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure βn-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 β-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 β-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of β-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and theoretical models.

  1. Osteosarcoma risk after simultaneous incorporation of the long-lived radionuclide sup 227 Ac and the short-lived radionuclide sup 227 Th

    SciTech Connect

    Mueller, W.A.M.; Murray, A.B.; Linzner, U.; Luz, A. )

    1990-01-01

    The effect of injection of 1.85 kBq/kg of the long-lived radionuclide {sup 227}Ac on the induction of osteosarcomas in female NMRI mice by different dose levels (18.5, 74, and 185 kBq/kg) of the short-lived radionuclide {sup 227}Th was investigated. The highest absolute osteosarcoma incidence was observed with the highest doses of {sup 227}Th. Addition of {sup 227}Ac resulted in an additional osteosarcoma incidence only at the lowest dose of {sup 227}Th and did not affect the osteosarcoma incidence resulting from higher doses of {sup 227}Th. The longest times to tumor appearance were observed with {sup 227}Ac alone. The latent period in two different age groups (4 weeks and 10-12 weeks) appeared to be similar following injection with combined doses of {sup 227}Th and {sup 227}Ac but different after injection of each radionuclide alone.

  2. Estimating long-run equilibrium real exchange rates: short-lived shocks with long-lived impacts on Pakistan.

    PubMed

    Zardad, Asma; Mohsin, Asma; Zaman, Khalid

    2013-12-01

    The purpose of this study is to investigate the factors that affect real exchange rate volatility for Pakistan through the co-integration and error correction model over a 30-year time period, i.e. between 1980 and 2010. The study employed the autoregressive conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity (GARCH) and Vector Error Correction model (VECM) to estimate the changes in the volatility of real exchange rate series, while an error correction model was used to determine the short-run dynamics of the system. The study is limited to a few variables i.e., productivity differential (i.e., real GDP per capita relative to main trading partner); terms of trade; trade openness and government expenditures in order to manage robust data. The result indicates that real effective exchange rate (REER) has been volatile around its equilibrium level; while, the speed of adjustment is relatively slow. VECM results confirm long run convergence of real exchange rate towards its equilibrium level. Results from ARCH and GARCH estimation shows that real shocks volatility persists, so that shocks die out rather slowly, and lasting misalignment seems to have occurred. PMID:23853758

  3. Nucleon-Alpha Particle Disequilibrium and Short-Lived r-Process Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; Clayton, D. D.; Chellapilla, S.; The, L.-S.

    2002-01-01

    r-Process yields can be extremely sensitive to expansion parameters when a persistent disequilibrium between free nucleons and alpha particles is present. This may provide a natural scenario for understanding the variation of heavy and light r-process isotopes in different r-process events. Additional information is contained in the original extended abstract.

  4. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite.

    PubMed

    Lin, Yangting; Guan, Yunbin; Leshin, Laurie A; Ouyang, Ziyuan; Wang, Daode

    2005-02-01

    Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are approximately 5 x 10(-6). Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > or = 1.6 x 10(-4) at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189-L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475-1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051-1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes. PMID:15671168

  5. Life-history variation in the short-lived herb Rorippa palustris: The role of carbon storage

    NASA Astrophysics Data System (ADS)

    Sosnová, Monika; Klimešová, Jitka

    2009-09-01

    Carbon storage is commonly found among perennials, but only rarely in annuals. However, many short-lived species may behave as annuals or short-lived perennials depending on the date of germination, photoperiod or disturbance. Due to the trade-off between investments into current reproduction vs. survival, these life-history modes presumably differ in carbon allocation. In this study, we aimed to evaluate how carbon storage is affected by germination date and disturbance in an outdoor pot experiment with the short-lived Rorippa palustris. Plants from autumnal and summer cohorts were injured in different ontogenetic stages (vegetative, flowering and fruiting) and the starch content in roots was assessed. Plants from the autumnal cohort invested more carbon into growth and reproduction, whereas plants from the summer cohort invested preferentially into reserves. However, injury changed the allocation pattern: in plants from the autumnal cohort, injury prevented allocation to reproduction and thus injured plants had a larger carbon storage at the end of the season than control plants; injury at the flowering and fruiting stage caused depletion of reserves for regrowth in plants from the summer cohort, resulting in lower starch reserves compared to control plants. We suggest that life-history variation in R. palustris can be caused by changes in its carbon economy: when all resources could not be used for flowering due to weak photoinduction or loss of flowering organs due to injury, part of the resources is stored for over wintering and reproduction in the next year.

  6. Anthropogenic plutonium-244 in the environment: Insights into plutonium's longest-lived isotope.

    PubMed

    Armstrong, Christopher R; Brant, Heather A; Nuessle, Patterson R; Hall, Gregory; Cadieux, James R

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., (244)Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic (244)Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant (244)Pu was measured in all of the years sampled with the highest amount observed in 2003. The (244)Pu content, in femtograms (fg = 10(-15) g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the (244)Pu/(239)Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  7. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    NASA Astrophysics Data System (ADS)

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.

    2016-02-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10-15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.

  8. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    PubMed Central

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  9. Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Poulet, G.; Marécal, V.; Pirre, M.; Louis, F.; Canneaux, S.; Josse, B.

    2012-11-01

    Detailed chemical reaction schemes for the atmospheric degradations of the very short-lived species (VSLS) bromoform (CHBr3) and dibromomethane (CH2Br2) have been established. These degradation schemes have been implemented in the meteorological/tracer transport model CATT-BRAMS used in the present case as pseudo one-dimensional model with chemistry of CH4, CO, HOx, NOx, NOy and Ox. They include the main possible reactions of the intermediate brominated peroxy radicals RO2 (with R = CH2Br, CHBr2 and CBr3) for which the most likely reaction pathways with HO2 have been found using ab initio computational calculations. The full degradation schemes have been run for two well-defined realistic scenarios, “clean” atmosphere and “moderately” NOy-polluted atmosphere, as representative of a tropical coastal region where these VSLS natural emissions are expected to be important. The Henry's law constants of the brominated organics products have been estimated by using the Bond Contribution Method (BCM; Meylan and Howard, 1991) or the Molecular Connectivity Index (MCI; Nirmalakhandan and Speece, 1988). Using these constants, the least soluble species formed from the VSLS degradation are found to be CBr2O, CHBrO, CBr3O2NO2, CHBr2O2NO2, BrO, BrONO2 and HOBr, which leads those to be potentially transported into the tropical tropopause layer (TTL) in case of deep convection and contribute to stratospheric bromine additionally to the original substances. For bromoform and dibromomethane degradation, the moderate NOy pollution increases the production of the least soluble species and thus approximately doubles the bromine quantity potentially able to reach the TTL (from 22.5% to 43% for CHBr3 and from 8.8% to 20.2% for CH2Br2). The influence of the reactions of the RO2 radicals with HO2, CH3O2 and NO2 on the nature and abundance of the stable intermediate and end-products has been tested for CHBr3 degradation. As a result, the reactions of the RO2 radicals with NO2 have no

  10. A Short History of the Discovery of Isotopes (and Some of Their Uses)

    ERIC Educational Resources Information Center

    Scott, Dave

    2013-01-01

    This article looks at the events that led to the discovery of isotopes in the early part of the 20th century. It is difficult to claim that the discovery was a single event. A number of famous scientists worked independently to provide the evidence, and the understanding of the need to think differently about atoms gradually emerged. Four varied…

  11. Isotopic generator for /sup 212/Pb and /sup 212/Bi

    SciTech Connect

    Zucchini, G.L.; Friedman, A.M.

    1982-01-01

    A large potential exists for the use of short lived alpha emitting isotopes for therapeutic purposes. Most prior research has been performed with isotopes such as /sup 211/At which require a cyclotron for production. It obviously would be more convenient to use a long lived isotopic generator system. For this reason, we have undertaken a study of the properties of several such generators, one of which, /sup 228/Th, is described here.

  12. Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing

    NASA Astrophysics Data System (ADS)

    Naik, Vaishali; Horowitz, Larry W.; Fiore, Arlene M.; Ginoux, Paul; Mao, Jingqiu; Aghedo, Adetutu M.; Levy, Hiram

    2013-07-01

    We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981-2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982-2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone-depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon, and organic carbon to increase by factors of 3, 2.4, and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, nonmethane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top

  13. Mood regulation in youth: research findings and clinical approaches to irritability and short-lived episodes of mania like symptoms

    PubMed Central

    Leigh, Eleanor; Smith, Patrick; Milavic, Gordana; Stringaris, Argyris

    2013-01-01

    Purpose of review Mood regulation problems, such as severe chronic irritability or short episodes of mania like symptoms are common, impairing and a topic of intense recent interest to clinicians, researchers and the DSM-5 process. Here we review the most recent findings about these two presentations and discuss approaches to their treatment. Recent findings Longitudinal and genetic findings suggest that chronic irritability should be regarded as a mood problem that is distinct from bipolar disorder. A proportion of children with short (less than 4 days) episodes of mania like symptoms seem to progress to classical (Type I or II) bipolar disorder over time in US clinic samples. In a UK sample, such episodes were independently associated with psychosocial impairment. The evidence base for the treatment of either irritability or short-lived episodes to mania-like symptoms is still small. Clinicians should be cautious with extrapolating treatments from classical bipolar disorder to these mood regulation problems. CBT-based approaches targeting general mood regulation processes may be effective for cases with severe irritability or short episodes of mania like symptoms. Summary There is increasing research evidence for the importance of mood regulation problems in the form of either irritability or short episodes of mania like symptoms in youth. The evidence base for their drug treatment has yet to be developed. CBT-based interventions to modify processes of mood regulation may be a useful and safe intervention for patients with these presentations. PMID:22569307

  14. Live, Online Short-Courses: A Case Study of Innovative Teacher Professional Development

    ERIC Educational Resources Information Center

    Marrero, Meghan E.; Woodruff, Karen A.; Schuster, Glen S.; Riccio, Jessica Fitzsimons

    2010-01-01

    Teachers are searching for new venues through which they may meet stringent professional development requirements. Under competitive funding from NASA's (National Aeronautics and Space Administration) Office of Education and the NASA Explorer Schools Project, U.S. Satellite Laboratory, Inc. created a series of live, online, interactive…

  15. Evaluation of Uncertainties in Decay Constants of ``Short-Lived'' Radionuclides: A Meta-Analysis Approach

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Steele, R. C. J.

    2014-09-01

    We have performed a meta-analysis of half-lives for cosmochemically relevant radionuclides. We show that there is a range of behavior from well (e.g., 10Be) to poorly constrained (e.g., 53Mn or 129I).

  16. Energy Levels and Half-Lives of Gallium Isotopes Obtained by Photo-Nuclear Reaction

    NASA Astrophysics Data System (ADS)

    Dulger, F.; Akkoyun, S.; Bayram, T.; Dapo, H.; Boztosun, I.

    2015-04-01

    We have run an experiment to determine the energy levels and half-lives of Gallium nucleus by using the photonuclear reactions with end-point energy of 18 MeV bremsstrahlung photons, produced by a clinical linear accelerator. As a result of 71Ga(y,n)70Ga and 69Ga(Y,n)68Ga photonuclear reactions, the energy levels and half-lives of 70Ga and 68Ga nuclei have been determined. The results are in good agreement with the literature values.

  17. Atomic mass measurements of short-lived nuclides around the doubly-magic 208Pb

    NASA Astrophysics Data System (ADS)

    Weber, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.

    2008-04-01

    Accurate atomic mass measurements of neutron-deficient and neutron-rich nuclides around the doubly-magic 208Pb and of neutron-rich cesium isotopes were performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The masses of 145,147Cs, 181,183Tl, 186Tl m, 187Tl m, 196Tl m, 205Tl, 197Pb m, 208Pb, 190-197Bi, 209,215,216Bi, 203,205,229Fr, and 214,229,230Ra were determined. The obtained relative mass uncertainty in the range of 2×10 to 2×10 is not only required for safe identification of isomeric states but also allows mapping the detailed structure of the mass surface. A mass adjustment procedure was carried out and the results included into the Atomic Mass Evaluation. The resulting separation energies are discussed and the mass spectrometric and laser spectroscopic data are examined for possible correlations.

  18. Synthesis of an Isotopically Labeled Naphthalene Derivative That Supports a Long-Lived Nuclear Singlet State

    PubMed Central

    2015-01-01

    The synthesis of an octa-alkoxy substituted isotopically labeled naphthalene derivative, shown to have excellent properties in singlet NMR experiments, is described. This highly substituted naphthalene system, which incorporates an adjacent 13C spin pair, is readily accessed from a commercially available 13C2-labeled building block via sequential thermal alkynyl- and arylcyclobutenone rearrangements. The synthetic route incorporates a simple desymmetrization approach leading to a small difference in the chemical shifts of the 13C spin pair, a design constraint crucial for accessing nuclear singlet order. PMID:25898076

  19. Age-dependent inhalation doses to members of the public from indoor short-lived radon progeny.

    PubMed

    Brudecki, K; Li, W B; Meisenberg, O; Tschiersch, J; Hoeschen, C; Oeh, U

    2014-08-01

    The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., (218)Po, (214)Pb, (214)Bi, and (214)Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of (214)Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from (214)Pb and (214)Bi, while the rest is from (218)Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM(-1) calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world

  20. Bayes’ Theorem and Early Solar Short-lived Radionuclides: The Case for an Unexceptional Origin for the Solar System

    NASA Astrophysics Data System (ADS)

    Young, Edward D.

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  1. Use of Stable Isotopes to Follow Intracellular Water Dynamics in Living Cells

    SciTech Connect

    Kreuzer, Helen W.; Hegg, Eric L.

    2012-01-28

    Despite the importance of water to cell structure and function, intracellular water dynamics are poorly understood. A new method based on isotope ratio measurements has revealed that a substantial portion of the O and H atoms in the intracellular water of rapidly-dividing cultured cells is derived from metabolic activity, and not from environmental water. These findings have led to a dynamic model of intracellular water composition: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis. Data from gram-positive and gram-negative bacteria as well as cultured mammalian cells are consistent with the model.

  2. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    PubMed

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells. PMID:26531244

  3. Validation of Six Short and Ultra-short Screening Instruments for Depression for People Living with HIV in Ontario: Results from the Ontario HIV Treatment Network Cohort Study

    PubMed Central

    Choi, Stephanie K. Y.; Boyle, Eleanor; Burchell, Ann N.; Gardner, Sandra; Collins, Evan; Grootendorst, Paul; Rourke, Sean B.

    2015-01-01

    Objective Major depression affects up to half of people living with HIV. However, among HIV-positive patients, depression goes unrecognized 60–70% of the time in non-psychiatric settings. We sought to evaluate three screening instruments and their short forms to facilitate the recognition of current depression in HIV-positive patients attending HIV specialty care clinics in Ontario. Methods A multi-centre validation study was conducted in Ontario to examine the validity and accuracy of three instruments (the Center for Epidemiologic Depression Scale [CESD20], the Kessler Psychological Distress Scale [K10], and the Patient Health Questionnaire depression scale [PHQ9]) and their short forms (CESD10, K6, and PHQ2) in diagnosing current major depression among 190 HIV-positive patients in Ontario. Results from the three instruments and their short forms were compared to results from the gold standard measured by Mini International Neuropsychiatric Interview (the “M.I.N.I.”). Results Overall, the three instruments identified depression with excellent accuracy and validity (area under the curve [AUC]>0.9) and good reliability (Kappa statistics: 0.71–0.79; Cronbach’s alpha: 0.87–0.93). We did not find that the AUCs differed in instrument pairs (p-value>0.09), or between the instruments and their short forms (p-value>0.3). Except for the PHQ2, the instruments showed good-to-excellent sensitivity (0.86–1.0) and specificity (0.81–0.87), excellent negative predictive value (>0.90), and moderate positive predictive value (0.49–0.58) at their optimal cut-points. Conclusion Among people in HIV care in Ontario, Canada, the three instruments and their short forms performed equally well and accurately. When further in-depth assessments become available, shorter instruments might find greater clinical acceptance. This could lead to clinical benefits in fast-paced speciality HIV care settings and better management of depression in HIV-positive patients. PMID:26566285

  4. Production of Short-lived Radionuclides by Protons and Neutrons in Fe and Ni Targets: Cross Sections Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Vincent, J.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Brooks, F. D.; Buffler, A.; Allie, M. S.

    2000-01-01

    New neutron and proton cross sections for short-lived radionuclides produced in Fe and Ni are presented. These cross sections are essential to understand cosmic ray interactions with meteorites and the lunar surface.

  5. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  6. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-01

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings. PMID:26308143

  7. Recruitment in invertebrates with short-lived larvae: the case of the bryozoan Disporella hispida (Fleming)

    NASA Astrophysics Data System (ADS)

    Mariani, Simone

    2003-03-01

    Temporal and spatial recruitment patterns of the cyclostome bryozoan Disporella hispida were monitored using settlement plates arranged along three benthic communities of an artificial reef at Blanes (NE Spain, NW Mediterranean). At the study site, the species mainly inhabits semi-obscure caves. By studying recruitment over one year I first inferred the larval release period for D. hispida and described its temporal occurrence in the communities and stations studied. Secondly, I attempted to determine whether the predicted restricted dispersal may account for the species' distribution at the study site. To this purpose, I compared the distribution of early recruits (15 days old) with that of adults. I also investigated environmental factors which may affect the extent of larval dispersal, and described the effects of post-recruitment processes occurring over a 4-month period. The brooding period, inferred from the study of early recruitment, was linked to spring-increments and autumn-decrements of water temperatures. Early recruits were distributed non-randomly in the communities and stations studied, being most abundant in the habitats where adults live. Strong hydrodynamic events seemed to modify this pattern, allowing recruitment out of the parental communities, and may hinder settlement. Post-recruitment mortality events were likely to prevent colonisation of habitats where the species do not live. Overall, philopatry and low post-recruitment mortality in the parental communities appeared to be the main mechanisms determining the distribution of D. hispida at the study site.

  8. Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling

    PubMed Central

    2016-01-01

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  9. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling.

    PubMed

    Wei, Lu; Shen, Yihui; Xu, Fang; Hu, Fanghao; Harrington, Jamie K; Targoff, Kimara L; Min, Wei

    2015-03-20

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse-chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial-temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse-chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  10. Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus).

    PubMed

    Lazarević, Jelica; Dorđević, Mirko; Stojković, Biljana; Tucić, Nikola

    2013-04-01

    In the present study we test whether variation in resistance to paraquat (PQ), a free radical generator, correlates with variation in longevity in two sets of seed beetles (Acanthoscelides obtectus) experimental lines that were selected either for early reproduction and short-life or late reproduction and long-life. Long-lived late reproduction lines (L) showed increased resistance to PQ, while opposite was true for short-lived early reproduction line (E). Striking outcome of the selection for early and late reproduction in A. obtectus is asymmetry of responses to alternate mating schedules. The intensity of response depended on selection regime, sex and PQ dose. Evolution of longevity and PQ resistance was faster in L than E selection regime, and in females than males. To understand how age-specific mortality rates are affected by PQ we decomposed post-stress mortality data (using Gompertz mortality model) into initial mortality rate, which reflects basal vulnerability to stresses and age-specific mortality rate, which concerns the rate of increase in stress vulnerability, i.e. the rate of senescence. By estimating the parameters of the Gompertz mortality model we have shown that longevity reduction caused by PQ was the consequence of the increased baseline mortality rather than a speed up of the rate of ageing. PMID:23515831

  11. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario R; Terzibasi, Eva; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2006-06-01

    Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species. PMID:16842500

  12. Living to the range limit: consumer isotopic variation increases with environmental stress

    PubMed Central

    O’Connor, Nessa E.

    2016-01-01

    Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit. PMID:27280067

  13. Short- and long-lived radionuclide particle size measurements in a uranium mine

    SciTech Connect

    Tu, Keng-Wu; Fisenne, I.M.; Hutter, A.R.

    1997-04-01

    The radon-222 progeny and long-lived radionuclide measurements were done in a wet underground uranium mine in Saskatchewan, Canada, on Nov. 8-12, 1995. Radon-222 in the mine varied from 2 kBq/m{sup 3} at 90 m below surface to 12 kBq/m{sup 3} in the mining areas, 240 m below surface. Radon-222 progeny activity and potential alpha energy concentration appear affected by the airborne particle number concentration and size distribution. Particle number was up to 200x10{sup 3}/cm{sup 3}. Only an accumulation mode (30-1000 nm) and some bimodal size distributions in this accumulation size range were significant. Diesel particles and combustion particles from burning propane caused a major modal diameter shift to a smaller size range (50-85 nm) compared with previous values (100-200 nm). The high particle number reduced the unattached progeny (0.5-2 nm) to >5%. The nuclei mode (2-30 nm) in this test was nonexistent, and the coarse mode (>1000 nm), except from the drilling areas and on the stopes, was mostly not measurable. Airborne particle total mass and long- lived radionuclide alpha activity concentrations were very low (80- 100 {mu}g/m{sup 3} and 4-5 mBq/m{sup 3}) owing to high ventilation rates. Mass-weighted size distributions were trimodal, with the major mode at the accumulation size region, which accounts for 45-50% of the mass. The coarse model contains the the least mass, about 20%. The size spectra from gross alpha activities were bimodal with major mode in the coarse region (>1000 nm) and a minor accumulation mode in the 50-900 nm size range. These size spectra were different from the {sup 222}Rn progeny that showed a single accumulation mode in the 50- 85 nm size region. The accumulation mode in the long-lived radionuclide size spectrum was not found in previous studies in other uranium mines.

  14. Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish.

    PubMed

    Reichwald, Kathrin; Petzold, Andreas; Koch, Philipp; Downie, Bryan R; Hartmann, Nils; Pietsch, Stefan; Baumgart, Mario; Chalopin, Domitille; Felder, Marius; Bens, Martin; Sahm, Arne; Szafranski, Karol; Taudien, Stefan; Groth, Marco; Arisi, Ivan; Weise, Anja; Bhatt, Samarth S; Sharma, Virag; Kraus, Johann M; Schmid, Florian; Priebe, Steffen; Liehr, Thomas; Görlach, Matthias; Than, Manuel E; Hiller, Michael; Kestler, Hans A; Volff, Jean-Nicolas; Schartl, Manfred; Cellerino, Alessandro; Englert, Christoph; Platzer, Matthias

    2015-12-01

    The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-β family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb). PMID:26638077

  15. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    SciTech Connect

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal; Pospisil, Stanislav

    2010-08-04

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ions and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.

  16. Impact of Very Short-live Halogens on Stratospheric Ozone Abundance (and UV radiation) in a Geo-engineered Atmosphere

    NASA Astrophysics Data System (ADS)

    Tilmes, Simone; Kinnison, Doug; Garcia, Rolando; Salawitch, Ross; Lee-Taylor, Julia

    2010-05-01

    In this study we used the Whole Atmosphere Community Climate Model (WACCM) to explore the impact of very short-lived (VSL) bromocarbons on stratospheric ozone abundance and surface UV radiation under the influence of geoengineered aerosols. VSL bromocarbons have by definition a chemical lifetime of less than 0.5 years (WMO, 2006). In contrast to long-lived bromocarbons (e.g., CH3Br plus halons), these VSL bromocarbons have natural sources (e.g., oceanic emissions) and their abundance will therefore not decrease in the future due to international protocols. They are eventually oxidized via reactions with OH and photolysis to form inorganic bromine product gases and get transported into the stratosphere. Observations suggest that VSL bromocarbons add an additional 4-10 pptv volume mixing ratios to the total stratospheric inorganic bromine abundance. Since inorganic bromine is ~60 times more efficient (relative to inorganic chlorine) at catalytic destroying ozone, this additional inorganic bromine loading could significantly affect stratospheric ozone. This is especially true in the Arctic, where the coupled BrO/ClO catalytic ozone loss cycle is as important as the ClO dimer ozone loss cycle. The chemical activation of chlorine is highly dependent on the amount of sulfate aerosol and VSL bromine provides a reaction partner for activated chlorine, resulting in a significant increase of ozone depletion in a geo-engineered aerosol environment in high latitudes. An additional impact of short-lived bromocarbons on the ozone abundance is expected and was not considered in earlier studies.

  17. Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling

    PubMed Central

    Hu, Fanghao; Wei, Lu; Zheng, Chaogu; Shen, Yihui

    2014-01-01

    Choline is a small molecule that occupies a key position in the biochemistry of all living organisms. Recent studies have strongly implicated choline metabolites in cancer, atherosclerosis and nervous system development. To detect choline and its metabolites, existing physical methods such as magnetic resonance spectroscopy and positron emission tomography, are often limited by the poor spatial resolution and substantial radiation dose. Fluorescence imaging, although with submicrometer resolution, requires introduction of bulky fluorophores and thus is difficult in labeling the small choline molecule. By combining the emerging bond-selective stimulated Raman scattering microscopy with metabolic incorporation of deuterated choline, herein we have achieved high resolution imaging of choline-containing metabolites in living mammalian cell lines, primary hippocampal neurons and multicellular organism C. elegans. Different subcellular distributions of choline metabolites are observed between cancer cells and non-cancer cells, which may reveal functional difference in the choline metabolism and lipid-mediated signaling events. In neurons, choline incorporation is visualized within both soma and neurites, where choline metabolites are more evenly distributed compared to the protein. Furthermore, choline localization is also observed in the pharynx region of C. elegans larvae, consistent with its organogenesis mechanism. These applications demonstrate the potential of isotope-based stimulated Raman scattering microscopy for future choline-related disease detection and development monitoring in vivo. PMID:24555181

  18. Validation of normal and pathologic right ventricular function using ultra-short-lived Krypton-81m

    SciTech Connect

    Nienaber, C.; Spielmann, R.; Wasmus, B.; Mathey, D.; Montz, R.; Bleifield, W.

    1984-01-01

    Measurement of right ventricular ejection fraction (RVEF) using conventional count-based, non-geometry dependent first-pass radionuclide techniques and technetium labelled compounds (T/2 = 6 hours) implies unnecessary whole body radiation and repeated injections of isotope for sequential RVEF estimate. Kr-81m (T/2 = 13 secs) continuously eluted in 5% glucose from a bed-side rubidium-81 generator is intravenously infused providing high count density and high photon flux for rapid imaging of the right-side chambers in ECG-gated equilibrium acquisition mode. A variable right anterior oblique projection is adjusted for optimal right atrio-ventricular separation. Left-sided heart and lung background is minimized by rapid decay and efficient exhalation of Kr-81m, requiring no algorithm for background correction. RV septal and free wall contours are aligned by a semiautomatic edge detection program; tricuspid and pulmonary valve planes are defined from phase images using variable ROIs to compensate for systolic valve plane motion. To cover a wide range of RVEF (13%-63%) both methods were compared in 10 normals, 11 patients (pts) with pulmonary hypertension (PH), 4 pts with RV outflow tract obstruction (RVOT-OB) and 4 pts with RV infarction (RV-MI) at rest (R) and during dynamic exercise (E). The paper concludes that equilibrium RV imaging using Kr-81m is an accurate and reproducible method with potential for serial assessment of RVEF in a variety of RV abnormalities both at R and during E. Advantages of this method include: extremely low radiation to patients, high photon flux for rapid imaging and clear atrio-ventricular separation without background.

  19. Determination of long-lived Nb isotopes in nuclear power plant wastes.

    PubMed

    Osváth, Szabolcs; Vajda, Nóra; Molnár, Zsuzsa

    2008-01-01

    (94)Nb and (93m)Nb are long-lived radionuclides, produced by thermal and fast neutrons from (93)Nb that is a major component of the Zr alloys used in nuclear reactors. A radiochemical method for the determination of these nuclides has been developed. The separation is based on the insolubility of Nb oxides and the retention of the fluoric complexes on anion exchange resin. The Nb sources are detected by gamma- and X-ray spectrometries. Activity concentrations determined in radioactive waste samples of a nuclear power plant are presented. PMID:17716901

  20. Activation analysis with short- and medium-lived radionuclides for the supervision of incineration plants

    SciTech Connect

    Grass, F.

    1992-01-01

    Incineration plants are needed to cope with the enormous volumes of waste produced by modern society in highly industrialized countries. These plants employ modern filter systems such as electrostatic filters for the deposition of aerosols and two-stage flue gas washing systems for the retention of volatile compounds. As garbage contains practically all the elements, the output streams should be surveyed by multielement methods. The current feasibility study shows that most of the toxic elements could be screened by activation analysis. This method could be applied with a minimum of sample preparation and is sufficiently fast and sensitive to meet the legislative requirements. Short-time activation analysis combined with an additional 2 h of irradiation fulfills the analytical requirements. The fast sample preparation outweighs the drawback of having to allow 24 to 36 h for decay and a 2-h measurement time.

  1. β-decay half-lives of new neutron-rich rare-earth isotopes 159Pm,162Sm, and 166Gd

    NASA Astrophysics Data System (ADS)

    Ichikawa, S.; Asai, M.; Tsukada, K.; Haba, H.; Nagame, Y.; Shibata, M.; Sakama, M.; Kojima, Y.

    2005-06-01

    The new neutron-rich rare-earth isotopes 159Pm, 162Sm, and 166Gd produced in the proton-induced fission of 238U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives of 159Pm, 162Sm, and 166Gd were determined to be 1.5 ± 0.2, 2.4 ± 0.5, and 4.8 ± 1.0 s respectively. The partial decay scheme of 166Gd was constructed from γγ-coincidence data. A more accurate half-life value of 25.6 ± 2.2 s was obtained for the previously identified isotope 166Tb. The half-lives measured in the present study are in good agreement with the theoretical predictions calculated by the second generation of the gross theory with the atomic masses evaluated by Audi and Wapstra.

  2. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    NASA Astrophysics Data System (ADS)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  3. Time-series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Stewart, M. K.; Cendón, D. I.; Raiber, M.

    2015-08-01

    A major limitation to the accurate assessment of streamwater transit time (TT) stems from the use of stable isotopes or chloride as hydrological tracers, because these tracers are blind to older contributions. Also, while catchment processes are highly non-stationary, the importance of temporal dynamics in older water TT has often been overlooked. In this study we used lumped convolution models to examine time-series of tritium, stable isotopes and chloride in rainfall, streamwater and groundwater of a catchment located in subtropical Australia. Our objectives were to assess the different contributions to streamflow and their variations over time, and to understand the relationships between streamwater TT and groundwater residence time. Stable isotopes and chloride provided consistent estimates of TT in the upstream part of the catchment. A young component to streamflow was identified that was partitioned into quickflow (mean TT ≈ 2 weeks) and discharge from the fractured igneous rocks forming the headwaters (mean TT ≈ 0.3 years). The use of tritium was beneficial for determining an older contribution to streamflow in the downstream area. The best fits were obtained for a mean TT of 16-25 years for this older groundwater component. This was significantly lower than the residence time calculated for the alluvial aquifer feeding the stream downstream (≈ 76-102 years), outlining the fact that water exiting the catchment and water stored in it had distinctive age distributions. When simulations were run separately on each tritium streamwater sample, the TT of old water fraction varied substantially over time, with values averaging 17 ± 6 years at low flow and 38 ± 15 years after major recharge events. This was interpreted as the flushing out of deeper, older waters shortly after recharge by the resulting pressure wave propagation. Overall, this study shows the usefulness of collecting tritium data in streamwater to document short-term variations in the older

  4. Time series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Stewart, M. K.; Cendón, D. I.; Raiber, M.

    2016-01-01

    A major limitation to the assessment of catchment transit time (TT) stems from the use of stable isotopes or chloride as hydrological tracers, because these tracers are blind to older contributions. Yet, accurately capturing the TT of the old water fraction is essential, as is the assessment of its temporal variations under non-stationary catchment dynamics. In this study we used lumped convolution models to examine time series of tritium, stable isotopes and chloride in rainfall, streamwater and groundwater of a catchment located in subtropical Australia. Our objectives were to determine the different contributions to streamflow and their variations over time, and to understand the relationship between catchment TT and groundwater residence time. Stable isotopes and chloride provided consistent estimates of TT in the upstream part of the catchment. A young component to streamflow was identified that was partitioned into quickflow (mean TT ≈ 2 weeks) and discharge from the fractured igneous rocks forming the headwaters (mean TT ≈ 0.3 years). The use of tritium was beneficial for determining an older contribution to streamflow in the downstream area. The best fits between measured and modelled tritium activities were obtained for a mean TT of 16-25 years for this older groundwater component. This was significantly lower than the residence time calculated for groundwater in the alluvial aquifer feeding the stream downstream ( ≈ 76-102 years), emphasising the fact that water exiting the catchment and water stored in it had distinctive age distributions. When simulations were run separately on each tritium streamwater sample, the TT of old water fraction varied substantially over time, with values averaging 17 ± 6 years at low flow and 38 ± 15 years after major recharge events. This counterintuitive result was interpreted as the flushing out of deeper, older waters shortly after recharge by the resulting pressure wave propagation. Overall, this study shows the

  5. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  6. Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems.

    PubMed

    Berthault, N; Maury, B; Agrario, C; Herbette, A; Sun, J-S; Peyrieras, N; Dutreix, M

    2011-10-01

    Introducing small DNA molecules (Dbait) impairs the repair of damaged chromosomes and provides a new method for enhancing the efficiency of radiotherapy in radio-resistant tumors. The radiosensitizing activity is dependent upon the efficient delivery of Dbait molecules into the tumor cells. Different strategies have been compared, to improve this key step. We developed a pipeline of assays to select the most efficient nanoparticles and administration protocols before preclinical assays: (i) molecular analyses of complexes formed with Dbait molecules, (ii) cellular tests for Dbait uptake and activity, (iii) live zebrafish embryo confocal microscopy monitoring for in vivo distribution and biological activity of the nanoparticles and (iv) tumor growth and survival measurement on mice with xenografted tumors. Two classes of nanoparticles were compared, polycationic polymers with linear or branched polyethylenimine (PEI) and covalently attached cholesterol (coDbait). The most efficient Dbait transfection was observed with linear PEI complexes, in vitro and in vivo. Doses of coDbait ten-fold higher than PEI/Dbait nanoparticles, and pretreatment with chloroquine, were required to obtain the same antitumoral effect on xenografted melanoma. However, with a 22-fold lower 'efficacy dose/toxicity dose' ratio as compared with Dbait/PEI, coDbait was selected for clinical trials. PMID:21799529

  7. The Effect of Isotopic Substitution on Quantum Proton Transfer Across Short Water Bridges in Biological Systems

    NASA Astrophysics Data System (ADS)

    Blazejewski, Jacob; Schultz, Chase; Mazzuca, James

    2015-03-01

    Many biological systems utilize water chains to transfer charge over long distances by means of an excess proton. This study examines how quantum effects impact these reactions in a small model system. The model consists of a water molecule situated between an imidazole donor and acceptor group, which simulate a fixed amino acid backbone. A one dimensional energy profile is evaluated using density functional theory at the 6-31G*/B3LYP level, which generates a barrier with a width of 0.6 Å and a height of 20.7 kcal/mol. Quantum transmission probability is evaluated by solving the time dependent Schrödinger equation on a grid. Isotopic effects are examined by performing calculations with both hydrogen and deuterium. The ratio of hydrogen over the deuterium shows a 130-fold increase in transmission probability at low temperatures. This indicates a substantial quantum tunneling effect. The study of higher dimensional systems as well as increasing the number of water molecules in the chain will be necessary to fully describe the proton transfer process. Alma College Provost's Office.

  8. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  9. Balancing Short- and Long-lived Climate Pollutant Mitigation: Clearer Metrics are Critical

    NASA Astrophysics Data System (ADS)

    Ocko, I.; Hamburg, S.; Pacala, S. W.

    2015-12-01

    We propose a new standard for reporting Global Warming Potentials (GWPs) that is central to climate policy debates and decision-making. GWPs are an essential element of policy analysis and policymaking, and are even built into legal structures that regulate "carbon dioxide equivalents." However, the current reporting convention is misleading because it hides the divergence between short and long-term interests inside a single timescale. We propose using two timescales everywhere, as an inseparable pair. This makes explicit one of the principal issues in climate policy: the temporal tradeoffs of benefits among actions that reduce emissions of a suite of climate pollutants. Policymakers often treat GWPs as if they were a value-neutral technocratic measure, while in fact the choice of timescales, at the heart of the GWP, is central to the political battles over climate policy. At its most basic, cutting emissions of pollutants with different radiative properties and atmospheric lifetimes yields climate benefits that vary in the near- and long-term. Battles such as that between coal and natural gas rest on this distinction. The most common form of GWP is based on a 100 year time integral, but this timescale conceals near-term impacts. On the other hand, opting instead for a 20 year time integral ignores climate impacts after 20 years. A distinguished list of scientists and economists has attempted to come up with improved metrics that incorporate the range of timescales into a single value. Our proposal abandons this quest. There is no "right" answer to the underlying dispute, but there is a right answer for policy analysis: use two time constants together, similar to the way that systolic and diastolic blood pressures, latitude and longitude, and city and highway gas mileage are reported together. This strategy will provide much needed clarification to myriad climate change solution-related decisions.

  10. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.

    PubMed

    Rishel, Jeremy P; Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Detwiler, Rebecca S; Kernan, Warnick J; Kirkham, Randy R; Milbrath, Brian D; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper uses standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to study several techniques of gamma radiation survey and spectrometry that could be used by an On-Site Inspection team investigating such an event. PMID:27023039