Sample records for short-lived neutron-deficient nuclei

  1. Beta-decay half-lives for short neutron rich nuclei involved into the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2018-01-01

    The beta-strength function model based on Finite Fermi-Systems Theory is applied for calculations of the beta-decay half-lives for short neutron rich nuclei involved into the r- process. It is shown that the accuracy of beta-decay half-lives of short-lived neutron-rich nuclei is improving with increasing neutron excess and can be used for modeling of nucleosynthesis of heavy nuclei in the r-process.

  2. Calculations of the β-decay half-lives of neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Tan, Wenjin; Ni, Dongdong; Ren, Zhongzhou

    2017-05-01

    In this work, β+/EC decays of some medium-mass nuclei are investigated within the extended quasiparticle random-phase approximation (QRPA), where neutron-neutron, proton-proton and neutron-proton (np) pairing correlations are taken into consideration in the specialized Hartree-Fock-Bogoliubov (HFB) transformation. In addition to the pairing interaction, the Brückner G-matrix obtained with the charge-dependent Bonn nucleon-nucleon force is used for the residual particle-particle and particle-hole interactions. Calculations are performed for even-even proton-rich isotopes ranging from Z=24 to Z=34. It is found that the np pairing interaction plays a significant role in β-decay for some nuclei far from stability. Compared with other theoretical calculations, our calculations show good agreement with the available experimental data. Predictions of β-decay half-lives for some very neutron-deficient nuclei are made for reference. Supported by National Nature Science Foundation of China (11535004, 11375086, 11120101005, 11175085 and 11235001), 973 Nation Major State Basic Research and Development of China (2013CB834400) and Science and Technology Development Fund of Macau (020/2014/A1 and 039/2013/A2)

  3. Symmetry structure in neutron deficient xenon nuclei

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    1998-12-01

    The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).

  4. Measurement of Activation Cross Sections Producing Short-Lived Nuclei with Pulsed Neutron Beam

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshiaki; Arakita, Kazumasa; Miyazaki, Itaru; Shibata, Michihiro; Kawade, Kiyoshi; Hori, Jun-ichi; Ochiai, Kentaro; Nishitani, Takeo

    2005-05-01

    Activation cross sections for the (n, n') reaction were measured by means of the activation method at the neutron energies of 3.1 and 2.54 MeV by using a pulsed neutron beam. Target nuclei were 79Br, 90Zr, 197Au, and 207Pb, whose half-lives were between 0.8 and 8 s. The cross section for the 90Zr (n, n') 90mZr reaction was obtained for the first time in this energy range. The d-D neutrons were generated by bombarding a deuterated titanium target with a 350-keV d+ beam at the 80-degree beam line of the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. In order to obtain reliable activation cross sections, careful attention was paid to correct the efficiency for a volume source, and the self-absorption of gamma rays in an irradiated sample. The systematics of the (n, n') reaction at the neutron energy of 3.1 MeV, which could be predicted within an accuracy of 50%, was proposed on the basis of our data.

  5. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE PAGES

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  6. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  7. Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.; Ratkiewicz, Andrew; Escher, Jutta E.; Lepailleur, Alexandre; Pain, Steven D.; Potel, Gregory

    2018-01-01

    Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed.

  8. Production of neutron-rich nuclei approaching r-process by gamma-induced fission of 238U at ELI-NP

    NASA Astrophysics Data System (ADS)

    Mei, Bo; Balabanski, Dimiter; Constantin, Paul; Anh Le, Tuan; Viet Cuong, Phan

    2018-05-01

    The investigation of neutron-rich exotic nuclei is crucial not only for nuclear physics but also for nuclear astrophysics. Experimentally, only few neutron-rich nuclei near the stability have been studied, however, most neutron-rich nuclei have not been measured due to their small production cross sections as well as short half-lives. At ELI-NP, gamma beams with high intensities will open new opportunities to investigate very neutron-rich fragments produced by photofission of 238U targets in a gas cell. Based on some simulations, a novel gas cell has been designed to produce, stop and extract 238U photofission fragments. The extraction time and efficiency of photofission fragments have been optimized by using SIMION simulations. According to these simulations, a high extraction efficiency and a short extraction time can be achieved for 238U photofission fragments in the gas cell, which will allow one to measure very neutron-rich fragments with short half-lives by using the IGISOL facility proposed at ELI-NP.

  9. Neutron capture on short-lived nuclei via the surrogate (d,pγ) reaction

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.; Ratkiewicz, Andrew

    2018-05-01

    Rapid r-process nucleosynthesis is responsible for the creation of about half of the elements heavier than iron. Neutron capture on shortlived nuclei in cold processes or during freeze out from hot processes can have a significant impact on the final observed r-process abundances. We are validating the (d,pγ) reaction as a surrogate for neutron capture with measurements on 95Mo targets and a focus on discrete transitions. The experimental results have been analyzed within the Hauser-Feshbach approach with non-elastic breakup of the deuteron providing a neutron to be captured. Preliminary results support the (d,pγ) reaction as a valid surrogate for neutron capture. We are poised to measure the (d,pγ) reaction in inverse kinematics with unstable beams following the development of the experimental techniques.

  10. High-spin states in neutron-deficient nuclei near A=80

    NASA Astrophysics Data System (ADS)

    Theisen, L. V.; Tabor, S. L.; Medsker, L. R.; Neuschaefer, G.; Fry, L. H., Jr.; Clements, J. S.

    1982-03-01

    In-beam γ-ray spectroscopy with the reactions 54Fe + 28Si and 56Fe + 28Si at beam energies from 80 to 99 MeV were used to study high-spin states in neutron-deficient nuclei in the mass A~80 region. Measurements of γ-ray energies, intensities, angular distributions, excitation functions, and γ-γ coincidences were used to assign new levels in 79Rb and 80Sr. For the first time, high-spin states in 81Sr have been observed. NUCLEAR REACTIONS 56Fe(28Si,xpynγ) and 54Fe(28Si,xpynγ) Elab=80-99 MeV; measured Eγ, Iγ, γ-γ coincidences, σ(Eγ,E), and σ(Eγ,θ) 79Rb, 80Sr, and 81Sr deduced levels, Jπ. Enriched targets.

  11. Excited nuclei, resonances and reactions in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V.

    2018-01-01

    The short review of research results concerning the study of reactions and processes that occur in the neutron star crusts is given. The peculiarities of electron capture reactions by a nucleus in overdense crystalline structures have been demonstrated for various nuclei, in particular some even-even nuclei at electron capture reactions give daughter nuclei in excited states. Excited nuclei due to nonlinear interactions lead to a high-order harmonic generation. High energy gammas interact with charged particles, give a neutrino radiation and also knock out nucleons from neighbour nuclei. It is also shown that interactions of neutrons with two and more nuclei in an overdence lattice give a large number of new resonance states. These resonances result in a formation of specific local oscillations in the corresponding layers of the lattice. The periodic enhancement of these processes in the dependence on the elemental composition of the primary neutron star matter is considered.

  12. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  13. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  14. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  15. Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin

    NASA Astrophysics Data System (ADS)

    Yang, Junjie; Piekarewicz, J.

    2018-01-01

    It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.

  16. Nuclear transition moment measurements of neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  17. Astrophysical quests for neutron capture data of unstable nuclei

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    2016-11-01

    The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and to the s process, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies on the extremely short-lived neutron-rich nuclei constituting the ( n, γ) network of the r process are out of reach. On the contrary, the situation for the s -process is far advanced, as the reaction path of the s process from 12C to the Pb/Bi region is located within the valley of stability. Accordingly, a comprehensive database of experimental ( n, γ) cross sections has been established. While for many stable isotopes the necessary accuracy is still to be reached, reliable cross sections for the involved unstable isotopes are almost completely missing. Because of the intrinsic γ background of radioactive samples, successful time-of-flight measurements are depending on intense pulsed neutron sources. Such data are fundamental for our understanding of branchings in the s -process reaction path, which carry important model-independent information on neutron flux and temperature in the deep stellar interior.

  18. The analysis of predictability of recent alpha decay formulae and the alpha partial half-lives of some exotic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta-Schubert, N.; Reyes, M. A.; Tamez, V. A.

    2009-04-20

    Alpha decay is one of the two main decay modes of the heaviest nuclei, (SHE), and constitutes one of the dominant decay modes of highly neutron deficient medium mass nuclei ('exotics'). Thus identifying and characterizing the alpha decay chains form a crucial part of the identification of SHE. We report the extension of the previously developed method for the detailed and systematic investigation of the reliability of the three main extant analytical formulae of alpha decay half-lives: the generalized liquid drop model based formula of Royer et al. (FR), the Sobiczewski modified semi-empirical Viola-Seaborg formula (VSS) and the recent phenomenologicalmore » formula of Sobiczewski and Parkhomenko (SP)« less

  19. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  20. Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Han; Zhu, Long; Li, Fan; Yu, Xiao-Bin; Su, Jun; Guo, Chen-Chen

    2018-06-01

    The production of neutron-rich superheavy nuclei with Z =105 -118 in neutron evaporation channels is investigated within the dinuclear system model. The different stable and radioactive beam-induced hot fusion reactions are studied systematically. The prospect for synthesizing neutron-rich superheavy nuclei using radioactive beams is evaluated quantitatively based on the beam intensities proposed by Argonne Tandem Linac Accelerator System [B. B. Back and C. L. Jiang, Argonne National Laboratory Report No. ANL-06/55, 2006 (unpublished)]. All possible combinations (with projectiles of Z =16 -22 and half-lives longer than 1 ms; with targets of half-lives longer than 30 days), which can be performed in available experimental equipment, for producing several unknown neutron-rich superheavy nuclei in neutron evaporation channels are investigated and the most promising reactions are predicted. It is found that the stable beams still show great advantages for producing most of superheavy nuclei. The calculated results are also compared with production cross sections in the p x n and α x n evaporation channels [Hong et al., Phys. Lett. B 764, 42 (2017), 10.1016/j.physletb.2016.11.002]. We find that the radioactive beam-induced reactions are comparable to the stable beam-induced reactions in charged particle evaporation channels. To obtain more experimental achievements, the beam intensities of modern radioactive beam facilities need to be further improved in the future.

  1. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-03-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (106 less than or equal to Tau-bar less than or equal to 2 x 107 yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau0 were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau0. It is found that small masses MHe of He-shell material (10-4-10-7 solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau0 = 0.03 mbarn-1) which contaminated the cloud with a dilution factor of MHe/solar mass approximately 1.5 x 10-4. This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10-4 of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is also found that Fe-60 is produced in small but significant quantities

  2. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  3. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  4. Systematic shell-model study of β -decay properties and Gamow-Teller strength distributions in A ≈40 neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Yoshida, Sota; Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu

    2018-05-01

    We perform large-scale shell-model calculations of β -decay properties for neutron-rich nuclei with 13 ≤Z ≤18 and 22 ≤N ≤34 , taking the first-forbidden transitions into account. The natural-parity and unnatural-parity states are calculated in the 0 ℏ ω and 1 ℏ ω model spaces, respectively, within the full s d +p f +s d g valence shell. The calculated β -decay half-lives and β -delayed neutron emission probabilities show good agreement with the experimental data. The first-forbidden transitions make a non-negligible contribution to the half-lives of N ≳28 nuclei. The low-lying Gamow-Teller strengths of even-even nuclei are considerably larger than those of the neighboring odd-A and odd-odd nuclei, strongly affecting the half-lives and neutron emission probabilities. It is shown that this even-odd effect is caused by the Jπ=1+ proton-neutron pairing interaction. We derive a formula to represent the positions of the Gamow-Teller giant resonances from the calculated strength distributions.

  5. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  6. New mass anchor points for neutron-deficient heavy nuclei from direct mass measurements of radium and actinium isotopes

    NASA Astrophysics Data System (ADS)

    Rosenbusch, M.; Ito, Y.; Schury, P.; Wada, M.; Kaji, D.; Morimoto, K.; Haba, H.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morita, K.; Murray, I.; Niwase, T.; Ozawa, A.; Reponen, M.; Takamine, A.; Tanaka, T.; Wollnik, H.

    2018-06-01

    The masses of the exotic isotopes Ac-214210 and Ra-214210 have been measured with a multireflection time-of-flight mass spectrograph. These isotopes were obtained in flight as fusion-evaporation products behind the gas-filled recoil ion separator GARIS-II at RIKEN. The new direct mass measurements serve as an independent and direct benchmark for existing α -γ spectroscopy data in this mass region. Further, new mass anchor points are set for U and Np nuclei close to the N =126 shell closure for a future benchmark of the Z =92 subshell for neutron-deficient heavy isotopes. Our mass results are in general in good agreement with the previously indirectly determined mass values. Together with the measurement data, reasons for possible mass ambiguities from decay-data links between ground states are discussed.

  7. Colloquium: Laser probing of neutron-rich nuclei in light atoms

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.

    2013-10-01

    The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  8. Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction

    NASA Astrophysics Data System (ADS)

    Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrizhnykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L.

    2018-01-01

    We present new results from investigations of the 240Pu+48Ca reaction at a projectile energy of 250 MeV. Three new decay chains of 285Fl were detected with decay properties mostly consistent with those measured in earlier studies. An additional chain was observed where the nuclei may decay through energy levels different from those of the other six chains registered so far. The cross section of the 240Pu(48Ca,3 n )285Fl reaction was measured to be 0 .58-0.33+0.60pb , which is a factor of about 4-5 lower than that measured in the previous experiment at 245 MeV beam energy [V. K. Utyonkov et al., Phys. Rev. C 92, 034609 (2015)., 10.1103/PhysRevC.92.034609], consistent with expectations. The origin of an additional chain consisting of a recoil, α particle, and fission event is analyzed. The assignment of 25 short-lived SF events observed in this experiment is also discussed.

  9. First Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Associated Half-Lives for A ≤72 Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, M.; Singh, B.; Abriola, D.

    2014-06-01

    After a comprehensive compilation and evaluation of beta-delayed neutron (β -n) emission probabilities, P n, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β -nemission in this region. The ratio P n/T 1/2 is better correlated with the Q-value of the β -n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). Moreover, the recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.

  10. β -decay of very neutron-rich Pd and Ag nuclei

    NASA Astrophysics Data System (ADS)

    Smith, Karl; S323 / S410 Collaboration

    2013-10-01

    The astrophysical origin of about half of the elements heavier than iron have been attributed to the rapid neutron capture process. The modeling of such a process requires not only the correct astrophysical conditions but also reliable nuclear physics. The properties of neutron-rich nuclei in the region just below the N = 82 shell closure are of particular interest as they are responsible for the A = 130 peak in the solar abundance pattern. An experiment to investigate half-lives and β-delayed neutron emission branching ratios of very neutron-rich Pd and Ag isotopes was performed at the GSI projectile FRagment Separator (FRS). The FRS was used to separate products from in-flight fission of a 900 MeV/u 238U beam. Ions of interest were then implanted in the Silicon IMplantation detector and Beta Absorber (SIMBA) array. The high pixelation of the implantation detectors allowed for time-position correlation of the order of several seconds between implants and decays. Neutrons emitted during the decay were detected by the BEta deLayEd Neutron detector (BELEN) which surrounded the SIMBA array. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.

  11. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  12. Maris polarization in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  13. β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu

    2018-06-01

    Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.

  14. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  15. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  16. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities

    NASA Astrophysics Data System (ADS)

    Busso, Maurizio; Vescovi, Diego; Trippella, Oscar; Palmerini, Sara; Cristallo, Sergio; Piersanti, Luciano

    2018-01-01

    Noticeable improvements were recently introduced in the modelling of n-capture nucleosynthesis in the advanced evolutionary stages of giant stars (Asymptotic Giant Branch, or AGB, stars). Two such improvements are closely linked together and concern the introduction of non-parameterized, physical models for extended mixing processes and the adoption of accurate reaction rates for H- and He-burning reactions, including the one for the main neutron source 13C(α,n)16O. These improvements profited of a longstanding collaboration between stellar physicists and C. Spitaleri's team and of his seminal work both as a leader in the Nuclear Astrophysics scenario and as a talent-scout in the recruitment of young researchers in the field. We present an example of the innovative results that can be obtained thanks to the novelties introduced, by estimating the contributions from a nearby AGB star to the synthesis of short-lived (t1/2 ≤ 10 Myr) radioactive nuclei which were alive in early Solar System condensates. We find that the scenario indicating an AGB star as the source of such radioactivities, discussed for many years by researchers in this field, appears now to be no longer viable, when the mentioned improvements of AGB models and nuclear parameters are considered.

  17. Heavy neutron rich nuclei: production and investigation

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, S.; Avvakumov, K.; Kazarinov, N.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.

    2018-05-01

    For production and investigation of heavy neutron rich nuclei devoted the new setup, which is under construction at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna now. This setup is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  18. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  19. Structure Of Neutron-Rich Nuclei In A˜100 Region Observed In Fusion-Fission Reactions

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Hua, H.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Görgen, A.; Macchiavelli, A. O.; Vetter, K.

    2003-03-01

    Neutron-rich nuclei around A˜100 were populated as fission fragments produced by the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. This technique allows Doppler-shift corrections to be applied for the observed γ rays on an event-by-event basis thus establishing the origin of γ rays from either fission fragment. In addition, it allows observation of γ-ray transitions from states with short lifetimes and offers the opportunity to study nuclear species beyond the reach of the spontaneous fission process. With these advantages, one can extend the spectroscopic study to higher spins than those derived using the thick-target technique, and to more neutron-rich nuclei than those derived from spontaneous fissions. Among the new and interesting phenomena identified in this rapid shape-changing region, the most distinct result is the evidence for a prolate-to-oblate shape transition occurring at 116Pd, which may have important implications to our understanding of the shell structure for neutron-rich nuclei.

  20. Capture cross sections on unstable nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  1. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  2. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  3. alpha-decay half-lives and Q{sub a}lpha values of superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jianmin; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000

    2010-06-15

    The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) where a new method to calculate the assault frequency of alpha emission is used. The excellent agreement with the experimental data indicates the UFM is a useful tool to investigate these alpha decays. It is found that the alpha-decay half-lives become more and more insensitive to the Q{sub a}lpha values as the atomic number increases on the whole, which is favorable for us to predict the half-lives of SHN. In addition, a formula is proposed to compute the Q{sub a}lpha values formore » the nuclei with Z>=92 and N>=140 with a good accuracy, according to which the long-lived SHN should be neutron rich. Several weeks ago, two isotopes of a new element with atomic number Z=117 were synthesized and their alpha-decay chains have been observed. The Q{sub a}lpha formula is found to work well for these nuclei, confirming its predictive power. The experimental half-lives are well reproduced by employing the UFM with the experimental Q{sub a}lpha values. This fact that the experimental half-lives are compatible with experimental Q{sub a}lpha values supports the synthesis of a new element 117 and the experimental measurements to a certain extent.« less

  4. Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2007-11-01

    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta ℓ. Then, it is seen that weakly bound neutrons in nuclei such as C15-19 and Mg33-37 may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated.

  5. Black-sphere approximation to nuclei and its application to reactions with neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2013-09-01

    We briefly review our formula for a proton-nucleus total reaction cross section, σR, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a "black" sphere of radius "a". An extension to reactions involving neutron-rich nuclei is also reported.

  6. Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, Anton

    Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission productsmore » 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the first measurement of RIF neutrons in any laboratory fusion system, and the magnitude

  7. Capture cross sections on unstable nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.

    2017-09-13

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photonmore » beams. Here, challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.« less

  8. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  9. Influence of proton-skin thickness on the {{\\alpha }} decays of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Abdurrahman, A.

    2018-01-01

    We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z = 52) to Pb (Z = 82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness ({\\varDelta }{{p}}) of the daughter nucleus gives rise to a total α- daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the {Q}α -value increases with {\\varDelta }{{p}}. α-decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the {β }+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.

  10. Production and investigation of heavy neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon

    2017-11-01

    A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  11. Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu

    Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.

  12. Multi-Quasiparticle Gamma-Band Structure in Neutron-Deficient Ce and Nd Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javid; Bhat, G. H.; Palit, R.

    2009-01-01

    The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce and Nd isotopes. It is observed that gamma bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma oscillation in deformed nuclei based on the ground state to gamma bands built on multi-quasiparticle configurations. This new feature providesmore » an alternative explanation on the observation of two I=10 aligning states in ^{134}Ce and both exhibiting a neutron character.« less

  13. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Orphanet: Short chain acyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (5 links) Children Living with Inherited Metabolic Disease (CLIMB) Children's Mitochondrial ...

  14. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  15. Neutron-antineutron oscillations in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dover, C.B.; Gal, A.; Richard, J.M.

    1983-03-01

    We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less

  16. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui

    2018-02-01

    In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.

  17. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Furukawa, T.; Iimura, H.; Ito, Y.; Kubo, T.; Matsuo, Y.; Mita, H.; Naimi, S.; Nakamura, S.; Noto, T.; Schury, P.; Shinozuka, T.; Wakui, T.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. X.; Hirayama, Y.; Okada, K.; Takamine, A.

    2013-01-01

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN's fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa-10-3 Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.

  18. Nuclear structure studies in highly neutron-deficient (114,116)Xe

    NASA Astrophysics Data System (ADS)

    Degraaf, James Hendrick

    Lifetimes of nuclear states in 114Xe and 116Xe were measured for the first time; these nuclei represent the most neutron-deficient isotopes of xenon for which lifetimes have now been measured. The fusion-evaporation reactions 58Ni(60Ni, 2p)116Xe at 223 MeV beam energy and 58Ni(58Ni, 2p)114Xe at 215 MeV beam energy were used. Lifetimes were measured using the Recoil Distance Method (RDM) with the 8π gamma-ray spectrometer at Chalk River Laboratories. The new measurements of the B(E2;2+/to 0+) strength in these nuclei, coupled with the recent measurements for heavier xenon isotopes, are well described within the framework of the O(6) symmetry limit of the Interacting Boson Approximation. The octupole nature of the negative parity side-band was also studied, and the lifetime measurements indicate a change from a K/approx 3 structure in heavier xenon isotopes to a K/approx 0,/ 1 structure in 114Xe.

  19. Spectroscopy of neutron-rich nuclei at REX-ISOLDE with MINIBALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.

    2007-08-15

    We report on 'safe' Coulomb excitation of neutron-rich nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma} rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented and compared to theoretical models.

  20. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N =126

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Ameil, F.; Ayyad, Y.; Benlliure, J.; Bowry, M.; Calviño, F.; Cano-Ott, D.; Cortès, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A. R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M. B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Yu. A.; Maier, L.; Marganiec, J.; Marta, M.; Martínez, T.; Montes, F.; Mukha, I.; Napoli, D. R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J. L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J. S.; Wood, R.; Woods, P. J.; Yeremin, A.

    2017-06-01

    Background: There have been measurements on roughly 230 nuclei that are β -delayed neutron emitters. They range from 8He up to 150La. Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A =150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N =126 , in order to guide theoretical models and help understand the formation of the third r -process peak at A ˜195 . Purpose: To measure both β -decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bi isotopes beyond N =126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β -decay half-lives are reported for Au-206204, Hg-211208,Tl-216211,Pb-218215 , and Bi-220218, nine of them for the first time. Neutron emission probabilities are reported for Hg,211210 and Tl-216211. Conclusions: The new β -decay half-lives are in good agreement with previous measurements on nuclei in this region. The measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).

  1. Examining the possibility to observe neutron dark decay in nuclei

    NASA Astrophysics Data System (ADS)

    Pfützner, M.; Riisager, K.

    2018-04-01

    As proposed recently by Fornal and Grinstein, neutrons can undergo a dark matter decay mode which has not yet been observed. Such a decay could explain the existing discrepancy between two different methods of neutron lifetime measurements. If such neutron decay is possible, then it should occur also in nuclei with sufficiently low neutron binding energy. We examine a few nuclear candidates for the dark neutron decay and we consider the possibilities of their experimental identification. In more detail we discuss the case of 11Be which appears as the most promising nucleus for the observation of neutron dark decay.

  2. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  3. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections

    NASA Astrophysics Data System (ADS)

    Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.

    2017-12-01

    An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

  4. Ground-state properties of neutron magic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, G., E-mail: gauravphy@gmail.com; Kaushik, M.

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of themore » proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.« less

  5. Commissioning of a new photon detection system for charge radii measurements of neutron-deficient Ca

    NASA Astrophysics Data System (ADS)

    Watkins, J.; Garand, D.; Miller, A. J.; Minamisono, K.; Everett, N.; Powel, R. C.; Maaß, B.; Nörtershäuser, W.; Kalman, C.; Lantis, J.; Kujawa, C.; Mantica, P.

    2017-09-01

    Calcium is unique for its possession of two stable isotopes of ``doubly magic'' nuclei at proton and neutron numbers (Z , N) = (20 , 20) and (20 , 28) . Recent charge radii measurements of neutron-rich calcium isotopes yielded an upward trend beyond current theoretical predictions. At the BECOLA facility at NSCL/MSU, Ca charge radii measurements will be extended to the neutron-deficient regime using collinear laser spectroscopy. A new photon detection system with an ellipsoidal reflector and a compound parabolic concentrator has been commissioned for the experiment. The system increases the signal-to-noise ratio by reducing background, which is critical for the low production rates of the Ca experiment. Details of the system and results of the characterization tests will be discussed. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft Grant SFB 1245.

  6. Multinucleon transfer reactions – a pathway to new heavy and superheavy nuclei?

    NASA Astrophysics Data System (ADS)

    Heinz, Sophie

    2018-05-01

    Recently, we reported the observation of several new neutron-deficient isotopes with proton numbers Z ≥ 92 in collisions of 48Ca + 248Cm at the Coulomb barrier. The peculiarity is that these nuclei were produced in deep inelastic multinucleon transfer reactions, a method which is presently discussed as a possible new pathway to enter so far unknown regions in the upper part of the Chart of Nuclides. Of particular interest are multinucleon transfer reactions as a possible means to produce neutron-rich superheavy nuclei and nuclei along the magic neutron shell N = 126. Based on present-day physical and technical state-of-the art, we will discuss the question how big are our chances to enter these regions by applying multinucleon transfer reactions.

  7. Yrast excitations of neutron-rich nuclei around doubly magic Tin-132

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Pallab Kumar

    Investigation of the yrast structures of neutron-rich nuclei around the double closed shell nucleus 132Sn is important in the understanding of simple two-body nucleon-nucleon interactions in that region. However conventional fusion-evaporation methods do not populate these nuclei and β-decay studies are useful only in studying low spin states. The spectroscopy of these nuclei from thick target γ-γ coincidence measurements of deep inelastic heavy ion collisions as well as from fission fragment γ-ray studies using large multidetector arrays are presented in this thesis. Analyses of data from the 124Sn + 665 MeV 136Xe and 130Te + 272 MeV 64Ni deep inelastic experiments identified new yrast isomers in the N = 80 nuclei 134Xe and 136Ba which de- excite by γ-ray cascades concluding with their known 4+/to2+ and 2+/to0+ transitions. The isomeric decay characteristics are presented and discussed in light of the systematic features in N = 80 isotones. By analyzing fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast level structures of the two-, three- and four-proton N = 82 isotones 134Te, 135I and 136Xe were developed, and the proton-proton interactions from the two-body nucleus 134Te were used in interpreting 135I and 136Xe levels using shell model calculations. From the same data the yrast states in the N = 83 isotones 134Sb, 135Te, 136I and 137Xe were explored, and key proton-neutron interactions were extracted from the 134Sb level spectrum which were used in interpreting the levels of the other N = 83 isotones. Similarly yrast states in previously unexplored N = 81 isotones 132Sb and 133Te were also identified and interpreted with shell model calculations; the 132Sb level spectrum yielded important proton-neutron hole interactions. Neutron core-excited states at higher energies were also identified in most of these nuclei. For establishing isotopic assignments of unknown cascades, the γgamma cross coincidences between heavy and light

  8. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.

    Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They range from 8He up to 150La . Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A = 150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N = 126 , in order to guide theoretical models and help understand the formation of the third r-process peak at A ~ 195. Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bimore » isotopes beyond N = 126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β-decay half-lives are reported for 204-206Au, 208 – 211Hg, 211 – 216Tl , 215 – 218Pb, and 218 – 220Bi, nine of them for the first time. Neutron emission probabilities are reported for 210, 211Hg and 211 – 216Tl . Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this region. Lastly, the measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).« less

  9. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126

    DOE PAGES

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; ...

    2017-06-23

    Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They range from 8He up to 150La . Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A = 150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N = 126 , in order to guide theoretical models and help understand the formation of the third r-process peak at A ~ 195. Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bimore » isotopes beyond N = 126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β-decay half-lives are reported for 204-206Au, 208 – 211Hg, 211 – 216Tl , 215 – 218Pb, and 218 – 220Bi, nine of them for the first time. Neutron emission probabilities are reported for 210, 211Hg and 211 – 216Tl . Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this region. Lastly, the measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).« less

  10. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  11. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  12. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    NASA Astrophysics Data System (ADS)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  13. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  14. Short Lived Fission Product Yield Measurements in 235U, 238U and 239Pu

    NASA Astrophysics Data System (ADS)

    Silano, Jack; Tonchev, Anton; Tornow, Werner; Krishichayan, Fnu; Finch, Sean; Gooden, Matthew; Wilhelmy, Jerry

    2017-09-01

    Yields of short lived fission products (FPYs) with half lives of a few minutes to an hour contain a wealth of information about the fission process. Knowledge of short lived FPYs would contribute to existing data on longer lived FPY mass and charge distributions. Of particular interest are the relative yields between the ground states and isomeric states of FPYs since these isomeric ratios can be used to determine the angular momentum of the fragments. Over the past five years, a LLNL-TUNL-LANL collaboration has made precision measurements of FPYs from quasi-monoenergetic neutron induced fission of 235U, 238U and 239Pu. These efforts focused on longer lived FPYs, using a well characterized dual fission chamber and several days of neutron beam exposure. For the first time, this established technique will be applied to measuring short lived FPYs, with half lives of minutes to less than an hour. A feasibility study will be performed using irradiation times of < 1 hour, improving the sensitivity to short lived FPYs by limiting the buildup of long lived isotopes. Results from this exploratory study will be presented, and the implications for isomeric ratio measurements will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  15. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  16. Upbend and M1 scissors mode in neutron-rich nuclei - consequences for r-process $$(n,\\gamma )$$ reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Goriely, S.; Bernstein, L. A.

    2015-01-01

    An enhanced probability for low-energy γ-emission ( upbend, Eγ < 3 MeV) at high excitation energies has been observed for several light and medium-mass nuclei close to the valley of stability. Also the M1 scissors mode seen in deformed nuclei increases the γ-decay probability for low-energy γ-rays (E γ ≈ 2–3 MeV). These phenomena, if present in neutron-rich nuclei, have the potential to increase radiative neutron-capture rates relevant for the r-process. Furthermore, the experimental and theoretical status of the upbend is discussed, and preliminary calculations of (n,γ) reaction rates for neutron-rich, mid-mass nuclei including the scissors mode are shown.

  17. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Patra, S. K.; Agrawal, B. K.

    2018-04-01

    We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.

  18. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  19. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE PAGES

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  20. Measurements of Short-Lived Fission Isomers

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  1. Scissors mode of Gd nuclei studied from resonance neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, J.; Baramsai, B.; Becker, J. A.

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information.more » Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.« less

  2. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  3. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  4. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; ...

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  5. Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2018-03-01

    The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .

  6. Probable alpha and 14C cluster emission from hyper Ac nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.

    2013-10-01

    A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.

  7. Formation of Neutron-Enriched Heavy and Superheavy Nuclei in Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Rachkov, V. A.; Saiko, V. V.

    2018-05-01

    The formation of new isotopes of heavy and superheavy elements in the fusion of neutron-enriched projectiles with actinide targets is discussed. Cross sections for the formation of evaporation residues in fusion reactions is predicted for several combinations of colliding nuclei.

  8. Transfer Reactions on Neutron-rich Nuclei at REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.; Physik-Department E12, Technische Universitaet Muenchen, Garching; Bildstein, V.

    2009-08-26

    We report on one- and two-neutron transfer reactions to study the single-particle properties of nuclei at the border of the ''island of inversion.'' The (d, p)- and (t, p)-reactions in inverse kinematics on the neutron-rich isotope {sup 30}Mg, delivered as radioactive beam by the REX-ISOLDE facility, have been investigated. The outgoing protons have been detected and identified by a newly built array of Si detectors. The {gamma}-decay of excited states has been detected in coincidence by the MINIBALL array. First results for {sup 31}Mg and from the search for the second, spherical, 0{sup +} state in {sup 32}Mg are presented.

  9. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  10. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  11. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  12. Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang

    2011-10-01

    The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.

  13. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    NASA Astrophysics Data System (ADS)

    de France, G.; Blanc, A.; Drouet, F.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Stezowski, O.; Ur, C. A.; Urban, W.; Vancrayenest, A.

    2014-03-01

    A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  14. Effects of unconventional breakup modes on incomplete fusion of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Quraishi, Daanish

    2018-02-01

    The incomplete fusion dynamics of 6Li+209Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the platypus code is used to understand and quantify the impact of both 6Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as 8Be and 5Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of 6Li reduces the incomplete fusion cross sections and (ii) the neutron-stripping channel practically determines those cross sections.

  15. Effective field theory description of halo nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  16. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    NASA Astrophysics Data System (ADS)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  17. Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktem, Y.; Cakirli, R. B.; Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520

    2007-04-23

    Empirical values of the average interactions of the last two protons and last two neutrons, {delta}Vpn, which can be obtained from double differences of binding energies, provide significant information about nuclear structure. Studies of {delta}Vpn showed striking behavior across major shell gaps and the relation of proton-neutron (p-n) interaction strengths to the increasing collectivity and onset of deformation in nuclei. Here we focus on the strong regularity at the {delta}Vpn values in A{approx}150-180 mass region. Experimentally, for each nucleus, the valence p-n interaction strengths increase systematically against the neutron number and it decreases for the observed last neutron number. Thesemore » experimental results give almost nearly perfect parallel trajectories. A microscopic interpretation with a zero range {delta}-interaction in a Nilsson basis gives reasonable agreement for Er-W but more significant discrepancies appear for Gd and Dy.« less

  18. Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, K W S; Paxinos, G; Watson, C R R

    2007-09-01

    The monotremes are a unique group of living mammals, which diverged from the line leading to placental mammals at least 125 million years ago. We have examined the organization of pontine, inferior olivary, lateral reticular and vestibular nuclei in the brainstem of the short-beaked echidna (Tachyglossus aculeatus) to determine if the cyto- and chemoarchitecture of these nuclei are similar to that in placental mammals and marsupials. We have used Nissl staining in conjunction with enzyme-histochemistry for acetylcholinesterase, cytochrome oxidase and NADPH diaphorase as well as immunohistochemistry for non-phosphorylated neurofilament protein (SMI-32 antibody) and calcium binding proteins (parvalbumin, calbindin, calretinin). Homologies could be established between the arch shaped inferior olivary complex of the echidna and the principal, dorsal and medial accessory subdivisions of the therian inferior olivary complex. The pontine nuclei of the echidna included basilar and reticulotegmental components with similar cyto- and chemarchitectural features to therians and there were magnocellular and subtrigeminal components of the lateral reticular nucleus, also as seen in therians. Subdivisions and chemoarchitecture of the vestibular complex of the echidna were both similar to that region in rodents. In all three precerebellar nuclear groups studied and in the vestibular nucleus organization, the cyto- and chemoarchitecture of the echidna was very similar to that seen in therian mammals and no "primitive" or "reptilian" features were evident.

  19. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  20. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douici, M.; Allal, N. H.; Fellah, M.

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  1. Search for long lived heaviest nuclei beyond the valley of stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, P. Roy; Samanta, C.; Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000

    2008-04-15

    The existence of long lived superheavy nuclei (SHN) is controlled mainly by spontaneous fission and {alpha}-decay processes. According to microscopic nuclear theory, spherical shell effects at Z=114, 120, 126 and N=184 provide the extra stability to such SHN to have long enough lifetime to be observed. To investigate whether the so-called 'stability island' could really exist around the above Z, N values, the {alpha}-decay half-lives along with the spontaneous fission and {beta}-decay half-lives of such nuclei are studied. The {alpha}-decay half-lives of SHN with Z=102-120 are calculated in a quantum tunneling model with DDM3Y effective nuclear interaction using Q{sub {alpha}}more » values from three different mass formulas prescribed by Koura-Uno-Tachibana-Yamada (KUTY), Myers-Swiatecki (MS), and Muntian-Hofmann-Patyk-Sobiczewski (MMM). Calculation of spontaneous fission (SF) half-lives for the same SHN are carried out using a phenomenological formula and compared with SF half-lives predicted by Smolanczuk et al. A possible source of discrepancy between the calculated {alpha}-decay half-lives of some nuclei and the experimental data of GSI, JINR-FLNR, RIKEN, is discussed. In the region of Z=106-108 with N{approx}160-164, the {beta}-stable SHN {sub 106}{sup 268}Sg{sub 162} is predicted to have highest {alpha}-decay half-life (T{sub {alpha}}{approx}3.2 h) using Q{sub {alpha}} value from MMM. Interestingly, it is much greater than the recently measured T{sub {alpha}} ({approx}22 s) of deformed doubly magic {sub 108}{sup 270}Hs{sub 162} nucleus. A few fission-survived long-lived SHN which are either {beta}-stable or having large {beta}-decay half-lives are predicted to exist near {sup 294}110{sub 184}, {sup 293}110{sub 183}, {sup 296}112{sub 184}, and {sup 298}114{sub 184}. These nuclei might decay predominantly through {alpha}-particle emission.« less

  2. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  3. ``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerde, E.A.; Glasgow, D.C.

    1998-09-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate countingmore » leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.« less

  4. Interference of fission amplitudes of neutron resonances and T-odd asymmetry for various prescission third particles in the ternary fission of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bunakov, V. E.; Kadmensky, S. S.

    Differential cross sections for reactions of the true ternary fission of nuclei that was induced by cold polarized neutrons were constructed with allowance of the effect that Coriolis interaction and the interference between fission amplitudes of neutron resonances excited in fissile nuclei upon incidentneutron capture by target nuclei exerted on angular distributions of prescission third particles (alpha particles, neutrons, or photons). It is shown that T -odd TRI- and ROT-type asymmetries for prescission alpha particles are associated with, respectively, the odd and even components of the Coriolis interaction-perturbed amplitude of angular distributions of particles belonging to the types indicated above.more » These asymmetries have angular distributions differing from each other and stemming from a nontrivial dependence of these components on the neutron-resonance spins J{sub s} and their projections K{sub s} onto the symmetry axis of the nucleus involved. It is shown that angular distributions of prescission photons and neutrons from reactions of the ternary fission of nuclei that is induced by cold polarized neutrons are determined by the effect of Coriolis forces exclusively. Therefore, the emerging T-odd asymmetries have a character of a ROT-type asymmetry and are universal for all target nuclei.« less

  5. The nuclear contacts and short range correlations in nuclei

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.

    2018-05-01

    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

  6. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  7. Search for three-nucleon short-range correlations in light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Solvignon, P.; Nguyen, D.

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  8. Search for three-nucleon short-range correlations in light nuclei

    DOE PAGES

    Ye, Z.; Solvignon, P.; Nguyen, D.; ...

    2018-06-18

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  9. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  10. High Energy Neutrinos Produced in the Accretion Disks by Neutrons from Nuclei Disintegrated in the AGN Jets

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2016-12-01

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  11. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less

  12. Identification of neutron deficient niobium, molybdenum and technetium isotopes

    NASA Astrophysics Data System (ADS)

    Gross, C. J.

    We report on the in-beam identification of fourteen new isotopes in the A=80-90 region. Heavy-ion reactions with a recoil separator or charged particle and neutron detectors provided identification of γ-rays from these new niobium, molybdenum, and technetium isotopes. The procedures used are described and energy level systematics are discussed. The energy levels appear to be organized into rotational bands in nuclei with N≤44 while those with N ≥ 46 have more single-particle-like transitions. Lifetime measurements in 87Mo and 87Nb indicate that g {9}/{2} particle alignment strongly influences the collectivity of these nuclei.

  13. Shape coexistence, shape evolution and Gamow-Teller {beta}-decay of neutron-rich A Asymptotically-Equal-To 100 nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovici, A.; Schmid, K. W.; Faessler, A.

    The structure of neutron-rich nuclei in the A Asymptotically-Equal-To 100 mass region relevant for the astrophysical r process manifests drastic changes in some isotopic chains and often sudden variations of particular nuclear properties have been identified. For a realistic description of the evolution in structure with increasing energy, spin, and isospin determined by shape coexistence and mixing beyond-mean-field approaches are required. Our recent studies represent an attempt to the self-consistent description of the shape coexistence phenomena in neutron-rich A Asymptotically-Equal-To 100 nuclei within the complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction basedmore » on the Bonn A potential in a large model space. Results concerning the triple shape coexistence and the shape evolution in the N=58 Sr and Zr isotopes, the shape evolution in a chain of Zr nuclei, as well as the Gamow-Teller {beta}-decay properties of neutron-rich Zr and Tc nuclei are presented.« less

  14. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  15. Shape coexistence in neutron-rich nuclei near N=40

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.

    2013-04-01

    Recent data show that both the 2+ and 4+ levels in the even neutron-rich Cr and Fe isotopes decrease in excitation energy toward N=40. This observation, along with Coulomb excitation and lifetime data, strongly indicates an increase in collectivity near N=40 in contradiction with expectations based on first principles. A straightforward two-band mixing model is used to investigate the structure of these neutron-rich Cr and Fe nuclei. The approach takes advantage of the extensive data available for 60Fe to provide the parameter values with which to reproduce the experimental observations in the 58-64Cr and 60-68Fe isotopic chains. Comparisons between the model and the data suggest marked structural differences for the ground-state configurations of N=40 Cr and Fe.

  16. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li( 98Rb,αxn) and 7Li( 98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions canmore » be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  17. Nuclear structure study for the neutron-rich nuclei beyond 132Sn: In-beam gamma-ray spectroscopy of 136Sn and 132Cd

    NASA Astrophysics Data System (ADS)

    Wang, He; Aoi, Nori; Takeuchi, Satoshi; Matsushita, Masafumi; Doornenbal, Pieter; Motobayashi, Tohru; Steppenbeck, David; Yoneda, Kenichiro; Baba, Hidetada; Dombrádi, Zsolt; Kobayashi, Kota; Kondo, Yosuke; Lee, Jenny; Liu, Hong-Na; Minakata, Ryogo; Nishimura, Daiki; Otsu, Hideaki; Sakurai, Hiroyoshi; Sohler, Dora; Sun, Ye-Lei; Tian, Zheng-Yang; Tanaka, Ryuki; Vajta, Zsolt; Yang, Zai-Hong; Yamamoto, Tetsuya; Ye, Yan-Lin; Yokoyama, Rin

    2018-05-01

    The neutron-rich nuclei 136Sn and 132Cd have been studied in the purpose of nuclear structure for the nuclei beyond the doubly-magic nucleus 132Sn. The 2+1 → 0+ gs transitions were identified for these two nuclei using in-beam γ-ray spectroscopy in coincidence with one- and two-proton removal reactions, respectively, at the RIKEN Radioactive Isotope Beam Factory. The 2+ 1 state in 136Sn is found to be similar to that for 134Sn indicating the seniority scheme may also hold for the heavy tin isotopes beyond N = 82. For 132Cd, the 2+ 1 state provides the first spectroscopic information in the even-even nuclei locating in the region "southeast" of 132Sn and the result is discussed in terms of proton-neutron configuration mixing. In both these two nuclei, it was found that the valence neutrons play an essential role in their low-lying excitations.

  18. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  19. Beam-on imaging of short-lived positron emitters during proton therapy

    NASA Astrophysics Data System (ADS)

    Buitenhuis, H. J. T.; Diblen, F.; Brzezinski, K. W.; Brandenburg, S.; Dendooven, P.

    2017-06-01

    In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is 12N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived 12N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the 12N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the 12N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the 12N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on 12N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  108 protons and 5.2  ±  0.5 mm for 5  ×  108 protons. This makes

  20. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.

    2015-06-01

    The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

  1. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at

  2. The predictive accuracy of analytical formulas and semiclassical approaches for α decay half-lives of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Bao, X. J.; Guo, S. Q.

    2018-02-01

    Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.

  3. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Walter

    2010-12-23

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less

  4. Shell model description of heavy nuclei and abnormal collective motions

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2018-05-01

    In this contribution I present systematic calculations on the spectroscopy and electromagnetic transition properties of intermediate-mass and heavy nuclei around 100Sn and 208Pb. We employed the large-scale configuration interaction shell model approach with realistic interactions. Those nuclei are the longest isotopic chains that can be studied by the nuclear shell model. I will show that the yrast spectra of Te isotopes show a vibrational-like equally spaced pattern but the few known E2 transitions show rotational-like behaviour. These kinds of abnormal collective behaviors cannot be reproduced by standard collective models and provide excellent background to study the competition of single-particle and various collective degrees of freedom. Moreover, the calculated B(E2) values for neutron-deficient and heavier Te isotopes show contrasting different behaviours along the yrast line, which may be related to the enhanced neutron-proton correlation when approaching N=50. The deviations between theory and experiment concerning the energies and E2 transition properties of low-lying 0+ and 2+ excited states and isomeric states in those nuclei may provide a constraint on our understanding of nuclear deformation and intruder configuration in that region.

  5. Recent α decay half-lives and analytic expression predictions including superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Royer, G.; Zhang, H. F.

    2008-03-01

    New recent experimental α decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the α emitter and the Qα value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the α decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Qα of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].

  6. Recent {alpha} decay half-lives and analytic expression predictions including superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, G.; Zhang, H. F.

    New recent experimental {alpha} decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the {alpha} emitter and the Q{sub {alpha}} value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the {alpha} decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Q{sub {alpha}} of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].

  7. Nuclear spectroscopy of r-process nuclei around N = 126 using KISS

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.

    2017-09-01

    The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.

  8. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  9. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    NASA Astrophysics Data System (ADS)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  10. Large-scale configuration interaction description of the structure of nuclei around 100Sn and 208Pb

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2016-08-01

    In this contribution I would like to discuss briefly the recent developments of the nuclear configuration interaction shell model approach. As examples, we apply the model to calculate the structure and decay properties of low-lying states in neutron-deficient nuclei around 100Sn and 208Pb that are of great experimental and theoretical interests.

  11. Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu,162160 Nuclei: Evidence for a Subshell Gap with Large Deformation at N =98

    NASA Astrophysics Data System (ADS)

    Hartley, D. J.; Kondev, F. G.; Orford, R.; Clark, J. A.; Savard, G.; Ayangeakaa, A. D.; Bottoni, S.; Buchinger, F.; Burkey, M. T.; Carpenter, M. P.; Copp, P.; Gorelov, D. A.; Hicks, K.; Hoffman, C. R.; Hu, C.; Janssens, R. V. F.; Klimes, J. W.; Lauritsen, T.; Sethi, J.; Seweryniak, D.; Sharma, K. S.; Zhang, H.; Zhu, S.; Zhu, Y.

    2018-05-01

    The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A ˜160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N =98 . In order to address these issues, mass and β -decay spectroscopy measurements of the Eu97 160 and Eu99 162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N =98 and for large deformation (β2˜0.3 ) is discussed in relation to the unusual phenomena observed at this neutron number.

  12. Neutron capture studies with a short flight path

    NASA Astrophysics Data System (ADS)

    Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René

    The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.

  13. Isomers and shell evolution in neutron-rich nuclei below the doubly magic nucleus 132Sn

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2018-05-01

    The level structures of the very neutron-rich nuclei 128Pd82 and 126Pd80 have been investigated for the first time. A new isomer with a half-life of 5.8(8) μs in 128Pd is proposed to have a spin and parity of 8+ and is associated with a maximally aligned configuration arising from the g9/2Pd proton subshell with seniority υ = 2. The level sequence below the 8+ isomer is similar to that in the N = 82 isotone 130Cd, but the electric quadrupole transition that depopulates the 8+ isomer is more hindered in 128Pd than in 130Cd, as expected in the seniority scheme for a semi-magic, spherical nucleus. For 126Pd, three new isomers with Jπ = (5-), (7-), and (10+) have been identified with half-lives of 0.33(4) μs, 0.44(3) μs, and 23.0(8) ms, respectively. The smaller energy difference between the 10+ and 7- isomers in 126Pd than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the h11/2 neutron orbit. The nature of the N = 82 shell closure scrutinized with these characteristic isomers is discussed.

  14. Improved version of a binding energy formula for heavy and superheavy nuclei with Z{>=}90 and N{>=}140

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Tiekuang; Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210008; Ren Zhongzhou

    2008-06-15

    A local formula of binding energy for heavy and superheavy nuclei has very recently been proposed [Dong and Ren, Phys. Rev. C 72, 064331 (2005)]. In this paper, the limit of the predictive ability of this local formula is investigated. It is found that the neutron-proton correlations should be considered when higher precision is required. On the one hand, we introduce a new term |N-Z-50|/A, and on the other hand we consider the different strengths of proton-proton, neutron-neutron, and neutron-proton pairing correlations. For the first time, the standard deviation {radical}({sigma}{sup 2}) of the binding energies for 117 nuclei with Z{>=}90more » and N{>=}140 is reduced to 0.105 MeV. The {alpha} decay energies Q{sub {alpha}} and half-lives T{sub {alpha}} of nuclei with Z=102-118 are reproduced quite well. The proton drip line of superheavy elements from Md (Z=101) to Ds (Z=110) are predicted.« less

  15. Interplay between proton-neutron pairing and deformation in self-conjugated medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis

    2016-05-01

    We employ a model combining self-consistent mean-field and shell model techniques to study the competition between particle-like and proton-neutron pairing correlations in fp-shell even-even self-conjugate nuclei. Deformation effects are realistically and microscopically described. The resulting approach can give a precise description of pairing correlations and eventually treat the coexistence of different condensate formed of pairs with different total spin/ isospin. The standard BCS calculations are systematically compared with approaches including correlation effects beyond the independent quasi-particle picture. The competition between proton-neutron correlations in the isoscalar and isovector channels is also analyzed, as well as their dependence on the deformation properties.

  16. Neutron capture by hook or by crook

    NASA Astrophysics Data System (ADS)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  17. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  18. Decay properties of 256-339Ds superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2017-09-01

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei ( Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of 256-339Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future.

  19. Production mechanism of new neutron-rich heavy nuclei in the 136Xe +198Pt reaction

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wen, Peiwei; Li, Jingjing; Zhang, Gen; Li, Bing; Xu, Xinxin; Liu, Zhong; Zhu, Shaofei; Zhang, Feng-Shou

    2018-01-01

    The multinucleon transfer reaction of 136Xe +198Pt at Elab = 7.98 MeV/nucleon is investigated by using the improved quantum molecular dynamics model. The quasielastic, deep-inelastic, and quasifission collision mechanisms are studied via analyzing the angular distributions of fragments and the energy dissipation processes during the collisions. The measured isotope production cross sections of projectile-like fragments are reasonably well reproduced by the calculation of the ImQMD model together with the GEMINI code. The isotope production cross sections for the target-like fragments and double differential cross sections of 199Pt, 203Pt, and 208Pt are calculated. It is shown that about 50 new neutron-rich heavy nuclei can be produced via deep-inelastic collision mechanism, where the production cross sections are from 10-3 to 10-6 mb. The corresponding emission angle and the kinetic energy for these new neutron-rich nuclei locate at 40∘-60∘ and 100-200 MeV, respectively.

  20. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  1. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    NASA Astrophysics Data System (ADS)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening

  2. Charge radii of neutron-deficient Ca isotopes

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.

    2017-09-01

    Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.

  3. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    NASA Astrophysics Data System (ADS)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  4. Role of (n,2n) reactions in transmutation of long-lived fission products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G.

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 andmore » the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).« less

  5. Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yoshida, Takashi; Wanajo, Shinya; Kajino, Toshitaka; Otsuka, Takaharu

    Beta-decay rates for exotic nuclei at N = 126 relevant to r-process nucleosynthesis are studied by shell-model calculations. The half-lives obtained are used to study r-process nucleosynthesis in core-collapse supernova explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to uranium.

  6. Short stature before puberty: which children should be screened for SHOX deficiency?

    PubMed

    Wolters, Barbara; Lass, Nina; Wunsch, Rainer; Böckmann, Beatrix; Austrup, Frank; Reinehr, Thomas

    2013-01-01

    We studied the prevalence of deficiency in the short stature homeobox containing gene (SHOX) in prepubertal short-statured children and analyzed the clinical and radiological signs. Screening for SHOX deficiency was performed in 449 prepubertal short-statured children (54% females, aged 4-10 years) by direct sequencing and multiplex ligation probe-dependent amplification. Children with SHOX deficiency were compared to 1:2 age- and gender-matched prepubertal children without SHOX deficiency with respect to left-hand radiographs and anthropometrics including different ratios to height and proposed scores. We identified 22 (4.9%) patients with SHOX deficiency (64% point mutations). Children with SHOX deficiency demonstrated a mesomelic shortening of extremities. Lower leg lengths but not forearm length was reduced in children <8 years with SHOX deficiency. 36% of all children and none of the children <8 years with SHOX deficiency demonstrated any typical radiologic sign. Increased sitting height-to-height ratio and decreased extremities-to-trunk ratio demonstrated the best positive and negative predictive values to identify SHOX deficiency. Screening for SHOX deficiency seems rational, especially in children with increased sitting height-to-height ratio or decreased extremities-to-trunk ratio. These criteria were also valid in young children. © 2013 S. Karger AG, Basel.

  7. Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.

    PubMed

    Edwards, Morgan R; Klemun, Magdalena M; Kim, Hyung Chul; Wallington, Timothy J; Winkler, Sandra L; Tamor, Michael A; Trancik, Jessika E

    2017-08-24

    Evaluating technology options to mitigate the climate impacts of road transportation can be challenging, particularly when they involve a tradeoff between long-lived emissions (e.g., carbon dioxide) and short-lived emissions (e.g., methane or black carbon). Here we present trends in short- and long-lived emissions for light- and heavy-duty transport globally and in the U.S., EU, and China over the period 2000-2030, and we discuss past and future changes to vehicle technologies to reduce these emissions. We model the tradeoffs between short- and long-lived emission reductions across a range of technology options, life cycle emission intensities, and equivalency metrics. While short-lived vehicle emissions have decreased globally over the past two decades, significant reductions in CO 2 will be required by mid-century to meet climate change mitigation targets. This is true regardless of the time horizon used to compare long- and short-lived emissions. The short-lived emission intensities of some low-CO 2 technologies are higher than others, and thus their suitability for meeting climate targets depends sensitively on the evaluation time horizon. Other technologies offer low intensities of both short-lived emissions and CO 2 .

  8. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  9. Neutron Capture Experiments on Unstable Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Sudowe, Ralf; Folden, Charles M., III

    2005-01-15

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also bemore » important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were

  10. The neutron skin thickness in nuclei with clustering at low densities

    NASA Astrophysics Data System (ADS)

    Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.

    2016-11-01

    This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.

  11. Measurement of the heaviest β-delayed 2-neutron emitter: 136Sb

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Dillmann, I.; Taín, J. L.; Agramunt, J.; Domingo-Pardo, C.; Algora, A.; Äystö, J.; Calviño, F.; Canete, L.; Cortès, G.; Eronen, T.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Guadilla, V.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Marta, M.; Mendoza, E.; Montaner-Pizá, A.; Moore, I.; Nobs, Ch.; Orrigo, S.; Penttilä, H.; Pohjalainen, I.; Reinikainen, J.; Riego, A.; Rinta-Antila, S.; Rubio, B.; Salvador-Castiñeira, P.; Simutkin, V.; Voss, A.

    2017-09-01

    The β-delayed neutron emission probability, Pn, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition β-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of β-delayed one-neutron emitters (β1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of β-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed 136Sb as the heaviest double neutron emitter (β2n) measured so far.

  12. Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos

    PubMed Central

    Tran, Huy; Ferraro, Teresa; Lucas, Tanguy; Guillou, Aurelien; Coppey, Mathieu; Dostatni, Nathalie

    2016-01-01

    The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos. PMID:27942043

  13. New K isomers in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd

    NASA Astrophysics Data System (ADS)

    Yokoyama, R.; Go, S.; Kameda, D.; Kubo, T.; Inabe, N.; Fukuda, N.; Takeda, H.; Suzuki, H.; Yoshida, K.; Kusaka, K.; Tanaka, K.; Yanagisawa, Y.; Ohtake, M.; Sato, H.; Shimizu, Y.; Baba, H.; Kurokawa, M.; Nishimura, D.; Ohnishi, T.; Iwasa, N.; Chiba, A.; Yamada, T.; Ideguchi, E.; Fujii, T.; Nishibata, H.; Ieki, K.; Murai, D.; Momota, S.; Sato, Y.; Hwang, J. W.; Kim, S.; Tarasov, O. B.; Morrissey, D. J.; Sherrill, B. M.; Simpson, G.; Praharaj, C. R.

    2017-03-01

    Very neutron-rich Z ˜60 isotopes produced by in-flight fission of a 345 MeV/nucleon 238U beam at the RI Beam Factory, RIKEN Nishina Center, have been studied by delayed γ -ray spectroscopy. New isomers were discovered in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd. Half-lives, γ -ray energies, and relative intensities of these isomers were obtained. Level schemes were proposed for these nuclei and the first 2+ and 4+ states were assigned for the even-even nuclei. The first 2+ and 4+ state energies decrease as the proton numbers get smaller. The energies and the half-lives of the new isomers are very similar to those of 4- isomers known in less neutron-rich N =100 isotones 168Er and 170Yb. A deformed Hartree-Fock with angular momentum projection model suggests Kπ=4- two-quasiparticle states with ν 7 /2 [633 ]⊗ν 1 /2 [521 ] configurations with similar excitation energy. The results suggest that neutron-rich N =100 nuclei are well deformed and the deformation gets larger as Z decreases to 62. The onset of K isomers with the same configuration at almost the same energy in N =100 isotones indicates that the neutron single-particle structures of neutron-rich isotones down to Z =62 do not change significantly from those of the Z =70 stable nuclei. Systematics of the excitation energies of new isomers can be explained without the predicted N =100 shell gap.

  14. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance to nuclear astrophysics.

    PubMed

    Timofeyuk, N K; Johnson, R C; Mukhamedzhanov, A M

    2003-12-05

    We show how the charge symmetry of strong interactions can be used to relate the proton and neutron asymptotic normalization coefficients (ANCs) of the one-nucleon overlap integrals for light mirror nuclei. This relation extends to the case of real proton decay where the mirror analog is a virtual neutron decay of a loosely bound state. In this case, a link is obtained between the proton width and the squared ANC of the mirror neutron state. The relation between mirror overlaps can be used to study astrophysically relevant proton capture reactions based on information obtained from transfer reactions with stable beams.

  15. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  16. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  17. Reducing uncertainties for short lived cumulative fission product yields

    DOE PAGES

    Stave, Sean; Prinke, Amanda; Greenwood, Larry; ...

    2015-09-05

    Uncertainties associated with short lived (halflives less than 1 day) fission product yields listed in databases such as the National Nuclear Data Center’s ENDF/B-VII are large enough for certain isotopes to provide an opportunity for new precision measurements to offer significant uncertainty reductions. A series of experiments has begun where small samples of 235U are irradiated with a pulsed, fission neutron spectrum at the Nevada National Security Site and placed between two broad-energy germanium detectors. The amount of various isotopes present immediately following the irradiation can be determined given the total counts and the calibrated properties of the detector system.more » The uncertainty on the fission yields for multiple isotopes has been reduced by nearly an order of magnitude.« less

  18. 94 β -Decay Half-Lives of Neutron-Rich Cs 55 to Ho 67 : Experimental Feedback and Evaluation of the r -Process Rare-Earth Peak Formation

    DOE PAGES

    Wu, J.; Nishimura, S.; Lorusso, G.; ...

    2017-02-16

    The β-decay half-lives of 94 neutron-rich nuclei 144 $-$ 151Cs, 146 $-$ 154Ba, 148 $-$ 156La, 1 50 $-$ 158Ce, 153 $-$160Pr, 156 $-$ 162 Nd, 159 $-$ 163Pm, 160 $-$ 166Sm, 161 $-$ 168Eu , 165 $-$ 170Gd, 166 $-$ 172Tb, 169 $-$ 173Dy, 172 $-$ 175Ho, and two isomeric states 174 mEr, 172 mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β -decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd , and 62Sm, and N = 105 for 63Eu,more » 64Gd, 65Tb, and 66Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. In conclusion, $r$-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.« less

  19. Strangeness in nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  20. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  1. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    PubMed

    Moghaddasi, Leyla; Bezak, Eva

    2018-03-01

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  2. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  3. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    NASA Astrophysics Data System (ADS)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  4. Measurement of picosecond lifetimes in neutron-rich Xe isotopes

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Kröll, Th.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; Bruce, A. M.; Fraile, L. M.; de France, G.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Jentschel, M.; Jolie, J.; Korten, W.; Köster, U.; Lalkovski, S.; Lozeva, R.; Mach, H.; Mǎrginean, N.; Mutti, P.; Paziy, V.; Regan, P. H.; Simpson, G. S.; Soldner, T.; Thürauf, M.; Ur, C. A.; Urban, W.; Warr, N.

    2016-09-01

    Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of 235U and 241Pu, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even 138,140,142Xe isotopes lying between the double shell closure N =82 and Z =50 and a deformed region with octupole collectivity. Method: The γ rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N =82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N =90 .

  5. 94 β-Decay Half-Lives of Neutron-Rich _{55}Cs to _{67}Ho: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation.

    PubMed

    Wu, J; Nishimura, S; Lorusso, G; Möller, P; Ideguchi, E; Regan, P-H; Simpson, G S; Söderström, P-A; Walker, P M; Watanabe, H; Xu, Z Y; Baba, H; Browne, F; Daido, R; Doornenbal, P; Fang, Y F; Gey, G; Isobe, T; Lee, P S; Liu, J J; Li, Z; Korkulu, Z; Patel, Z; Phong, V; Rice, S; Sakurai, H; Sinclair, L; Sumikama, T; Tanaka, M; Yagi, A; Ye, Y L; Yokoyama, R; Zhang, G X; Alharbi, T; Aoi, N; Bello Garrote, F L; Benzoni, G; Bruce, A M; Carroll, R J; Chae, K Y; Dombradi, Z; Estrade, A; Gottardo, A; Griffin, C J; Kanaoka, H; Kojouharov, I; Kondev, F G; Kubono, S; Kurz, N; Kuti, I; Lalkovski, S; Lane, G J; Lee, E J; Lokotko, T; Lotay, G; Moon, C-B; Nishibata, H; Nishizuka, I; Nita, C R; Odahara, A; Podolyák, Zs; Roberts, O J; Schaffner, H; Shand, C; Taprogge, J; Terashima, S; Vajta, Z; Yoshida, S

    2017-02-17

    The β-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.

  6. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  7. Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei

    NASA Astrophysics Data System (ADS)

    Samarin, Viacheslav

    2014-03-01

    Time-dependent Schrödinger equation is numerically solved by difference method for external neutrons of nuclei 6He, 18O, 48Са, 238U at their grazing collisions with energies in the vicinity of a Coulomb barrier. The spin-orbital interaction and Pauli's exclusion principle were taken into consideration during the solution.

  8. Intermediate-energy inverse-kinematics one-proton pickup reactions on neutron-deficient fp-shell nuclei

    NASA Astrophysics Data System (ADS)

    McDaniel, S.; Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; Grinyer, G. F.; Ratkiewicz, A.; Weisshaar, D.

    2012-01-01

    Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: Our purpose is to add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of γ-ray-tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to fp-shell nuclei. Methods: Inclusive and partial cross sections were measured for the 12C(48Cr,49Mn+γ)X and 12C(50Fe,51Co+γ)X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-γ spectroscopy at the National Superconducting Cyclotron Laboratory. The results are compared to reaction theory calculations using fp-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on 9Be targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-ℓ orbitals being strongly favored, driven by linear and angular momentum matching. Conclusion: Carbon-target-induced pickup reactions are well suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.

  9. NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing

    2009-08-01

    The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.

  10. Systematic study of the isotopic dependence of fusion dynamics for neutron- and proton-rich nuclei using a proximity formalism

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Gharaei, R.; Lari, F.

    2012-08-01

    The behaviors of barrier characteristics and fusion cross sections are analyzed by changing neutrons over a wide range of colliding systems. For this purpose, we have extended our previous study [Ghodsi and Gharaei, Eur. Phys. J. AEPJAFV1434-600110.1140/epja/i2012-12021-x 48, 21 (2012), it is devoted to the colliding systems with neutron-rich nuclei] to 125 isotopic systems with the condition of 0.5⩽N/Z⩽1.6 for their compound nuclei. The AW 95, Bass 80, Denisov DP, and Prox. 2010 potentials are used to calculate the nuclear part of the interacting potential. The obtained results show that the trend of barrier heights VB and positions RB as well as nuclear VN and Coulomb VC potentials (at R=RB) as a function of (N/Z-1) quantity are nonlinear (second order) whereas the fusion cross sections follow a linear dependence.

  11. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    NASA Astrophysics Data System (ADS)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  12. High-seniority states in spherical nuclei: Triple pair breaking in tin isotopes

    NASA Astrophysics Data System (ADS)

    Astier, Alain

    2013-03-01

    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- A and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in the even-A 120-126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. All the states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs (seniority v=6), has been identified.

  13. The Mirror Nuclei 3H and 3He Program at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Javier

    2017-02-28

    Jefferson Lab plans to carry out in the near future a group of four experiments involving the mirror nuclei 3H and 3He, using electron beam energies of up to 11 GeV. Our experiments aim to, (A) extract the deep inelastic neutron to proton structure function ratio Fmore » $$n\\atop{2}$$F$$p\\atop{2}$$ (and u / d quark distributions) for 0.2 ≤ x ≤ 0.9 , (B) study the isospin structure of two-nucleon and search for three-nucleon Short Range Correlations (SRC) for x < 3 , (C) measure the proton momentum distribution of both nuclei at $x = 1.2$ to further our understanding of SRCs in the few-body and (D) extract the charge radii of both nuclei at Q 2 ≤ 0.1 GeV 2.« less

  14. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tolosa-Delgado, A.; Agramunt, J.; Ahn, D. S.; Algora, A.; Baba, H.; Bae, S.; Brewer, N. T.; Caballero Folch, R.; Calvino, F.; Coleman-Smith, P. J.; Cortes, G.; Davinson, T.; Dillmann, I.; Domingo-Pardo, C.; Estrade, A.; Fukuda, N.; Go, S.; Griffin, C. J.; Grzywacz, R.; Ha, J.; Hall, O.; Harkness-Brennan, L.; Isobe, T.; Kahl, D.; Kiss, G. G.; Kogimtzis, M.; Kubono, S.; Labiche, M.; Lazarus, I.; Lee, J.; Liu, J.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Moon, B.; Morales, A. I.; Nepal, N.; Nishimura, S.; Page, R. D.; Phong, V. H.; Podolyak, Z.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Riego, A.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Shimizu, Y.; Simpson, J.; Söderström, P.-A.; Stracener, D. W.; Sumikama, T.; Suzuki, H.; Tain, J. L.; Takechi, M.; Takeda, H.; Tarifeño-Saldivia, A.; Thomas, S. L.; Woods, P.

    2018-01-01

    The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  15. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  16. Prompt fission neutron multiplicity and spectrum model for 30-80 MeV neutrons incident on 238U

    NASA Astrophysics Data System (ADS)

    Tudora, Anabella; Vladuca, G.; Morillon, B.

    2004-08-01

    The improved Los Alamos model is developed for the first time in order to provide prompt fission neutron multiplicity, prompt fission neutron spectra and other quantities at high incident neutron energies where the fission of secondary compound nuclei formed by charged particle emission occurs. In this model (exemplified by the n+ 238U reaction up to 80 MeV incident energy) the fission of the secondary nuclei formed by proton emission, neutron evaporation from the nuclei formed by proton emission, deuteron emission, alpha emission and neutron evaporation from the nuclei formed by alpha emission is taken into account. Input model parameters and related excitation energy dependences are determined using available experimental information and systematics as well as total and partial neutron induced fission cross-sections and their ratios obtained separately from a recent evaluation performed up to medium energies. Our present model predictions are in good agreement with the measured prompt neutron spectra and multiplicities.

  17. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  18. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE PAGES

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...

    2016-10-17

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  19. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  20. First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.

    PubMed

    Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2016-07-01

    The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

  1. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickels, Jonathan D.; Chatterjee, Sneha; Stanley, Christopher B.

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent workmore » using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.« less

  2. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  3. Collective excitations in the transitional nuclei 163Re and 165Re

    NASA Astrophysics Data System (ADS)

    Davis-Merry, T. R.; Joss, D. T.; Page, R. D.; Simpson, J.; Paul, E. S.; Ali, F. A.; Bianco, L.; Carroll, R. J.; Cederwall, B.; Darby, I. G.; Drummond, M. C.; Eeckhaudt, S.; Ertürk, S.; Gómez-Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Peura, P.; Rahkila, P.; Revill, J. P.; Ruotsalainen, P.; Sandzelius, M.; Sapple, P. J.; Sarén, J.; Sayǧi, B.; Scholey, C.; Sorri, J.; Thomson, J.; Uusitalo, J.

    2015-03-01

    Excited states in the neutron-deficient nuclei 75163Re88 and 75165Re90 were populated in the 106Cd( 60Ni ,p 2 n γ ) and 92Mo( 78Kr , 3 p 2 n γ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single π h11 /2 quasiproton configuration. The bands display large energy splitting consistent with the soft triaxial shape typical of transitional nuclei above N =82 . The configurations of the excited states are proposed within the framework of the cranked shell model.

  4. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  5. Unique first-forbidden β-decay rates for neutron-rich nickel isotopes in stellar environment

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Stoica, Sabin

    2014-02-01

    In astrophysical environments, allowed Gamow-Teller (GT) transitions are important, particularly for β-decay rates in presupernova evolution of massive stars, since they contribute to the fine-tuning of the lepton-to-baryon content of the stellar matter prior to and during the collapse of a heavy star. In environments where GT transitions are unfavored, first-forbidden transitions become important especially in medium heavy and heavy nuclei. Particularly in case of neutron-rich nuclei, first-forbidden transitions are favored primarily due to the phase-space amplification for these transitions. In this work the total β-decay half-lives and the unique first-forbidden (U1F) β-decay rates for a number of neutron-rich nickel isotopes, 72-78Ni, are calculated using the proton-neutron quasi-particle random phase approximation (pn-QRPA) theory in stellar environment for the first time. For the calculation of the β-decay half-lives both allowed and unique first-forbidden transitions were considered. Comparison of the total half-lives is made with measurements and other theoretical calculations where it was found that the pn-QRPA results are in better agreement with experiments and at the same time are suggestive of inclusion of rank 0 and rank 1 operators in first-forbidden rates for still better results.

  6. Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.

    2017-09-01

    We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.

  7. Neutron capture reactions in astrophysics

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    1985-01-01

    About 2/3 of the chemical elements in nature were formed in neutron capture reactions. During the life of a star there are certain evolutionary stages where neutrons are available to build up the elements beyond iron which cannot be synthesized by charged particle reactions. The observed abundance pattern allows to distinguish a rapid and a slow neutron capture process (r- and s-process). The r-process taking place far from the valley of stability is difficult to investigate because of the required extrapolation of nuclear properties to extreme neutron rich nuclei. The s-process, on the other hand, proceeds along the valley of stability. Therefore, the involved isotopes are accessible to laboratory measurements. This information allows for quantitative calculation of s-process abundances and other parameters which represent constraints for stellar models. Two examples are outlined: (i) the s-process branching at A=147, 148 yields a rather accurate value for the neutron density. (ii) Comparison of s-process abundances with observations of stellar atmospheres are particularly interesting for the unstable isotopes 93Zr, 99Tc and 147Pm. Their deficiency with respect to stable neighbors may yield estimates for the transport time from the stellar interior to the surface.

  8. Alpha Decay Potential Barriers and Half-Lives and Analytical Formula Predictions for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei

    The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.

  9. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  10. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  11. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  12. Genetics Home Reference: short/branched chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... PDF) Orphanet: 2-methylbutyryl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (2 links) Children Living with Inherited Metabolic Diseases (CLIMB) Organic Acidemia ...

  13. Left–right asymmetry in integral spectra of γ-quanta in the interaction of nuclei with polarized thermal neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu

    The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.

  14. Universes without the weak force: Astrophysical processes with stable neutrons

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Howe, Alex R.; Adams, Fred C.

    2018-02-01

    We investigate a class of universes in which the weak interaction is not in operation. We consider how astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis (BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from our own, such universes remain potentially habitable.

  15. Fire-Heat and Qi Deficiency Syndromes as Predictors of Short-term Prognosis of Acute Ischemic Stroke

    PubMed Central

    Cheng, Shu-Chen; Lin, Chien-Hsiung; Chang, Yeu-Jhy; Lee, Tsong-Hai; Ryu, Shan-Jin; Chen, Chun-Hsien; Chang, Her-Kun; Chang, Chee-Jen

    2013-01-01

    Abstract Objectives To explore the relationships between traditional Chinese medicine (TCM) syndromes and disease severity and prognoses after ischemic stroke, such as neurologic deficits and decline in activities of daily living (ADLs). Methods The study included 211 patients who met the inclusion criteria of acute ischemic stroke based on clinical manifestations, computed tomography or magnetic resonance imaging findings, and onset of ischemic stroke within 72 hours with clear consciousness. To assess neurologic function and ADLs in patients with different TCM syndromes, the TCM Syndrome Differentiation Diagnostic Criteria for Apoplexy scale (containing assessments of wind, phlegm, blood stasis, fire-heat, qi deficiency, and yin deficiency with yang hyperactivity syndromes) was used within 72 hours of stroke onset, and Western medicine–based National Institutes of Health Stroke Scale (NIHSS) and Barthel Index (BI) assessments were performed at both admission and discharge. Results The most frequent TCM syndromes associated with acute ischemic stroke were wind syndrome, phlegm syndrome, and blood stasis syndrome. Improvement according to the BI at discharge and days of admission were significantly different between patients with and those without fire-heat syndrome. Patients with qi deficiency syndrome had longer hospital stays and worse NIHSS and BI assessments at discharge than patients without qi deficiency syndrome. All the reported differences reached statistical significance. Conclusions These results provide evidence that fire-heat syndrome and qi deficiency syndrome are essential elements that can predict short-term prognosis of acute ischemic stroke. PMID:23600945

  16. Role of external neutrons of weakly bound nuclei in reactions with their participation

    NASA Astrophysics Data System (ADS)

    Naumenko, M. A.; Penionzhkevich, Yu E.; Samarin, V. V.; Sobolev, Yu G.

    2018-05-01

    The paper presents the results of measurement of the total cross sections for reactions 4,6He+Si and 6,7,9Li+Si in the beam energy range 5–50 A MeV. The enhancements of the total cross sections for reaction 6He+Si compared with reaction 4He+Si and 9Li+Si compared with reactions 6,7Li+Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He+Si and 9Li+Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.

  17. Skylab short-lived event alert program

    NASA Technical Reports Server (NTRS)

    Citron, R. A.

    1974-01-01

    During the three manned Skylab missions, the Center for Short-Lived Phenomena (CSLP) reported a total of 39 significant events to the Johnson Space Center (JSC) as part of the Skylab Short-Lived Event Alert Program. The telegraphed daily status reports included the names and locations of the events, the track number and revolution number during which the event could be observed, the time (GMT) to within plus or minus 2 sec when Skylab was closest to the event area, and the light condition (daylight or darkness) at that time and place. The messages sent to JSC during the Skylab 4 mission also included information pertaining to ground-truth studies and observations being conducted on the events. Photographic priorities were assigned for each event.

  18. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-01-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (DA) and the doses absorbed in an ionization chamber (DE) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= DA/DE). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (DA) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. PMID:27380801

  19. Beta delayed neutrons for nuclear structure and astrophysics

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  20. Iron deficiency associated with higher blood lead in children living in contaminated environments.

    PubMed Central

    Bradman, A; Eskenazi, B; Sutton, P; Athanasoulis, M; Goldman, L R

    2001-01-01

    The evidence that iron deficiency increases lead child exposure is based primarily on animal data and limited human studies, and some of this evidence is contradictory. No studies of iron status and blood lead levels in children have accounted for environmental lead contamination and, therefore, the source of their exposure. Thus, no studies have directly determined whether iron deficiency modifies the relationship of environmental lead and blood lead. In this study, we compared blood lead levels of iron-deficient and iron-replete children living in low, medium, or highly contaminated environments. Measurements of lead in paint, soil, dust, and blood, age of housing, and iron status were collected from 319 children ages 1-5. We developed two lead exposure factors to summarize the correlated exposure variables: Factor 1 summarized all environmental measures, and Factor 2 was weighted for lead loading of house dust. The geometric mean blood lead level was 4.9 microg/dL; 14% exceeded 10 microg/dL. Many of the children were iron deficient (24% with ferritin < 12 ng/dL). Seventeen percent of soil leads exceeded 500 microg/g, and 23% and 63% of interior and exterior paint samples exceeded 5,000 microg/g. The unadjusted geometric mean blood lead level for iron-deficient children was higher by 1 microg/dL; this difference was greater (1.8 microg/dL) after excluding Asians. Blood lead levels were higher for iron-deficient children for each tertile of exposure as estimated by Factors 1 and 2 for non-Asian children. Elevated blood lead among iron-deficient children persisted after adjusting for potential confounders by multivariate regression; the largest difference in blood lead levels between iron-deficient and -replete children, approximately 3 microg/dL, was among those living in the most contaminated environments. Asian children had a paradoxical association of sufficient iron status and higher blood lead level, which warrants further investigation. Improving iron status

  1. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  2. Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.

    1994-03-01

    The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.

  3. First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u

    NASA Astrophysics Data System (ADS)

    Purushothaman, S.; Reiter, M. P.; Haettner, E.; Dendooven, P.; Dickel, T.; Geissel, H.; Ebert, J.; Jesch, C.; Plass, W. R.; Ranjan, M.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kurcewicz, J.; Lang, J.; Moore, I. D.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfützner, M.; Pietri, S.; Prochazka, A.; Rink, A.-K.; Rinta-Antila, S.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-11-01

    A cryogenic stopping cell (CSC) has been commissioned with 238U projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100 K). A helium stopping gas density of up to 0.05\\ \\text{mg/cm}^3 was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24 ms were achieved for heavy α-decaying uranium fragments. Mass spectrometry with a multiple-reflection time-of-flight mass spectrometer has demonstrated the excellent cleanliness of the CSC. This setup has opened a new field for the spectroscopy of short-lived nuclei.

  4. β -decay studies of very neutron-rich Pd and Ag isotopes

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2014-03-01

    The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.

  5. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  6. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    USDA-ARS?s Scientific Manuscript database

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  7. Neutron whispering gallery

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  8. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.

    PubMed

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-09-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (D A ) and the doses absorbed in an ionization chamber (D E ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= D A /D E ). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (D A ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Mirror Charge Radii and the Neutron Equation of State

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    2017-09-01

    The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .

  10. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  11. An Upper Bound on Neutron Star Masses from Models of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott; Tervala, Justin G.; Bedaque, Paulo F.; Miller, M. Coleman

    2015-08-01

    The discovery of two neutron stars with gravitational masses ≈ 2 {M}⊙ has placed a strong lower limit on the maximum mass of nonrotating neutron stars, and with it a strong constraint on the properties of cold matter beyond nuclear density. Current upper mass limits are much looser. Here, we note that if most short gamma-ray bursts are produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass limit is constrained tightly. If the rotation of the merger remnant is limited only by mass-shedding (which seems probable based on numerical studies), then the maximum gravitational mass of a nonrotating neutron star is ≈ 2-2.2 {M}⊙ if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in Galactic double neutron star systems. These limits would be increased by ˜4% in the probably unrealistic case that the remnants rotate at ˜30% below mass-shedding, and by ˜15% in the extreme case that the remnants do not rotate at all. Future coincident detection of short gamma-ray bursts with gravitational waves will strengthen these arguments because they will produce tight bounds on the masses of the components for individual events. If these limits are accurate, then a reasonable fraction of double neutron star mergers might not produce gamma-ray bursts. In that case, or in the case that many short bursts are produced instead by the mergers of neutron stars with black holes, the implied rate of gravitational wave detections will be increased.

  12. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by beta-amyloid25-35 injection into Meynert basal nuclei of rats).

    PubMed

    Ostrovskaya, R U; Belnik, A P; Storozheva, Z I

    2008-07-01

    Experiments on adult Wistar rats showed that injection of beta-amyloid25-35 (2 microg) into Meynert basal nuclei caused long-term memory deficiency which was detected 24 days after this injection by the memory trace retrieval in conditioned passive avoidance reflex (CPAR). The effects of noopept, an original nootropic and neuroprotective dipeptide, on the severity of this cognitive deficiency were studied. Preventive (for 7 days before the injury) intraperitoneal injections of noopept in a dose of 0.5 mg/kg completely prevented mnestic disorders under conditions of this model. Noopept exhibited a significant normalizing effect, if the treatment was started 15 days after the injury, when neurodegenerative changes in the basal nuclei, cortex, and hippocampus were still acutely pronounced. The mechanisms of this effect of the drug are studied, including, in addition to the choline-positive effect, its multicomponent neuroprotective effect and stimulation of production of antibodies to beta-amyloid25-35. Noopept efficiency in many models of Alzheimer disease, its high bioavailability and low toxicity suggest this dipeptide for further studies as a potential agent for the treatment of this condition (initial and moderate phases).

  13. Systematic study of α decay of nuclei around the Z =82 , N =126 shell closures within the cluster-formation model and proximity potential 1977 formalism

    NASA Astrophysics Data System (ADS)

    Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua

    2018-04-01

    In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.

  14. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  15. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed anmore » analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.« less

  16. Study of hot thermally fissile nuclei using relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Quddus, Abdul; Naik, K. C.; Patra, S. K.

    2018-07-01

    We have studied the properties of hot 234,236U and 240Pu nuclei in the framework of relativistic mean field formalism. The recently developed FSUGarnet and IOPB-I parameter sets are implemented for the first time to deform nuclei at finite temperature. The results are compared with the well known NL3 set. The said isotopes are structurally important because of the thermally fissile nature of 233,235U and 239Pu as these nuclei (234,236U and 240Pu) are formed after the absorption of a thermal neutron, which undergoes fission. Here, we have evaluated the nuclear properties, such as shell correction energy, neutron-skin thickness, quadrupole and hexadecapole deformation parameters and asymmetry energy coefficient for these nuclei as a function of temperature.

  17. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  18. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... short chain 3-hydroxylacyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics (STAR-G) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  19. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  20. A new monitor set for the determination of neutron flux parameters in short-time k0-NAA

    NASA Astrophysics Data System (ADS)

    Kubešová, Marie; Kučera, Jan; Fikrle, Marek

    2011-11-01

    Multipurpose research reactors such as LVR-15 in Řež require monitoring of the neutron flux parameters (f, α) in each batch of samples analyzed when k0 standardization in NAA is to be used. The above parameters may change quite unpredictably, because experiments in channels adjacent to those used for NAA require an adjustment of the reactor operation parameters and/or active core configuration. For frequent monitoring of the neutron flux parameters the bare multi-monitor method is very convenient. The well-known Au-Zr tri-isotopic monitor set that provides a good tool for determining f and α after long-time irradiation is not optimal in case of short-time irradiation because only a low activity of the 95Zr radionuclide is formed. Therefore, several elements forming radionuclides with suitable half-lives and Q0 and Ēr parameters in a wide range of values were tested, namely 198Au, 56Mn, 88Rb, 128I, 139Ba, and 239U. As a result, an optimal mixture was selected consisting of Au, Mn, and Rb to form a well suited monitor set for irradiation at a thermal neutron fluence rate of 3×1017 m-2 s-1. The procedure of short-time INAA with the new monitor set for k0 standardization was successfully validated using the synthetic reference material SMELS 1 and several matrix reference materials (RMs) representing matrices of sample types frequently analyzed in our laboratory. The results were obtained using the Kayzero for Windows program.

  1. Neutron Spectroscopic Factors from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Tsang, M. B.

    2007-05-01

    We have extracted the ground state to ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with a minimum of assumptions. A three-body model with global optical potentials and standard geometry of n-potential is applied. For the 60 nuclei where modern shell model calculations are available, such analysis reproduces, to within 20%, the experimental spectroscopic factors for most nuclei. If we constraint the nucleon-target optical potential and the geometries of the bound neutron-wave function with the modern Hartree-Fock calculations, our deduced neutron spectroscopic factors are reduced by 30% on average.

  2. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  3. Covalent Binding with Neutrons on the Femto-scale

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.

    2017-06-01

    In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.

  4. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  5. Half-Lives of 101Rh and 108m Ag

    NASA Astrophysics Data System (ADS)

    Norman, Eric; Browne, Edgardo; Shugart, Howard

    2014-09-01

    Half-lives of short-lived nuclei can easily be measured by direct counting techniques, whereas those of long-lived naturally-occurring nuclei are usually determined by specific activity measurements. However, half-lives in the range of 1 - 1,000,000 years are notoriously difficult to determine. For example, published values for the half-life of 101Rh range from 3.0 +/- 0.4 years to 10 +/- 1 years, and for 108m Ag published values range from 127 +/- 21 years to 438 +/- 9 years. In order to resolve the issues of what the half-lives of these isotopes actually are, we set up two separate long-term gamma-ray counting experiments. Gamma-ray data were collected in time bins using high-purity Ge detectors and ORTEC PC-based data acquisition systems. We counted in this manner for a period of approximately 5 years for 101Rh and 3 years for 108mAg. In this talk we will describe the details of these experiments and will present the final results for the half-lives of 101Rh and 108mAg determined from these measurements. Half-lives of short-lived nuclei can easily be measured by direct counting techniques, whereas those of long-lived naturally-occurring nuclei are usually determined by specific activity measurements. However, half-lives in the range of 1 - 1,000,000 years are notoriously difficult to determine. For example, published values for the half-life of 101Rh range from 3.0 +/- 0.4 years to 10 +/- 1 years, and for 108m Ag published values range from 127 +/- 21 years to 438 +/- 9 years. In order to resolve the issues of what the half-lives of these isotopes actually are, we set up two separate long-term gamma-ray counting experiments. Gamma-ray data were collected in time bins using high-purity Ge detectors and ORTEC PC-based data acquisition systems. We counted in this manner for a period of approximately 5 years for 101Rh and 3 years for 108mAg. In this talk we will describe the details of these experiments and will present the final results for the half-lives of 101Rh

  6. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  7. Low-Spin States From Decay Studies in the Mass 80 Region

    PubMed Central

    Döring, J.; Aprahamian, A.; Wiescher, M.

    2000-01-01

    Neutron-deficient nuclei in the mass 80 region are known to exhibit strongly deformed ground states deduced mainly from yrast-state properties measured in-beam via heavy-ion fusion-evaporation reactions. Vibrational excitations and non-yrast states as well as their interplay with the observed rotational collectivity have been less studied to date within this mass region. Thus, several β-decay experiments have been performed to populate low-spin states in the neutron-deficient 80,84Y and 80,84Sr nuclei. An overview of excited 0+ states in Sr and Kr nuclei is given and conclusions about shape evolution at low-spins are presented. In general, the non-yrast states in even-even Sr nuclei show mainly vibration-like collectivity which evolves to rotational behavior with increasing spin and decreasing neutron number. PMID:27551586

  8. Strong Neutron Pairing in core+4n Nuclei.

    PubMed

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  9. Strong Neutron Pairing in core+4 n Nuclei

    NASA Astrophysics Data System (ADS)

    Revel, A.; Marqués, F. M.; Sorlin, O.; Aumann, T.; Caesar, C.; Holl, M.; Panin, V.; Vandebrouck, M.; Wamers, F.; Alvarez-Pol, H.; Atar, L.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Casarejos, E.; Catford, W. N.; Cederkäll, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Datta Pramanik, U.; Díaz Fernández, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nilsson, T.; Nociforo, C.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Röder, M.; Rossi, D.; Savran, D.; Scheit, H.; Simon, H.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Velho, P.; Volkov, V.; Wagner, A.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-04-01

    The emission of neutron pairs from the neutron-rich N =12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n -n correlations shows that the decay 19N (-1 p ) 18C* → 16C +n +n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21O (-1 n )20O*→18O +n +n , attributed to its formation through the knockout of a deeply bound neutron that breaks the 16O core and reduces the number of pairs.

  10. Effect of iron and zinc deficiency on short term memory in children.

    PubMed

    Umamaheswari, K; Bhaskaran, Mythily; Krishnamurthy, Gautham; Vasudevan, Hemamalini; Vasudevan, Kavita

    2011-04-01

    To evaluate the effect of iron and zinc deficiency on short term memory of children in the age group of 6-11 years and to assess the response to supplementation therapy. Interventional study. 100 children in the age group of 6-11 years (subdivided into 6-8 yr and 9-11 yr groups) from an urban corporation school. After collection of demographic data, the study children underwent hematological assessment which included serum iron, serum zinc, and hemoglobin estimation. Based on the results, they were divided into Iron deficient, Zinc deficient, and Combined deficiency groups. Verbal and nonverbal memory assessment was done in all the children. Iron (2mg/kg bodyweight in two divided doses) and zinc (5mg once-a-day) supplementation for a period of 3 months for children in the deficient group. All children with iron and zinc deficiency in both the age groups had memory deficits. Combined deficiency in 9-11 years group showed severe degree of affectation in verbal (P<0.01) and non-verbal memory (P<0.01), and improved after supplementation (P = 0.05 and P< 0.01, respectively). In 6-8 years group, only non-verbal form of memory (P =0.02) was affected, which improved after supplementation. Iron and zinc deficiency is associated with memory deficits in children. There is a marked improvement in memory after supplementation. Post supplementation IQ scores do not show significant improvement in deficient groups in 6-8 year olds.

  11. Isotope-Identifying neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  12. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Eric B.

    The neutrons emitted following the β decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the β-decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the time dependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticalitymore » calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved β-delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayed neutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality β-delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation« less

  13. Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

    NASA Astrophysics Data System (ADS)

    Egiyan, K. S.; Dashyan, N. B.; Sargsian, M. M.; Strikman, M. I.; Weinstein, L. B.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Avakian, H.; Baghdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Bultuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coltharp, P.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gevorgyan, N. G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Livingston, K.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-03-01

    The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 11.4 GeV2, the ratios exhibit two separate plateaus, at 1.52.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A=4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.

  14. Nucleon effective masses in neutron-rich matter

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Cai, Bao-Jun; Chen, Lie-Wen; Xu, Jun

    2018-03-01

    Various kinds of isovector nucleon effective masses are used in the literature to characterize the momentum/energy dependence of the nucleon symmetry potential or self-energy due to the space/time non-locality of the underlying isovector strong interaction in neutron-rich nucleonic matter. The multifaceted studies on nucleon isovector effective masses are multi-disciplinary in nature. Besides structures, masses and low-lying excited states of nuclei as well as nuclear reactions, studies of the isospin dependence of short-range correlations in nuclei from scatterings of high-energy electrons and protons on heavy nuclei also help understand nucleon effective masses especially the so-called E-mass in neutron-rich matter. A thorough understanding of all kinds of nucleon effective masses has multiple impacts on many interesting issues in both nuclear physics and astrophysics. Indeed, essentially all microscopic many-body theories and phenomenological models with various nuclear forces available in the literature have been used to calculate single-nucleon potentials and the associated nucleon effective masses in neutron-rich matter. There are also fundamental principles connecting different aspects and impacts of isovector strong interactions. In particular, the Hugenholtz-Van Hove theorem connects analytically nuclear symmetry energy with both isoscalar and isovector nucleon effective masses as well as their own momentum dependences. It also reveals how the isospin-quartic term in the equation of state of neutron-rich matter depends on the high-order momentum-derivatives of both isoscalar and isovector nucleon potentials. The Migdal-Luttinger theorem facilitates the extraction of nucleon E-mass and its isospin dependence from experimentally constrained single-nucleon momentum distributions. The momentum/energy dependence of the symmetry potential and the corresponding neutron-proton effective mass splitting also affect transport properties and the liquid-gas phase

  15. Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-11-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.

  16. Investigation of neutron interactions with Ge detectors

    NASA Astrophysics Data System (ADS)

    Baginova, Miloslava; Vojtyla, Pavol; Povinec, Pavel P.

    2018-07-01

    Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70Ge, 72Ge, 73Ge, 74Ge and 76Ge were well visible in the γ-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high γ-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source.

  17. Neutrons as Party Animals: An Analogy for Understanding Heavy-Element Fissility

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2012-12-01

    I teach a general education class on the history of nuclear physics and the Manhattan Project. About halfway through the course we come to the discovery of fission and Niels Bohr's insight that it is the rare isotope of uranium, U-235, which fissions under slow-neutron bombardment as opposed to the much more common U-238 isotope. As an "explanation" of the differing responses of the two isotopes to bombarding neutrons, I use the known (measured) masses of the various isotopes involved to compute the energies released upon neutron capture and then compare them to the fission barriers of the "compound" nuclei so formed (U-236 and U-239). The energy released in the (neutron + U-235) reaction exceeds the fission barrier by about one million electron-volts (1 MeV), while that for the (neutron + U-238) case falls about 1.6 MeV short. (The fission barriers are respectively about 5.7 and 6.5 MeV.)

  18. Short-lived K2S Molecules in Superionic Potassium Sulfide

    NASA Astrophysics Data System (ADS)

    Okeya, Yusuke; Tsumuraya, Kazuo

    2015-03-01

    The first principles molecular dynamics method allows us to elucidate the formation of short-lived K2S molecular states in superionic potassium sulfide. The covalent and the Coulomb bonds exist between the ionized mobile potassiums and the ionized immobile sulfurs. Both the bonds induces indirect covalent and indirect Coulomb attractions between the di-interstitial potassiums on the mid-sulfurs, which forms the short-lived K2S molecular states. The covalent electron density also exists between short-lived potassium dimers. The three attractions reduce Haven's ratios of the potassiums in the conductor. The molecule formation indicates the electronic state of the conductor is intermediate between the ionic and covalent crystals. The absence of the long-lived potassium dimers implies a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the potassiums in the sulfide. The incompletely ionized cations and anions reduce the Coulomb attractions between them which induces the sublattice melting of smaller size of the potassiums than the sulfurs.

  19. Superheavy nuclei from 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.

    2015-12-01

    The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.

  20. Morphological processing with deficient phonological short-term memory.

    PubMed

    Kavé, Gitit; Ze'ev, Hagit Bar; Lev, Anita

    2007-07-01

    This paper investigates the processing of Hebrew derivational morphology in an individual (S.E.) with deficient phonological short-term memory. In comparison to 10 age- and education-matched men, S.E. was impaired on digit span tasks and demonstrated no recency effect in word list recall. S.E. had low word retention span, but he exhibited phonological similarity and word length effects. His ability to make lexical decisions was intact. In a paired-associate test S.E. successfully learned semantically and morphologically related pairs but not phonologically related pairs, and his learning of nonwords was facilitated by the presence of Hebrew consonant roots. Semantic and morphological similarity enhanced immediate word recall. Results show that S.E. is capable of conducting morphological decomposition of Hebrew-derived words despite his phonological deficit, suggesting that transient maintenance of morphological constituents is independent of temporary storage and rehearsal of phonological codes, and that each is processed separately within short-term memory.

  1. 2013 Review of Neutron and Non-Neutron Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, N. E.

    2014-05-23

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and longlived nuclides, some alpha decay and double beta decay measurements for quasistable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from newmore » measurements on the very heavy (trans-meitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.« less

  2. Short stature due to SHOX deficiency: genotype, phenotype, and therapy.

    PubMed

    Binder, Gerhard

    2011-02-01

    SHOX deficiency is a frequent cause of short stature. The short stature homeobox-containing gene resides in the telomeric PAR1 region on the short arm of both sex chromosomes and escapes X inactivation. For this review, abstracts of 207 publications presented by PubMed for the search term 'SHOX' were screened. Heterozygote SHOX mutations (80% deletions) were detected in 2-15% of individuals with formerly idiopathic short stature, in 50-90% of individuals with Leri-Weill dyschondrosteosis, and in almost 100% of girls with Turner syndrome. Mutational analysis is primarily performed by MLPA analysis followed by gene sequencing if necessary. SHOX is a nuclear protein that binds to DNA and acts as a transcriptional activator. Orthologs are present in many vertebrates but not in rodents. Gene expression starting as early as 33 days postconception in humans is predominant in the mid portion of the buds and in the first and second pharyngeal arches. In the growth plate, hypertrophic chondrocytes express SHOX where it seems to have antiproliferative potency. The penetrance of SHOX deficiency is high, but its clinical expression is very variable becoming more pronounced with age and being more severe in females. Growth failure starts early during the first years of life and the height deficit present at preschool age seems not to deteriorate further. The mean adult height is -2.2 SDS. Auxological analysis of the body proportions (mesomelia), the presence of minor abnormalities, and the search for subtle radiographic signs are important keys to the diagnosis which has to be confirmed by genetic analysis. The growth-promoting effect of GH therapy approved for individuals with SHOX mutations seems to be equal to the effect seen in Turner syndrome. Copyright © 2011 S. Karger AG, Basel.

  3. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  4. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. II. Lightcurves and Spectra

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ˜107 s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ˜102-104 s after the BNS merger with luminosities of LX ˜ 1046-1048 erg s-1. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  5. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  6. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    NASA Astrophysics Data System (ADS)

    Patra, S. K.; Wu, Cheng-Li; Praharaj, C. R.; Gupta, Raj K.

    1999-05-01

    We have studied the structural properties of even-even, neutron deficient, Z = 114-126, superheavy nuclei in the mass region A ˜ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z = 80, 92, (114), 120 and 138, N = 138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z = 114 and N = 164 ˜ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z = 120 and N = 172 or N = 184 double shell closure is also discussed.

  7. β-decay spectroscopy of r-process nuclei with N = 126 at KISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.

    2014-05-02

    The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ∼ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and tomore » study their β-decay properties, which are also of interest for astrophysics. The isotopes of interest will be produced by multi-nucleon transfer reactions in heavy ion collisions (e.g. {sup 136}Xe projectile on {sup 198}Pt target). KISS will allow us to study unknown isotopes produced in weak reaction channels under low background conditions. We successfully extracted the stable {sup 56}Fe beam from KISS at the last commissioning on-line experiment with the extraction efficiency of 0.25% and beam purity of more than 98%. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.« less

  8. Neutron Capture Rates and the r-Process Abundance Pattern in Shocked Neutrino-Driven Winds

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Surman, Rebecca

    2009-10-01

    The r-process is an important process in nucleosynthesis in which nuclei will undergo rapid neutron captures. Models of the r-process require nuclear data such as neutron capture rates for thousands of individual nuclei, many of which lie far from stability. Among the potential sites for the r-process, and the one that we investigate, is the shocked neutrino-driven wind in core-collapse supernovae. Here we examine the importance of the neutron capture rates of specific, individual nuclei in the second r-process abundance peak occurring at A ˜ 130 for a range of parameterized neutrino-driven wind trajectories. Of specific interest are the nuclei whose capture rates affect the abundances of nuclei outside of the A ˜ 130 peak. We found that increasing the neutron capture rate for a number of nuclei including ^135In, ^132Sn, ^133Sb, ^137Sb, and ^136Te can produce changes in the resulting abundance pattern of up to 13%.

  9. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    NASA Astrophysics Data System (ADS)

    Konki, J.; Khuyagbaatar, J.; Uusitalo, J.; Greenlees, P. T.; Auranen, K.; Badran, H.; Block, M.; Briselet, R.; Cox, D. M.; Dasgupta, M.; Di Nitto, A.; Düllmann, Ch. E.; Grahn, T.; Hauschild, K.; Herzán, A.; Herzberg, R.-D.; Heßberger, F. P.; Hinde, D. J.; Julin, R.; Juutinen, S.; Jäger, E.; Kindler, B.; Krier, J.; Leino, M.; Lommel, B.; Lopez-Martens, A.; Luong, D. H.; Mallaburn, M.; Nishio, K.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Rezynkina, K.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Sulignano, B.; Theisen, Ch.; Ward, A.; Yakushev, A.; Yakusheva, V.

    2017-01-01

    The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion-evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6 (2)s and 22-6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα = 8.19 (3)MeV and 8.09 (3)MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16 (6) and 0.04 (2) were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  10. Magnetic moments of light nuclei from lattice quantum chromodynamics

    DOE PAGES

    Beane, S.  R.; Chang, E.; Cohen, S.; ...

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m π ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron capturesmore » its dominant structure. Similarly a shell-model-like moment is found for the triton, μ 3H ~ μ p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less

  11. Open sd-shell nuclei from first principles

    DOE PAGES

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  12. Open sd-shell nuclei from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  13. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    PubMed

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P < .001). No patients in groups 3 through 5 who had MRI after 12 months of age (when 95% adult size of ONs is attained) had ONs <2.9 mm 2 . Visual acuity correlated significantly with ON size (P < .01). Magnetic resonance imaging of the ONs with cross-sectional area <2.9 mm 2 in a short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  14. Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.

    2016-12-01

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.

  15. β-Decay Half-Lives of Co76,77, Ni79,80, and Cu81: Experimental Indication of a Doubly Magic Ni78

    NASA Astrophysics Data System (ADS)

    Xu, Z. Y.; Nishimura, S.; Lorusso, G.; Browne, F.; Doornenbal, P.; Gey, G.; Jung, H.-S.; Li, Z.; Niikura, M.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Baba, H.; Franchoo, S.; Isobe, T.; John, P. R.; Kojouharov, I.; Kubono, S.; Kurz, N.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Şahin, E.; Sakurai, H.; Schaffner, H.; Stefan, I. G.; Suzuki, D.; Taniuchi, R.; Werner, V.

    2014-07-01

    The half-lives of 20 neutron-rich nuclei with Z =27-30 have been measured at the RIBF, including five new half-lives of Co76(21.7-4.9+6.5 ms), Co77(13.0-4.3+7.2 ms), Ni79(43.0-7.5+8.6 ms), Ni80(23.9-17.2+26.0 ms), and Cu81(73.2±6.8 ms). In addition, the half-lives of Co73-75, Ni74-78, Cu78-80, and Zn80-82 were determined with higher precision than previous works. Based on these new results, a systematic study of the β-decay half-lives has been carried out, which suggests a sizable magicity for both the proton number Z =28 and the neutron number N=50 in Ni78.

  16. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  17. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  18. Study of Even-Even/Odd-Even/Odd-Odd Nuclei in Zn-Ga-Ge Region in the Proton-Neutron IBM/IBFM/IBFFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, N.; Brant, S.; Zuffi, L.

    We study the even-even, odd-even and odd-odd nuclei in the region including Zn-Ga-Ge in the proton-neutron IBM and the models derived from it: IBM2, IBFM2, IBFFM2. We describe {sup 67}Ga, {sup 65}Zn, and {sup 68}Ga by coupling odd particles to a boson core {sup 66}Zn. We also calculate the beta{sup +}-decay rates among {sup 68}Ge, {sup 68}Ga and {sup 68}Zn.

  19. β decays of the heaviest N =Z -1 nuclei and proton instability of 97In

    NASA Astrophysics Data System (ADS)

    Park, J.; Krücken, R.; Lubos, D.; Gernhäuser, R.; Lewitowicz, M.; Nishimura, S.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; Čeliković, I.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Grawe, H.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Moschner, K.; Murai, D.; Nishizuka, I.; Patel, Z.; Rajabali, M. M.; Rice, S.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z. Y.

    2018-05-01

    We report on new or more precise half-lives, β -decay endpoint energies, and β -delayed proton emission branching ratios of 91Pd, 95Cd, 97In, and 99Sn. The measured values are consistent with known mirror transitions in lighter Tz=-1 /2 nuclei, shell-model calculations, and various mass models. In addition to the β -decaying (9 /2+) ground state, circumstantial evidence for a short-lived, proton-emitting isomer with spin (1 /2-) was found in 97In. Based on the experimental data, a semiempirical theory on proton emission, and shell-model calculations, the proton separation energy of the 97In ground state was determined to be -0.10 ±0.19 MeV. The existence of the short-lived, proton-unstable (1 /2-) isomer in 97In establishes 96Cd as an r p -process waiting point.

  20. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, D. V., E-mail: isaev@omrb.pnpi.spb.ru; Filatov, M. V.; Kuklin, A. I.

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure ofmore » the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.« less

  1. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  2. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  3. Radio Constraints on Long-lived Magnetar Remnants in Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fong, W.; Metzger, B. D.; Berger, E.; Özel, F.

    2016-11-01

    The merger of a neutron star (NS) binary may result in the formation of a rapidly spinning magnetar. The magnetar can potentially survive for seconds or longer as a supramassive NS before collapsing to a black hole if, indeed, it collapses at all. During this process, a fraction of the magnetar’s rotational energy of ˜1053 erg is transferred via magnetic spin-down to the surrounding ejecta. The resulting interaction between the ejecta and the surrounding circumburst medium powers a year-long or greater synchrotron radio transient. We present a search for radio emission with the Very Large Array following nine short-duration gamma-ray bursts (GRBs) at rest-frame times of ≈1.3-7.6 yr after the bursts, focusing on those events that exhibit early-time excess X-ray emission that may signify the presence of magnetars. We place upper limits of ≲18-32 μJy on the 6.0 GHz radio emission, corresponding to spectral luminosities of ≲(0.05-8.3) × 1039 erg s-1. Comparing these limits to the predicted radio emission from a long-lived remnant and incorporating measurements of the circumburst densities from broadband modeling of short GRB afterglows, we rule out a stable magnetar with an energy of 1053 erg for half of the events in our sample. A supramassive remnant that injects a lower rotational energy of 1052 erg is ruled out for a single event, GRB 050724A. This study represents the deepest and most extensive search for long-term radio emission following short GRBs to date, and thus the most stringent limits placed on the physical properties of magnetars associated with short GRBs from radio observations.

  4. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    NASA Astrophysics Data System (ADS)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  5. Development of New High Resolution Neutron Detector

    NASA Astrophysics Data System (ADS)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  6. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  7. Vitamin D deficiency in cord plasma from multiethnic subjects living in the tropics.

    PubMed

    Halm, Brunhild M; Lai, Jennifer F; Pagano, Ian; Cooney, William; Soon, Reni A; Franke, Adrian A

    2013-01-01

    Vitamin D deficiency is commonly reported in high-latitude areas and in dark-pigmented individuals. However, nothing is known about vitamin D in cord blood from multiethnic subjects living in the tropics. Our study objective was to determine the prevalence of vitamin D deficiency in summer and winter in cord blood from multiethnic individuals in Hawai'i where sufficient sun irradiance occurs year-round for cutaneous vitamin D production. 25-Hydroxyvitamin D (25(OH)D) levels were quantified by enzyme immunoassay in 100 cord plasma samples from apparently healthy full-term newborns and their mothers. Stratification was performed by birth season and ethnicity. Mean 25(OH)D levels were 24.5 ng/mL (9.1-68.3 ng/mL). Overall, 28% of samples were vitamin D deficient (<20 ng/mL) and 50% were insufficient (20-30 ng/mL). 25(OH)D levels (ng/mL) were highest in Caucasians (30.5, n = 19), followed by Asians (25.1, n = 43), Hispanics (21.5, n = 3), Pacific Islanders (20.0, n = 25), and African Americans (19.6, n = 2). Differences among groups were significant (p = 0.008). Cord plasmas from summer versus winter were higher overall (p = 0.001) and among Asians (p = 0.0003). Seasonal changes were correlated with sun irradiance overall (r = 0.43, p = 0.0001), among Caucasians (r = 0.45, p = 0.05), and among Asians (r = 0.45, p = 0.0001). Our results suggest that prenatal supplement recommendations of 400 IU vitamin D/day do not protect against vitamin D deficiency, even in subjects living in the tropics where ample sun irradiance exists for cutaneous vitamin D synthesis. The high prevalence of vitamin D deficiency we observed emphasizes the necessity for regular 25(OH)D monitoring, particularly during pregnancy and lactation, in dark-pigmented individuals, and during winter months.

  8. Neutron-powered precursors of kilonovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Bauswein, Andreas; Goriely, Stephane; Kasen, Daniel

    2015-01-01

    The merger of binary neutron stars (NSs) ejects a small quantity of neutron-rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ˜10-4 M⊙) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here, we show that the β-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a time-scale of ˜ few hours following merger at U-band magnitude ˜22 (for an assumed distance of 200 Mpc). The high luminosity and blue colours of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast-moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground-based telescopes.

  9. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  10. Experimental study of the lifetime and phase transition in neutron-rich Zr 98 ,100 ,102

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Korten, W.; Zielińska, M.; Salsac, M.-D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Mach, H.; Fraile, L. M.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.

    2017-11-01

    Rapid shape changes are observed for neutron-rich nuclei with A around 100. In particular, a sudden onset of ground-state deformation is observed in the Zr and Sr isotopic chains at N = 60: Low-lying states in N ≤58 nuclei are nearly spherical, while those with N ≥60 have a rotational character. Nuclear lifetimes as short as a few picoseconds can be measured using fast-timing techniques with LaBr3(Ce) scintillators, yielding a key ingredient in the systematic study of the shape evolution in this region. We used neutron-induced fission of 241Pu and 235U to study lifetimes of excited states in fission fragments in the A ˜100 region with the EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin. In particular, we applied the generalized centroid difference method to deduce lifetimes of low-lying states for the nuclei 98Zr (N = 58), 100Zr, and 102Zr (N ≥60 ). The results are discussed in the context of the presumed phase transition in the Zr chain by comparing the experimental transition strengths with the theoretical calculations using the interacting boson model and the Monte Carlo shell model.

  11. Matter distribution and spin-orbit force in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Co', G.; Anguiano, M.; De Donno, V.; Lallena, A. M.

    2018-03-01

    We investigate the possibility that some nuclei show density distributions with a depletion in the center, a semibubble structure, by using a Hartree-Fock plus Bardeen-Cooper-Schrieffer approach. We separately study the proton, neutron, and matter distributions in 37 spherical nuclei mainly in the s -d shell region. We found a relation between the semibubble structure and the energy splitting of spin-orbit partner single particle levels. The presence of semibubble structure reduces this splitting, and we study its consequences on the excitation spectrum of the nuclei under investigation by using a quasiparticle random-phase-approximation approach. The excitation energies of the low-lying 4+ states can be related to the presence of semibubble structure in nuclei.

  12. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  13. Shape evolution for neutron-deficient bismuth isotopes studied by resonance laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Molkanov, P. L.; Barzakh, A. E.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.

    2017-11-01

    In-source laser spectroscopy experiments for bismuth isotopes at the 306.77 nm atomic transition has been carried out at the IRIS (Investigation of Radioactive Isotopes at Synchrocyclotron) facility of Petersburg Nuclear Physics Institute. New data on isotope shifts for 189-198,211Bi isotopes and isomers have been obtained. The changes in the mean-square charge radii were deduced. The large isomer shift has been observed for the intruder isomer states of Bi with spin I = 1/2 ( A = 193, 195, 197). This testifies to the shape coexistence in these nuclei with the intruder isomer states more deformed than the ground states. Marked deviation from the nearly spherical behavior for ground states of the even-neutron Bi isotopes at N < 109 is demonstrated, in contrast to the Pb and Tl isotopic chains.

  14. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Maurer

    2008-09-18

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the fluxmore » of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented.« less

  15. Rate of resistance evolution and polymorphism in long- and short-lived hosts.

    PubMed

    Bruns, Emily; Hood, Michael E; Antonovics, Janis

    2015-02-01

    Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Study of the population of neutron-rich heavy nuclei in the A 200 mass region via multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Fioretto, E.; Corradi, L.; Galtarossa, F.; Szilner, S.; Montanari, D.; Mijatović, T.; Pollarolo, G.; Jia, H. M.; Ackermann, D.; Bourgin, D.; Colucci, G.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; John, P. R.; Milin, M.; Montagnoli, G.; Skukan, N.; Scarlassara, F.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.

    2017-11-01

    Multineutron and multiproton transfer channels, populated in the inverse kinematics reaction 197Au+130Te at Elab=1.07 GeV, were measured at Laboratori Nazionali di Legnaro using the presently heaviest ion beam delivered by the PIAVE-ALPI accelerator complex and detecting both projectile-like and targetlike ions. To this end the large solid angle magnetic spectrometer PRISMA was coupled to a second arm for the detection of the heavy fragments in kinematic coincidence with the light ones selected and identified with the spectrometer. The data analysis is still in progress and will allow to compare the yields of both light and heavy partner with theoretical predictions performed with the GRAZING code to get quantitative information on transfer channels and the effect of evaporation and fission on the production rate of primary fragments. The mass integrated Z distribution, extracted from the experimental data, evidenced the population of proton pickup channels that, in conjunction with the neutron stripping ones from the 130Te, open the path for the production of neutron-rich heavy nuclei. In the following, we will present some preliminary results as well as details on the experimental configuration and perspectives for future investigations in the neutron-rich heavy region.

  17. Soot and short-lived pollutants provide political opportunity

    NASA Astrophysics Data System (ADS)

    Victor, David G.; Zaelke, Durwood; Ramanathan, Veerabhadran

    2015-09-01

    Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process.

  18. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2018-05-01

    The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.

  19. Half-lives of α -decaying nuclei in the medium-mass region within the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Wu, Shuangxiang; Qian, Yibin; Ren, Zhongzhou

    2018-05-01

    The α -decay half-lives of even-even nuclei from Sm to Th are systematically studied based on the transfer matrix method. For the nuclear potential, a type of cosh-parametrized form is applied to calculate the penetration probability. Through a least-squares fit to experimental half-lives, we optimize the parameters in the potential and the α preformation factor P0. During this process, P0 is treated as a constant for each parent nucleus. Eventually, the calculated half-lives are found to agree well with the experimental data, which verifies the accuracy of the present approach. Furthermore, in recent studies, P0 is regulated by the shell and paring effects plus the nuclear deformation. To this end, P0 is here associated with the structural quantity, i.e., the microscopic correction of nuclear mass (Emic). In this way, the agreement between theory and experiment is greatly improved by more than 20%, validating the appropriate treatment of P0 in the scheme of Emic.

  20. Measurement of the most exotic beta-delayed neutron emitters at N=50 and N=126

    NASA Astrophysics Data System (ADS)

    Dillmann, Iris

    2017-09-01

    Beta-delayed neutron (βn)-emission will be the dominant decay mechanism of neutron-rich nuclei and plays an important role in the stellar nucleosynthesis of heavy elements in the ``r process''. It leads to a detour of the material β-decaying back to stability and the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. Thus the neutron branching ratio of very neutron-rich isotopes is a crucial parameter in astrophysical simulations. In addition, β-decay half-lives can be deduced from the time-dependent detection of βn's. I will talk about two recent experimental campaigns. The neutron detector BELEN was used at GSI Darmstadt to measure half-lives and neutron-branching ratios of the heaviest presently accessible βn-emitters at N=126. For isotopes between 204Au and 220Bi nine half-lives and eight neutron-branching ratios were measured for the first time and provide an important input for benchmarking theoretical models in this mass region. Its successor is the BRIKEN detector (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications''), the most efficient neutron detector used so far for nuclear structure studies. In conjunction with two clover detectors and the ``Advanced Implantation Detector Array'' (AIDA) the setup has been used a few months ago to measure the most neutron-rich isotopes around 78Ni, 132Sn, and the Rare Earth Region. Some preliminary results are shown from the campaign covering the 78Ni region where the neutron-branching ratio of 78Ni and 28 more isotopes were measured for the first time, as well as the half-lives of 20 isotopes. The BRIKEN campaign aims to (re-)measure almost all βn-emitters between 76Co and 167Eu, many of them for the first time. An extension of the campaign to lighter masses is planned. This work has been supported by the NSERC and NRC in Canada, the US DOE, the Spanish

  1. Decay of 201-203Ra and 200-202Fr

    NASA Astrophysics Data System (ADS)

    Kalaninová, Z.; Antalic, S.; Andreyev, A. N.; Heßberger, F. P.; Ackermann, D.; Andel, B.; Bianco, L.; Hofmann, S.; Huyse, M.; Kindler, B.; Lommel, B.; Mann, R.; Page, R. D.; Sapple, P. J.; Thomson, J.; Van Duppen, P.; Venhart, M.

    2014-05-01

    Decay properties of the neutron-deficient nuclides 201-203Ra and 200-202Fr were investigated using α- and γ-decay spectroscopy. The nuclei were produced in fusion-evaporation reactions of 56Fe projectiles with enriched 147Sm and 149Sm targets at the velocity filter SHIP at GSI in Darmstadt (Germany). The α decay from the (3/2-) state in 201Ra was identified with an energy Eα=7842(12) keV and half-life T1/2=8-4+40 ms. Ambiguous decay properties for 202Ra from previous measurements were clarified by remeasuring with significantly improved precision, resulting in values of Eα=7722(7) keV and T1/2=3.8-0.8+1.3 ms. New short-lived isomeric states were identified in 200Fr and 201Fr with half-lives of 0.6-0.2+0.5 μs and 0.7-0.2+0.5 μs, respectively. A tentative spin and parity of 13/2+ were assigned to the latter. One event attributed to β-delayed fission of 200Fr was observed.

  2. Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Bruce D.; Finn, Erin C.; Friese, Judah I.

    2013-03-01

    Due to the emerging potential for trafficking of special nuclear material, research programs are investigating current capabilities of commercially available portable gamma ray detection systems. Presented in this paper are the results of three different portable high-purity germanium (HPGe) detectors used to identify short-lived fission products generated from thermal neutron interrogation of small samples of highly enriched uranium. Samples were irradiated at the Washington State University (WSU) Nuclear Radiation Center’s 1MW TRIGA reactor. The three portable, HPGe detectors used were the ORTEC MicroDetective, the ORTEC Detective, and the Canberra Falcon. Canberra’s GENIE-2000 software was used to analyze the spectral datamore » collected from each detector. Ultimately, these three portable detectors were able to identify a large range of fission products showing potential for material discrimination.« less

  3. Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2017-10-01

    While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.

  4. Early solar system. Stellar origin of the ¹⁸²Hf cosmochronometer and the presolar history of solar system matter.

    PubMed

    Lugaro, Maria; Heger, Alexander; Osrin, Dean; Goriely, Stephane; Zuber, Kai; Karakas, Amanda I; Gibson, Brad K; Doherty, Carolyn L; Lattanzio, John C; Ott, Ulrich

    2014-08-08

    Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for (182)Hf (half-life = 8.9 million years) and (129)I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces (182)Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ~100 million years and ~30 million years, respectively, before the formation of the Sun. Copyright © 2014, American Association for the Advancement of Science.

  5. High prevalence of iodine deficiency in pregnant women living in adequate iodine area

    PubMed Central

    Mioto, Verônica Carneiro Borges; Monteiro, Ana Carolina de Castro Nassif Gomes; de Camargo, Rosalinda Yossie Asato; Borel, Andréia Rodrigues; Catarino, Regina Maria; Kobayashi, Sergio; Chammas, Maria Cristina; Marui, Suemi

    2018-01-01

    Objectives Iodine deficiency during pregnancy is associated with obstetric and neonatal adverse outcomes. Serum thyroglobulin (sTg) and thyroid volume (TV) are optional tools to urinary iodine concentration (UIC) for defining iodine status. This cross-sectional study aims to evaluate the iodine status of pregnant women living in iodine-adequate area by spot UIC and correlation with sTg, TV and thyroid function. Methods Two hundred and seventy-three pregnant women were evaluated at three trimesters. All had no previous thyroid disease, no iodine supplementation and negative thyroperoxidase and thyroglobulin antibodies. Thyroid function and sTg were measured using electrochemiluminescence immunoassays. TV was determined by ultrasonography; UIC was determined using a modified Sandell–Kolthoff method. Results Median UIC was 146 µg/L, being 52% iodine deficient and only 4% excessive. TSH values were 1.50 ± 0.92, 1.50 ± 0.92 and 1.91 ± 0.96 mIU/L, respectively, in each trimester (P = 0.001). sTg did not change significantly during trimesters with median 11.2 ng/mL and only 3.3% had above 40 ng/mL. Mean TV was 9.3 ± 3.4 mL, which positively correlated with body mass index, but not with sTg. Only 4.5% presented with goitre. When pregnant women were categorized as iodine deficient (UIC < 150 µg/L), adequate (≥150 and <250 µg/L) and excessive (≥250 µg/L), sTg, thyroid hormones and TV at each trimester showed no statistical differences. Conclusions Iodine deficiency was detected frequently in pregnant women living in iodine-adequate area. sTg concentration and TV did not correlate to UIC. Our observation also demonstrated that the Brazilian salt-iodization programme prevents deficiency, but does not maintain iodine status within adequate and recommended ranges for pregnant women. PMID:29700098

  6. High prevalence of iodine deficiency in pregnant women living in adequate iodine area.

    PubMed

    Mioto, Verônica Carneiro Borges; Monteiro, Ana Carolina de Castro Nassif Gomes; de Camargo, Rosalinda Yossie Asato; Borel, Andréia Rodrigues; Catarino, Regina Maria; Kobayashi, Sergio; Chammas, Maria Cristina; Marui, Suemi

    2018-05-01

    Iodine deficiency during pregnancy is associated with obstetric and neonatal adverse outcomes. Serum thyroglobulin (sTg) and thyroid volume (TV) are optional tools to urinary iodine concentration (UIC) for defining iodine status. This cross-sectional study aims to evaluate the iodine status of pregnant women living in iodine-adequate area by spot UIC and correlation with sTg, TV and thyroid function. Two hundred and seventy-three pregnant women were evaluated at three trimesters. All had no previous thyroid disease, no iodine supplementation and negative thyroperoxidase and thyroglobulin antibodies. Thyroid function and sTg were measured using electrochemiluminescence immunoassays. TV was determined by ultrasonography; UIC was determined using a modified Sandell-Kolthoff method. Median UIC was 146 µg/L, being 52% iodine deficient and only 4% excessive. TSH values were 1.50 ± 0.92, 1.50 ± 0.92 and 1.91 ± 0.96 mIU/L, respectively, in each trimester ( P  = 0.001). sTg did not change significantly during trimesters with median 11.2 ng/mL and only 3.3% had above 40 ng/mL. Mean TV was 9.3 ± 3.4 mL, which positively correlated with body mass index, but not with sTg. Only 4.5% presented with goitre.When pregnant women were categorized as iodine deficient (UIC < 150 µg/L), adequate (≥150 and <250 µg/L) and excessive (≥250 µg/L), sTg, thyroid hormones and TV at each trimester showed no statistical differences. Iodine deficiency was detected frequently in pregnant women living in iodine-adequate area. sTg concentration and TV did not correlate to UIC. Our observation also demonstrated that the Brazilian salt-iodization programme prevents deficiency, but does not maintain iodine status within adequate and recommended ranges for pregnant women. © 2018 The authors.

  7. Deformed shell model calculations of half lives for β+/EC decay and 2ν β+β+/β+EC/ECEC decay in medium-heavy N~Z nuclei

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Shukla, A.; Sahu, R.; Kota, V. K. B.

    2008-08-01

    The β+/EC half-lives of medium heavy N~Z nuclei with mass number A~64-80 are calculated within the deformed shell model (DSM) based on Hartree-Fock states by employing a modified Kuo interaction in (2p3/2,1f5/2,2p1/2,1g9/2) space. The DSM model has been quite successful in predicting many spectroscopic properties of N~Z medium heavy nuclei with A~64-80. The calculated β+/EC half-lives, for prolate and oblate shapes, compare well with the predictions of the calculations with Skyrme force by Sarriguren Going further, following recent searches, half-lives for 2ν β+β+/β+EC/ECEC decay for the nucleus Kr78 are calculated using DSM and the results compare well with QRPA predictions.

  8. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  9. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, Daniel M.; Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in amore » companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.« less

  10. Isomer spectroscopy of neutron-rich $$^{165,167}$$Tb

    DOE PAGES

    Gurgi, L. A.; Regan, P. H.; Soderstrom, P. -A.; ...

    2017-01-01

    We present information on the excited states in the prolate-deformed, neutron-rich nuclei 165,167Tb 100,102. The nuclei of interest were synthesised following in-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm 9Be target at the Radioactive Ion-Beam Factory (RIBF), RIKEN, Japan. The exotic nuclei were separated and identified event-by-event using the BigRIPS separator, with discrete energy gamma-ray decays from isomeric states with half-lives in the μs regime measured using the EURICA gamma-ray spectrometer. Metastable-state decays are identified in 165Tb and 167Tb and interpreted as arising from hindered E1 decay from the 72 –[523] single quasi-protonmore » Nilsson configuration to rotational states built on the 32 –[411] single quasi-proton ground state. Lastly, these data correspond to the first spectroscopic information in the heaviest, odd-A terbium isotopes reported to date and provide information on proton Nilsson configurations which reside close to the Fermi surface as the 170Dy doubly-midshell nucleus is approached.« less

  11. Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    NASA Astrophysics Data System (ADS)

    Xing, Y. M.; Li, K. A.; Zhang, Y. H.; Zhou, X. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Wanajo, S.; Kubono, S.; Martínez-Pinedo, G.; Sieverding, A.; Chen, R. J.; Shuai, P.; Fu, C. Y.; Yan, X. L.; Huang, W. J.; Xu, X.; Tang, X. D.; Xu, H. S.; Bao, T.; Chen, X. C.; Gao, B. S.; He, J. J.; Lam, Y. H.; Li, H. F.; Liu, J. H.; Ma, X. W.; Mao, R. S.; Si, M.; Sun, M. Z.; Tu, X. L.; Wang, Q.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, P.; Zhou, X.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Fröhlich, C.; Rauscher, T.; Thielemann, F.-K.; Sun, B. H.; Sun, Y.; Dai, A. C.; Xu, F. R.

    2018-06-01

    Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.

  12. Observation of new neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of 78Ni

    NASA Astrophysics Data System (ADS)

    Sumikama, T.; Nishimura, S.; Baba, H.; Browne, F.; Doornenbal, P.; Fukuda, N.; Franchoo, S.; Gey, G.; Inabe, N.; Isobe, T.; John, P. R.; Jung, H. S.; Kameda, D.; Kubo, T.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Morfouace, P.; Mengoni, D.; Napoli, D. R.; Niikura, M.; Nishibata, H.; Odahara, A.; Sahin, E.; Sakurai, H.; Söderström, P.-A.; Stefan, G. I.; Suzuki, D.; Suzuki, H.; Takeda, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Werner, V.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yoshinaga, K.

    2017-05-01

    Neutron-rich nuclei in the vicinity of 78Ni were produced using a 238U beam at the RIKEN Radioactive Isotope Beam Factory. The particle-identification plot for the in-flight fission fragments highlights the first observation of eight new isotopes: 73Mn, 76Fe, Co,7877, 80,81,82Ni, and 83Cu. Although the β -decay half-lives of 77Co and 80Ni were recently reported by Xu et al. [Phys. Rev. Lett. 113, 032505 (2014)], 10.1103/PhysRevLett.113.032505 using data from the same experiment, the current work provides the first direct, quantitative evidence for the existence of these isotopes. The experimental production cross sections are reproduced in a satisfactory manner by theoretical predictions. An odd-even staggering of the cross sections was observed, and the effect appears to become more pronounced for the most exotic nuclei that were investigated. The staggering effect was interpreted as an increase of the neutron-evaporation probability for odd-N isotopes, owing to the decrease of the neutron-separation energy, Sn. The predicted cross section for 80Ni is significantly overestimated, which may be related to a weak binding of the neutron pair above the N =50 shell closure.

  13. Nuclear structure of the odd-neutron radon isotopes radon-203,205,207

    NASA Astrophysics Data System (ADS)

    Novak, John R.

    sequence. A possible explanation for the lack of such long-lived isomers in the odd-A isotopes is the deformation-driving effects of the odd neutron, allowing additional configuration mixing and leading to increased collectivity at higher spin. A cascade of magnetic dipole transitions was observed in 205Rn and interpreted in terms of the shears mechanism. Its assigned configuration is the ν(i13/2-1) ⊗ π( i13/22). A short cascade of low-energy transitions was observed in 203Rn, but the shortness of the cascade and lack of other evidence precludes a shears band assignment for this sequence at this time. Such a band was not observed in 207Rn, which may be due to the fact that its core is not sufficiently polarized to allow the perpendicular coupling of the proton and neutron angular momentum vectors required for the manifestation of a shears band structure. A series of IBM and IBFM calculations were carried out in order to interpret the structure of the light radon nuclei in terms of a collective model. Excitation energies for the low-lying levels in the series of even- even isotopes 198-206Rn are well reproduced by the IBM predictions. Good agreement is also obtained between the IBFM calculations and the data obtained during the course of this work for the ΔI = 2 sequence built on the 13/2+ states in 203Rn and 205 Rn.

  14. Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary Paul

    Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the

  15. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; ...

    2012-02-01

    We present new, high-Q 2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  16. Vitamin A deficiency in the Sudan: a call for a surveillance system.

    PubMed

    el Bushra, H E

    1992-05-01

    This short review summarizes all the published and unpublished reports on vitamin A deficiency in the Sudan in the last four decades. Different local terms used by people to indicate vitamin A deficiency were enlisted. There is evidence that vitamin A deficiency is a public health problem in eastern Sudan and among communities from western and southern Sudan living around Greater Khartoum, who were displaced from their homelands because of drought, famine conditions and civil unrest. There are reports indicative of vitamin A deficiency problem in the central and the far western provinces. There were no reports from the northern provinces. The need for a surveillance system was discussed.

  17. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keek, L.; Heger, A., E-mail: laurens.keek@nasa.gov

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events drivenmore » by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.« less

  18. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-Driven Convection

    NASA Technical Reports Server (NTRS)

    Keek, L.; Heger, A.

    2017-01-01

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of approximately 30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  19. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    NASA Astrophysics Data System (ADS)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  20. Cross Section Measurements of the Radioactive 107Pd and Stable 105,108Pd Nuclei at J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Kimura, A.; Kitatani, F.; Ohta, M.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Hirose, K.; Kin, T.; Koizumi, M.; Oshima, M.; Toh, Y.; Kino, K.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Katabuchi, T.; Mizumoto, M.; Igashira, M.; Hori, J.; Fujii, T.; Fukutani, S.; Takamiya, K.

    2014-05-01

    The measurements of the neutron-capture cross sections were performed for the radioactive 107Pd and stable 105,108Pd nuclei by the time-of flight method using an apparatus called “Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI)” installed at the neutron Beam Line No.4 of the Materials and Life science experimental Facility (MLF) in the J-PARC. The neutron-capture cross sections of 107Pd and 105,108Pd have been measured in the low energy region from the thermal to a few hundreds eV. From the measurements, new information was obtained for some resonances of these Pd nuclei.

  1. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  2. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  3. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  4. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  5. IGF-1 deficiency causes atrophic changes associated with upregulation of VGluT1 and downregulation of MEF2 transcription factors in the mouse cochlear nuclei.

    PubMed

    Fuentes-Santamaría, V; Alvarado, J C; Rodríguez-de la Rosa, L; Murillo-Cuesta, S; Contreras, J; Juiz, J M; Varela-Nieto, I

    2016-03-01

    Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.

  6. Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn

    NASA Astrophysics Data System (ADS)

    Gargano, A.; Coraggio, L.; Itaco, N.

    2017-09-01

    This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.

  7. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products tomore » the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.« less

  8. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  9. Growth and adult height in GH-treated children with nonacquired GH deficiency and idiopathic short stature: the influence of pituitary magnetic resonance imaging findings.

    PubMed

    Coutant, R; Rouleau, S; Despert, F; Magontier, N; Loisel, D; Limal, J M

    2001-10-01

    We analyzed the final height of 146 short children with either nonacquired GH deficiency or idiopathic short stature. Our purpose was 1) to assess growth according to the pituitary magnetic resonance imaging findings in the 63 GH-treated children with GH deficiency and 2) to compare the growth of the GH-deficient patients with normal magnetic resonance imaging (n = 48) to that of 32 treated and 51 untreated children with idiopathic short stature (GH peak to provocative tests >10 microg/liter). The mean GH dose was 0.44 IU/kg.wk (0.15 mg/kg.wk), given for a mean duration of 4.6 yr. Among the GH-deficient children, 15 had hypothalamic-pituitary abnormalities (stalk agenesis), all with total GH deficiency (GH peak <5 microg/liter). They were significantly shorter and younger at the time of diagnosis than those with normal magnetic resonance imaging, had better catch-up growth (+2.7 +/- 0.9 vs. +1.3 +/- 0.8 SD score; P < 0.01), and reached greater final height (-1.1 +/- 1.0 vs. -1.7 +/- 1.0 SD score; P < 0.05). Among patients with normal magnetic resonance imaging, there was no difference in catch-up growth and final height between partial and total GH deficiencies. GH-deficient subjects with normal magnetic resonance imaging and treated and untreated patients with idiopathic short stature had comparable auxological characteristics, age at evaluation, and target height. Although they had different catch-up growth (+1.3 +/- 0.8, +0.9 +/- 0.6, and +0.7 +/- 0.9 SD score, respectively; P < 0.01, by ANOVA), these patients reached a similar final height (-1.7 +/- 1.0, -2.1 +/- 0.8, and -2.1 +/- 1.0 SD score, respectively; P = 0.13). Pituitary magnetic resonance imaging findings show the heterogeneity within the group of nonacquired GH deficiency and help to predict the response to GH treatment in these patients. The similarities in growth between the GH-deficient children with normal magnetic resonance imaging and those with idiopathic short stature suggest that the short

  10. Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less

  11. Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation

    DOE PAGES

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...

    2016-12-15

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less

  12. Fine Structure of Beta Decay Strength Function and Anisotropy of Isovector Nuclear Dencity Component Oscillations in Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.

    2018-05-01

    The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.

  13. Detection of Neutrons with Scintillation Counters

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1948-11-01

    Detection of slow neutrons by: detection of single gamma rays following capture by cadmium or mercury; detection of more than one gamma ray by observing coincidences after capture; detection of heavy charged particles after capture in lithium or baron nuclei; possible use of anthracene for counting fast neutrons investigated briefly.

  14. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  15. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  16. An overview of DANCE: a 4II BaF[2] detector for neutron capture measurements at LANSCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.

    2004-01-01

    The Detector for Advanced Neutron Capture experiments (DANCE) is a 162-element, 4{pi} BaF{sub 2} array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as 1 mg. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. Up to now, except for a few long-lived nuclides there are essentially no differential capture measurements on radioactive nuclei. The DANCE array is located at the Lujan Neutron Scattering Center atmore » LANSCE, which is a continuous-spectrum neutron source with useable energies from below thermal to about 100 keV. Data acquisition is done with 320 fast waveform digitizers. The design and initial performance results, including background minimization, will be discussed.« less

  17. Systematization of α-decaying nuclei based on shell structures: The case of odd-even and odd-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, Ozan; Kholmetskii, Alexander; Arık, Metin

    In previous studies, we provided a novel systematization of α-decaying even-even and even-odd nuclei starting with the classically adopted mechanism [T. Yarman et al., Eur. Phys. J. A 52 (2016) 140; Eur. Phys. J. A 53 (2017) 4]. Knowing beforehand the measured decay half-life, we had taken as a parameter the probability of the α-particle as being first born in a unit period of time, within the parent nucleus before it is emitted out. We thence developed a scaffold based on shell properties of families composed of “alike nuclei”. Along the same line, we now present a systematization of odd-even (OE) as well as odd-odd (OO) nuclei. We apply our approach further to the investigation of the effect of pairing (e.g., the effect when the number of nucleons is increased by one neutron), and that of unpairing (e.g., the effect when the number of nucleons is decreased by one neutron); thus it becomes an even number for the case of odd-even nuclei (Case OE), and an odd number in the case of odd-odd nuclei (Case OO). For the first case (OE), we pick the exemplar set 161Re, 217Fr, 243Bk, 263Db; where we delineate by, respectively, Re, Fr, Bk, and Db all of the odd-even or odd-odd isotopes that neighbor the four mentioned odd-even isotopes on the proposed scaffold. We proceed in the same way for the second case (OO). Thus, we choose the exemplar set of odd-odd nuclei 172Ir, 218Ac, 244Es. We then gather all of the Ir, Ac, and Es odd-odd and odd-even isotopes that neighbor the three mentioned odd-odd isotopes on the proposed scaffold. We show that, in the former case, pairing, as expected, generally increases stability of the given nucleus; and in the latter case, unpairing works in just the opposite direction — i.e., it generally increases instability. We disclose “stability peaks” versus Z for both sets of nuclei, we tackle here. Furthermore, we present a study to highlight an outlook of “odd-A nuclei” at hand. Contrary to the general expectation, we unveil no

  18. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  19. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE PAGES

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; ...

    2016-06-23

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  20. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  1. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  2. The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817

    NASA Astrophysics Data System (ADS)

    Ai, Shunke; Gao, He; Dai, Zi-Gao; Wu, Xue-Feng; Li, Ang; Zhang, Bing; Li, Mu-Zi

    2018-06-01

    Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10‑3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ∼1014 G. If the ellipticity is smaller than 10‑4, B p is constrained to the level of ∼109–1011 G. These conclusions weakly depend on the adoption of the NS equation of state.

  3. A weight limit emerges for neutron stars

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  4. Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

    PubMed Central

    Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie

    2016-01-01

    Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841

  5. Dipole response of neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Adrich, P.; Boretzky, K.; Fallot, M.; Aumann, T.; Cortina-Gil, D.; Datta Pramanik, U.; Elze, Th. W.; Emling, H.; Geissel, H.; Hellstroem, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Leifels, Y.; Nociforo, C.; Palit, R.; Simon, H.; Surowka, G.; Sümmerer, K.; Typel, S.; Walus, W.

    2007-05-01

    The neutron-rich isotopes 129-133Sn were studied in a Coulomb excitation experiment at about 500 AMeV using the FRS-LAND setup at GSI. From the exclusive measurement of all projectile-like particles following the excitation and decay of the projectile in a high-Z target, the energy differential cross section can be extracted. At these beam energies dipole transitions are dominating, and within the semi-classical approach the Coulomb excitation cross sections can be transformed into photoabsorption cross sections. In contrast to stable Sn nuclei, a substantial fraction of dipole strength is observed at energies below the giant dipole resonance (GDR). For 130Sn and 132Sn this strength is located in a peak-like structure around 10 MeV excitation energy and exhibits a few percent of the Thomas-Reiche Kuhn (TRK) sum-rule strength. Several calculations predict the appearance of dipole strength at low excitation energies in neutron-rich nuclei. This low-lying strength is often referred to as pygmy dipole resonance (PDR) and, in a macroscopic picture, is discussed in terms of a collective oscillation of excess neutrons versus the core nucleons. Moreover, a sharp rise is observed at the neutron separation threshold around 5 MeV for the odd isotopes. A possible contribution of 'threshold strength', which can be described within the direct-breakup model is discussed. The results for the neutron-rich Sn isotopes are confronted with results on stable nuclei investigated in experiments using real photons.

  6. Constraints on Coulomb energy, neutron skin thickness in 208Pb, and symmetry energy

    NASA Astrophysics Data System (ADS)

    Dong, J. M.; Wang, L. J.; Zuo, W.; Gu, J. Z.

    2018-03-01

    The charge-symmetry-breaking (CSB) effect in a nuclear medium that gives rise to the first-order symmetry energy in finite nuclei is discussed in detail in the present paper. For heavy and superheavy nuclei with large neutron excesses, it should be nonnegligible in high-precision mass predictions, and importantly it affects the stability of these nuclei. Combined with this CSB effect, the Coulomb energy is constrained by using the experimental Coulomb displacement energy of mirror nuclei, and then the mass-dependent symmetry energy coefficients of heavy nuclei are reextracted with the experimental β--decay energies of heavy odd-A nuclei and with the experimental mass differences. Based on these results, we probe the neutron skin thickness Δ Rn p of 208Pb and the density-dependent symmetry energy coefficient of nuclear matter. Δ Rn p in 208Pb is found to be 0.158 ±0.014 fm , and the slopes L of the symmetry energy coefficient at densities of ρ =0.16 and ρ =0.11 fm-3 are estimated to be 42 ±8 and 42 ±3 MeV , respectively. These results would be meaningful to discriminate between the models and the predictions that are relevant for the investigations on properties of nuclei and of neutron stars.

  7. Recent progress in the studies of neutron-rich and high-$Z$ systems within the covariant density functional theory

    DOE PAGES

    Afanasjev, Anatoli V.; Agbemava, S. E.; Ray, D.; ...

    2017-01-01

    Here, the analysis of statistical and systematic uncertainties and their propagation to nuclear extremes has been performed. Two extremes of nuclear landscape (neutron-rich nuclei and superheavy nuclei) have been investigated. For the first extreme, we focus on the ground state properties. For the second extreme, we pay a particular attention to theoretical uncertainties in the description of fission barriers of superheavy nuclei and their evolution on going to neutron-rich nuclei.

  8. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yang, Rongyao; Wei, Sina; Jiang, Weizhou

    2018-01-01

    A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  9. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    NASA Astrophysics Data System (ADS)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  10. Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, O.; Kholmetskii, Alexander; Arık, Metin

    2017-01-01

    Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of "pairing" ( e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that "pairing", as expected, definitely increases the stability of the given nucleus.

  11. Systematics of g factors of 2{sub 1}{sup +} states in even-even nuclei from Gd to Pt: A microscopic description by the projected shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Bao-An; Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875; Di, Yao-Min

    2007-01-15

    The systematics of g factor of the first excited 2{sup +} state vs neutron number N is studied by the projected shell model. The study covers the even-even nuclei of all isotopic chains from Gd to Pt. g factors are calculated by using the many-body wave functions that well reproduce the energy levels and B(E2)s of the ground-state bands. For Gd to W isotopes the characteristic feature of the g factor data along an isotopic chain is described by the present model. Deficiency of the model in the g factor description for the heavier Os and Pt isotopes is discussed.

  12. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  13. Measurements of neutron skin in calcium and lead

    NASA Astrophysics Data System (ADS)

    Michaels, Robert

    2017-01-01

    Measurement of the parity-violating electron scattering asymmetry from 208Pb has demonstrated a new opportunity at Jefferson Lab to measure the weak charge form factor and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208Pb and 48Ca respectively. PREX-I ran in 2010, and CREX and a second run of PREX are currently in preparation. These are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces. The measuements are a fundamental test of nuclear structure with applications to heavy ion research and neutron stars. Jefferson Science Associates, LLC, which operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-060R23177.

  14. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  15. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  16. High-Sensitivity Fast Neutron Detector KNK-2-8M

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  17. Prompt fission neutron spectra of actinides

    DOE PAGES

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; ...

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  18. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  19. Measurement of DT neutron-induced activity in glass-microshell laser fusion targets

    NASA Astrophysics Data System (ADS)

    Lane, S. M.; Campbell, E. M.; Bennett, C.

    1980-10-01

    Laser fusion targets consisting of DT gas contained in Teflon-coated glass microshells produce 14.1-MeV neutrons that can interact with the (Si-28) nuclei in the glass to produce radioactive (Al-28). Using a very efficient collection-detection scheme that could detect the decay of 10% of the (Al-28) created, these nuclei are identified by their 1.78-MeV gamma ray, which decayed with a 2.2-min half-life. From the number of (Al-28) nuclei created and the neutron yield the compressed glass areal density was found to be 0.0059 g/sq cm.

  20. Design Study of DESCANT - DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Wong, James; Garrett, P. E.

    2007-10-01

    The fusion-evaporation reaction has been a useful tool for studying nuclei. A program of such reactions is being planned to take place at the TRIUMF facility in Vancouver, Canada using the TIGRESS array of gamma-ray detectors. A particular advantage of using these reactions is that they probe nuclei at moderate-to-high angular momenta. It would be of great interest to extend the study of high-spin states to neutron-rich systems. Following the formation of the fused compound system, the highly-excited state may lose energy by ``evaporating'' particles. Neutron evaporation is the predominant decay mode from neutron-rich compound systems so neutron detectors will be required. The probability of neutrons multiple scattering is quite high so a detector array must be able to differentiate between multiple neutrons evaporating from the reaction and a single neutron scattering multiple times. To address this issue we investigate the use of a novel neutron detector array -- one based on an array of deuterated liquid scintillators as neutron detectors. Results from early feasibility tests will be presented, along with the status of our GEANT4 simulations of the array performance.

  1. Decay analysis of compound nuclei with masses A ≈30 - 200 formed in reactions involving loosely bound projectiles

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Singh, BirBikram; Sharma, Manoj K.; Gupta, Raj K.

    2015-08-01

    The dynamics of compound nuclei formed in the reactions using loosely bound projectiles are analyzed within the framework of the dynamical cluster-decay model (DCM) of Gupta and Collaborators. We have considered the reactions with neutron-rich and neutron-deficient projectiles, respectively, as 7Li , 9Be , and 7Be , on various targets at three different Elab energies, forming compound nuclei in the mass region A ˜30 - 200. For these reactions, the contributions of light-particle (LP, A ≤4 ) cross sections σLP, energetically favored intermediate-mass-fragment (IMF, 5 ≤A2≤20 ) cross sections σIMF, as well as the fusion-fission ff cross sections σff constitute the σfus(=σLP+σIMF+σff ), i.e., the contributions of the emitted LPs, IMFs, and ff fragments are added for all the angular momenta up to the ℓmax value for the respective reactions. Interestingly, we find that the empirically fitted neck-length parameter Δ Remp , the only parameter of the DCM, is uniquely fixed to address σfus for all the reactions having the same loosely bound projectile at a chosen incident laboratory energy. It may be noted that, in DCM, the dynamical collective mass motion of preformed LPs, IMFs, and ff fragments or clusters, through the modified interaction potential barrier, are treated on parallel footing. The modification of the barrier is due to nonzero Δ Remp , and the values of corresponding modified interaction-barrier heights Δ VBemp for such reactions are almost of the same order, specifically at the respective ℓmax value.

  2. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling

    2014-09-01

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.

  3. β-decay studies of r-process nuclei at NSCL

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Schnorrenberger, L.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Pfeiffer, B.; Quinn, M.; Santi, P.; Schatz, H.; Schertz, F.; Smith, E.; Tomlin, B. E.; Walters, W. B.; Wöhr, A.

    2008-06-01

    Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β-decay properties of neutron-rich nuclei. In this context, several r-process motivated β-decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

  4. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  5. Short stature in carriers of recessive mutation causing familial isolated growth hormone deficiency.

    PubMed

    Leiberman, E; Pesler, D; Parvari, R; Elbedour, K; Abdul-Latif, H; Brown, M R; Parks, J S; Carmi, R

    2000-01-31

    Isolated growth hormone deficiency (IGHD) IB is an autosomal recessive disorder characterized by a good response to exogenous growth hormone (GH) treatment without development of anti-GH antibodies. Patients with IGHD IB were found to be compound heterozygotes for deletion and frameshift mutations as well as homozygotes for splicing mutations in the GH-1 gene. Recently, a novel splicing mutation in the GH-1 gene was identified in an extended, consanguineous Arab-Bedouin family from Israel with IGHD IB. Prior to the identification of this mutation, a considerable number of children with short stature in this family were found normal on pharmacological stimulation for GH release. This observation prompted a genotype/phenotype correlation of potential heterozygotes in the family. Carriers of the mutant GH-1 allele were found as a group to have a significantly shorter stature than normal homozygote (mean standard deviation scores, 1.67 and -0.40, respectively, P<0.05). Moreover, 11 of 33 (33%) heterozygotes, but only 1 of 17 (5.9%) normal homozygotes, had their height at 2 or more SD below the mean. Overall, 48.5% of studied heterozygotes were found to be of appreciably short stature with height at or lower than the 5th centile (> or = -1.7 SD), whereas only 5.9% of the normal homozygotes did (P<0.004). This phenomenon of heterozygotes for a recessive mutation in the GH-1 gene manifesting short stature, might imply that some such mutations may account for non-GH deficiency reduced height in the general population.

  6. New experimental investigation of cluster structures in 10 Be and 16 C neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, L.; Acosta, D.; Auditore, L.; Cardella, G.; De Filippo, E.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    The existence of cluster structures in ^{10} Be and ^{16} C neutron-rich isotopes is investigated via projectile break-up reactions induced on polyethylene (CH _2 target. We used a fragmentation beam constituted by 55MeV/u ^{10} Be and 49MeV/u ^{16} C beams provided by the FRIBs facility at INFN-LNS. Invariant mass spectra of 4{He}+ 6 He and 6{He} + ^{10} Be breakup fragments are reconstructed by means of the CHIMERA 4π detector to investigate the presence of excited states of projectile nuclei characterized by cluster structure. In the first case, we suggest the presence of a new state in ^{10} Be at 13.5MeV. A non-vanishing yield corresponding to 20.6MeV excitation energy of ^{16} C was observed in the 6{He} + ^{10} Be cluster decay channel. To improve the results of the present analysis, a new experiment has been performed recently, taking advantage of the coupling of CHIMERA and FARCOS. In the paper we describe the data reduction process of the new experiment together with preliminary results.

  7. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument.

    PubMed

    LaKind, Judy S; Sobus, Jon R; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J; Arbuckle, Tye E; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P

    2014-12-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument--the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument--for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument

    PubMed Central

    LaKind, Judy S.; Sobus, Jon R.; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J.; Arbuckle, Tye E.; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P.

    2015-01-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument – the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument – for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. PMID:25137624

  9. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    PubMed

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  10. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.

    2016-06-01

    Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion

  11. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  12. Short report: documentation of iodine deficiency in Haitian schoolchildren: implication for lymphatic filariasis elimination in Haiti.

    PubMed

    Beach, M J; Streit, T G; Houston, R; May, W A; Addiss, D G; Lammie, P J

    2001-01-01

    In this study we documented unexpected moderate-to-severe iodine deficiency in Haitian schoolchildren although they live in a coastal community where presumably they have access to iodine-containing seafood. This fact combined with the lack of an iodized salt supply and endemic lymphatic filariasis makes community distribution of diethylcarbamazine-fortified, iodized salt an attractive strategy for elimination of lymphatic filariasis and iodine deficiency disorders in this area of Haiti. Combining lymphatic filariasis elimination with other public health interventions is one strategy to increase its public health benefit and maximize the impact of limited public health resources.

  13. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R M; Phair, L W; Descovich, M

    2005-08-09

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  14. Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements

    USDA-ARS?s Scientific Manuscript database

    Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...

  15. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V., E-mail: dobrov@pnpi.spb.ru

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured.more » The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.« less

  16. Monte Carlo studies on neutron interactions in radiobiological experiments

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Hau, Tak Cheong; Krstic, D.; Nikezic, D.

    2017-01-01

    Monte Carlo method was used to study the characteristics of neutron interactions with cells underneath a water medium layer with varying thickness. The following results were obtained. (1) The fractions of neutron interaction with 1H, 12C, 14N and 16O nuclei in the cell layer were studied. The fraction with 1H increased with increasing medium thickness, while decreased for 12C, 14N and 16O nuclei. The bulges in the interaction fractions with 12C, 14N and 16O nuclei were explained by the resonance spikes in the interaction cross-section data. The interaction fraction decreased in the order: 1H > 16O > 12C > 14N. (2) In general, as the medium thickness increased, the number of “interacting neutrons” which exited the medium and then further interacted with the cell layer increased. (3) The area under the angular distributions for “interacting neutrons” decreased with increasing incident neutron energy. Such results would be useful for deciphering the reasons behind discrepancies among existing results in the literature. PMID:28704557

  17. Body Mass Disorders in Healthy Short Children and in Children with Growth Hormone Deficiency.

    PubMed

    Tomaszewski, Paweł; Milde, Katarzyna; Majcher, Anna; Pyrżak, Beata; Tiryaki-Sonmez, Gul; Schoenfeld, Brad J

    2018-01-01

    The aim of the study was to determine the degree of adiposity and the incidence of body mass disorders, including abdominal obesity, in healthy short children and children with growth hormone deficiency. The study included 134 short children (height < 10th percentile) aged 7-15. In this cohort there were 63 (31 boys and 32 girls) children without diagnosed hormonal disorders and 71 patients (35 boys and 36 girls) with growth hormone deficiency. Basic somatic features were assessed and the study participants were categorized according to the percentage of body fat (%FAT), body mass index (BMI), and waist-to-height ratio (WHtR). We found that there were no significant differences in %FAT and the incidence of body weight disorders depending on gender or diagnosis. %FAT deficit was observed in 12-21% of the participants and underweight in almost every fourth child. Overweight involved 3-14% of the participants and obesity was diagnosed in isolated cases (0-3%); both were considerably lower compared to the estimates based on %FAT. Using the cut-off points of WHtR, abdominal adiposity was observed in 3-15% of the participants. In conclusion, quite a large number of short children (between 25 and 50%) are characterized by abnormal body fat or body mass index values. The results indicate a limited usefulness of BMI in evaluating the incidence of overweight and obesity in children characterized by a height deficit.

  18. Relative motions of fragments of the split comets. III - A test of splitting and comets with suspected multiple nuclei

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1979-01-01

    A quantitative test of splitting for comets with suspected multiple nuclei has been formulated using a model which assumes the motions of cometary fragments to be due primarily to outgassing. The model expresses the relative motion of the cometary fragments in terms of the time of splitting and the differential force, which are determined by measurements of the position angle and the separation distance between fragments. The test is applied to 18 comets suspected of having multiple nuclei, of which the comets Sawerthal 1888 I, Campbell 1914 IV, Whipple-Fedtke-Tevzadze 1943 I, Honda 1955 V, Wild 1968 III and Tago-Sato-Kosaka 1969 IX were found to be clear cases of split comets and Davidson 1889 IV and Periodic Giacobini 1896 V were judged to be likely candidates. At least three of the secondary nuclei confirmed can be classified as short-lived companions, while only two appear to be persistent.

  19. Growth hormone treatment for growth hormone deficiency and idiopathic short stature: new guidelines shaped by the presence and absence of evidence.

    PubMed

    Grimberg, Adda; Allen, David B

    2017-08-01

    The Pediatric Endocrine Society recently published new guidelines for the use of human growth hormone (hGH) and human insulin-like growth factor-I (hIGF-I) treatment for growth hormone deficiency, idiopathic short stature, and primary IGF-I deficiency in children and adolescents. This review places the new guidelines in historical contexts of the life cycle of hGH and the evolution of US health care, and highlights their future implications. The new hGH guidelines, the first to be created by the Grading of Recommendations Assessment, Development and Evaluation approach, are more conservative than their predecessors. They follow an extended period of hGH therapeutic expansion at a time when US health care is pivoting toward value-based practice. There are strong supporting evidence and general agreement regarding the restoration of hormonal normalcy in children with severe deficiency of growth hormone or hIGF-I. More complex are issues related to hGH treatment to increase growth rates and heights of otherwise healthy short children with either idiopathic short stature or 'partial' isolated idiopathic growth hormone deficiency. The guidelines-developing process revealed fundamental questions about hGH treatment that still need evidence-based answers. Unless and until such research is performed, a more restrained hGH-prescribing approach is appropriate.

  20. The symmetry energy, neutron skin thickness and isovector dipole response of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Horvat, A.; Paar, N.

    2015-04-01

    The isotopic evolution of the relationship between the symmetry energy at saturation density of nuclear matter (J), neutron skin thickness (ΔR) and relevant observables related to isovector dipole excitations in neutron rich 116-136Sn isotopes has been investigated in the framework of relativistic nuclear energy density functional theory. The description employs a family of effective interactions with density dependent meson-nucleon couplings (DDME) spanning the range of values J = 30 - 38 MeV.

  1. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate

    PubMed Central

    Harel, Itamar; Benayoun, Bérénice A.; Machado, Ben; Singh, Param Priya; Hu, Chi-Kuo; Pech, Matthew F.; Valenzano, Dario R.; Zhang, Elisa; Sharp, Sabrina C.; Artandi, Steven E.; Brunet, Anne

    2015-01-01

    Summary Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2–3 months. As a proof-of-principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high throughput manner and for investigating candidates arising from human genome-wide studies. PMID:25684364

  2. New model of the average neutron and proton pairing gaps

    NASA Astrophysics Data System (ADS)

    Madland, David G.; Nix, J. Rayford

    1988-01-01

    By use of the BCS approximation applied to a distribution of dense, equally spaced levels, we derive new expressions for the average neutron pairing gap ¯gD n and average proton pairing gap ¯gD p. These expressions, which contain exponential terms, take into account the dependencies of ¯gD n and ¯gD p upon both the relative neutron excess and shape of the nucleus. The three constants that appear are determined by a least-squares adjustment to experimental pairing gaps obtained by use of fourth-order differences of measured masses. For this purpose we use the 1986 Audi-Wapstra mid-stream mass evaluation and take into account experimental uncertainties. Our new model explains not only the dependencies of ¯gD n and ¯gD p upon relative neutron excess and nuclear shape, but also the experimental result that for medium and heavy nuclei ¯gD n is generally smaller than ¯gD p. We also introduce a new expression for the average residual neutron-proton interaction energy ¯gd that appears in the masses of odd-odd nuclei, and determine the constant that appears by an analogous least-squares adjustment to experimental mass differences. Our new expressions for ¯gD n, ¯gD p and ¯gd should permit extrapolation of these quantities to heavier nuclei and to nuclei farther removed from the valley of β stability than do previous parameterizations.

  3. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    PubMed

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  4. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosmer, P.; Estrade, A.; Montes, F.

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes frommore » this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.« less

  5. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE PAGES

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; ...

    2016-06-14

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm 2 to 20 × 20 mm 2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  6. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    NASA Astrophysics Data System (ADS)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  7. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm 2 to 20 × 20 mm 2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  8. ORBITING CLUSTERS IN ATOMIC NUCLEI

    PubMed Central

    Pauling, Linus

    1969-01-01

    As an alternative to their description as vibrational levels, the low excited states of even-even nuclei can be described as rotational states of a helion, dineutron, diproton, or other cluster about the rest of the nucleus, leading to reasonable values of the average distance between centers of the clusters. Some states involve rotational excitation of two or more helions or other clusters. The nature of the rotating clusters is determined by the relation of the neutron and proton numbers to the magic numbers. PMID:16591799

  9. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature.

    PubMed

    Bonfig, Walter; Krude, Heiko; Schmidt, Heinrich

    2011-08-01

    The LHX3 LIM-homeodomain transcription factor gene is required for normal pituitary and motoneuron development. LHX3 mutations are associated with growth hormone, prolactin, gonadotropin, and TSH deficiency; abnormal pituitary morphology; and may be accompanied with limited neck rotation and sensorineural hearing loss. We report on a boy, who presented with hypoglycemia in the newborn period. He is the second child of healthy unrelated parents. Short neck, growth hormone deficiency, and central hypothyroidism were diagnosed at a general pediatric hospital. Growth hormone and levothyroxine treatment were started, and blood sugar normalized with this treatment. On cerebral MRI, the anterior pituitary gland was hypoplastic. Sensorineural hearing loss was diagnosed by auditory testing. During follow-up, six repeatedly low morning cortisol levels (<1 μg/dl) and low ACTH levels (<10 pg/ml) were documented, so ACTH deficiency had developed over time and therefore hydrocortisone replacement was started at 1.5 years of age. Mutation analysis of the LHX3 gene revealed a homozygous stop mutation in exon 2: c.229C>T (CGA > TGA), Arg77stop (R77X). A complete loss of function is assumed with this homozygous stop mutation. We report a novel LHX3 mutation, which is associated with combined pituitary hormone deficiency including ACTH deficiency, short neck, and sensorineural hearing loss. All patients with LHX3 defects should undergo longitudinal screening for ACTH deficiency, since corticotrope function may decline over time. All patients should have auditory testing to allow for regular speech development.

  10. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  11. Testing the 'free radical theory of aging' hypothesis: physiological differences in long-lived and short-lived colubrid snakes.

    PubMed

    Robert, Kylie A; Brunet-Rossinni, Anja; Bronikowski, Anne M

    2007-06-01

    We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.

  12. Forward Helion Scattering and Neutron Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttimore, N. H.

    The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently large analyzing power to enable the level of helion polarization to be evaluated. As the helion to a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion collisions can be transformed into a measurement of the polarization of its constituent neutron. Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic and hadronic interactions in the region of interference where there is an optimal analyzing power.

  13. Combined few-body and mean-field model for nuclei

    NASA Astrophysics Data System (ADS)

    Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.

    2018-07-01

    long waiting time, since both E2 and background transitions are very slow. After the applications on dripline nuclei we discuss perspectives with improvements and applications. In the conclusion we summarize while emphasizing the merits of consistently treating both short- and large-distance properties, few- and many-body correlations, ordinary nuclear structure, and concepts of halos and Efimov states.

  14. Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.

    2018-03-01

    A beam containing a substantial component of both the J(pi) = 5(+), T-1/2 = 162 ns isomeric state of F-18 and its 1(+), 109.77-min ground state is utilized to study members of the ground-state rotational band in F-19 through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2(+) band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

  15. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  16. Odd-even staggering in the neutron-proton interaction and nuclear mass models

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhao, Y. M.; Arima, A.

    2015-02-01

    In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.

  17. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice

    PubMed Central

    Maier, Jennifer A.; Harfe, Brian D.

    2011-01-01

    Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629

  18. Small City Transit : Sudbury, Massachusetts : A Short-Lived Suburban Transit Service.

    DOT National Transportation Integrated Search

    1976-03-01

    Sudbury, Massachusetts, is an illustration of a over-extended fixed-route transit service which was rather short-lived. This case study is one of thirteen examples of a transit service in a small community. The background of the community is discusse...

  19. IGF-1 and growth response to adult height in a randomized GH treatment trial in short non-GH-deficient children.

    PubMed

    Kriström, Berit; Lundberg, Elena; Jonsson, Björn; Albertsson-Wikland, Kerstin

    2014-08-01

    GH treatment significantly increased adult height (AH) in a dose-dependent manner in short non-GH-deficient children in a randomized, controlled, clinical trial; the mean gain in height SD score (heightSDS) was 1.3 (range 0-3), compared with 0.2 in the untreated group. The objective of the study was to analyze the relationship between IGF-1SDS, IGF binding protein-3 SDS (IGFBP3SDS), and their ratioSDS with a gain in the heightSDS until AH in non-GH-deficient short children. This was a randomized, controlled, multicenter clinical trial. The intervention included GH treatment: 33 or 67 μg/kg · d plus untreated controls. One hundred fifty-one non-GH-deficient short children were included in the intent-to-treat (ITT) population and 108 in the per-protocol (PP) population; 112 children in the ITT and 68 children in the PP populations had idiopathic short stature (ISS). Increments from baseline to on-treatment study mean IGF-1SDS (ΔIGF-1SDS), IGFBP3SDS, and IGF-1 to IGFBP3 ratioSDS were assessed in relationship to the gain in heightSDS. Sixty-two percent of the variance in the gain in heightSDS in children on GH treatment could be explained by four variables: ΔIGF-1SDS (explaining 28%), bone age delay, birth length (the taller the better), and GH dose (the higher the better). The lower IGF-1SDS was at baseline, the higher was its increment during treatment. For both the AllPP- and the ISSPP-treated groups, the attained IGF-1SDS study level did not correlate with height gain. In short non-GH-deficient children, the GH dose-related increment in IGF-1SDS from baseline to mean study level was the most important explanatory variable for long-term growth response from the peripubertal period until AH, when IGF-1SDS, IGFBP3SDS, and their ratioSDS were compared concurrently.

  20. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  1. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis comparedmore » to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  2. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  3. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.

    2016-06-01

    The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.

  4. In-situ soil carbon analysis using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  5. A general dead-time correction method based on live-time stamping. Application to the measurement of short-lived radionuclides.

    PubMed

    Chauvenet, B; Bobin, C; Bouchard, J

    2017-12-01

    Dead-time correction formulae are established in the general case of superimposed non-homogeneous Poisson processes. Based on the same principles as conventional live-timed counting, this method exploits the additional information made available using digital signal processing systems, and especially the possibility to store the time stamps of live-time intervals. No approximation needs to be made to obtain those formulae. Estimates of the variances of corrected rates are also presented. This method is applied to the activity measurement of short-lived radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  7. Short Gamma-Ray Bursts from the Merger of Two Black Holes

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Lazzati, Davide; Giacomazzo, Bruno

    2016-04-01

    Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.

  8. Hard probes of short-range nucleon-nucleon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nucleimore » and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.« less

  9. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  10. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  11. Hyperheavy nuclei in covariant density functional theory: the existence and stability

    NASA Astrophysics Data System (ADS)

    Gyawali, Abhinaya; Agbemava, Sylvester; Afanasjev, Anatoli

    2017-09-01

    The limits of existence of finite nuclei is one of interesting questions of modern low-energy nuclear physics. A lot of theoretical efforts have been dedicated to the study of superheavy nuclei with Z < 126. However, very little is known about existence and stability of hyperheavy nuclei with proton numbers Z > 126 . Almost all investigations of such nuclei consider only spherical shapes for the ground states. However, the study of superheavy nuclei indicates that such assumption leads in many cases to misinterpretation of the situation. Thus, we performed a systematic investigation of such nuclei for proton numbers from 122 up to 184 and from two-proton drip line up to two-neutron one within the axial relativistic Hartree-Bogoliubov theory. The calculations are carried out in large deformation space extending from megadeformed oblate shapes via spherical ones up to scission configuration. The stability of such nuclei against fission (including triaxial and octupole shapes) and beta-decays have been investigated and the islands of their stability have been defined. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037 and by Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002925.

  12. Yields of short-lived fission products produced following {sup 235}U(n{sub th},f)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipnis, S.V.; Campbell, J.M.; Couchell, G.P.

    1998-08-01

    Measurements of gamma-ray spectra, following the thermal neutron fission of {sup 235}U have been made using a high purity germanium detector at the University of Massachusetts Lowell (UML) Van de Graaff facility. The gamma spectra were measured at delay times ranging from 0.2 s to nearly 10thinsp000 s following the rapid transfer of the fission fragments with a helium-jet system. On the basis of the known gamma transitions, forty isotopes have been identified and studied. By measuring the relative intensities of these transitions, the relative yields of the various precursor nuclides have been calculated. The results are compared with themore » recommended values listed in the ENDF/B-VI fission product data base (for the lifetimes and the relative yields) and those published in the Nuclear Data Sheets (for the beta branching ratios). This information is particularly useful for the cases of short-lived fission products with lifetimes of the order of fractions of a second or a few seconds. Independent yields of many of these isotopes have rather large uncertainties, some of which have been reduced by the present study. {copyright} {ital 1998} {ital The American Physical Society}« less

  13. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thickmore » high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.« less

  15. Epidemiology of SHOX deficiency.

    PubMed

    Nicolosi, A; Caruso-Nicoletti, M

    2010-06-01

    Deletion of short stature homeobox-containing (SHOX) gene, in the pseudoautosomal region (PAR1) of X and Y chromosomes, is an important cause of short stature. Homozygous loss of SHOX results in the more severe Langer mesomelic dysplasia, while SHOX haploinsufficiency cause a wide spectrum of short stature phenotypes, including patients with Turner syndrome, Leri Weill dyschondrosteosis (LWD), and idiopathic short stature (ISS). In Turner syndrome, haploinsufficiency of SHOX gene, as well as short stature, are present in 100%; nevertheless, SHOX deficiency accounts for only two-thirds of Turner patients' short stature. In LWD the prevalence of SHOX gene anomalies varies from 56% to 100%. This wide range might be due to different factors such as selection criteria of patients, sample size, and method used for screening SHOX mutations. The real challenge is to establish the prevalence of SHOX deficiency in ISS children given that published studies have reported this association with a very broad frequency range varying from 1.5% to 15%. An important variable in these studies is represented by the method used for screening SHOX mutations and sometimes by differences in patient selection. Short stature is present by definition in 3 out of 100 subjects; if we consider a frequency of SHOX defects of 3% among ISS, we should expect a population prevalence of 1 in 1000. This prevalence would be higher than that of GH deficiency (1:3,500) and of Turner syndrome (1:2,500 females), suggesting that SHOX deficiency could be one of the most frequent monogenetic causes of short stature.

  16. Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.

    PubMed

    Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C

    2006-01-27

    A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.

  17. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  18. General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno

    2017-01-01

    We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.

  19. High prevalence of asymptomatic vitamin D and iron deficiency in East African immigrant children and adolescents living in a temperate climate

    PubMed Central

    McGillivray, George; Skull, Susan A; Davie, Gabrielle; Kofoed, Sarah E; Frydenberg, Alexis; Rice, James; Cooke, Regina; Carapetis, Jonathan R

    2007-01-01

    Objectives Vitamin D deficiency (VDD) is common in immigrant children with increased skin pigmentation living in higher latitudes. We assessed the pattern of and risk factors for VDD in immigrant East African children living in Melbourne (latitude 37°49′ South). Study design A prospective survey of 232 East African children attending a clinic in Melbourne. Data were collected by questionnaire, medical assessment and laboratory tests. Results Low 25‐hydroxyvitamin D (25‐OHD) levels (<50 nmol/l) occurred in 87% of children, and VDD (25‐OHD <25 nmol/l) in 44%. Risk factors included age <5 years, female gender, increased time in Australia, decreased daylight exposure and winter/spring season. Anaemia (20%), vitamin A deficiency (20%) and iron deficiency (19%) were also identified. Conclusions Asymptomatic VDD is common in East African immigrant children residing at a temperate latitude. Risk factors for VDD limit endogenous vitamin D production. Screening of immigrant children with increased skin pigmentation for VDD, anaemia, iron and vitamin A deficiency is appropriate. VDD in adolescent females identifies an increased risk of future infants with VDD. PMID:17768148

  20. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  1. Explosive nucleosynthesis in SN 1987A. II - Composition, radioactivities, and the neutron star mass

    NASA Technical Reports Server (NTRS)

    Thielemann, Friedrich-Karl; Hashimoto, Masa-Aki; Nomoto, Ken'ichi

    1990-01-01

    The 20 solar mass model of Nomoto and Hashimoto (1988) is utilized with a 6 solar mass. He core is used to perform explosive nucleosynthesis calculations. The employed explosion energy of 10 to the 51st ergs lies within the uncertainty range inferred from the bolometric light curve. The nucleosynthesis processes and their burning products are discussed in detail. The results are compared with abundances from IR observations of SN 1987A and the average nucleosynthesis expected for Type II supernovae in Galactic chemical evolution. The abundances of long-lived radioactive nuclei and their importance for the late light curve and gamma-ray observations are predicted. The position of the mass cut between the neutron star and the ejecta is deduced from the total amount of ejected Ni-56. This requires a neutron star with a baryonic mass of 1.6 + or - 0.045 solar mass, which corresponds to a gravitational mass of 1.43 + or - 0.05 solar mass after subtracting the binding energy of a nonrotating neutron star.

  2. Radioisotope generators for short-lived positron emitters applicable to positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yano, Y.

    1989-04-01

    Radioisotope generators provide short-lived positron emitters for positron emission tomography (PET) without the need for an on-site cyclotron. These generators consist of a long-lived parent radionuclide, generally produced on an accelerator, from which the short-lived daughter radionuclide is separated and used as needed. Generators developed and applied to PET studies include 288 d 68Ge for 68 min 68Ga, 25 d 82Sr for 76 s 82Rb and 20.1 h 122Xe for 3.6 min 122I. These radiotracers have been used for the assessment of myocardial and brain blood flow in patient studies. Additionally, 82Rb has been used to determine the breakdown in the blood brain barrier in brain tumor patients who have undergone radiation therapy. When used in conjunction with 18F-fluorodeoxylucose produced on a regional cyclotron for the measurement of glucose utilization in brain tumors, differential diagnosis can be made between tumor regrowth and radiation therapy necrosis. Other possible applications include the detection of vascular lesions with 68Ga labeled platelets or porphyrins.

  3. Resolving the neutron lifetime puzzle

    NASA Astrophysics Data System (ADS)

    Mumm, Pieter

    2018-05-01

    Free electrons and protons are stable, but outside atomic nuclei, free neutrons decay into a proton, electron, and antineutrino through the weak interaction, with a lifetime of ∼880 s (see the figure). The most precise measurements have stated uncertainties below 1 s (0.1%), but different techniques, although internally consistent, disagree by 4 standard deviations given the quoted uncertainties. Resolving this “neutron lifetime puzzle” has spawned much experimental effort as well as exotic theoretical mechanisms, thus far without a clear explanation. On page 627 of this issue, Pattie et al. (1) present the most precise measurement of the neutron lifetime to date. A new method of measuring trapped neutrons in situ allows a more detailed exploration of one of the more pernicious systematic effects in neutron traps, neutron phase-space evolution (the changing orbits of neutrons in the trap), than do previous methods. The precision achieved, combined with a very different set of systematic uncertainties, gives hope that experiments such as this one can help resolve the current situation with the neutron lifetime.

  4. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV,more » respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.« less

  5. Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

    NASA Astrophysics Data System (ADS)

    Rodrıguez-Guzmán, R.; Robledo, L. M.

    2017-12-01

    The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with A=233, \\ldots , 249 within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives t_{SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted t_{SF} values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula.

  6. Alpha-decay chains of superheavy nuclei 292-296118

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Kumawat, M.; Saxena, G.; Kaushik, M.; Jain, S. K.

    2018-05-01

    We have employed relativistic mean-field plus BCS (RMF+BCS) approach for the study of even-even superheavy nuclei with Z = 118 which is the last and recent observed element in the periodic chart so far. Our study includes binding energies, Qα values, alpha-decay half-lives and spontaneous decay half-lives along with comparison of available experimental data and the results of FRDM calculations. We find an excellent match with the only known decay chain of 294118 for Z = 118 so far and predict decay chain of 292118 and 296118 in consistency with known experimental decay chains and FRDM results. These results may provide a very helpful insight to conduct experiments for realizing the presence of nuclei with Z = 118.

  7. Isoscalar neutron-proton pairing and SU(4)-symmetry breaking in Gamow-Teller transitions

    NASA Astrophysics Data System (ADS)

    Kaneko, K.; Sun, Y.; Mizusaki, T.

    2018-05-01

    The isoscalar neutron-proton pairing is thought to be important for nuclei with equal number of protons and neutrons but its manifestation in structure properties remains to be understood. We investigate the Gamow-Teller (GT) transitions for the f7 /2-shell nuclei in large-scale shell-model calculations with the realistic Hamiltonian. We show that the isoscalar T =0 ,Jπ=1+ neutron-proton pairing interaction plays a decisive role for the concentration of GT strengths at the first-excited 11+ state in 42Sc, and that the suppression of these strengths in 46V, 50Mn, and 54Co is mainly caused by the spin-orbit force supplemented by the quadrupole-quadrupole interaction. Based on the good reproduction of the charge-exchange reaction data, we further analyze the interplay between the isoscalar and isovector pairing correlations. We conclude that even for the most promising A =42 nuclei where the SU(4) isoscalar-isovector-pairing symmetry is less broken, the probability of forming an isoscalar neutron-proton pairing condensation is less than 60% as compared to the expectation at the SU(4)-symmetry limit.

  8. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    NASA Astrophysics Data System (ADS)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  9. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE PAGES

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; ...

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  10. Dynamical Phase Transition in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Mallick, Ritam

    2018-05-01

    We have studied the dynamical evolution of the shock in a neutron star (NS). The conversion of nuclear to quark matter (QM) is assumed to take place at the shock discontinuity. The density and pressure discontinuity is studied both spatially and temporally as it starts near the center of the star and moves toward the surface. Polytropic equations of state (EoS), which mimic original nuclear and QM EoS, are used to study such dynamical phase transition (PT). Solving relativistic hydrodynamic equations for a spherically symmetric star, we study the PT, assuming a considerable density discontinuity near the center. We find that as the shock wave propagates outward, its intensity decreases with time; however, the shock velocity peaks up and reaches a value close to that of light. Such fast shock velocity indicates rapid PT in NS taking place on a timescale of some 10s of microseconds. Such a result is quite interesting, and it differs from previous calculations that the PT in NSs takes at least some 10s of milliseconds. Rapid PT can have significant observational significance, because such fast PT would imply rather strong gravitational wave (GW) signals that are rather short lived. Such short-lived GW signals would be accompanied with short-lived gamma-ray bursts and neutrino signals originating from the neutrino and gamma-ray generation from the PT of nuclear matter to QM.

  11. Nuclear robustness of the r process in neutron-star mergers

    NASA Astrophysics Data System (ADS)

    Mendoza-Temis, Joel de Jesús; Wu, Meng-Ru; Langanke, Karlheinz; Martínez-Pinedo, Gabriel; Bauswein, Andreas; Janka, Hans-Thomas

    2015-11-01

    We have performed r -process calculations for matter ejected dynamically in neutron star mergers based on a complete set of trajectories from a three-dimensional relativistic smoothed particle hydrodynamic simulation with a total ejected mass of ˜1.7 ×10-3M⊙ . Our calculations consider an extended nuclear network, including spontaneous, β - and neutron-induced fission and adopting fission yield distributions from the abla code. In particular we have studied the sensitivity of the r -process abundances to nuclear masses by using different models. Most of the trajectories, corresponding to 90% of the ejected mass, follow a relatively slow expansion allowing for all neutrons to be captured. The resulting abundances are very similar to each other and reproduce the general features of the observed r -process abundance (the second and third peaks, the rare-earth peak, and the lead peak) for all mass models as they are mainly determined by the fission yields. We find distinct differences in the predictions of the mass models at and just above the third peak, which can be traced back to different predictions of neutron separation energies for r -process nuclei around neutron number N =130 . In all simulations, we find that the second peak around A ˜130 is produced by the fission yields of the material that piles up in nuclei with A ≳250 due to the substantially longer β -decay half-lives found in this region. The third peak around A ˜195 is generated in a competition between neutron captures and β decays during r -process freeze-out. The remaining trajectories, which contribute 10% by mass to the total integrated abundances, follow such a fast expansion that the r process does not use all the neutrons. This also leads to a larger variation of abundances among trajectories, as fission does not dominate the r -process dynamics. The resulting abundances are in between those associated to the r and s processes. The total integrated abundances are dominated by

  12. The spectrum of neutrons at 60 hg m(-2)

    NASA Technical Reports Server (NTRS)

    Barton, J. C.

    1985-01-01

    The rate of neutron interactions was measured for the energy range 7.5 to 60 MeV, using a 3.85 kg cell of liquid scintillator. The neutrons are selected by pulse shape discrimination, with anticoincidence counters used to reduce interference from muons transversing the scintillator. The observed flux is interpreted in terms of neutrons produced from environmental uranium and thorium, those resulting from the capture of negative muons in nuclei and those from fast muon interactions.

  13. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  14. Microscopic description of fission properties for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Giuliani, S. A.; Martínez-Pinedo, G.; Robledo, L. M.

    2018-01-01

    Fission properties of 886 even-even nuclei in the region 84 ≤ Z ≤ 120 and 118 ≤ Z ≤ 250 were computed using the Barcelona-Catania-Paris-Madrid energy density functional. An extensive study of both the potential energy surfaces and collectives inertias was performed. Spontaneous fission half-lives are computed using the semiclassical Wentzel-Kramers-Brillouin formalism. By comparing these three quantities we found that the stability of the nucleus against the fission process is driven by the interplay between both the potential energy and the collective inertias. In our calculations, nuclei with relative long half-lives were found in two regions around Z = 120, N = 182 and Z = 104, N = 222.

  15. Design principles for nuclease-deficient CRISPR-based transcriptional regulators

    PubMed Central

    Jensen, Michael K

    2018-01-01

    Abstract The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies. PMID:29726937

  16. Design principles for nuclease-deficient CRISPR-based transcriptional regulators.

    PubMed

    Jensen, Michael K

    2018-06-01

    The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.

  17. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  18. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  19. Rules governing the composition of revolving clusters in quasiband and prolate-deformation states of atomic nuclei

    PubMed Central

    Pauling, Linus

    1982-01-01

    A set of rules, involving the magic and semimagic values of neutron and proton numbers and the proton/neutron ratio, is formulated for the composition of the revolving clusters producing the values of the moment of inertia given by the differences in energy of the adjacent levels in quasibands and bands of nuclei. The cluster compositions assigned with use of these rules to isotopes of Kr, Sr, Zr, Mo, and the actinon nuclei and to successive levels of the ground-state band of 158Er lead to reasonable values of the radius of revolution (the distance from the center of the nonrevolving sphere to the center of the cluster). These values correspond to a spheron diameter of about 3.20 fm. PMID:16593256

  20. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-06

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory

  1. Nucleon effective E-mass in neutron-rich matter from the Migdal–Luttinger jump

    DOE PAGES

    Cai, Bao-Jun; Li, Bao-An

    2016-03-25

    The well-known Migdal-Luttinger theorem states that the jump of the single-nucleon momentum distribution at the Fermi surface is equal to the inverse of the nucleon effective E-mass. Recent experiments studying short-range correlations (SRC) in nuclei using electron-nucleus scatterings at the Jefferson National Laboratory (JLAB) together with model calculations constrained significantly the Migdal-Luttinger jump at saturation density of nuclear matter. We show that the corresponding nucleon effective E-mass is consequently constrained to M-0(*,E)/M approximate to 2.22 +/- 0.35 in symmetric nuclear matter (SNM) and the E-mass of neutrons is smaller than that of protons in neutron-rich matter. Moreover, the average depletionmore » of the nucleon Fermi sea increases (decreases) approximately linearly with the isospin asymmetry delta according to kappa(p/n) approximate to 0.21 +/- 0.06 +/- (0.19 +/- 0.08)delta for protons (neutrons). These results will help improve our knowledge about the space-time non-locality of the single-nucleon potential in neutron-rich nucleonic matter Useful in both nuclear physics and astrophysics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  2. PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds.

    NASA Astrophysics Data System (ADS)

    Moore, F. L.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Hurst, D. F.; Nance, J. D.; Thompson, T. M.

    2006-12-01

    PANTHER (PAN and other Trace Hydrohalocarbons ExpeRiment) is an airborne 6-channel gas chromatograph that measures approximately 20 important atmospheric trace gases whose changing burdens impact air quality, climate change and both stratospheric and tropospheric ozone. In this presentation we will contrast measurements of the long-lived compounds against the short-lived compounds. The long-lived compounds tend to have well-defined troposphere boundary conditions and develop spatial gradients due to stratospheric processing. These measurements have played a major role in quantifying stratospheric transport, stratosphere- troposphere exchange, and ozone loss. In contrast the short-lived species develop spatial and temporal gradients in the tropical tropopause layer (TTL), due to variations in the surface boundary layer concentrations and the coupling of this surface boundary layer to the TTL via convective processes. Deep convection acts like a "conveyor belt" between the source region in the boundary layer and the relatively stable TTL region, often bypassing the free troposphere where scavenging of these short lived species takes place. Loss rates due to reaction with OH and thermal decomposition are reduced in the cold, dry air of the TTL, resulting in longer survival times. Isolation of the TTL region from the free troposphere can last from days to over a month. Significant amounts of these short-lived compound and their byproducts can therefore be transported into the lower stratosphere (LS). Of particular interest are compounds that contain bromine, iodine, and sulfur, not only because of their intrinsic harmful effects in the atmosphere, but also because they have unique source and sink regions that can help to de- convolve transport.

  3. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  4. Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzakh, A. E., E-mail: barzakh@mail.ru; Batist, L. Kh.; Fedorov, D. V.

    In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between Imore » = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.« less

  5. Experiments with neutron-rich isomeric beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rykaczewski, K.; Grzywacz, R.; Lewitowicz, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented.

  6. Mass predictions of atomic nuclei in the infinite nuclear matter model

    NASA Astrophysics Data System (ADS)

    Nayak, R. C.; Satpathy, L.

    2012-07-01

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.

  7. Mass predictions of atomic nuclei in the infinite nuclear matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, R.C., E-mail: rcnayak00@yahoo.com; Satpathy, L., E-mail: satpathy@iopb.res.in

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and {alpha}-particle separation energies of 6727 nuclei in the ranges 4{<=}Z{<=}120 and 8{<=}A{<=}303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the {eta}-differential equations of the INM model. The local energy {eta}'s supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact {eta}-systematics revealmore » new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around {sup 31}Na and {sup 62}Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.« less

  8. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  9. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  10. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    NASA Astrophysics Data System (ADS)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  11. LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-04-01

    LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.

  12. Outer crust of nonaccreting cold neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less

  13. High-sensitivity fast neutron detector KNK-2-7M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less

  14. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  15. Radioactivity in atomic-bomb samples from exposure to environmental neutrons.

    PubMed

    Endo, S; Shizuma, K; Tanaka, K; Ishikawa, M; Rühm, W; Egbert, S D; Hoshi, M

    2007-12-01

    For about one decade, activation measurements performed on environmental samples from a distance larger than 1 km from the hypocenter of the atomic-bomb explosion over Hiroshima suggested much higher thermal neutron fluences to the survivors than predicted. This caused concern among the radiation protection community and prompted a complete re-evaluation of all aspects of survivor dosimetry. While it was shown recently that secondary neutrons from cosmic radiation and other sources have probably been the reason for the high measured concentrations of the long-lived radioisotope 36Cl in these samples, the source for high measured concentrations of the short-lived radionuclides 152Eu and 60Co has not yet been investigated in detail. In order to quantify the production of 152Eu and 60Co in environmental samples by secondary neutrons from cosmic radiation, thermal neutron fluxes were measured by means of a He gas proportional counter in various buildings where these samples had been and still are being stored. Because a 252Cf neutron source has been operated occasionally close to one of the sample storage rooms, additional neutron flux measurements were carried out when the neutron source was in operation. The thermal neutron fluxes measured ranged from 0.00017 to 0.00093 n cm(-2) s(-1) and depended on the floor number of the investigated building. Based on the measured neutron fluxes, the specific activities from the reactions 151Eu(n,gamma)152Eu and 59Co(n,gamma)60Co in the atomic-bomb samples were estimated to be 7.9 mBq g(-1) Eu and 0.27 mBq g(-1) Co, respectively, in saturation. These activities are much lower than those recently measured in samples that had been exposed to atomic-bomb neutrons. It is therefore concluded that environmental and moderated 252Cf neutrons are not the source for the high activities that had been measured in these samples.

  16. Brueckner G -matrix approach for neutron-proton pairing correlations in the deformed BCS approach

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki; Šimkovic, F.

    2015-10-01

    Ground states of even-even Ge isotopes with mass number A =64 -76 have been studied in the deformed Bardeen-Cooper-Schrieffer (BCS) theory by taking neutron-proton (n p ) pairing correlations as well as neutron-neutron (n n ) and proton-proton (p p ) pairing correlations. The n p pairing has two different modes J =0 ,T =1 (isotriplet) and J =1 ,T =0 (isosinglet). In this work, the Brueckner G matrix, based on the CD-Bonn potential, has been exploited to reduce the ambiguity regarding nucleon-nucleon interactions inside nuclei compared to the results by a simple schematic phenomenological force. We found that the G matrix plays important roles to obtain reasonable descriptions of even-even nuclei compared to the schematic force. The n p pairing strength has been shown to have a clear correlation with quadrupole deformation parameter β2 for the isotopes, and affects the smearing of the Fermi surfaces of not only N =Z nuclei but also N ≠Z nuclei. In particular, the coexistence of the like particle (n n and p p ) and the n p pairing modes was found to become more salient by the G -matrix approach than by the schematic force approach.

  17. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less

  18. Neutron capture reactions at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.

    2008-05-12

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium tomore » heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.« less

  19. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  20. Neutron observables from inclusive lepton scattering on nuclei

    NASA Astrophysics Data System (ADS)

    Rinat, A. S.; Taragin, M. F.

    2010-07-01

    We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3≲x≲0.95 show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form factor GMn and the structure function F2n of the neutron, although the application of exactly the same analysis to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F22H. Removal of some scattered points from those makes it appear possible to obtain the desired neutron information. We compare our results with others from alternative sources. Special attention is paid to the A=3 isodoublet cross sections and EMC ratios. Present data exist only for He3, but the available input in combination with charge symmetry enables computations for H3. Their average is the computed isoscalar part and is compared with the empirical modification of He3 EMC ratios toward a fictitious A=3 isosinglet.

  1. Low-lying structure and shape evolution in neutron-rich Se isotopes

    NASA Astrophysics Data System (ADS)

    Chen, S.; Doornenbal, P.; Obertelli, A.; Rodríguez, T. R.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Giganon, A.; Gillibert, A.; Lapoux, V.; Motobayashi, T.; Niikura, M.; Paul, N.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Steppenbeck, D.; Taniuchi, R.; Uesaka, T.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A. M.; Caroll, R.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Flavigny, F.; Franchoo, S.; Górska, M.; Gottardo, A.; Jungclaus, A.; Lee, J.; Lettmann, M.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Momiyama, S.; Moschner, K.; Nagamine, S.; Nakatsuka, N.; Nita, C. R.; Nobs, C.; Olivier, L.; Orlandi, R.; Patel, Z.; Podolyak, Zs.; Rudigier, M.; Saito, T.; Shand, C.; Söderström, P.-A.; Stefan, I.; Vaquero, V.; Werner, V.; Wimmer, K.; Xu, Z.

    2017-04-01

    Neutron-rich 88,90,92,94Se isotopes were studied via in-beam γ -ray spectroscopy after nucleon removal reactions at intermediate energies at the Radioactive Isotope Beam Factory. Based on γ -γ coincidence analysis, low-lying excitation level schemes are proposed for these nuclei, including the 21+, 41+ states and 22+ states at remarkably low energies. The low-lying 22+ states, along with other features, indicate triaxiality in these nuclei. The experimental results are in good overall agreement with self-consistent beyond-mean-field calculations based on the Gogny D1S interaction, which suggests both triaxial degree of freedom and shape coexistence playing important roles in the description of intrinsic deformations in neutron-rich Se isotopes.

  2. Coulomb Excitation of n-rich nuclei along the N = 50 shell closure

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2008-04-01

    Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.

  3. Two-neutron decay within RMF+BCS approach

    NASA Astrophysics Data System (ADS)

    Kumawat, M.; Singh, U. K.; Saxena, G.; Kaushik, M.; Jain, S. K.

    2018-05-01

    A theoretical global study has been done for identifying possible candidates of 2n-radioactivity for all even and odd nuclei under proton number Z ≤ 40 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We investigate two-and one-neutron separation energy, deformation, pairing energy, wave-function, potential and other ground state properties for our study of even and odd Z nuclei to find candidates of 2n-decay within Z ≤ 40. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.

  4. Occlusal Characteristics of Individuals with Growth Hormone Deficiency, Idiopathic Short Stature, and Russell-Silver Syndrome.

    PubMed

    Hodge, Natalia; Evans, Carla A; Simmons, Kirt E; Fadavi, Shahrbanoo; Viana, Grace

    2015-01-01

    The purpose of this study was to assess the occlusal characteristics of individuals with growth hormone deficiency (GHD), idiopathic short stature (ISS), and Russell-Silver syndrome (RSS), and compare them to the means of a normal population. Data about the stage of dentition, diastema, maxillary transverse deficiency, overjet, overbite, molar classification, and maxillary and mandibular crowding were obtained from orthodontic screening notes and standardized clinical exams of children with growth disorders seen at screening events. The prevalence of these occlusal characteristics was calculated and compared to the pooled mean of a normal population as determined by the National Health and Nutrition Examination Survey studies. Twenty RSS subjects and 16 subjects with GHD or ISS were studied. The RSS cohort presented statistically significant greater mean overbite as well as mandibular and maxillary crowding compared to the general population. Descriptive statistics were performed for the GHD and ISS group. Occlusal abnormalities are prevalent in children with growth disorders.

  5. Fundamental Neutron Physics: Theory and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudkov, Vladimir

    The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity- and time reversal invariance-violating processes in neutron-induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity- and time reversal-violating effects in the consistent way. A major emphasis of our research during themore » funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three-nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects, and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.« less

  6. Study of secondary neutron interactions with 232Th, 129I, and 127I nuclei with the uranium assembly “QUINTA” at 2, 4, and 8GeV deuteron beams of the JINR Nuclotron accelerator

    DOE PAGES

    Adam, J.; Chilap, V. V.; Furman, V. I.; ...

    2015-11-04

    The natural uranium assembly, “QUINTA”, was irradiated with 2, 4, and 8 GeV deuterons. The 232Th, 127I, and 129I samples have been exposed to secondary neutrons produced in the assembly at a 20-cm radial distance from the deuteron beam axis. The spectra of gamma rays emitted by the activated 232Th, 127I, and 129I samples have been analyzed and several tens of product nuclei have been identified. For each of those products, neutron-induced reaction rates have been determined. The transmutation power for the 129I samples is estimated. Furthermore, experimental results were compared to those calculated with well-known stochastic and deterministic codes.

  7. Emergence of low-energy monopole strength in the neutron-rich calcium isotopes

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2017-10-01

    Background: The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. For exotic nuclei with a large neutron excess, a low-energy component emerges that is driven by transitions into the continuum. Purpose: While understanding the scaling of the giant monopole resonance with mass number is central to this work, the main goal of this paper is to explore the emergence, evolution, and origin of low-energy monopole strength along the even-even calcium isotopes: from 40Ca to 60Ca. Methods: The distribution of isoscalar monopole strength is computed in a relativistic random phase approximation (RPA) using three effective interactions that have been calibrated to the properties of finite nuclei and neutron stars. A nonspectral approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization. This is particularly critical in the case of weakly bound nuclei with single-particle orbits near the continuum. The discretization of the continuum is neither required nor admitted. Results: For the stable calcium isotopes, no evidence of low-energy monopole strength is observed, even as the 1 f7 /2 neutron orbital is being filled and the neutron-skin thickness progressively grows. Further, in contrast to experimental findings, a mild softening of the monopole response with increasing mass number is predicted. Beyond 48Ca, a significant amount of low-energy monopole strength emerges as soon as the weak-binding neutron orbitals (2 p and 1 f5 /2 ) become populated. The emergence and evolution of low-energy strength is identified with transitions from these weakly bound states into the continuum—which is treated exactly in the RPA approach. Moreover, given that models with a soft symmetry energy tend to reach the neutron-drip line earlier than their stiffer counterparts, an inverse correlation is identified

  8. A SHORT SEQUENCE IMMEDIATELY UPSTREAM OF THE INTERNAL REPEAT ELEMENTS IS CRITICAL FOR KSHV LANA MEDIATED DNA REPLICATION AND IMPACTS EPISOME PERSISTENCE

    PubMed Central

    León Vázquez, Erika De; Juillard, Franceline; Rosner, Bernard; Kaye, Kenneth M.

    2013-01-01

    Kaposi’s sarcoma-associated herpesvirus LANA (1162 residues) mediates episomal persistence of viral genomes during latency. LANA mediates viral DNA replication and segregates episomes to daughter nuclei. A 59 residue deletion immediately upstream of the internal repeat elements rendered LANA highly deficient for DNA replication and modestly deficient for the ability to segregate episomes, while smaller deletions did not. The 59 amino acid deletion reduced LANA episome persistence by ~14-fold, while sequentially smaller deletions resulted in ~3-fold, or no deficiency. Three distinct LANA regions reorganized heterochromatin, one of which contains the deleted sequence, but the deletion did not abolish LANA’s ability to alter chromatin. Therefore, this work identifies a short internal LANA sequence that is critical for DNA replication, has modest effects on episome segregation, and substantially impacts episome persistence; this region may exert its effects through an interacting host cell protein(s). PMID:24314665

  9. Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism.

    PubMed

    Jadavji, Nafisa M; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga; Grand'maison, Marilyn; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2014-07-15

    Hyperhomocysteinaemia can contribute to cognitive impairment and brain atrophy. MTRR (methionine synthase reductase) activates methionine synthase, which catalyses homocysteine remethylation to methionine. Severe MTRR deficiency results in homocystinuria with cognitive and motor impairments. An MTRR polymorphism may influence homocysteine levels and reproductive outcomes. The goal of the present study was to determine whether mild hyperhomocysteinaemia affects neurological function in a mouse model with Mtrr deficiency. Mtrr+/+, Mtrr+/gt and Mtrrgt/gt mice (3 months old) were assessed for short-term memory, brain volumes and hippocampal morphology. We also measured DNA methylation, apoptosis, neurogenesis, choline metabolites and expression of ChAT (choline acetyltransferase) and AChE (acetylcholinesterase) in the hippocampus. Mtrrgt/gt mice exhibited short-term memory impairment on two tasks. They had global DNA hypomethylation and decreased choline, betaine and acetylcholine levels. Expression of ChAT and AChE was increased and decreased respectively. At 3 weeks of age, they showed increased neurogenesis. In the cerebellum, mutant mice had DNA hypomethylation, decreased choline and increased expression of ChAT. Our work demonstrates that mild hyperhomocysteinaemia is associated with memory impairment. We propose a mechanism whereby a deficiency in methionine synthesis leads to hypomethylation and compensatory disturbances in choline metabolism in the hippocampus. This disturbance affects the levels of acetylcholine, a critical neurotransmitter in learning and memory.

  10. The prevalence of isolated growth hormone deficiency among children of short stature in Jordan and its relationship with consanguinity.

    PubMed

    Zayed, Ayman A; Mustafa Ali, Moaath K; Al-Ani, Mohammad A; Momani, Munther S; Yousef, Al-Motassem F

    2014-12-01

    The prevalence of isolated growth hormone deficiency (IGHD) among short-statured children in Jordan, where consanguineous marriage (CM) is common, is unknown. No studies have investigated the relationship between degrees of consanguinity and IGHD. This study aimed to determine the prevalence of IGHD among short-statured children referred to a university hospital in Jordan and its relationship with different degrees of consanguinity. We conducted a 24-month cross-sectional observational trial at an outpatient tertiary care center in Amman, Jordan. We obtained detailed family histories, medical evaluations and laboratory tests for 94 short-statured children (50 boys and 44 girls aged 6-16 years). Complete and partial GHD were defined as peak GH responses of 5 and 7 μg/l (15 and 21 mIU/l) [IRMA/DiaSorin®], respectively, in both exercise and insulin tolerance tests. GHD was diagnosed in 69·1% of the short children, including 86% (43/50) of the children of consanguineous parents (83·3%, 93·8% and 81·8% of children of first cousins, first cousins once removed and second cousins, respectively) and 50% (20/44) of the children of nonconsanguineous parents (P = 0·039, 0·002 and 0·013, respectively). However, there was no statistically significant difference in the prevalence of small pituitary MRI between GH-deficient children of consanguineous parents and those of nonconsanguineous parents (28·6% vs 13·6%, P = 0·3). The prevalence of IGHD among referred short children in Jordan was exceptionally high and significantly higher in the children of CM. In countries where CM is common, preconception counselling and rigorous surveillance for GHD in short children may be indicated. © 2014 John Wiley & Sons Ltd.

  11. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross

  12. Spatial variation of a short-lived intermediate chemical species in a Couette reactor

    NASA Astrophysics Data System (ADS)

    Vigil, R. Dennis; Ouyang, Q.; Swinney, Harry L.

    1992-04-01

    We have conducted experiments and simulations of the spatial variation of a short-lived intermediate species (triiodide) in the autocatalytic oxidation of arsenite by iodate in a reactor that is essentially one dimensional—the Couette reactor. (This reactor consists of two concentric cylinders with the inner one rotating and the outer one at rest; reagents are continuously fed and removed at each end in such a way that there is no net axial flux and there are opposing arsenite and iodate gradients.) The predictions of a one-dimensional reaction-diffusion model, which has no adjustable parameters, are in good qualitative (and, in some cases, quantitative) agreement with experiments. Thus, the Couette reactor, which is used to deliberately create spatial inhomogeneities, can be exploited to enhance the recovery of short-lived intermediate species relative to that which can be obtained with either a batch or continuous-flow stirred-tank reactor.

  13. Contribution of fission to heavy-element nucleosynthesis in an astrophysical r-process

    NASA Astrophysics Data System (ADS)

    Korneev, I. Yu.; Panov, I. V.

    2011-12-01

    During the formation of heavy elements in the neutron star merger (NSM) scenario with a fairly long duration of the r-process, most of the seed nuclei rapidly burn out at the initial stage. The nucleosynthesis wave rapidly reaches the region of actinoids, where beta-delayed, neutron-induced, and spontaneous fission are the main reaction channels. The fission products of transuranium elements are again drawn into the r-process as new seed nuclei to form the yields of elements with mass numbers A > 100. The contribution from the various types of fission to the formation of heavy and superheavy nuclei is investigated. The proposed r-process model applied to the NSM scenario describes well the observed abundances of chemical elements, which confirms the formation of the main r-process component in the NSM scenario. Simple extrapolations of the spontaneous fission half-lives are shown to be inapplicable for the region of nuclei with N ˜ 184, because the formulas do not reflect the increase in half-life when the shell structure changes as the number of neutrons approaches 184. The formation of superheavy elements in the r-process is possible, but their survival depends to a large extent on how reliable the predictions of nuclear parameters, including the half-lives of the forming nuclei from the island of long-lived isotopes, are. The contributions from various types of fission—neutron-induced, beta-delayed, and spontaneous one—to the formation of heavy elements in the main r-process have been determined.

  14. Regularities in the sequences of the number of nucleons in the revolving clusters for the ground-state energy bands of the even-even nuclei with neutron number equal to or greater than 126.

    PubMed

    Pauling, L

    1990-06-01

    Values of m, the number of nucleons in the revolving cluster, and of R, the radius of revolution of the cluster about the center of mass of the spherical part of the nucleus, are calculated from the observed values of the energy for the ground-state bands of all nuclei with neutron number N >/= 126 on the basis of the assumptions (i) that both m and R change in a reasonable way with increase in the angular momentum quantum number J and with change in the proton number Z and the neutron number N, (ii) that m is usually an even integer, (iii) that certain clusters are especially stable, and (iv) that there is a special stability of the doubly magic sphere p82n126.

  15. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.

    2017-08-01

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.

  16. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    DOE PAGES

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-07

    For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less

  17. Landscape of α preformation probability for even-even nuclei in medium mass region

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2018-03-01

    The behavior of α cluster preformation probability, in α decay, is a rich source of the structural information, such as the clustering, pairing, and shell evolution in heavy nuclei. Meanwhile, the experimental α decay data have been very recently compiled in the newest table NUBASE2016. Through a least square fit to the available experimental data of nuclear charge radii plus the neutron skin thickness, we obtain a new set of parameters for the two-parameter Fermi nucleon density distributions in target nuclei. Subsequently, we make use of these refreshed inputs, involved in the density-dependent cluster model, to extract α preformation factor ({P}α ) for a large range of medium α emitters with N < 126 from the newest data table. Besides checking the supposed smooth pattern of P α in the open-shell region, the special attention has been paid to those exotic α-decaying nuclei around the Z = 50 and N = 82 shell closures. Moreover, the correlation between the α preformation factor and the microscopic correction of nuclear mass, corresponding to the effect of shell and pairing plus deformation, is in particular investigated, to pursue the valuable knowledge of the P α pattern over the nuclide chart. The feature of α preformation factor along with the neutron-proton asymmetry is then detected and discussed to some extent.

  18. The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela

    The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find thatmore » jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.« less

  19. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  20. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  1. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  2. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  3. Synthesis, Decay Properties, and Identification of Superheavy Nuclei Produced in 48Ca-induced Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2007-10-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.

  4. Synthesis, Decay Properties, and Identification of Superheavy Nuclei Produced in 48CA-INDUCED Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-04-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.

  5. A systematic investigation of the (α, 2nγ) reaction on medium-heavy nuclei

    NASA Astrophysics Data System (ADS)

    Fields, C. A.; De Boer, F. W. N.; Ristinen, R. A.; Smith, P. A.; Sugarbaker, E.

    1982-03-01

    Exclusive neutron spectra and angular distributions have been measured for 28-35 MeV (α, 2nγ) reactions on various nuclei in the 80 ≦ A ≦ 210 region. Pre-equilibrium processes dominate the 35 MeV (α, 2nγ) reaction mechanism in much of this region. Analysis of systematic variation in the neutron spectrum parameters shows that the reaction mechanism is strongly correlated with the target neutron excess parameter ( N- Z/ A. Analysis of the γ-decay of the entry states shows that well-defined incident angular momentum windows exist for the pre-etjuilibrium (α, 2nγ) reaction. These features are discussed in terms of various models for the reaction mechanism.

  6. Fast fission neutron detection using the Cherenkov effect

    NASA Astrophysics Data System (ADS)

    Millard, Matthew James

    The Cherenkov effect in optically clear media of varying indices of refraction and composition was investigated for quantification of fast neutrons. The ultimate application of the proposed detection system is criticality monitoring. The optically clear medium, composed of select target nuclei, was coupled to a photomultiplier tube. Neutron reaction products of the target nuclei contained within the optical medium emit beta particles and gamma rays that produce Cherenkov photons within the medium which can be detected. Assessed media include quartz (SiO2), sapphire (Al2O3), spinel (MgAl2O4), and zinc sulfide (ZnS), which were irradiated with un-moderated 252Cf. Monte Carlo N-Particle (MCNP) code simulations were conducted to quantify the neutron flux incident on the media. High resolution gamma-ray spectroscopic measurements of the samples were conducted to verify the MCNP estimate. The threshold reactions of interest were 28Si (n, p) 28Al, 27 Al (n, p) 27Mg, 24Mg(n, p)24 Na, and 64Zn(n, p)64Cu which have neutron reaction cross sections in the 1 to 10 MeV range on the order of 0.1 barn. The detection system offers a unique way to measure a criticality event; it can count in place, making retrieval by emergency personnel unnecessary.

  7. Development of the new trigger for VANDLE neutron detector

    NASA Astrophysics Data System (ADS)

    Hasse, Adam; Taylor, Steven; Daugherty, Hadyn; Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Department of Physics and Astronomy, University of Tennessee, Knoxville, USA.

  8. Ab initio optical potentials and nucleon scattering on medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Barbieri, C.; Navrátil, P.

    2018-03-01

    We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.

  9. Review of Livermore-Led Neutron Capture Studies Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Sheets, S; Agvaanluvsan, U

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decaymore » properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.« less

  10. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  11. Physics of the N=Z and N=Z+1 Nuclei in the A = 80--100 Region

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.

    2007-04-01

    A review of the experimental work performed at the GASP array with the purpose of the identification and first spectroscopic measurements of the heaviest even-even N=Z and odd-A N=Z+1 nuclei (mass larger than 80) is made. Systematic experiments in this mass region led to the first study of seven such nuclei: 88Ru, 81Zr, 85Mo, 89Ru, 91Rh, 93Pd, and 95Ag, and extensive data on many other nuclei in their neighborhood. The systematic evolution of the level structures in both even-even and odd-A nuclei, between N approx Z approx 40 and N approx Z approx 47 is briefly presented. The possibility that effects of the neutron-proton pairing have been observed, as well as the type of collectivity observed in this region are discussed.

  12. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, S.; Carlson, J.; Cirigliano, V.

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v 18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such asmore » those corresponding to different orders in chiral effective theory.« less

  13. Neutron Skins and Neutron Stars in the Multimessenger Era

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4<13.76 km . Given the sensitivity of the neutron-skin thickness of Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  14. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    NASA Astrophysics Data System (ADS)

    Wraith, C.; Yang, X. F.; Xie, L.; Babcock, C.; Bieroń, J.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Filippin, L.; Garcia Ruiz, R. F.; Gins, W.; Grob, L. K.; Gaigalas, G.; Godefroid, M.; Gorges, C.; Heylen, H.; Honma, M.; Jönsson, P.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Nowacki, F.; Otsuka, T.; Papuga, J.; Sánchez, R.; Tsunoda, Y.; Yordanov, D. T.

    2017-08-01

    Collinear laser spectroscopy was performed on Zn (Z = 30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N = 33- 49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N = 50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69-79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell-model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ = 1 /2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N = 43, while the progression towards 79Zn points to the stability of the Z = 28 and N = 50 shell gaps, supporting the magicity of 78Ni.

  15. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... holocarboxylase synthetase deficiency Orphanet: Multiple carboxylase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association ...

  16. Genetics Home Reference: beta-ketothiolase deficiency

    MedlinePlus

    ... Beta Ketothiolase Deficiency Orphanet: Beta-ketothiolase deficiency Screening, Technology And Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (2 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association ...

  17. The role of fission on neutron star mergers and its impact on the r-process peaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichler, M., E-mail: marius.eichler@unibas.ch; Thielemann, F.-K.; Arcones, A.

    2016-06-21

    The comparison between observational abundance features and those obtained from nucleosynthesis predictions of stellar evolution and/or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. Here we test the abundance features of r-process nucleosynthesis calculations using four different fission fragment distribution models. Furthermore, we explore the origin of a shift in the third r-process peak position in comparison with the solar r-process abundances which has been noticed in a number of merger nucleosynthesis predictions. We show that this shift occurs during the r-process freeze-out whenmore » neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.« less

  18. Sigma omega meson coupling and properties of nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-05-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.

  19. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  20. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  1. Shell-model method for Gamow-Teller transitions in heavy deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Long-Jun; Sun, Yang; Ghorui, Surja K.

    2018-04-01

    A shell-model method for calculating Gamow-Teller (GT) transition rates in heavy deformed odd-mass nuclei is presented. The method is developed within the framework of the projected shell model. To implement the computation requirement when many multi-quasiparticle configurations are included in the basis, a numerical advancement based on the Pfaffian formula is introduced. With this new many-body technique, it becomes feasible to perform state-by-state calculations for the GT nuclear matrix elements of β -decay and electron-capture processes, including those at high excitation energies in heavy nuclei which are usually deformed. The first results, β- decays of the well-deformed A =153 neutron-rich nuclei, are shown as the example. The known log(f t ) data corresponding to the B (GT- ) decay rates of the ground state of 153Nd to the low-lying states of 153Pm are well described. It is further shown that the B (GT) distributions can have a strong dependence on the detailed microscopic structure of relevant states of both the parent and daughter nuclei.

  2. Light Collection Efficiency in Thin Strip Plastic Scintillator for the Study of ISGMR in Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Shafer, Jacob

    2011-10-01

    The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.

  3. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases

    PubMed Central

    Zickfeld, Kirsten

    2017-01-01

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the “world avoided” by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing. PMID:28069937

  4. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    PubMed

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  5. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    PubMed

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  6. Regularities in the sequences of the number of nucleons in the revolving clusters for the ground-state energy bands of the even-even nuclei with neutron number equal to or greater than 126.

    PubMed Central

    Pauling, L

    1990-01-01

    Values of m, the number of nucleons in the revolving cluster, and of R, the radius of revolution of the cluster about the center of mass of the spherical part of the nucleus, are calculated from the observed values of the energy for the ground-state bands of all nuclei with neutron number N >/= 126 on the basis of the assumptions (i) that both m and R change in a reasonable way with increase in the angular momentum quantum number J and with change in the proton number Z and the neutron number N, (ii) that m is usually an even integer, (iii) that certain clusters are especially stable, and (iv) that there is a special stability of the doubly magic sphere p82n126. PMID:11607085

  7. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  8. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  9. Systematic study on the competition between α-decay and spontaneous fission of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Wang, Y. Z.

    2017-10-01

    The competition between α-decay and spontaneous fission (SF) of Z = 112 isotopes are studied. The α-decay half-lives are estimated by the generalized liquid-drop model (GLDM) and several sets of analytic formulas. These formulas include the Royer formula, Viola-Seaborg semiempirical (VSS) formula and universal decay law (UDL). For the SF, its half-lives are calculated by using the Xu, Ren, Karpov and Santhosh formulas. It is shown that the predicted α-decay half-lives by different approaches are more or less identical. However, the SF half-lives are highly sensitive to models. To test the accuracies of different SF formulas, the half-lives of 56 even-even heavy nuclei are calculated by these formulas. By comparing with the experimental data, it is found that the Xu formula is the most accurate one to reproduce the experimental SF half-lives. This allows us to make a systematic prediction on the competition between α-decay and SF of even-even superheavy nuclei (SHN) with Z = 104- 120 by using the Xu formula and the above mentioned models on α-decay. The calculations suggest that 258,260104, 268-276110, 270-280112, 272-286114, 274-294116, 284-302118 and 292-308120 have smaller α-decay half-lives than those of SF. Thus these nuclei can be synthesized and identified via α-decay in the laboratory. In addition, it is observed that N = 162, 178, 184 and 196 may be the submagic or magic numbers. Finally, an extensive study on the possible α-decay chains for Z = 120 isotopes is performed. It is predicted that six sequential α-decay chains can be observed from 292-296120, four α-decay chains from 298120, three α-decay chains from 300,302120, two α-decay chains from 304,306120, and only one α-decay chain from 308120. These nuclei are the most likely candidates to be synthesized experimentally via α-decay in the near future.

  10. Genetics Home Reference: familial glucocorticoid deficiency

    MedlinePlus

    ... familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J ... short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012 Mar;122(3):814- ...

  11. Valence p-n interactions and sufficient conditions for the development of collectivity in heavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Y.Y.

    1988-04-01

    The P scheme of Casten, Brenner, and Haustein is used to suggest that nuclei will always become deformed when there are more than 10 valence nucleons of each type (protons and neutrons). Utilizing this scheme, necessary and sufficient conditions are also suggested for the onset of nuclear collectivity.

  12. Gravitational waves from neutron stars and asteroseismology.

    PubMed

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  13. Gravitational waves from neutron stars and asteroseismology

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  14. Genetics Home Reference: carnitine-acylcarnitine translocase deficiency

    MedlinePlus

    ... translocase deficiency Orphanet: Carnitine-acylcarnitine translocase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  15. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  16. Ordering of the 0 d5 /2 and 1 s1 /2 proton levels in light nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, C. R.; Kay, B. P.; Schiffer, J. P.

    2016-08-01

    A survey of the available single-proton data in A ≤17 nuclei was completed. These data, along with calculations using a Woods-Saxon potential, show that the ordering of the 0 d5 /2 and 1 s1 /2 proton orbitals are determined primarily by the proximity of the s -state proton energy to the Coulomb barrier. This is analogous to the dependence of the corresponding neutron orbitals in proximity to the neutron threshold, which was previously discussed.

  17. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  18. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO 3-δ studied using neutron total scattering and Rietveld analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young

    2011-08-29

    Oxygen-deficient BaTiO 3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO 3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in themore » highly oxygen-reduced BaTiO 3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  19. Predictive factors for the Nursing Diagnoses in people living with Acquired Immune Deficiency Syndrome 1

    PubMed Central

    da Silva, Richardson Augusto Rosendo; Costa, Romanniny Hévillyn Silva; Nelson, Ana Raquel Cortês; Duarte, Fernando Hiago da Silva; Prado, Nanete Caroline da Costa; Rodrigues, Eduardo Henrique Fagundes

    2016-01-01

    Abstract Objective: to identify the predictive factors for the nursing diagnoses in people living with Acquired Immune Deficiency Syndrome. Method: a cross-sectional study, undertaken with 113 people living with AIDS. The data were collected using an interview script and physical examination. Logistic regression was used for the data analysis, considering a level of significance of 10%. Results: the predictive factors identified were: for the nursing diagnosis of knowledge deficit-inadequate following of instructions and verbalization of the problem; for the nursing diagnosis of failure to adhere - years of study, behavior indicative of failure to adhere, participation in the treatment and forgetfulness; for the nursing diagnosis of sexual dysfunction - family income, reduced frequency of sexual practice, perceived deficit in sexual desire, perceived limitations imposed by the disease and altered body function. Conclusion: the predictive factors for these nursing diagnoses involved sociodemographic and clinical characteristics, defining characteristics, and related factors, which must be taken into consideration during the assistance provided by the nurse. PMID:27384466

  20. Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator

    NASA Astrophysics Data System (ADS)

    Hamm, Robert W.

    2000-12-01

    Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.