Science.gov

Sample records for short-term earthquake prediction

  1. Is Earthquake Prediction Possible from Short-Term Foreshocks?

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Gerassimos; Avlonitis, Markos; Di Fiore, Boris; Minadakis, George

    2015-04-01

    Foreshocks preceding mainshocks in the short-term, ranging from minutes to a few months prior the mainshock, have been known from several decades ago. Understanding the generation mechanisms of foreshocks was supported by seismicity observations and statistics, laboratory experiments, theoretical considerations and simulation results. However, important issues remain open. For example, (1) How foreshocks are defined? (2) Why only some mainshocks are preceded by foreshocks but others do not? (2) Is the mainshock size dependent on some attributes of the foreshock sequence? (3) Is that possible to discriminate foreshocks from other seismicity styles (e.g. swarms, aftershocks)? To approach possible replies to these issues we reviewed about 400 papers, reports, books and other documents referring to foreshocks as well as to relevant laboratory experiments. We found that different foreshock definitions are used by different authors. We found also that the ratio of mainshocks preceded by foreshocks increases with the increase of monitoring capabilities and that foreshock activity is dependent on source mechanical properties and favoured by material heterogeneity. Also, the mainshock size does not depend on the largest foreshock size but rather by the foreshock area. Seismicity statistics may account for an effective discrimination of foreshocks from other seismicity styles since during foreshock activities the seismicity rate increases with the inverse of time and, at the same, the b-value of the G-R relationship as a rule drops significantly. Our literature survey showed that only the last years the seismicity catalogs organized in some well monitored areas are adequately complete to search for foreshock activities. Therefore, we investigated for a set of "good foreshock examples" covering a wide range of mainshock magnitudes from 4.5 to 9 in Japan (Tohoku 2011), S. California, Italy (including L' Aquila 2009) and Greece. The good examples used indicate that foreshocks

  2. Four Examples of Short-Term and Imminent Prediction of Earthquakes

    NASA Astrophysics Data System (ADS)

    zeng, zuoxun; Liu, Genshen; Wu, Dabin; Sibgatulin, Victor

    2014-05-01

    We show here 4 examples of short-term and imminent prediction of earthquakes in China last year. They are Nima Earthquake(Ms5.2), Minxian Earthquake(Ms6.6), Nantou Earthquake (Ms6.7) and Dujiangyan Earthquake (Ms4.1) Imminent Prediction of Nima Earthquake(Ms5.2) Based on the comprehensive analysis of the prediction of Victor Sibgatulin using natural electromagnetic pulse anomalies and the prediction of Song Song and Song Kefu using observation of a precursory halo, and an observation for the locations of a degasification of the earth in the Naqu, Tibet by Zeng Zuoxun himself, the first author made a prediction for an earthquake around Ms 6 in 10 days in the area of the degasification point (31.5N, 89.0 E) at 0:54 of May 8th, 2013. He supplied another degasification point (31N, 86E) for the epicenter prediction at 8:34 of the same day. At 18:54:30 of May 15th, 2013, an earthquake of Ms5.2 occurred in the Nima County, Naqu, China. Imminent Prediction of Minxian Earthquake (Ms6.6) At 7:45 of July 22nd, 2013, an earthquake occurred at the border between Minxian and Zhangxian of Dingxi City (34.5N, 104.2E), Gansu province with magnitude of Ms6.6. We review the imminent prediction process and basis for the earthquake using the fingerprint method. 9 channels or 15 channels anomalous components - time curves can be outputted from the SW monitor for earthquake precursors. These components include geomagnetism, geoelectricity, crust stresses, resonance, crust inclination. When we compress the time axis, the outputted curves become different geometric images. The precursor images are different for earthquake in different regions. The alike or similar images correspond to earthquakes in a certain region. According to the 7-year observation of the precursor images and their corresponding earthquake, we usually get the fingerprint 6 days before the corresponding earthquakes. The magnitude prediction needs the comparison between the amplitudes of the fingerpringts from the same

  3. From a physical approach to earthquake prediction, towards long and short term warnings ahead of large earthquakes

    NASA Astrophysics Data System (ADS)

    Stefansson, R.; Bonafede, M.

    2012-04-01

    For 20 years the South Iceland Seismic Zone (SISZ) was a test site for multinational earthquake prediction research, partly bridging the gap between laboratory tests samples, and the huge transform zones of the Earth. The approach was to explore the physics of processes leading up to large earthquakes. The book Advances in Earthquake Prediction, Research and Risk Mitigation, by R. Stefansson (2011), published by Springer/PRAXIS, and an article in the August issue of the BSSA by Stefansson, M. Bonafede and G. Gudmundsson (2011) contain a good overview of the findings, and more references, as well as examples of partially successful long and short term warnings based on such an approach. Significant findings are: Earthquakes that occurred hundreds of years ago left scars in the crust, expressed in volumes of heterogeneity that demonstrate the size of their faults. Rheology and stress heterogeneity within these volumes are significantly variable in time and space. Crustal processes in and near such faults may be observed by microearthquake information decades before the sudden onset of a new large earthquake. High pressure fluids of mantle origin may in response to strain, especially near plate boundaries, migrate upward into the brittle/elastic crust to play a significant role in modifying crustal conditions on a long and short term. Preparatory processes of various earthquakes can not be expected to be the same. We learn about an impending earthquake by observing long term preparatory processes at the fault, finding a constitutive relationship that governs the processes, and then extrapolating that relationship into near space and future. This is a deterministic approach in earthquake prediction research. Such extrapolations contain many uncertainties. However the long time pattern of observations of the pre-earthquake fault process will help us to put probability constraints on our extrapolations and our warnings. The approach described is different from the usual

  4. Satellite Thermal Infrared Stress Field and Earthquake Prediction in Short-term and Imminent

    NASA Astrophysics Data System (ADS)

    Qiang, Z.; Zhao, X.; Xie, H.; Zeng, Z.

    2007-12-01

    It has been recognized that there is a temperature-increase anomaly before earthquake. Meteorological satellite based thermal infrared (IR) radiation in detecting ground surface temperature, thus anomaly, has its advantages, such as data accuracy, large areal coverage, a large amount of information and capability of capturing the time- space dynamic variation of the temperature - increase before earthquakes (Qiang Zuji et al., 1996). Earthquake precursors should enable a predicator to give the three elements of a future earthquake: location, magnitude and time, (Max Wyss, 1993) in which the method of thermal anomaly detection can provide all three elements. Practice is the only criterion to examine a truth. Chinese scientists in the satellite thermal-infrared earthquake-prediction group led by QIANG Zuji and DIAN Changgong have carried on practicing short and imminent earthquake prediction since 1990. Over the years we have made steady and exciting progress. During the 11 years from 1990 to 2000, we made 119 predictions. of which 58 were valid and 15 were false alarms. The success rate of those predictions increases from 24% during period of 1990-1995, to 46% in 1996, 53% in 1997, 76% in 1998, to 80% in 1999 and 2000, summarized by Wang (2005). The satellite infrared detected thermal stress field is a reflection of the earth's crust stress condition when rock stress increases the spot along the stress to produce micro fissures in rock. Therefore, hot plane and line that have the closet relation with the stress condition and the rock faulted structure can demonstrate the compression stress direction. The thermal stress types have been recognized over years include isolated X shear structure, en echelon, single arm form, the string of beads shape, ∈ type, rotation shear ellipse, and the advancement rotation shear ellipse (Wu Li-xin, Liu Shan-jun, 2006,Qiang Zuji et al 1991,1993,1995,1996,1997,2001)

  5. Short-term foreshock activity and its value for the earthquake prediction

    NASA Astrophysics Data System (ADS)

    Orfanogiannaki, Katerina; Daskalaki, Elena; Minadakis, George; Papadopoulos, Gerasimos

    2014-05-01

    Seismicity often occurs in space-time clusters: swarms, short-term foreshocks, aftershocks. Swarms are space-time clusters that do not conclude with a mainshock. Earthquake statistics shows that in areas of good seismicity monitoring foreshocks precede sizeable (M5.5 or more) mainshocks at a rate of about half percent. Therefore, discrimination between foreshocks and swarms is of crucial importance with the aim to use foreshocks as a diagnostic of forthcoming strong mainshock in real-time conditions. We analyzed seismic sequences in Greece and Italy with the application of our algorithm FORMA (Foreshocks-Mainshock-Aftershocks) and discriminate between foreshocks and swarms based on the seismicity significant changes in the space-time-magnitude domains. We support that different statistical properties is a diagnostic of foreshocks (e.g. b-value drop) against swarms (b-value increase). A complementary approach is based on the development of Poisson Hidden Markov Models (PHMM's) which are introduced to model significant temporal seismicity changes. In a PHMM the unobserved sequence of states is a finite-state Markov chain and the distribution of the observation at any time is Poissonian with rate depending only on the current state of the chain. Thus, PHMM allows a region to have varying seismicity rate. PHMM is a promising diagnostic since the transition from one state to another does not only depend on the total number of events involved but also on the current state of the system. A third methodological experiment was performed based on the complex network theory. We found that the earthquake networks examined form a scale-free degree distribution. By computing their basic statistical measures, such as the Average Clustering Coefficient, Mean Path Length and Entropy, we found that they underline the strong space-time clustering of swarms, foreshocks and aftershocks but also their important differences. Therefore, network theory is an additional, promising tool to

  6. Earthquake prediction

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1991-01-01

    The state of the art in earthquake prediction is discussed. Short-term prediction based on seismic precursors, changes in the ratio of compressional velocity to shear velocity, tilt and strain precursors, electromagnetic precursors, hydrologic phenomena, chemical monitors, and animal behavior is examined. Seismic hazard assessment is addressed, and the applications of dynamical systems to earthquake prediction are discussed.

  7. Short-term Drought Prediction in India.

    NASA Astrophysics Data System (ADS)

    Shah, R.; Mishra, V.

    2014-12-01

    Medium range soil moisture drought forecast helps in decision making in the field of agriculture and water resources management. Part of skills in medium range drought forecast comes from precipitation. Proper evaluation and correction of precipitation forecast may improve drought predictions. Here, we evaluate skills of ensemble mean precipitation forecast from Global Ensemble Forecast System (GEFS) for medium range drought predictions over India. Climatological mean (CLIM) of historic data (OBS) are used as reference forecast to evaluate GEFS precipitation forecast. Analysis was conducted based on forecast initiated on 1st and 15th dates of each month for lead up to 7-days. Correlation and RMSE were used to estimate skill scores of accumulated GEFS precipitation forecast from lead 1 to 7-days. Volumetric indices based on the 2X2 contingency table were used to check missed and falsely predicted historic volume of daily precipitation from GEFS in different regions and at different thresholds. GEFS showed improvement in correlation of 0.44 over CLIM during the monsoon season and 0.55 during the winter season. Lower RMSE was showed by GEFS than CLIM. Ratio of RMSE in GEFS and CLIM comes out as 0.82 and 0.4 (perfect skill is at zero) during the monsoon and winter season, respectively. We finally used corrected GEFS forecast to derive the Variable Infiltration Capacity (VIC) model, which was used to develop short-term forecast of hydrologic and agricultural (soil moisture) droughts in India.

  8. Short-term predictions in forex trading

    NASA Astrophysics Data System (ADS)

    Muriel, A.

    2004-12-01

    Using a kinetic equation that is used to model turbulence (Physica A, 1985-1988, Physica D, 2001-2003), we redefine variables to model the time evolution of the foreign exchange rates of three major currencies. We display live and predicted data for one period of trading in October, 2003.

  9. Testing new methodologies for short -term earthquake forecasting: Multi-parameters precursors

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio; Lee, Lou; Liu, Tiger; Hattori, Katsumi; Kafatos, Menas

    2014-05-01

    We are conducting real-time tests involving multi-parameter observations over different seismo-tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters, namely: gas discharge; thermal infrared radiation; ionospheric electron density; and atmospheric temperature and humidity, which we believe are all associated with the earthquake preparation phase. We are testing a methodology capable to produce alerts in advance of major earthquakes (M > 5.5) in different regions of active earthquakes and volcanoes. During 2012-2013 we established a collaborative framework with PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) projects for coordinated measurements and prospective validation over seven testing regions: Southern California (USA), Eastern Honshu (Japan), Italy, Greece, Turkey, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a "stress test" opportunity to validate the physical based earthquake precursor approach over regions of high seismicity. Our initial results are: (1) Real-time tests have shown the presence of anomalies in the atmosphere and ionosphere before most of the significant (M>5.5) earthquakes; (2) False positives exist and ratios are different for each region, varying between 50% for (Southern Italy), 35% (California) down to 25% (Taiwan, Kamchatka and Japan) with a significant reduction of false positives as soon as at least two geophysical parameters are contemporarily used; (3) Main problems remain related to the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that real-time testing of physically based pre-earthquake signals provides a short-term predictive power (in all three important parameters, namely location, time and magnitude) for the occurrence of major earthquakes in the tested regions and this result encourages testing to continue with a more detailed analysis of

  10. Short term creep rupture predictions for tantalum alloy T-111

    SciTech Connect

    Stephens, J.J. )

    1991-01-01

    A knowledge of the short term creep rupture behavior of Tantalum alloy T-111 is necessary to predict device integrity in the heat source section of Radioisotope Thermoelectric Generators (RTGs) at the end of service life, in the event of a fuel fire. High pressures exist in RTGs near the end of service life, these are caused by gas generation resulting from radioactive decay of the nuclear fuel. The internal pressure exerts a significant hoop stress on the T-111 alloy structural containment member. This paper analyses the short term creep behavior (rupture times up to {similar to}2{times}10{sup 3} hrs.) of cold worked (CW) T-111 alloy, using the existing data of Stephenson (1967). Corellations for the time to rupture, time to 1% strain and minimum creep rate have been obtained from this data using multivariable linear regression analysis. These results are compared to other short term rupture data for T-111 alloy. Finally, at the stress/temperature levels relevant to the RTG fuel fire scenario near the end of service life, the rupture time correlation for T-111 alloy predicts a rupture time of approximately 100 hrs.

  11. Short term creep rupture predictions for Tantalum alloy T-3

    SciTech Connect

    Stephens, J.J.

    1991-01-01

    A knowledge of the short term creep rupture behavior of Tantalum alloy T-111 is necessary to predict device integrity in the heat source section of Radioisotope Thermoelectric Generators (RTG's) at the end of service life, in the event of a fuel fire. High pressures exist in RTG's near the end of service life, these are caused by gas generation resulting from radioactive decay of the nuclear fuel. The internal pressure exerts a significant hoop stress on the T-111 alloy structural containment member. This paper analyses the short term creep behavior (rupture times up to {approximately}2 {times} 10{sup 3} hrs.) of cold worked (CW) T-111 alloy, using the existing data of Stephenson (1967). Corellations for the time to rupture, time to 1% strain and minimum creep rate have been obtained from this data using multivariable linear regression analysis. These results are compared to other short term rupture data for T-111 alloy. Finally, at the stress/temperature levels relevant to the RTG fuel fire scenario near the end of service life, the rupture time correlation for T-111 alloy predicts a rupture time of approximately 100 hrs. 10 refs., 3 figs., 1 tab.

  12. Power system very short-term load prediction

    SciTech Connect

    Trudnowski, D.J.; Johnson, J.M.; Whitney, P.

    1997-02-01

    A fundamental objective of a power-system operating and control scheme is to maintain a match between the system`s overall real-power load and generation. To accurately maintain this match, modern energy management systems require estimates of the future total system load. Several strategies and tools are available for estimating system load. Nearly all of these estimate the future load in 1-hour steps over several hours (or time frames very close to this). While hourly load estimates are very useful for many operation and control decisions, more accurate estimates at closer intervals would also be valuable. This is especially true for emerging Area Generation Control (AGC) strategies such as look-ahead AGC. For these short-term estimation applications, future load estimates out to several minutes at intervals of 1 to 5 minutes are required. The currently emerging operation and control strategies being developed by the BPA are dependent on accurate very short-term load estimates. To meet this need, the BPA commissioned the Pacific Northwest National Laboratory (PNNL) and Montana Tech (an affiliate of the University of Montana) to develop an accurate load prediction algorithm and computer codes that automatically update and can reliably perform in a closed-loop controller for the BPA system. The requirements include accurate load estimation in 5-minute steps out to 2 hours. This report presents the results of this effort and includes: a methodology and algorithms for short-term load prediction that incorporates information from a general hourly forecaster; specific algorithm parameters for implementing the predictor in the BPA system; performance and sensitivity studies of the algorithms on BPA-supplied data; an algorithm for filtering power system load samples as a precursor to inputting into the predictor; and FORTRAN 77 subroutines for implementing the algorithms.

  13. Comparison of Short-term and Long-term Earthquake Forecast Models for Southern California

    NASA Astrophysics Data System (ADS)

    Helmstetter, A.; Kagan, Y. Y.; Jackson, D. D.

    2004-12-01

    Many earthquakes are triggered in part by preceding events. Aftershocks are the most obvious examples, but many large earthquakes are preceded by smaller ones. The large fluctuations of seismicity rate due to earthquake interactions thus provide a way to improve earthquake forecasting significantly. We have developed a model to estimate daily earthquake probabilities in Southern California, using the Epidemic Type Earthquake Sequence model [Kagan and Knopoff, 1987; Ogata, 1988]. The forecasted seismicity rate is the sum of a constant external loading and of the aftershocks of all past earthquakes. The background rate is estimated by smoothing past seismicity. Each earthquake triggers aftershocks with a rate that increases exponentially with its magnitude and which decreases with time following Omori's law. We use an isotropic kernel to model the spatial distribution of aftershocks for small (M5.5) mainshocks, and a smoothing of the location of early aftershocks for larger mainshocks. The model also assumes that all earthquake magnitudes follow the Gutenberg-Richter law with a unifom b-value. We use a maximum likelihood method to estimate the model parameters and tests the short-term and long-term forecasts. A retrospective test using a daily update of the forecasts between 1985/1/1 and 2004/3/10 shows that the short-term model decreases the uncertainty of an earthquake occurrence by a factor of about 10.

  14. Earthquake prediction

    SciTech Connect

    Ma, Z.; Fu, Z.; Zhang, Y.; Wang, C.; Zhang, G.; Liu, D.

    1989-01-01

    Mainland China is situated at the eastern edge of the Eurasian seismic system and is the largest intra-continental region of shallow strong earthquakes in the world. Based on nine earthquakes with magnitudes ranging between 7.0 and 7.9, the book provides observational data and discusses successes and failures of earthquake prediction. Derived from individual earthquakes, observations of various phenomena and seismic activities occurring before and after earthquakes, led to the establishment of some general characteristics valid for earthquake prediction.

  15. Short-term wind speed predictions with machine learning techniques

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Khatibi, R.; FazeliFard, M. H.; Naghipour, L.; Makarynskyy, O.

    2016-02-01

    Hourly wind speed forecasting is presented by a modeling study with possible applications to practical problems including farming wind energy, aircraft safety and airport operations. Modeling techniques employed in this paper for such short-term predictions are based on the machine learning techniques of artificial neural networks (ANNs) and genetic expression programming (GEP). Recorded values of wind speed were used, which comprised 8 years of collected data at the Kersey site, Colorado, USA. The January data over the first 7 years (2005-2011) were used for model training; and the January data for 2012 were used for model testing. A number of model structures were investigated for the validation of the robustness of these two techniques. The prediction results were compared with those of a multiple linear regression (MLR) method and with the Persistence method developed for the data. The model performances were evaluated using the correlation coefficient, root mean square error, Nash-Sutcliffe efficiency coefficient and Akaike information criterion. The results indicate that forecasting wind speed is feasible using past records of wind speed alone, but the maximum lead time for the data was found to be 14 h. The results show that different techniques would lead to different results, where the choice between them is not easy. Thus, decision making has to be informed of these modeling results and decisions should be arrived at on the basis of an understanding of inherent uncertainties. The results show that both GEP and ANN are equally credible selections and even MLR should not be dismissed, as it has its uses.

  16. Predicting short-term stock fluctuations by using processing fluency

    PubMed Central

    Alter, Adam L.; Oppenheimer, Daniel M.

    2006-01-01

    Three studies investigated the impact of the psychological principle of fluency (that people tend to prefer easily processed information) on short-term share price movements. In both a laboratory study and two analyses of naturalistic real-world stock market data, fluently named stocks robustly outperformed stocks with disfluent names in the short term. For example, in one study, an initial investment of $1,000 yielded a profit of $112 more after 1 day of trading for a basket of fluently named shares than for a basket of disfluently named shares. These results imply that simple, cognitive approaches to modeling human behavior sometimes outperform more typical, complex alternatives. PMID:16754871

  17. Short-term earthquake risk assessment considering time-dependent b-values

    NASA Astrophysics Data System (ADS)

    Gulia, Laura; Tormann, Thessa; Wiemer, Stefan

    2015-04-01

    Observations from laboratory experiments measuring acoustic emissions during loading cycles in pressurized rock samples have repeatedly suggested that small events in the precursory phase of an impending large event change in their relative size distribution. In particular, they highlight a systematic b-value decrease during the stress increase period before the main event. A number of large natural events, but not all of them, have been shown to have a precursory decrease in the b-value at very different time scales, from months to a few days before the subsequent mainshock. At present short term-forecast models such as STEP and ETAS consider the generic probability that an event can trigger subsequent seismicity in the near field; the rate increasing during the foreshock sequences can offer a probability gain for a significant earthquake to happen. While the probability gain of a stationary Poissonian background is substantial, selected case studies have shown through cost-benefit analysis that the absolute probability remains too low to warrant actions. This was shown for example by van Stiphout et al. (2010, GRL), for the 2009 a Mw 6.3 earthquake that hit the city of L'Aquila (Central Italy) after three months of foreshock activity. We here analyze the probability gain of a novel generation of short term forecast models which considers both the change in the seismicity rates and the temporal changes in the b-value. Changes in earthquake probability are then translated also into time-dependent hazard and risk. Preliminary results suggest that the precursory b-value decrease in the L'Aquila case results in an additional probability increase of a M6.3 event of about a factor of 30-50, which then surpasses the cost-benefit threshold for short-term evacuation in selected cases.

  18. Distribution of Short-Term and Lifetime Predicted Risks of Cardiovascular Diseases in Peruvian Adults

    PubMed Central

    Quispe, Renato; Bazo-Alvarez, Juan Carlos; Burroughs Pea, Melissa S; Poterico, Julio A; Gilman, Robert H; Checkley, William; Bernab-Ortiz, Antonio; Huffman, Mark D; Miranda, J Jaime

    2015-01-01

    Background Short-term risk assessment tools for prediction of cardiovascular disease events are widely recommended in clinical practice and are used largely for single time-point estimations; however, persons with low predicted short-term risk may have higher risks across longer time horizons. Methods and Results We estimated short-term and lifetime cardiovascular disease risk in a pooled population from 2 studies of Peruvian populations. Short-term risk was estimated using the atherosclerotic cardiovascular disease Pooled Cohort Risk Equations. Lifetime risk was evaluated using the algorithm derived from the Framingham Heart Study cohort. Using previously published thresholds, participants were classified into 3 categories: low short-term and low lifetime risk, low short-term and high lifetime risk, and high short-term predicted risk. We also compared the distribution of these risk profiles across educational level, wealth index, and place of residence. We included 2844 participants (50% men, mean age 55.9 years [SD 10.2 years]) in the analysis. Approximately 1 of every 3 participants (34% [95% CI 33 to 36]) had a high short-term estimated cardiovascular disease risk. Among those with a low short-term predicted risk, more than half (54% [95% CI 52 to 56]) had a high lifetime predicted risk. Short-term and lifetime predicted risks were higher for participants with lower versus higher wealth indexes and educational levels and for those living in urban versus rural areas (P<0.01). These results were consistent by sex. Conclusions These findings highlight potential shortcomings of using short-term risk tools for primary prevention strategies because a substantial proportion of Peruvian adults were classified as low short-term risk but high lifetime risk. Vulnerable adults, such as those from low socioeconomic status and those living in urban areas, may need greater attention regarding cardiovascular preventive strategies. PMID:26254303

  19. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    PubMed Central

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  20. Short-term forecasting of Taiwanese earthquakes using a universal model of fusion-fission processes.

    PubMed

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M A; Johnson, Neil F

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  1. Impact of Short-term Changes In Earthquake Hazard on Risk In Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Nyst, M.

    2012-12-01

    The recent Mw 7.1, 4 September 2010 Darfield, and Mw 6.2, 22 February 2011 Christchurch, New Zealand earthquakes and the following aftershock activity completely changed the existing view on earthquake hazard of the Christchurch area. Not only have several faults been added to the New Zealand fault database, the main shocks were also followed by significant increases in seismicity due to high aftershock activity throughout the Christchurch region that is still on-going. Probabilistic seismic hazard assessment (PSHA) models take into account a stochastic event set, the full range of possible events that can cause damage or loss at a particular location. This allows insurance companies to look at their risk profiles via average annual losses (AAL) and loss-exceedance curves. The loss-exceedance curve is derived from the full suite of seismic events that could impact the insured exposure and plots the probability of exceeding a particular loss level over a certain period. Insurers manage their risk by focusing on a certain return period exceedance benchmark, typically between the 100 and 250 year return period loss level, and then reserve the amount of money needed to account for that return period loss level, their so called capacity. This component of risk management is not too sensitive to short-term changes in risk due to aftershock seismicity, as it is mostly dominated by longer-return period, larger magnitude, more damaging events. However, because the secondairy uncertainties are taken into account when calculating the exceedance probability, even the longer return period losses can still experience significant impact from the inclusion of time-dependent earthquake behavior. AAL is calculated by summing the product of the expected loss level and the annual rate for all events in the event set that cause damage or loss at a particular location. This relatively simple metric is an important factor in setting the annual premiums. By annualizing the expected losses

  2. On Earthquake Prediction in Japan

    PubMed Central

    UYEDA, Seiya

    2013-01-01

    Japans National Project for Earthquake Prediction has been conducted since 1965 without success. An earthquake prediction should be a short-term prediction based on observable physical phenomena or precursors. The main reason of no success is the failure to capture precursors. Most of the financial resources and manpower of the National Project have been devoted to strengthening the seismographs networks, which are not generally effective for detecting precursors since many of precursors are non-seismic. The precursor research has never been supported appropriately because the project has always been run by a group of seismologists who, in the present authors view, are mainly interested in securing funds for seismology on pretense of prediction. After the 1995 Kobe disaster, the project decided to give up short-term prediction and this decision has been further fortified by the 2011 M9 Tohoku Mega-quake. On top of the National Project, there are other government projects, not formally but vaguely related to earthquake prediction, that consume many orders of magnitude more funds. They are also un-interested in short-term prediction. Financially, they are giants and the National Project is a dwarf. Thus, in Japan now, there is practically no support for short-term prediction research. Recently, however, substantial progress has been made in real short-term prediction by scientists of diverse disciplines. Some promising signs are also arising even from cooperation with private sectors. PMID:24213204

  3. On earthquake prediction in Japan.

    PubMed

    Uyeda, Seiya

    2013-01-01

    Japan's National Project for Earthquake Prediction has been conducted since 1965 without success. An earthquake prediction should be a short-term prediction based on observable physical phenomena or precursors. The main reason of no success is the failure to capture precursors. Most of the financial resources and manpower of the National Project have been devoted to strengthening the seismographs networks, which are not generally effective for detecting precursors since many of precursors are non-seismic. The precursor research has never been supported appropriately because the project has always been run by a group of seismologists who, in the present author's view, are mainly interested in securing funds for seismology - on pretense of prediction. After the 1995 Kobe disaster, the project decided to give up short-term prediction and this decision has been further fortified by the 2011 M9 Tohoku Mega-quake. On top of the National Project, there are other government projects, not formally but vaguely related to earthquake prediction, that consume many orders of magnitude more funds. They are also un-interested in short-term prediction. Financially, they are giants and the National Project is a dwarf. Thus, in Japan now, there is practically no support for short-term prediction research. Recently, however, substantial progress has been made in real short-term prediction by scientists of diverse disciplines. Some promising signs are also arising even from cooperation with private sectors. PMID:24213204

  4. Short-term earthquake forecasting based on an epidemic clustering model

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2016-04-01

    . The implementation of this step could be problematic for seismicity characterized by long-term recurrence. However, the separation of the data base of the data base collected in the past in two separate sections (one on which the best fit of the parameters is carried out, and the other on which the hypothesis is tested) can be a viable solution, known as retrospective-forward testing. In this study we show examples of application of the above mentioned concepts to the analysis of the Italian catalog of instrumental seismicity, making use of an epidemic algorithm developed to model short-term clustering features. This model, for which a precursory anomaly is just the occurrence of seismic activity, doesn't need the retrospective categorization of earthquakes in terms of foreshocks, mainshocks and aftershocks. It was introduced more than 15 years ago and tested so far in a number of real cases. It is now being run by several seismological centers around the world in forward real-time mode for testing purposes.

  5. Short-term predictions of HIV prevalence and AIDS incidence.

    PubMed Central

    Hendriks, J. C.; Medley, G. F.; Heisterkamp, S. H.; Van Griensven, G. J.; Bindels, P. J.; Coutinho, R. A.; Van Druten, J. A.

    1992-01-01

    Reports of AIDS cases in Amsterdam up to February 1990 were used to make predictions of future cases up to 1993. Two published methods were applied, which make extrapolations from current cases and simultaneously estimate the extent of delay in reporting. The choice of the exact model greatly influenced the predictions, as did predictions for distinct transmission groups. We present results for the homo/bisexual male group, and the total population of Amsterdam. The AIDS case predictions are used to predict the HIV prevalence using the ratio of HIV prevalence to AIDS incidence and through 'back calculation'. We suggest that the ratio is a simple technique that may be used to estimate HIV prevalence. The estimated number of cumulative HIV infected homo/bisexual males in Amsterdam in January 1990 was between 2100 and 4100 in a total of 2200-4600 infected people. PMID:1499669

  6. Short-Term Price Prediction and the Selection of Indicators

    NASA Astrophysics Data System (ADS)

    Tanaka-Yamawaki, M.; Tokuoka, S.; Awaji, K.

    Although the prediction of the future price is known to be hard due to the strong randomness inherent in the price fluctuation, intra-day price movements are expected to be predicted by reading out the patterns observed in tick-wise price motions. Our first task on this line of thought is to identify the set of effective variables suitable for studying the problem. We have first constructed a price prediction generator that computes the best prediction by reading the data tick by tick. We report in this article the effect of the adaptive choice of the best combination of technical indicators out of ten popular indicators, and also the result of using a set of novel dimensionless dynamical indicators constructed from the local values of derivatives and the second derivatives of the price times series. We have obtained a good performance of nearly 70 percent of correctly predicted direction of motion at 10 ticks ahead of the prediction time by means of adaptive choice of the technical indicators, and even better performance in the second attempt of using the two dimensionless dynamical indicators.

  7. Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Rudolph, Maxwell L.; Manga, Michael

    2016-03-01

    Earthquakes can trigger the eruption of mud. We use eruptions in Azerbaijan, Italy, Romania, Japan, Andaman Islands, Pakistan, Taiwan, Indonesia, and California to probe the nature of stress changes that induce new eruptions and modulate ongoing eruptions. Dynamic stresses produced by earthquakes are usually inferred to be the dominant triggering mechanism; however static stress changes acting on the feeder systems of mud volcanoes may also play a role. In Azerbaijan, eruptions within 2-10 fault lengths from the epicenter are favored in the year following earthquakes where the static stress changes cause compression of the mud source and unclamp feeder dikes. In Romania, Taiwan, and some Italian sites, increased activity is also favored where the static stress changes act to unclamp feeder dikes, but responses occur within days. The eruption in the Andaman Islands, and those of the Niikappu mud volcanoes, Japan are better correlated with amplitude of dynamic stresses produced by seismic waves. Similarly, a new island that emerged off the coast of Pakistan in 2013 was likely triggered by dynamic stresses, enhanced by directivity. At the southern end of the Salton Sea, California earthquakes increase the gas flux at small mud volcanoes. Responses are best correlated with dynamic stresses. The comparison of responses in these nine settings indicates that dynamic stresses are most often correlated with triggering, although permanent stress changes as small as, and possibly smaller than, 0.1 bar may be sufficient to also influence eruptions. Unclamping stresses with magnitude similar to Earth tides (0.01 bar) persist over time and may play a role in triggering delayed responses. Unclamping stresses may be important contributors to short-term triggering only if they exceed 0.1-1 bar.

  8. Very short-term earthquake precursors from GPS signal interference: Case studies on moderate and large earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Lien; Cheng, Kai-Chien; Wang, Wei-Hau; Yu, Shui-Beih

    2016-04-01

    We set up a GPS network with 17 Continuous GPS (CGPS) stations in southwestern Taiwan to monitor real-time crustal deformation. We found that systematic perturbations in GPS signals occurred just a few minutes prior to the occurrence of several moderate and large earthquakes, including the recent 2013 Nantou (ML = 6.5) and Rueisuei (ML = 6.4) earthquakes in Taiwan. The anomalous pseudorange readings were several millimeters higher or lower than those in the background time period. These systematic anomalies were found as a result of interference of GPS L-band signals by electromagnetic emissions (EMs) prior to the mainshocks. The EMs may occur in the form of harmonic or ultra-wide-band radiation and can be generated during the formation of Mode I cracks at the final stage of earthquake nucleation. We estimated the directivity of the likely EM sources by calculating the inner product of the position vector from a GPS station to a given satellite and the vector of anomalous ground motions recorded by the GPS. The results showed that the predominant inner product generally occurred when the satellite was in the direction either toward or away from the epicenter with respect to the GPS network. Our findings suggest that the GPS network may serve as a powerful tool to detect very short-term earthquake precursors and presumably to locate a large earthquake before it occurs.

  9. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  10. Very short-term earthquake precursors from GPS signal interference based on the 2013 Nantou and Rueisuei earthquakes, Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Lien; Cheng, Kai-Chien; Wang, Wei-Hau; Yu, Shui-Beih

    2015-12-01

    We set up a GPS network with 17 Continuous GPS (CGPS) stations in southwestern Taiwan to monitor real-time crustal deformation. We found that systematic perturbations in GPS signals occurred just a few minutes prior to the 2013 Nantou (ML = 6.5) and Rueisuei (ML = 6.4) earthquakes in Taiwan. The anomalous pseudorange readings were several millimeters higher or lower than those in the background time period. These systematic anomalies were found as a result of interference of GPS L-band signals by electromagnetic emissions (EMs) prior to the mainshocks. The EMs may occur in the form of harmonic or ultra-wide-band radiation and can be generated during the formation of Mode I cracks at the final stage of earthquake nucleation. We estimated the directivity of the likely EM sources by calculating the inner product of the position vector from a GPS station to a given satellite and the vector of anomalous ground motions recorded by the GPS. The results showed that the predominant inner product generally occurred when the satellite was in the direction either toward or away from the epicenter with respect to the GPS network. Our findings suggest that the GPS network may serve as a powerful tool to detect very short-term earthquake precursors and presumably to locate a large earthquake before it occurs. Nevertheless, a direct measurement of EMs at the site of the GPS array is required in future studies to confirm this hypothesis.

  11. Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California

    NASA Astrophysics Data System (ADS)

    Zaliapin, Ilya; Ben-Zion, Yehuda

    2015-09-01

    We document and quantify effects of two types of catalogue uncertainties-earthquake location errors and short-term incompleteness-on results of statistical cluster analyses of seismicity in southern California. In the main part of the study we analyse 117 076 events with m 2 in southern California during 1981-2013 from the waveform-relocated catalogue of Hauksson et al. We present statistical evidence for three artefacts caused by the absolute and relative location errors: (1) Increased distance between offspring and parents. (2) Underestimated clustering, quantified by the number of offspring per event, the total number of clustered events, and some other statistics. (3) Overestimated background rates. We also find that short-term incompleteness leads to (4) Apparent magnitude dependence and temporal fluctuations of b-values. The reported artefacts are robustly observed in three additional catalogues of southern California: the relocated catalogue of Richards-Dinger & Shearer during 1975-1998, and the two subcatalogues-1961-1981 and 1981-2013-of the Advances National Seismic System catalogue. This implies that the reported artefacts are not specific to a particular (re)location method. The comparative quality of the four examined catalogues is reflected in the magnitude of the artefacts. The location errors in the examined catalogues mostly affect events with m < 3.5, while for larger magnitudes the location error effects are negligible. This is explained by comparing the location error and rupture lengths of events and their parents. Finally, our analysis suggests that selected aggregated cluster statistics (e.g. proportion of singles) are less prone to location artefacts than individual statistics (e.g. the distance to parent or parent-offspring assignment). The results can inform a range of studies focused on small-magnitude seismicity patterns in the presence of catalogue uncertainties.

  12. Serial-Order Short-Term Memory Predicts Vocabulary Development: Evidence from a Longitudinal Study

    ERIC Educational Resources Information Center

    Leclercq, Anne-Lise; Majerus, Steve

    2010-01-01

    Serial-order short-term memory (STM), as opposed to item STM, has been shown to be very consistently associated with lexical learning abilities in cross-sectional study designs. This study investigated longitudinal predictions between serial-order STM and vocabulary development. Tasks maximizing the temporary retention of either serial-order or

  13. Predicting Changes in Cultural Sensitivity among Students of Spanish during Short-Term Study Abroad

    ERIC Educational Resources Information Center

    Martinsen, Rob

    2011-01-01

    Short-term study abroad programs of less than a semester are becoming increasingly popular among undergraduate students in the United States. However, little research has examined the changes in students' cultural sensitivity through their participation in such programs or what factors may predict growth and improvement in such areas. This study

  14. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-03-01

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories. PMID:22286175

  15. A Strategy for Short-Term Earthquake Forecasting Based on Combined Ground and Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Papadopoulos, G. A.; Karastathis, V. K.; Minadakis, G.; Ouzounov, D.; Pulinets, S. A.; Tramutoli, V.; Tsinganos, K.

    2014-12-01

    No standard methodologies regarding the short-term (hours, days, few weeks) forecasting of earthquakes have been widely adopted so far. However, promising approaches from ground-based (e.g. foreshocks) and space-based (e.g. thermal anomalies) observations have been described. We propose to apply a multidisciplinary strategy by performing real-time experiments towards the identification of space-time windows having increased probability beyond chance for the occurrence of strong earthquakes (M>5.5). This is a new collaborative study which will continue the best practices achieved from other projects such as the EU-FP7 PRE-EARTHQUAKE and the ongoing ISSI project LAICa. The test region covers the entire Greece which is of the highest seismicity all over western Eurasia, while closer attention will be given to the Corinth Rift (Central Greece) which is an asymmetric half-graben of high seismicity opening rapidly with geodetic extension rates up to about 15mmyr-1. Ground-based observations will mainly include seismicity, magnetometers and radon measurements while space observations will include the ones that may provide thermal anomalies, GPS and TEC. The strategy will include the development of a system operating in real-time basis with strong tools and protocols for the collection, archiving and evaluation of the different types of data. The software part of the system may incorporate three basic interfaces implemented via open source technology: (1) The up-streaming software interface for the collection and archiving of data; (2) The backend real-time software interface incorporating all the available models; (3) The frontend WEBGIS software interface that will allow for data representation and mapping. The establishment of some certain rules for issuing non-public seismic alerts is needed. Therefore, in this paper we will also discuss the significance of the proposed work for the issues of earthquake forecasting/prediction statements and what critical new

  16. The short-term prediction of universal time and length of day using atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Steppe, J. A.; Dickey, J. O.; Eubanks, T. M.; Sung, L.-Y.

    1994-01-01

    The ability to predict short-term variations in the Earth's rotation has gained importance in recent years owing to more precise spacecraft tracking requirements. Universal time (UT1), that component of the Earth's orientation corresponding to the rotation angle, can be measured by number of high-precision space geodetic techniques. A Kalman filter developed at the Jet Propulsion Laboratory (JPL) optimally combines these different data sets and generates a smoothed times series and a set of predictions for UT1, as well as for additional Earth orientation components. These UT1 predictions utilize an empirically derived random walk stochastic model for the length of the day (LOD) and require frequent and up-to-date measurements of either UT1 or LOD to keep errors from quickly accumulating. Recent studies have shown that LOD variations are correlated with changes in the Earth's axial atmospheric angular momentum (AAM) over timescales of several years down to as little as 8 days. AAM estimates and forecasts out to 10 days are routinely available from meteorological analysis centers; these data can supplement geodetic measurements to improve the short-term prediction of LOD and have therefore been incorporated as independent data types in the JPL Kalman filter. We find that AAM and, to a lesser extent, AAM forecast data are extremely helpful in generating accurate near-real-time estimates of UT1 and LOD and in improving short-term predictions of these quantities out to about 10 days.

  17. Short-term probabilistic earthquake risk assessment considering time-dependent b values

    NASA Astrophysics Data System (ADS)

    Gulia, Laura; Tormann, Thessa; Wiemer, Stefan; Herrmann, Marcus; Seif, Stefanie

    2016-02-01

    Laboratory experiments highlight a systematic b value decrease during the stress increase period before failure, and some large natural events are known to show a precursory decrease in the b value. However, short-term forecast models currently consider only the generic probability that an event can trigger subsequent seismicity in the near field. While the probability increase over a stationary Poissonian background is substantial, selected case studies have shown through cost-benefit analysis that the absolute main shock probability remains too low to warrant significant mitigation actions. We analyze the probabilities considering both changes in the seismicity rates and temporal changes in the b value. The precursory b value decrease in the 2009 L'Aquila case results in an additional fiftyfold probability increase for a M6.3 event. Translated into time-varying hazard and risk, these changes surpass the cost-benefit threshold for short-term evacuation.

  18. Short Term Weather Forecasting and Long Term Climate Predictions in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Daniel, I.; Mecikalski, J.; Graves, S.

    2008-05-01

    The SERVIR project utilizes several predictive models to support regional monitoring and decision support in Mesoamerica. Short term forecasts ranging from a few hours to several days produce more than 30 data products that are used daily by decision makers, as well as news organizations in the region. The forecast products can be visualized in both two and three dimensional viewers such as Google Maps and Google Earth. Other viewers developed specifically for the Mesoamerican region by the University of Alabama in Huntsville and the Institute for the Application of Geospatial Technologies in Auburn New York can also be employed. In collaboration with the NASA Short Term Prediction Research and Transition (SpoRT) Center SERVIR utilizes the Weather Research and Forecast (WRF) model to produce short-term (24 hr) regional weather forecasts twice a day. Temperature, precipitation, wind, and other variables are forecast in 10km and 30km grids over the Mesoamerica region. Using the PSU/NCAR Mesoscale Model, known as MM5, SERVIR produces 48 hour- forecasts of soil temperature, two meter surface temperature, three hour accumulated precipitation, winds at different heights, and other variables. These are forecast hourly in 9km grids. Working in collaboration with the Atmospheric Science Department of the University of Alabama in Huntsville produces a suite of short-term (0-6 hour) weather prediction products are generated. These "convective initiation" products predict the onset of thunderstorm rainfall and lightning within a 1-hour timeframe. Models are also employed for long term predictions. The SERVIR project, under USAID funding, has developed comprehensive regional climate change scenarios of Mesoamerica for future years: 2010, 2015, 2025, 2050, and 2099. These scenarios were created using the Pennsylvania State University/National Center for Atmospheric Research (MM5) model and processed on the Oak Ridge National Laboratory Cheetah supercomputer. The goal of these

  19. Real time electromagnetic monitoring system used for short-term earthquakes forecast related to the seismic-active Vrancea zone

    NASA Astrophysics Data System (ADS)

    Stanica, Dumitru; Armand Stanica, Dragos

    2016-04-01

    The existence of the pre-seismic electromagnetic signals related to the earthquakes is still under scientific debate and requires new reliable information about their possible inter-relationship. In this paper, to obtain new insights into the seismic active Vrancea zone (Romania), a 3-D magnetotelluric imaging has been used to strengthen the connection between the geodynamic model and a possible generation mechanism of the intermediate depth earthquakes. Consequently, it is considered that before an earthquake initiation, due to the torsion effect, a high stress reached inside the seismogenic volume that may generates dehydration and rupture processes of the rocks, associated with the fluid migration through the lithospheric faults system, what leads to the resistivity changes. These changes have been investigated by using ULF electromagnetic data recorded in real time at the Geodynamic Observatory Provita de Sus (GOPS), placed on the Carpathian Electrical Conductivity Anomaly (CECA) at about 100km far from the seismic active Vrancea zone. The daily mean distribution of the normalized function Bzn(f) = Bz(f)/Bperp(f) (where: Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to strike; f is frequency in Hz) and its standard deviation are performed by using a FFT band-pass filter analysis in the ULF range 0.001Hz to 0.0083Hz, for which a 2-D geoelectrical structure under GOPS has been identified. To provide reliable information in anticipating the likelihood occurrence of an earthquake of Mw higher than 4, a statistical analysis based on standardized random variable equation has been used to identify the anomalous intervals on the new time series (Bzn*) carried out in a span of three years (2013-2015). The final conclusion is that the Bzn* shows a significant anomalous effect some days (weeks) before an impending earthquake and it should be used for short-term earthquakes forecast.

  20. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Wang, Zheng Bing; Zitman, Tjerk J.; Stive, Marcel J. F.; Bouma, Tjeerd J.

    2015-09-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated tidal flat morphology by assuming that morphological equilibrium is associated with uniform bed shear stress distribution. Many studies based on observation and process-based modeling tend to agree with this analytical model. However, a uniform bed shear stress rarely exists on actual or modeled tidal flats, and the analytical model cannot handle the spatially and temporally varying bed shear stress. In the present study, we develop a model based on the dynamic equilibrium theory and its core assumption. Different from the static analytical model, our model explicitly accounts for the spatiotemporal bed shear stress variations for tidal flat dynamic prediction. To test our model and the embedded theory, we apply the model for both long-term and short-term morphological predictions. The long-term modeling is evaluated qualitatively against previous process-based modeling. The short-term modeling is evaluated quantitatively against high-resolution bed-level monitoring data obtained from a tidal flat in Netherlands. The model results show good performances in both qualitative and quantitative tests, indicating the validity of the dynamic equilibrium theory. Thus, this model provides a valuable tool to enhance our understanding of the tidal flat morphodynamics and to apply the dynamic equilibrium theory for realistic morphological predictions.

  1. Long- and short-term postseismic gravity changes of megathrust earthquakes from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Yusaku; Heki, Kosuke

    2014-08-01

    Using monthly satellite gravimetry data, we studied time-variable gravity field after three M9 class earthquakes, the 2004 Sumatra-Andaman, 2010 Chile (Maule), and 2011 Tohoku-oki earthquakes. The observations showed that the gravity typically (1) decreases coseismically, (2) continues to decrease for a few months, and (3) increases over a longer period. Therefore, postseismic gravity changes have two components with different time constants and polarities. The mechanisms of short- and long-term postseismic gravity changes are not as clear as coseismic changes at the moment, but might be explained to some extent with afterslip and the Maxwell viscoelasticity, respectively. These two components are difficult to discriminate with surface velocity measurements because the forearc area moves trenchward at both stages. They appear in different polarities in gravity, making satellite gravimetry a unique tool to separate them.

  2. Computational classifiers for predicting the short-term course of Multiple sclerosis

    PubMed Central

    2011-01-01

    Background The aim of this study was to assess the diagnostic accuracy (sensitivity and specificity) of clinical, imaging and motor evoked potentials (MEP) for predicting the short-term prognosis of multiple sclerosis (MS). Methods We obtained clinical data, MRI and MEP from a prospective cohort of 51 patients and 20 matched controls followed for two years. Clinical end-points recorded were: 1) expanded disability status scale (EDSS), 2) disability progression, and 3) new relapses. We constructed computational classifiers (Bayesian, random decision-trees, simple logistic-linear regression-and neural networks) and calculated their accuracy by means of a 10-fold cross-validation method. We also validated our findings with a second cohort of 96 MS patients from a second center. Results We found that disability at baseline, grey matter volume and MEP were the variables that better correlated with clinical end-points, although their diagnostic accuracy was low. However, classifiers combining the most informative variables, namely baseline disability (EDSS), MRI lesion load and central motor conduction time (CMCT), were much more accurate in predicting future disability. Using the most informative variables (especially EDSS and CMCT) we developed a neural network (NNet) that attained a good performance for predicting the EDSS change. The predictive ability of the neural network was validated in an independent cohort obtaining similar accuracy (80%) for predicting the change in the EDSS two years later. Conclusions The usefulness of clinical variables for predicting the course of MS on an individual basis is limited, despite being associated with the disease course. By training a NNet with the most informative variables we achieved a good accuracy for predicting short-term disability. PMID:21649880

  3. Study on short term prediction using observed water quality from 8-day intervals in Nakdong river

    NASA Astrophysics Data System (ADS)

    Kim, M.; Shon, T.; Joo, J.; Kim, J.; Shin, H.

    2012-12-01

    There are lots of accidents on water quality, like green algal blooms, occurring in Nakdong river which is one of the largest river in Korea. This is because of climate change around the world. It is essential to develop scientific and quantitative assessment methods. In this study, artificial neural network based on back propagation algorithm, which is simple and flexible method, was used for forecasting the water quality on the purpose of water resources management. Especially, as used observed water quality data from 8-day intervals in Nakdong river, it makes to increase the accuracy of water quality forecast over short term. This was established for predicting the water quality factors 1, 3, and 7 days ahead. The best model, as evaluated by its performance functions with RMSE and R2, was selected and applied to established models of BOD, DO, COD, and Chl-a using artificial neural network. The results showed that the models were suitable for 1 and 3 days forecasts in particular. This method is strong and convenient to predict water quality factors over the short term easily based on observed data. It is possible to overcome and manage problems related to the water resources. In the future, this will be a powerful method because it is basically based on observed water quality data.

  4. Short term prediction of dynamic hydra precipitation activity using a microwave radiometer over Eastern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, S.

    2015-12-01

    First ever study of the feasibility of ground based radiometric study to predict a very short term based rain precipitation study has been conducted in eastern Himalaya, Darjeeling (27.01N, 88.15E, 2200 masl). Short term prediction or nowcasting relates to forecasting convective precipitation for time periods less than a few hours to avoid its effect on agriculture, aviation and lifestyle. Theoretical models involving radiometric predictions are not well understood and lack in temporal and spatial resolution. In this study specific utilization of a microwave Radiometer (Radiometrics Corporation, USA) for online monitoring of precipitable rainfall activity has been observed repeatability of data has been established. Previous few studies have shown the increase of water vapour and corresponding Brightness Temperature, but in mountain climatic conditions over Darjeeling, due to presence of fog 90 % of the year, water vapour monitoring related predictions can lead to false alarms. The measurement of blackbody emission noise in the bands of 23.8 GHz and 31.4 GHz, using a quadratic regression retrieval algorithm is converted to atmospheric parameters like integrated water vapour and liquid water content. It has been found in our study that the liquid water shows significant activity prior to precipitation events even for mild and stratiform rainfall. The alarm can be generated well 20 mins before the commencement of actual rain events even in the upper atmosphere of 6 Kms, measured by a rain radar also operating in 24 Ghz microwave band. Although few rain events were found and reported which do not respond in the microwave liquid water channel. Efforts to identify such rain events and their possible explanation is going on and shall be reported in near future. Such studies are important to predict flash flooding in the Himalayas. Darjeeling owing to its geographical conditions experiences mild to very heavy rain. Such studies help improve aspects of Himalayas as

  5. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria. PMID:25910257

  6. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, S.E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  7. Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan

    2016-03-01

    A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.

  8. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  9. A score to predict short-term risk of COPD exacerbations (SCOPEX)

    PubMed Central

    Make, Barry J; Eriksson, Gran; Calverley, Peter M; Jenkins, Christine R; Postma, Dirkje S; Peterson, Stefan; stlund, Ollie; Anzueto, Antonio

    2015-01-01

    Background There is no clinically useful score to predict chronic obstructive pulmonary disease (COPD) exacerbations. We aimed to derive this by analyzing data from three existing COPD clinical trials of budesonide/formoterol, formoterol, or placebo in patients with moderate-to-very-severe COPD and a history of exacerbations in the previous year. Methods Predictive variables were selected using Cox regression for time to first severe COPD exacerbation. We determined absolute risk estimates for an exacerbation by identifying variables in a binomial model, adjusting for observation time, study, and treatment. The model was further reduced to clinically useful variables and the final regression coefficients scaled to obtain risk scores of 0100 to predict an exacerbation within 6 months. Receiver operating characteristic (ROC) curves and the corresponding C-index were used to investigate the discriminatory properties of predictive variables. Results The best predictors of an exacerbation in the next 6 months were more COPD maintenance medications prior to the trial, higher mean daily reliever use, more exacerbations during the previous year, lower forced expiratory volume in 1 second/forced vital capacity ratio, and female sex. Using these risk variables, we developed a score to predict short-term (6-month) risk of COPD exacerbations (SCOPEX). Budesonide/formoterol reduced future exacerbation risk more than formoterol or as-needed short-acting 2-agonist (salbutamol). Conclusion SCOPEX incorporates easily identifiable patient characteristics and can be readily applied in clinical practice to target therapy to reduce COPD exacerbations in patients at the highest risk. PMID:25670896

  10. V4 activity predicts the strength of visual short-term memory representations.

    PubMed

    Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F

    2009-06-10

    Recent studies have shown the existence of a form of visual memory that lies intermediate of iconic memory and visual short-term memory (VSTM), in terms of both capacity (up to 15 items) and the duration of the memory trace (up to 4 s). Because new visual objects readily overwrite this intermediate visual store, we believe that it reflects a weak form of VSTM with high capacity that exists alongside a strong but capacity-limited form of VSTM. In the present study, we isolated brain activity related to weak and strong VSTM representations using functional magnetic resonance imaging. We found that activity in visual cortical area V4 predicted the strength of VSTM representations; activity was low when there was no VSTM, medium when there was a weak VSTM representation regardless of whether this weak representation was available for report or not, and high when there was a strong VSTM representation. Altogether, this study suggests that the high capacity yet weak VSTM store is represented in visual parts of the brain. Allegedly, only some of these VSTM traces are amplified by parietal and frontal regions and as a consequence reside in traditional or strong VSTM. The additional weak VSTM representations remain available for conscious access and report when attention is redirected to them yet are overwritten as soon as new visual stimuli hit the eyes. PMID:19515911

  11. Using Claims Data to Generate Clinical Flags Predicting Short-term Risk of Continued Psychiatric Hospitalizations

    PubMed Central

    Stein, Bradley D.; Pangilinan, Maria; Sorbero, Mark J; Marcus, Sue; Donahue, Sheila; Xu, Yan; Smith, Thomas E; Essock, Susan M

    2014-01-01

    Objective As health information technology advances, efforts to use administrative data to inform real-time treatment planning for individuals are increasing, despite few empirical studies demonstrating that such administrative data predict subsequent clinical events. Medicaid claims for individuals with frequent psychiatric hospitalizations were examined to test how well patterns of service use predict subsequent high short-term risk of continued psychiatric hospitalizations. Methods Medicaid claims files from New York and Pennsylvania were used to identify Medicaid recipients aged 18-64 with two or more inpatient psychiatric admissions during a target year ending March 31, 2009. Definitions from a quality-improvement initiative were used to identify patterns of inpatient and outpatient service use and prescription fills suggestive of clinical concerns. Generalized estimating equations and Markov models were applied to examine claims through March, 2011, to see what patterns of service use were sufficiently predictive of additional hospitalizations to be clinically useful. Results 11,801 unique individuals in New York and 1,859 in Pennsylvania identified met the cohort definition. In both Pennsylvania and New York, multiple recent hospitalizations, but not failure to use outpatient services or failure to fill medication prescriptions, were significant predictors of high risk of continued frequent hospitalizations, with odds ratios greater than 4.0. Conclusions Administrative data can be used to identify individuals at high risk of continued frequent hospitalizations. Such information could be used by payers and system administrators to authorize special services (e.g., mobile outreach) for such individuals as part of efforts to promote service engagement and prevent rapid rehospitalizations. PMID:25022360

  12. Predicting Short Term Runoff Efficiency Using Antecedent Soil Moisture Estimates From Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Hermance, J. F.; Bohidar, R. N.

    2002-05-01

    Hydrologists universally recognize the importance of antecedent soil moisture conditions for predicting the response of catchments to storm events. We describe a pilot study involving a series of repeat geophysical measurements over a 5 month period to determine the water content of the subsurface immediately before a sequence of precipitation events. We correlate the resultant streamflow "response" of the local catchment to each event with the antecedent soil moisture at our reference site using a metric commonly employed by hydrologists: the ratio Qef/W, referred to here as the "short term runoff efficiency", which is simply the time-integrated volume of event flow (Qef) at the catchment's outflow point normalized by the volume of total precipitation (W) over its area. To determine the volumetric water content (Cw) of soils, past studies suggest the effectiveness of pulsed radio frequency methods, such as time domain reflectometry (TDR), or ground-penetrating radar (GPR). To first order, for typical field conditions and procedures, the velocity of a radio pulse in the subsurface is inversely proportional to the square root of the bulk dielectric constant, which in turn is proportional to the soil's water content. For this study, the advantage of GPR over conventional TDR measurements is that the GPR procedure determines average velocities from two-way traveltimes to an interface at depth, resulting in estimates of average physical properties over much larger volumes of the subsurface than would TDR. Our hydrologic data are USGS daily averaged discharges from the Ten Mile River (watershed area = 138 km2; 53.2 mi2) in southern New England. Daily values of precipitation were provided by personnel from the Seekonk Water District Office (MA) adjacent to the field site. Our hydrograph separation was facilitated by the observation that the event flow seems to be adequately represented by a simple composite cascaded linear reservoir model. The GPR data involved a series

  13. Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose

    NASA Astrophysics Data System (ADS)

    Shrestha, D. L.; Robertson, D. E.; Wang, Q. J.; Pagano, T. C.; Hapuarachchi, H. A. P.

    2013-05-01

    The quality of precipitation forecasts from four Numerical Weather Prediction (NWP) models is evaluated over the Ovens catchment in Southeast Australia. Precipitation forecasts are compared with observed precipitation at point and catchment scales and at different temporal resolutions. The four models evaluated are the Australian Community Climate Earth-System Simulator (ACCESS) including ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km, ACCESS-A 12 km, and ACCESS-VT 5 km. The skill of the NWP precipitation forecasts varies considerably between rain gauging stations. In general, high spatial resolution (ACCESS-A and ACCESS-VT) and regional (ACCESS-R) NWP models overestimate precipitation in dry, low elevation areas and underestimate in wet, high elevation areas. The global model (ACCESS-G) consistently underestimates the precipitation at all stations and the bias increases with station elevation. The skill varies with forecast lead time and, in general, it decreases with the increasing lead time. When evaluated at finer spatial and temporal resolution (e.g. 5 km, hourly), the precipitation forecasts appear to have very little skill. There is moderate skill at short lead times when the forecasts are averaged up to daily and/or catchment scale. The precipitation forecasts fail to produce a diurnal cycle shown in observed precipitation. Significant sampling uncertainty in the skill scores suggests that more data are required to get a reliable evaluation of the forecasts. The non-smooth decay of skill with forecast lead time can be attributed to diurnal cycle in the observation and sampling uncertainty. Future work is planned to assess the benefits of using the NWP rainfall forecasts for short-term streamflow forecasting. Our findings here suggest that it is necessary to remove the systematic biases in rainfall forecasts, particularly those from low resolution models, before the rainfall forecasts can be used for streamflow forecasting.

  14. Evaluation of numerical weather prediction model precipitation forecasts for use in short-term streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Shrestha, D. L.; Robertson, D. E.; Wang, Q. J.; Pagano, T. C.; Hapuarachchi, P.

    2012-11-01

    The quality of precipitation forecasts from four Numerical Weather Prediction (NWP) models is evaluated over the Ovens catchment in southeast Australia. Precipitation forecasts are compared with observed precipitation at point and catchment scales and at different temporal resolutions. The four models evaluated are the Australian Community Climate Earth-System Simulator (ACCESS) including ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km, ACCESS-A 12 km, and ACCESS-VT 5 km. The high spatial resolution NWP models (ACCESS-A and ACCESS-VT) appear to be relatively free of bias (i.e. <30%) for 24 h total precipitation forecasts. The low resolution models (ACCESS-R and ACCESS-G) have widespread systematic biases as large as 70%. When evaluated at finer spatial and temporal resolution (e.g. 5 km, hourly) against station observations, the precipitation forecasts appear to have very little skill. There is moderate skill at short lead times when the forecasts are averaged up to daily and/or catchment scale. The skill decreases with increasing lead times and the global model ACCESS-G does not have significant skill beyond 7 days. The precipitation forecasts fail to produce a diurnal cycle shown in observed precipitation. Significant sampling uncertainty in the skill scores suggests that more data are required to get a reliable evaluation of the forecasts. Future work is planned to assess the benefits of using the NWP rainfall forecasts for short-term streamflow forecasting. Our findings here suggest that it is necessary to remove the systematic biases in rainfall forecasts, particularly those from low resolution models, before the rainfall forecasts can be used for streamflow forecasting.

  15. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  16. A Global Overview of Short-Term Foreshocks and Their Predictive Value

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.; Avlonitis, M.; Di Fiore, B.; Minadakis, G.

    2014-12-01

    Foreshocks preceding mainshocks in the short-term, ranging from minutes to a few months prior the mainshock, have been known from several decades ago. Understanding the generation mechanisms of foreshocks was supported by seismicity observations and statistics, laboratory experiments, theoretical considerations and simulation results. However, important issues remain open. For example, (1) Why only some mainshocks are preceded by foreshocks and not others? (2) Is the mainshock size dependent on some attributes of the foreshock sequence? (3) Is that possible to discriminate foreshocks from other seismicity styles (e.g. swarms)? To approach possible replies to these issues we reviewed about 400 papers, reports, books and other documents referring to foreshocks as well as to relevant laboratory experiments. We found that the ratio of mainshocks preceded by foreshocks increases with the increase of monitoring capabilities and that foreshock activity is dependent on source mechanical properties and favoured by material heterogeneity. Also, the mainshock size does not depend on the largest foreshock size but rather by the foreshock area. Seismicity statistics may account for an effective discrimination of foreshocks from other seismicity styles. Our literature survey showed that only the last years the seismicity catalogs organized in some well monitored areas are adequately complete to search foreshock activities. Therefore, we investigated for a set of "positive foreshock examples" covering a wide range of mainshock magnitudes from 4.5 to 9 in Japan, S. California, Italy and Greece. The positive examples used indicate that foreshocks bear important value not only for the mainshock prediction but also for the operational discrimination between different styles of activity such as background seismicity, swarms, foreshocks, aftershocks.

  17. Foreshocks and short-term hazard assessment of large earthquakes using complex networks: the case of the 2009 L'Aquila earthquake

    NASA Astrophysics Data System (ADS)

    Daskalaki, Eleni; Spiliotis, Konstantinos; Siettos, Constantinos; Minadakis, Georgios; Papadopoulos, Gerassimos A.

    2016-08-01

    The monitoring of statistical network properties could be useful for the short-term hazard assessment of the occurrence of mainshocks in the presence of foreshocks. Using successive connections between events acquired from the earthquake catalog of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for the case of the L'Aquila (Italy) mainshock (Mw = 6.3) of 6 April 2009, we provide evidence that network measures, both global (average clustering coefficient, small-world index) and local (betweenness centrality) ones, could potentially be exploited for forecasting purposes both in time and space. Our results reveal statistically significant increases in the topological measures and a nucleation of the betweenness centrality around the location of the epicenter about 2 months before the mainshock. The results of the analysis are robust even when considering either large or off-centered the main event space windows.

  18. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    ERIC Educational Resources Information Center

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that

  19. Order Short-Term Memory Capacity Predicts Nonword Reading and Spelling in First and Second Grade

    ERIC Educational Resources Information Center

    Binam, Florence; Poncelet, Martine

    2016-01-01

    Recent theories of short-term memory (STM) distinguish between item information, which reflects the temporary activation of long-term representations stored in the language system, and serial-order information, which is encoded in a specific representational system that is independent of the language network. Some studies examining the

  20. Predicting Employment Outcomes for Consumers in Community College Short-Term Training Programs

    ERIC Educational Resources Information Center

    Flannery, K. Brigid; Benz, Michael R.; Yovanoff, Paul; Kato, Mary McGrath; Lindstrom, Lauren

    2011-01-01

    Postsecondary education has been linked to improved access to employment opportunities for individuals with and without disabilities. The purpose of this study was to determine factors associated with increased employment outcomes for Vocational Rehabilitation consumers enrolled in community college short term occupational skill training programs.

  1. Short-Term Predictive Validity of Cluster Analytic and Dimensional Classification of Child Behavioral Adjustment in School

    ERIC Educational Resources Information Center

    Kim, Sangwon; Kamphaus, Randy W.; Baker, Jean A.

    2006-01-01

    A constructive debate over the classification of child psychopathology can be stimulated by investigating the validity of different classification approaches. We examined and compared the short-term predictive validity of cluster analytic and dimensional classifications of child behavioral adjustment in school using the Behavior Assessment System

  2. Testing earthquake predictions

    NASA Astrophysics Data System (ADS)

    Luen, Brad; Stark, Philip B.

    2008-01-01

    Statistical tests of earthquake predictions require a null hypothesis to model occasional chance successes. To define and quantify 'chance success' is knotty. Some null hypotheses ascribe chance to the Earth: Seismicity is modeled as random. The null distribution of the number of successful predictions - or any other test statistic - is taken to be its distribution when the fixed set of predictions is applied to random seismicity. Such tests tacitly assume that the predictions do not depend on the observed seismicity. Conditioning on the predictions in this way sets a low hurdle for statistical significance. Consider this scheme: When an earthquake of magnitude 5.5 or greater occurs anywhere in the world, predict that an earthquake at least as large will occur within 21 days and within an epicentral distance of 50 km. We apply this rule to the Harvard centroid-moment-tensor (CMT) catalog for 2000-2004 to generate a set of predictions. The null hypothesis is that earthquake times are exchangeable conditional on their magnitudes and locations and on the predictions - a common "nonparametric" assumption in the literature. We generate random seismicity by permuting the times of events in the CMT catalog. We consider an event successfully predicted only if (i) it is predicted and (ii) there is no larger event within 50 km in the previous 21 days. The P-value for the observed success rate is <0.001: The method successfully predicts about 5% of earthquakes, far better than 'chance' because the predictor exploits the clustering of earthquakes - occasional foreshocks - which the null hypothesis lacks. Rather than condition on the predictions and use a stochastic model for seismicity, it is preferable to treat the observed seismicity as fixed, and to compare the success rate of the predictions to the success rate of simple-minded predictions like those just described. If the proffered predictions do no better than a simple scheme, they have little value.

  3. Hybrid ensemble-3DVar radar data assimilation for the short-term prediction of convective storms

    NASA Astrophysics Data System (ADS)

    Carley, Jacob R.

    This two-part study develops and tests a hybrid ensemble-3DVar radar data assimilation system for the short-term prediction of convective storms. A key component of this work is the use of the operational regional numerical weather prediction infrastructure of the United States National Weather Service (NWS). Recently, the NWS's Gridpoint Statistical Interpolation system (GSI) has been extended to include a hybrid ensemble-3DVar assimilation capability, allowing for the inclusion of flow dependent background error statistics in the 3DVar cost function. A convenient aspect of the hybrid ensemble-3DVar approach is its resource manageability. The initial implementation of the system may only use 3DVar and the hybrid aspect can be implemented gradually where additional ensemble members can be added as computational resources allow. Therefore the hybrid ensemble-3DVar method may be a particularly appealing approach for an operational numerical weather prediction (NWP) center where resources are at a premium. The first part of this study focuses on the development of a storm-scale, hybrid ensemble-3DVar radar data assimilation system. An observation operator for radar reflectivity is introduced, static background errors for additional hydrometeor control variables are obtained, an ensemble prediction system is implemented, and an algorithm is developed to assimilate radar observations. This system is applied to a real-data case which exhibits varying convective modes. It is found that, when compared to 3DVar, the hybrid ensemble-3DVar assimilation approach provides a closer fit to observations, produces cold pools which are much stronger than what was observed in the 3DVar experiment, and all experiments have a vertical velocity field at the final analysis time which exhibits generally weak upward vertical motion fields. The weak vertical motion field is hypothesized to be a result of the lack of vertical velocity control variable and thus there is no coupling amongst

  4. Can we predict very short term survival in small cell lung cancer?

    PubMed

    Quoix, E; Hedelin, G; Popin, E; Charloux, A; Dietemann, A; Seibert, R; Roeslin, N; Pauli, G

    1993-12-01

    We retrospectively reviewed the charts of 151 consecutive patients diagnosed as small cell lung cancer in our department and who had at least one course of chemotherapy. Nineteen patients died during the first 2 months, of the probability were reported to construct a receiver operating characteristic curve i.e. 13% of the population. The probability of dying within 2 months was investigated through a stepwise logistic regression. A performance status < or = 70 (Karnofsky index), an age > 60, a platelet count < or = 150,000/mm3, elevated alkaline phosphatase and a sodium < or = 135 mmol/l were independent predictors of a very short term survival and contributed to the equation for the probability of dying within a 2-month period. Sensitivity and specificity for various cutoff points characteristic curve allowing one to determine for a given patient his risk of being a very short term survivor. Such an approach could prevent inclusion of patients with high risk of early death in clinical trials and help to choose appropriate treatments for such poor risk patients. PMID:8075968

  5. Earthquake Prediction is Coming

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Describes (1) several methods used in earthquake research, including P:S ratio velocity studies, dilatancy models; and (2) techniques for gathering base-line data for prediction using seismographs, tiltmeters, laser beams, magnetic field changes, folklore, animal behavior. The mysterious Palmdale (California) bulge is discussed. (CS)

  6. Pre-earthquake signatures in atmosphere/ionosphere and their potential for short-term earthquake forecasting. Case studies for 2015

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Davidenko, Dmitry; Hernndez-Pajares, Manuel; Garca-Rigo, Alberto; Petrrov, Leonid; Hatzopoulos, Nikolaos; Kafatos, Menas

    2016-04-01

    We are conducting validation studies on temporal-spatial pattern of pre-earthquake signatures in atmosphere and ionosphere associated with M>7 earthquakes in 2015. Our approach is based on the Lithosphere Atmosphere Ionosphere Coupling (LAIC) physical concept integrated with Multi-sensor-networking analysis (MSNA) of several non-correlated observations that can potentially yield predictive information. In this study we present two type of results: 1/ prospective testing of MSNA-LAIC for M7+ in 2015 and 2:/ retrospective analysis of temporal-spatial variations in atmosphere and ionosphere several days before the two M7.8 and M7.3 in Nepal and M8.3 Chile earthquakes. During the prospective test 18 earthquakes M>7 occurred worldwide, from which 15 were alerted in advance with the time lag between 2 up to 30 days and with different level of accuracy. The retrospective analysis included different physical parameters from space: Outgoing long-wavelength radiation (OLR obtained from NPOES, NASA/AQUA) on the top of the atmosphere, Atmospheric potential (ACP obtained from NASA assimilation models) and electron density variations in the ionosphere via GPS Total Electron Content (GPS/TEC). Concerning M7.8 in Nepal of April 24, rapid increase of OLR reached the maximum on April 21-22. GPS/TEC data indicate maximum value during April 22-24 periods. Strong negative TEC anomaly was detected in the crest of EIA (Equatorial Ionospheric Anomaly) on April 21st and strong positive on April 24th, 2015. For May 12 M7.3 aftershock similar pre- earthquake patterns in OLR and GPS/TEC were observed. Concerning the M8.3 Chile of Sept 16, the OLR strongest transient feature was observed of Sept 12. GPS/TEC analysis data confirm abnormal values on Sept 14. Also on the same day the degradation of EIA and disappearance of the crests of EIA as is characteristic for pre-dawn and early morning hours (11 LT) was observed. On Sept 16 co-seismic ionospheric signatures consistent with defined circular

  7. Predicting Predictable: Accuracy and Reliability of Earthquake Forecasts

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2014-12-01

    Earthquake forecast/prediction is an uncertain profession. The famous Gutenberg-Richter relationship limits magnitude range of prediction to about one unit. Otherwise, the statistics of outcomes would be related to the smallest earthquakes and may be misleading when attributed to the largest earthquakes. Moreover, the intrinsic uncertainty of earthquake sizing allows self-deceptive picking of justification "just from below" the targeted magnitude range. This might be important encouraging evidence but, by no means, can be a "helpful" additive to statistics of a rigid testing that determines reliability and efficiency of a farecast/prediction method. Usually, earthquake prediction is classified in respect to expectation time while overlooking term-less identification of earthquake prone areas, as well as spatial accuracy. The forecasts are often made for a "cell" or "seismic region" whose area is not linked to the size of target earthquakes. This might be another source for making a wrong choice in parameterization of an forecast/prediction method and, eventually, for unsatisfactory performance in a real-time application. Summing up, prediction of time and location of an earthquake of a certain magnitude range can be classified into categories listed in the Table below - Classification of earthquake prediction accuracy Temporal, in years Spatial, in source zone size (L) Long-term 10 Long-range Up to 100 Intermediate-term 1 Middle-range 5-10 Short-term 0.01-0.1 Narrow-range 2-3 Immediate 0.001 Exact 1 Note that a wide variety of possible combinations that exist is much larger than usually considered "short-term exact" one. In principle, such an accurate statement about anticipated seismic extreme might be futile due to the complexities of the Earth's lithosphere, its blocks-and-faults structure, and evidently nonlinear dynamics of the seismic process. The observed scaling of source size and preparation zone with earthquake magnitude implies exponential scales for

  8. Short-term pre-2004 seismic subsidence near South Andaman: Is this a precursor slow slip prior to a megathrust earthquake?

    NASA Astrophysics Data System (ADS)

    Paul, J.; Rajendran, C. P.

    2015-11-01

    We report here on the campaign GPS data from the Andaman Islands just previous to the great 2004 Sumatra-Andaman earthquake. The campaign-mode acquisitions at Port Blair showed that the site started to subside between 2003 and 2004. In addition, during this period, the horizontal displacement of Port Blair with respect to Indian plate, deduced from 1996 to 2000 GPS data, changed its orientation to that obtained during the 26th Dec 2004 co-seismic. This short-term subsidence can be modeled as slip in the up-dip portion of the fault, a slip that is equivalent to an earthquake with moment magnitude of 6.3. Previously, slow slip was thought to appear at intermediate depths roughly 35-55 km but simple models of the deformation at this single site suggest slow slip at much shallower depth than this. This observation of subsidence obtained by GPS methods is in rough agreement with subsidence observed from tide gauge data. Campaign-mode GPS data between 1996 and 2000 suggest uplift for Port Blair during the inter-seismic period and so does the reported field observations of interseismic micro-atoll emergence. Lack of exposed land with GPS stations along the southern part of the thrust fault deprive of arriving at any indication of this preseismic subsidence in those areas. Although GPS data is lacking the geological indices reported from some sites on the Alaskan Coast, for example, imply short-term subsidence just previous to the great 1964 earthquake. The pre-earthquake subsidence recorded in Port Blair, therefore, may have global implications as a precursor signal of great earthquakes at least along some of the subduction zones.

  9. Empirical mode decomposition analysis of Seismo-ionospheric coupling phenomena for finding the short term earthquakes precursor

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Kasde, Satish Kumar; Raghuwanshi, Shailesh Kumar

    2016-07-01

    Large numbers of papers have reported on anomalous variation of foF2 signal in the vicinity of an earthquake's epicenter few days before the incoming earthquake. We have analyzed foF2 signal observed by ionosonde located at Kokubunji form 2010-2015 using Cross Correlation analysis method in conjunction with the Empirical Mode Decomposition. The EMD method is used to remove the geophysical noise from the foF2 signals. In cross correlation analysis method the stations located inside the earthquake preparation area, as evaluated using Dobrovolsky equation capture the ionospheric disturbances generated by the seismic event. On the other hand the stations outside of this area are expected to remain unaffected. The results of our study are in agreements with the previous work, evidencing anomalous variation in foF2 signal prior to earthquake in a certain area around the epicenter. Our experimental results also show that precursors may appear as early as 22 days prior to the event. These precursors occurred on different days in the interval of 2-10 days prior to the earthquakes. The main cause of the possible earthquake precursors is EB drift with the electric field generated over earthquake preparation area and penetrated the ionosphere Keywords: Empirical mode decomposition, EB drift, foF2 signal, Seismo-ionospheric coupling

  10. Autonomic Function Predicts Fitness Response to Short-Term High-Intensity Interval Training.

    PubMed

    Kiviniemi, A M; Tulppo, M P; Eskelinen, J J; Savolainen, A M; Kapanen, J; Heinonen, I H A; Hautala, A J; Hannukainen, J C; Kalliokoski, K K

    2015-11-01

    We tested the hypothesis that baseline cardiac autonomic function and its acute response to all-out interval exercise explains individual fitness responses to high-intensity interval training (HIT). Healthy middle-aged sedentary men performed HIT (n=12, 4-630s of all-out cycling efforts with 4-min recovery) or aerobic training (AET, n=9, 40-60min at 60% of peak workload in exercise test [Loadpeak]), comprising 6 sessions within 2 weeks. Low (LF) and high frequency (HF) power of R-R interval oscillation were analyzed from data recorded at supine and standing position (5+5min) every morning during the intervention. A significant training effect (p< 0.001), without a training*group interaction, was observed in Loadpeak and peak oxygen consumption (VO2peak). Pre-training supine LF/HF ratio, an estimate of sympathovagal balance, correlated with training outcome in Loadpeak (Spearman's rho [rs]=-0.74, p=0.006) and VO2peak (rs=-0.59, p=0.042) in the HIT but not the AET group. Also, the mean change in the standing LF/HF ratio in the morning after an acute HIT exercise during the 1(st) week of intervention correlated with training response in Loadpeak (rs=-0.68, p=0.014) and VO2peak (rs=-0.60, p=0.039) with HIT but not with AET. In conclusion, pre-training cardiac sympathovagal balance and its initial alterations in response to acute HIT exercise were related to fitness responses to short-term HIT. PMID:26140689

  11. On spatiotemporal series analysis and its application to predict the regional short term climate process

    NASA Astrophysics Data System (ADS)

    Wang, Geli; Yang, Peicai; L, Daren

    2004-04-01

    Based on the theory of reconstructing state space, a technique for spatiotemporal series prediction is presented. By means of this technique and NCEP/NCAR data of the monthly mean geopotential height anomaly of the 500-hPa isobaric surface in the Northern Hemisphere, a regional prediction experiment is also carried out. If using the correlation coefficient R between the observed field and the prediction field to measure the prediction accuracy, the averaged R given by 48 prediction samples reaches 21%, which corresponds to the current prediction level for the short range climate process.

  12. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine

    PubMed Central

    Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829

  13. Prediction of short-term and long-term VOC emissions from SBR bitumen-backed carpet under different temperatures

    SciTech Connect

    Yang, S.; Chen, Q.; Bluyssen, P.M.

    1998-12-31

    This paper presents two models for volatile organic compound (VOC) emissions from carpet. One is a numerical model using the computational fluid dynamics (CFD) technique for short-term predictions, the other an analytical model for long-term predictions. The numerical model can (1) deal with carpets that are not new, (2) calculate the time-dependent VOC distributions in a test chamber or room, and (3) consider the temperature effect on VOC emissions. Based on small-scale chamber data, both models were used to examine the VOC emissions under different temperatures from polypropene styrene-butadiene rubber (SBR) bitumen-backed carpet. The short-term predictions show that the VOC emissions under different temperatures can be modeled solely by changing the carpet diffusion coefficients. A formulation of the Arrhenius relation was used to correlate the dependence of carpet diffusion coefficient with temperature. The long-term predictions show that it would take several years to bake out the VOCs, and temperature would have a major impact on the bake-out time.

  14. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    PubMed

    Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829

  15. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    NASA Astrophysics Data System (ADS)

    Garca, Alicia; De la Cruz-Reyna, Servando; Marrero, Jos M.; Ortiz, Ramn

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  16. Methodology for predicting long-term fuel-cell performance from short-term testing. Final technical report

    SciTech Connect

    Patel, D.; Farooque, M.; Maru, H.; Ware, C.

    1981-08-01

    The objective of this program was to develop a methodology for predicting long-term fuel cell performance from short-term testing, utilizing a perturbation testing technique. The technique applies small changes of predetermined levels in a predetermined sequence to the operating variables such that the decay mechanisms are not altered. This technique was tested on the phosphoric acid fuel cell (PAFC), because this technology is approaching a mature stage. The initial series of perturbation tests appear to be reasonably successful and a methodology is now available for further refinements. The progress made during the study is detailed.

  17. Is It Possible to Predict Strong Earthquakes?

    NASA Astrophysics Data System (ADS)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  18. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Mi; Webster, Peter J.; Curry, Judith A.

    2012-05-01

    This study assesses the CMIP5 decadal hindcast/forecast simulations of seven state-of-the-art ocean-atmosphere coupled models. Each decadal prediction consists of simulations over a 10 year period each of which are initialized every five years from climate states of 1960/1961 to 2005/2006. Most of the models overestimate trends, whereby the models predict less warming or even cooling in the earlier decades compared to observations and too much warming in recent decades. All models show high prediction skill for surface temperature over the Indian, North Atlantic and western Pacific Oceans where the externally forced component and low-frequency climate variability is dominant. However, low prediction skill is found over the equatorial and North Pacific Ocean. The Atlantic Multidecadal Oscillation (AMO) index is predicted in most of the models with significant skill, while the Pacific Decadal Oscillation (PDO) index shows relatively low predictive skill. The multi-model ensemble has in general better-forecast quality than the single-model systems for global mean surface temperature, AMO and PDO.

  19. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study

    PubMed Central

    2015-01-01

    Background Standing from a bed or chair may cause a significant lowering of blood pressure (BP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the BP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Methods Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict BP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. Results The model predicted correctly the BP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the BP was associated with a depressed and less chaotic Heart Rate Variability pattern. Conclusions The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing. PMID:26391336

  20. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Velzquez, J. A.; Petit, T.; Lavoie, A.; Boucher, M.-A.; Turcotte, R.; Fortin, V.; Anctil, F.

    2009-11-01

    Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap. In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada) are studied: Chaudire, Chteauguay, Du Nord, Knogami and Du Livre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS), especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  1. An evaluation of the canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Velzquez, J. A.; Petit, T.; Lavoie, A.; Boucher, M.-A.; Turcotte, R.; Fortin, V.; Anctil, F.

    2009-07-01

    Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap. In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada) are studied: Chaudire, Chteauguay, Du Nord, Knogami and Du Livre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS), especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  2. Ain't no mountain high enough? Setting high weight loss goals predict effort and short-term weight loss.

    PubMed

    De Vet, Emely; Nelissen, Rob M A; Zeelenberg, Marcel; De Ridder, Denise T D

    2013-05-01

    Although psychological theories outline that it might be beneficial to set more challenging goals, people attempting to lose weight are generally recommended to set modest weight loss goals. The present study explores whether the amount of weight loss individuals strive for is associated with more positive psychological and behavioral outcomes. Hereto, 447 overweight and obese participants trying to lose weight completed two questionnaires with a 2-month interval. Many participants set goals that could be considered unrealistically high. However, higher weight loss goals did not predict dissatisfaction but predicted more effort in the weight loss attempt, as well as more self-reported short-term weight loss when baseline commitment and motivation were controlled for. PMID:22933574

  3. Predictive factors of short term outcome after liver transplantation: A review

    PubMed Central

    Bolondi, Giuliano; Mocchegiani, Federico; Montalti, Roberto; Nicolini, Daniele; Vivarelli, Marco; De Pietri, Lesley

    2016-01-01

    Liver transplantation represents a fundamental therapeutic solution to end-stage liver disease. The need for liver allografts has extended the set of criteria for organ acceptability, increasing the risk of adverse outcomes. Little is known about the early postoperative parameters that can be used as valid predictive indices for early graft function, retransplantation or surgical reintervention, secondary complications, long intensive care unit stay or death. In this review, we present state-of-the-art knowledge regarding the early post-transplantation tests and scores that can be applied during the first postoperative week to predict liver allograft function and patient outcome, thereby guiding the therapeutic and surgical decisions of the medical staff. Post-transplant clinical and biochemical assessment of patients through laboratory tests (platelet count, transaminase and bilirubin levels, INR, factor V, lactates, and Insulin Growth Factor 1) and scores (model for end-stage liver disease, acute physiology and chronic health evaluation, sequential organ failure assessment and model of early allograft function) have been reported to have good performance, but they only allow late evaluation of patient status and graft function, requiring days to be quantified. The indocyanine green plasma disappearance rate has long been used as a liver function assessment technique and has produced interesting, although not univocal, results when performed between the 1th and the 5th day after transplantation. The liver maximal function capacity test is a promising method of metabolic liver activity assessment, but its use is limited by economic cost and extrahepatic factors. To date, a consensual definition of early allograft dysfunction and the integration and validation of the above-mentioned techniques, through the development of numerically consistent multicentric prospective randomised trials, are necessary. The medical and surgical management of transplanted patients

  4. Predictive factors of short term outcome after liver transplantation: A review.

    PubMed

    Bolondi, Giuliano; Mocchegiani, Federico; Montalti, Roberto; Nicolini, Daniele; Vivarelli, Marco; De Pietri, Lesley

    2016-07-14

    Liver transplantation represents a fundamental therapeutic solution to end-stage liver disease. The need for liver allografts has extended the set of criteria for organ acceptability, increasing the risk of adverse outcomes. Little is known about the early postoperative parameters that can be used as valid predictive indices for early graft function, retransplantation or surgical reintervention, secondary complications, long intensive care unit stay or death. In this review, we present state-of-the-art knowledge regarding the early post-transplantation tests and scores that can be applied during the first postoperative week to predict liver allograft function and patient outcome, thereby guiding the therapeutic and surgical decisions of the medical staff. Post-transplant clinical and biochemical assessment of patients through laboratory tests (platelet count, transaminase and bilirubin levels, INR, factor V, lactates, and Insulin Growth Factor 1) and scores (model for end-stage liver disease, acute physiology and chronic health evaluation, sequential organ failure assessment and model of early allograft function) have been reported to have good performance, but they only allow late evaluation of patient status and graft function, requiring days to be quantified. The indocyanine green plasma disappearance rate has long been used as a liver function assessment technique and has produced interesting, although not univocal, results when performed between the 1(th) and the 5(th) day after transplantation. The liver maximal function capacity test is a promising method of metabolic liver activity assessment, but its use is limited by economic cost and extrahepatic factors. To date, a consensual definition of early allograft dysfunction and the integration and validation of the above-mentioned techniques, through the development of numerically consistent multicentric prospective randomised trials, are necessary. The medical and surgical management of transplanted patients

  5. Predicting children's short-term exposure to pesticides: results of a questionnaire screening approach.

    PubMed Central

    Sexton, Ken; Adgate, John L; Eberly, Lynn E; Clayton, C Andrew; Whitmore, Roy W; Pellizzari, Edo D; Lioy, Paul J; Quackenboss, James J

    2003-01-01

    The ability of questionnaires to predict children's exposure to pesticides was examined as part of the Minnesota Children's Pesticide Exposure Study (MNCPES). The MNCPES focused on a probability sample of 102 children between the ages of 3 and 13 years living in either urban (Minneapolis and St. Paul, MN) or nonurban (Rice and Goodhue Counties in Minnesota) households. Samples were collected in a variety of relevant media (air, food, beverages, tap water, house dust, soil, urine), and chemical analyses emphasized three organophosphate insecticides (chlorpyrifos, diazinon, malathion) and a herbicide (atrazine). Results indicate that the residential pesticide-use questions and overall screening approach used in the MNCPES were ineffective for identifying and oversampling children/households with higher levels of individual target pesticides. PMID:12515690

  6. Factors That Predict Short-term Intensive Care Unit Mortality in Patients With Cirrhosis

    PubMed Central

    BAHIRWANI, RANJEETA; GHABRIL, MARWAN; FORDE, KIMBERLY A.; CHATRATH, HEMANT; WOLF, KAREN M.; URIBE, LINDSAY; REDDY, K. RAJENDER; FUCHS, BARRY; CHALASANI, NAGA

    2013-01-01

    BACKGROUND & AIMS Despite advances in critical care medicine, the mortality rate is high among critically ill patients with cirrhosis. We aimed to identify factors that predict early (7 d) mortality among patients with cirrhosis admitted to the intensive care unit (ICU) and to develop a risk-stratification model. METHODS We collected data from patients with cirrhosis admitted to the ICU at Indiana University (IUICU) from December 1, 2006, through December 31, 2009 (n = 185), or at the University of Pennsylvania (PennICU) from May 1, 2005, through December 31, 2010 (n = 206). Factors associated with mortality within 7 days of admission (7-d mortality) were determined by logistic regression analyses. A model was constructed based on the predictive parameters available on the first day of ICU admission in the IUICU cohort and then validated in the PennICU cohort. RESULTS Median Model for End-stage Liver Disease (MELD) scores at ICU admission were 25 in the IUICU cohort (interquartile range, 2334) and 32 in the PennICU cohort (interquartile range, 2641); corresponding 7-day mortalities were 28.3% and 53.6%, respectively. MELD score (odds ratio, 1.13; 95% confidence interval [CI], 1.071.2) and mechanical ventilation (odds ratio, 5.7; 95% CI, 2.314.1) were associated independently with 7-day mortality in the IUICU. A model based on these 2 variables separated IUICU patients into low-, medium-, and high-risk groups; these groups had 7-day mortalities of 9%, 27%, and 74%, respectively (concordance index, 0.80; 95% CI, 0.72 0.87; P < 108). The model was applied to the PennICU cohort; the low-, medium-, and high-risk groups had 7-day mortalities of 33%, 56%, and 71%, respectively (concordance index, 0.67; 95% CI, 0.590.74; P < 104). CONCLUSIONS A model based on MELD score and mechanical ventilation on day 1 can stratify risk of early mortality in patients with cirrhosis admitted to the ICU. More studies are needed to

  7. Long-term irradiance observation and short-term flare prediction with LYRA on PROBA2

    NASA Astrophysics Data System (ADS)

    Dammasch, Ingolf; Dominique, Marie; West, Matthew; Katsiyannis, Thanassis; Ryan, Daniel; Wauters, Laurence

    The solar radiometer LYRA on board the ESA micro-satellite PROBA2 has observed the Sun continuously since January 2010 in various spectral band passes, and has gained a considerable data base. Two of the LYRA channels cover the irradiance between soft X-ray and extreme ultraviolet. The variation of the sunspot number appears to show a strong similarity with the variation of these channels, when their long-range development is taken into account. The same holds for SXR levels observed by the GOES satellites. Due to LYRA's bandwidth and coverage of various active-region temperatures, its relatively smooth development may yield some information on the structure of the current solar cycle. On its websites, LYRA presents not only EUV and SXR time series in near real-time, but also information on flare parameters and long-term irradiance and sunspot levels. It will be demonstrated whether it is possible to aid space weather forecast with these statistical data, especially for the prediction of expected flare strength on a daily basis.

  8. Superoxide Dismutase: A Predicting Factor for Boar Semen Characteristics for Short-Term Preservation

    PubMed Central

    Nemec Svete, Alenka

    2014-01-01

    Superoxide dismutase (SOD), total antioxidant capacity (TAC), and thiobarbituric acid reactive substances (TBARS) in seminal plasma were evaluated on the basis of receiver operating characteristics (ROC) analysis as predictors for distinguishing satisfactory from unsatisfactory boar semen samples after storage. SOD on day 0 correlated significantly with progressive motility (r = 0.686; P < 0.05) and viability (r = 0.513; P < 0.05) after storage; TBARS correlated only with motility (r = 0.480; P < 0.05). Semen samples that, after 3 days of storage, fulfilled all criteria for semen characteristics (viability > 85%, motility > 70%, progressive motility > 25%, and normal morphology > 50%) had significantly lower SOD levels on the day 0 than those with at least one criterion not fulfilled (P < 0.05) following storage. SOD levels of less than 1.05U/mL predicted with 87.5% accuracy that fresh semen will suit the requirements for satisfactory semen characteristics after storage, while semen with SOD levels higher than 1.05U/mL will not fulfill with 100% accuracy at least one semen characteristic after storage. These results support the proposal that SOD in fresh boar semen can be used as a predictor of semen quality after storage. PMID:24729963

  9. Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy.

    PubMed

    Khoo, Bee Luan; Lee, Soo Chin; Kumar, Prashant; Tan, Tuan Zea; Warkiani, Majid Ebrahimi; Ow, Samuel G W; Nandi, Sayantani; Lim, Chwee Teck; Thiery, Jean Paul

    2015-06-20

    Circulating tumor cells (CTCs) are considered as surrogate markers for prognosticating and evaluating patient treatment responses. Here, 226 blood samples from 92 patients with breast cancer, including patients with newly diagnosed or metastatic refractory cancer, and 16 blood samples from healthy subjects were cultured in laser-ablated microwells. Clusters containing an increasing number of cytokeratin-positive (CK+) cells appeared after 2 weeks, while most blood cells disappeared with time. Cultures were heterogeneous and exhibited two distinct sub-populations of cells: 'Small' ( 25 m; high nuclear/cytoplasmic ratio; CD45-) cells, comprising CTCs, and 'Large' (> 25 m; low nuclear/cytoplasmic ratio; CD68+ or CD56+) cells, corresponding to macrophage and natural killer-like cells. The Small cell fraction also showed copy number increases in six target genes (FGFR1, Myc, CCND1, HER2, TOP2A and ZNF217) associated with breast cancer. These expanded CTCs exhibited different proportions of epithelial-mesenchymal phenotypes and were transferable for further expansion as spheroids in serum-free suspension or 3D cultures. Cluster formation was affected by the presence and duration of systemic therapy, and its persistence may reflect therapeutic resistance. This novel and advanced method estimates CTC clonal heterogeneity and can predict, within a relatively short time frame, patient responses to therapy. PMID:26008969

  10. Short-term load and wind power forecasting using neural network-based prediction intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time. PMID:24807030

  11. Assessment and prediction of short term hospital admissions: the case of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Kassomenos, P.; Papaloukas, C.; Petrakis, M.; Karakitsios, S.

    The contribution of air pollution on hospital admissions due to respiratory and heart diseases is a major issue in the health-environmental perspective. In the present study, an attempt was made to run down the relationships between air pollution levels and meteorological indexes, and corresponding hospital admissions in Athens, Greece. The available data referred to a period of eight years (1992-2000) including the daily number of hospital admissions due to respiratory and heart diseases, hourly mean concentrations of CO, NO 2, SO 2, O 3 and particulates in several monitoring stations, as well as, meteorological data (temperature, relative humidity, wind speed/direction). The relations among the above data were studied through widely used statistical techniques (multivariate stepwise analyses) and Artificial Neural Networks (ANNs). Both techniques revealed that elevated particulate concentrations are the dominant parameter related to hospital admissions (an increase of 10 g m -3 leads to an increase of 10.2% in the number of admissions), followed by O 3 and the rest of the pollutants (CO, NO 2 and SO 2). Meteorological parameters also play a decisive role in the formation of air pollutant levels affecting public health. Consequently, increased/decreased daily hospital admissions are related to specific types of meteorological conditions that favor/do not favor the accumulation of pollutants in an urban complex. In general, the role of meteorological factors seems to be underestimated by stepwise analyses, while ANNs attribute to them a more important role. Comparison of the two models revealed that ANN adaptation in complicate environmental issues presents improved modeling results compared to a regression technique. Furthermore, the ANN technique provides a reliable model for the prediction of the daily hospital admissions based on air quality data and meteorological indices, undoubtedly useful for regulatory purposes.

  12. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    . Multiple combinations of soils and climate conditions, crop management and varieties were considered for the different Agro-Ecological Zones. The climate impact was assessed using future climate prediction, statistically and/or dynamically downscaled, for specific areas. Direct and indirect effects of different CO2 concentrations projected for the future periods were separately explored to estimate their effects on crops. Several adaptation strategies (e.g., introduction of full irrigation, shift of the ordinary sowing/planting date, changes in the ordinary fertilization management) were also evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analyzed at local, AEZ and country level, will be discussed.

  13. Current affairs in earthquake prediction in Japan

    NASA Astrophysics Data System (ADS)

    Uyeda, Seiya

    2015-12-01

    As of mid-2014, the main organizations of the earthquake (EQ hereafter) prediction program, including the Seismological Society of Japan (SSJ), the MEXT Headquarters for EQ Research Promotion, hold the official position that they neither can nor want to make any short-term prediction. It is an extraordinary stance of responsible authorities when the nation, after the devastating 2011 M9 Tohoku EQ, most urgently needs whatever information that may exist on forthcoming EQs. Japan's national project for EQ prediction started in 1965, but it has made no success. The main reason for no success is the failure to capture precursors. After the 1995 Kobe disaster, the project decided to give up short-term prediction and this stance has been further fortified by the 2011 M9 Tohoku Mega-quake. This paper tries to explain how this situation came about and suggest that it may in fact be a legitimate one which should have come a long time ago. Actually, substantial positive changes are taking place now. Some promising signs are arising even from cooperation of researchers with private sectors and there is a move to establish an "EQ Prediction Society of Japan". From now on, maintaining the high scientific standards in EQ prediction will be of crucial importance.

  14. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data

    PubMed Central

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander

    2012-01-01

    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSARlike quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  15. Use of "Crowd-Sourcing" and other collaborations to solve the short-term, earthquake forecasting problem

    NASA Astrophysics Data System (ADS)

    Bleier, T.; Heraud, J. A.; Dunson, J. C.

    2015-12-01

    QuakeFinder (QF) and its international collaborators have installed and currently maintain 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. The data from these instruments are being analyzed for pre-quake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, PUCC in Chile, NOA in Greece, Syiah Kuala University in Indonesia, LASP at U of Colo., Stanford, and USGS). Recently, NASA Hq and QuakeFinder tried a new approach to help with the analysis of this huge (50+TB) data archive. A collaboration with Apirio/TopCoder, Harvard University, Amazon, QuakeFinder, and NASA Hq. resulted in an open algorithm development contest called "Quest for Quakes" in which contestants (freelance algorithm developers) attempted to identify quakes from a subset of the QuakeFinder data (3TB). The contest included a $25K prize pool, and contained 100 cases where earthquakes (and null sets) included data from up to 5 remote sites, near and far from quakes greater than M4. These data sets were made available through Amazon.com to hundreds of contestants over a two week contest period. In a more traditional approach, several new algorithms were tried by actively sharing the QF data with universities over a longer period. These algorithms included Principal Component Analysis-PCA and deep neural networks in an effort to automatically identify earthquake signals within typical, noise-filled environments. This presentation examines the pros and cons of employing these two approaches, from both logistical and scientific perspectives.

  16. Testing an earthquake prediction algorithm

    USGS Publications Warehouse

    Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.

    1997-01-01

    A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.

  17. Short-Term Precipitation Occurrence Prediction for Strong Convective Weather Using FY2-G Satellite Data: a Case Study of Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Liu, Jun; Guo, Shanxin; Chen, Jinsong; Liu, Ping; Qian, Jing; Chen, Huijuan; Sun, Bo

    2016-06-01

    Short-term precipitation commonly occurs in south part of China, which brings intensive precipitation in local region for very short time. Massive water would cause the intensive flood inside of city when precipitation amount beyond the capacity of city drainage system. Thousands people's life could be influenced by those short-term disasters and the higher city managements are required to facing these challenges. How to predict the occurrence of heavy precipitation accurately is one of the worthwhile scientific questions in meteorology. According to recent studies, the accuracy of short-term precipitation prediction based on numerical simulation model still remains low reliability, in some area where lack of local observations, the accuracy may be as low as 10%. The methodology for short term precipitation occurrence prediction still remains a challenge. In this paper, a machine learning method based on SVM was presented to predict short-term precipitation occurrence by using FY2-G satellite imagery and ground in situ observation data. The results were validated by traditional TS score which commonly used in evaluation of weather prediction. The results indicate that the proposed algorithm can present overall accuracy up to 90% for one-hour to six-hour forecast. The result implies the prediction accuracy could be improved by using machine learning method combining with satellite image. This prediction model can be further used to evaluated to predicted other characteristics of weather in Shenzhen in future.

  18. Model predictions of features in microsaccade-related neural responses in a feedforward network with short-term synaptic depression

    PubMed Central

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao; Zhou, Changsong

    2016-01-01

    Recently, the significant microsaccade-induced neural responses have been extensively observed in experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave an explanation for microsaccades in counteracting visual fading, but also successfully reproduced several microsaccade-related features in experimental findings. These results strongly suggest that, the depression model is very useful to investigate microsaccade-related neural responses. In this paper, by using the model, we extensively study and predict the dependance of microsaccade-related neural responses on several key parameters, which could be tuned in experiments. Particularly, we provide a significant prediction that microsaccade-related neural response also complies with the property sharper is better observed in many contexts in neuroscience. Importantly, the property exhibits a power-law relationship between the width of input signal and the responsive effectiveness, which is robust against many parameters in the model. By using mean field theory, we analytically investigate the robust power-law property. Our predictions would give theoretical guidance for further experimental investigations of the functional role of microsaccades in visual information processing. PMID:26853547

  19. Model predictions of features in microsaccade-related neural responses in a feedforward network with short-term synaptic depression

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao; Zhou, Changsong

    2016-02-01

    Recently, the significant microsaccade-induced neural responses have been extensively observed in experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave an explanation for microsaccades in counteracting visual fading, but also successfully reproduced several microsaccade-related features in experimental findings. These results strongly suggest that, the depression model is very useful to investigate microsaccade-related neural responses. In this paper, by using the model, we extensively study and predict the dependance of microsaccade-related neural responses on several key parameters, which could be tuned in experiments. Particularly, we provide a significant prediction that microsaccade-related neural response also complies with the property sharper is better observed in many contexts in neuroscience. Importantly, the property exhibits a power-law relationship between the width of input signal and the responsive effectiveness, which is robust against many parameters in the model. By using mean field theory, we analytically investigate the robust power-law property. Our predictions would give theoretical guidance for further experimental investigations of the functional role of microsaccades in visual information processing.

  20. Exaggerated Claims About Earthquake Predictions

    NASA Astrophysics Data System (ADS)

    Kafka, Alan L.; Ebel, John E.

    2007-01-01

    The perennial promise of successful earthquake prediction captures the imagination of a public hungry for certainty in an uncertain world. Yet, given the lack of any reliable method of predicting earthquakes [e.g., Geller, 1997; Kagan and Jackson, 1996; Evans, 1997], seismologists regularly have to explain news stories of a supposedly successful earthquake prediction when it is far from clear just how successful that prediction actually was. When journalists and public relations offices report the latest `great discovery' regarding the prediction of earthquakes, seismologists are left with the much less glamorous task of explaining to the public the gap between the claimed success and the sober reality that there is no scientifically proven method of predicting earthquakes.

  1. Earthquake prediction comes of age

    SciTech Connect

    Lindth, A. . Office of Earthquakes, Volcanoes, and Engineering)

    1990-02-01

    In the last decade, scientists have begun to estimate the long-term probability of major earthquakes along the San Andreas fault. In 1985, the U.S. Geological Survey (USGS) issued the first official U.S. government earthquake prediction, based on research along a heavily instrumented 25-kilometer section of the fault in sparsely populated central California. Known as the Parkfield segment, this section of the Sand Andreas had experienced its last big earthquake, a magnitude 6, in 1966. Estimated probabilities of major quakes along the entire San Andreas by a working group of California earthquake experts, using new geologic data and careful analysis of past earthquakes, are reported.

  2. Predicting the Effects of Short-Term Photovoltaic Variability on Power System Frequency for Systems with Integrated Energy Storage

    NASA Astrophysics Data System (ADS)

    Traube, Joshua White

    The percentage of electricity supplied by photovoltaic (PV) generators is steadily rising in power systems worldwide. This rise in PV penetration may lead to larger fluctuations in power system frequency due to variability in PV generator output at time scales that fall between the inertial damping and automatic generation control (AGC) responses of power systems. To reduce PV generator variability, active power controls can be implemented in the power electronic inverters that interface PV generators to the power system. Although various types of active power controls have been developed, no standard methodology exists for evaluating the effectiveness of these controls at improving power system frequency regulation. This dissertation presents a method for predicting the effects of short-term PV variability on power system frequency for a PV generator with active power control provided by integrated energy storage. A custom model of a PV generator with integrated energy storage is implemented in a power system dynamic simulator and validated through experiments with a grid emulator. The model is used to predict the effects of short-term PV variability on the frequency of the IEEE 9-bus test power system modified to include a PV generator with integrated energy storage. In addition, this dissertation utilizes linear analysis of power system frequency control to predict worst-case frequency deviations as a function of the amount of energy storage integrated into PV generators. Through simulation and emulation on a scaled experimental prototype, the maximum frequency deviation caused by the PV generator with a small amount of integrated energy storage is found to be approximately 33% lower than the maximum frequency deviation caused by the PV generator alone. Through linear analysis it is shown that by adding only 36.7 kWh of integrated energy storage to a 1.2 MW PV system, the worst-case frequency deviation on the IEEE 9-bus test system can be reduced 65% from 0

  3. The NASA Short-term Prediction and Research Transition (SPoRT) Center: A Research to Operations Test Bed

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2005-01-01

    Over the last three years, NASA/MSFC scientists have embarked on an effort to transition unique NASA EOS data/products and research technology to selected NWSEOs in the southeast U.S. This activity, called the Short-term Prediction and - Research Transition (SPoRT) program, supports the NASA Science Mission Directorate and its Earth-Sun System Mission to develop a scientific understanding of the Earth System and its response to natural or human-induced changes that will enable improved prediction capability for climate, weather, and natural hazards. The overarching question related to weather prediction is "How well can weather forecasting duration and reliability be improved by new space-based observations, data assimilation, and modeling?" The transition activity has included the real-time delivery of MODIS data and products to several NWS Forecast Offices. Local NWS FOs have used the MODIS data to complement the coarse resolution GOES data for a number of applications. Specialized products have also been developed and made available to local and remote offices for their weather applications. Data from &e Lightning Mapping Array (LMA) network has been used in severe storm forecasts at several offices in the region. At the regional scale and forecast horizons from 0-1 day, the next generation of high-resolution mesoscale forecast and data assimilation models have been used to provide local offices with unique weather forecasts not otherwise available. The continued use of near red-time infusion of NASA science products into high-resolution mesoscale forecast and decision-making models can be expected to improve the model initialization as well as short-term forecasts. A current focus of SPoRT is to expand collaborations to include contributions from the assimilation of AMSR-E data in the ADASIARPS forecast system (OU), inclusion of MODIS SSTs and AIRS thermodynamic profiles in the WRF, and to extend the distribution of real-time MODIS and AMSR-E data and products

  4. Predicting Short-term Mortality and Long-term Survival of Hospitalized U.S. Patients with Alcoholic Hepatitis

    PubMed Central

    Cuthbert, Jennifer A.; Arslanlar, Sami; Yepuri, Jay; Montrose, Marc; Ahn, Chul W.; Shah, Jessica P.

    2014-01-01

    Background No study has evaluated current scoring systems for their accuracy in predicting short- and long-term outcome of alcoholic hepatitis in a U.S. population. Methods We reviewed electronic records for patients with ALD admitted to Parkland Memorial Hospital between January 2002 and August 2005. Data and outcomes for 148 of 1761 admissions meeting pre-defined criteria were collected. The discriminant function (DF) was revised (INRdf) to account for changes in prothrombin time reagents that could potentially affect identification of risk using the prior DF threshold of > 32. Admission and theoretical peak scores using the Model for End-stage Liver Disease (MELD) were calculated. Analysis models compared 5 different scoring systems. Results INRdf was closely correlated with the old DF (r2 = 0.95). Multivariate analysis of data showed that survival at 28 days was significantly associated with admission values for white blood cell count (p = 0.006), a scoring system using a combination of age, bilirubin, coagulation status and creatinine (p < 0.001) as well as an elevated ammonia result within 2 days of admission (p = 0.006). When peak values for MELD were included, they were the most significant predictor of short-term mortality (p < 0.001) followed by INRdf (p = 0.006 Conclusion On admission, 2 scoring systems that identify a subset of patients with severe alcoholic liver disease are able to predict > 50% mortality at 4 weeks as well as > 80% mortality at 6 months without specific treatment. PMID:24445730

  5. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  6. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Trs Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of

  7. Interleukin-6 predicts short-term global functional decline in the oldest old: results from the BELFRAIL study.

    PubMed

    Adriaensen, Wim; Mathe, Catharina; Vaes, Bert; van Pottelbergh, Gijs; Wallemacq, Pierre; Degryse, Jean-Marie

    2014-01-01

    The chronic inflammatory state at old age may contribute to the pathophysiology of or reflect chronic conditions resulting in loss of physical and mental functioning. Therefore, our objective was to examine the predictive value of a large battery of serum inflammatory markers as risk indicators for global functional decline and its specific physical and mental determinants in the oldest old. Global functional decline and specific aspects of physical and mental functional decline were assessed during an average of 1.66years (0.21) in a sample of 303 persons aged 80years or older of the BELFRAIL study. Serum levels of 14 inflammatory proteins, including cytokines, growth factors, and acute phase proteins, were measured at baseline. Almost 20% of the participants had a significant global functional decline over time. Interleukin (IL)-6 serum levels were uniquely positively associated with global functional decline, even after correcting for multiple confounders (odds ratio 1.51). Odds ratios for the individual aspects (physical dependency, physical performance, cognition, and depression) of functioning were lower, and composite scores of physical or mental decline were not significant. The proportion of global functional decline exhibited a dose-response curve with increasing levels of IL-6. Thus, IL-6 is an independent risk indicator for accelerated global functional decline in the oldest old. Our results suggest that simple serum levels of IL-6 may be very useful in short-term identification or evaluation of global functional status in the oldest old. PMID:25410483

  8. Seismicity dynamics and earthquake predictability

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.

    2011-02-01

    Many factors complicate earthquake sequences, including the heterogeneity and self-similarity of the geological medium, the hierarchical structure of faults and stresses, and small-scale variations in the stresses from different sources. A seismic process is a type of nonlinear dissipative system demonstrating opposing trends towards order and chaos. Transitions from equilibrium to unstable equilibrium and local dynamic instability appear when there is an inflow of energy; reverse transitions appear when energy is dissipating. Several metastable areas of a different scale exist in the seismically active region before an earthquake. Some earthquakes are preceded by precursory phenomena of a different scale in space and time. These include long-term activation, seismic quiescence, foreshocks in the broad and narrow sense, hidden periodical vibrations, effects of the synchronization of seismic activity, and others. Such phenomena indicate that the dynamic system of lithosphere is moving to a new state - catastrophe. A number of examples of medium-term and short-term precursors is shown in this paper. However, no precursors identified to date are clear and unambiguous: the percentage of missed targets and false alarms is high. The weak fluctuations from outer and internal sources play a great role on the eve of an earthquake and the occurrence time of the future event depends on the collective behavior of triggers. The main task is to improve the methods of metastable zone detection and probabilistic forecasting.

  9. 14C Cycling in Lignocellulose-Amended Soils: Predicting Long-Term C Fate from Short-Term Indicators

    SciTech Connect

    Bailey, Vanessa L.; Smith, Jeffery L.; Bolton, Harvey

    2006-02-01

    The degradation of recalcitrant, abundant, naturally occurring compounds such as lignocellulose is a significant component of the global C cycle. Identifying land uses that maximize the storage of this C rather than its mineralization to CO2 will aid in recommendations to offset C emissions. Furthermore, identifying simple relationships that predict which soils are most likely to store more C will aid in C management. We compared lignocellulose degradation over 8 months in contrasting soils from each of five sites across the United States. The soils were collected from a tallgrass prairie restoration (farmland, and plots restored in 1993 and 1979), the semiarid shrub-steppe (cool, moist upper slope and warm, dry lower slope soils), long-term farmland (no-till and conventional-till), and from two forest soils (loblolly pine and Douglas fir; fertilized and non-fertilized). Soils that rapidly metabolized freshly added C exploited endogenous and newly transformed C to a lesser degree over the course of the incubation (lower slope shrub-steppe, non-fertilized Douglas fir, and tallgrass prairie farmed and 1993 restorations). We also pooled the data to find a strong relationship between sand content and lignocellulose-C remaining in the soil after 8 months (R = 0.68) and also between short-term storage of lignocellulose-C (at 7 d) and lignocellulose-C remaining after 8 months (R= 0.94). To predict C storage, models of C and soil properties must be modified to reflect microbial communities. Communities in richer soils may be more competent to use native C following fresh C additions when compared with communities in poorer soils.

  10. A Comparison Of Primitive Model Results Of The Short Term Wind Energy Prediction System (Sweps): WRF vs MM5

    NASA Astrophysics Data System (ADS)

    Unal, E.; Tan, E.; Mentes, S. S.; Caglar, F.; Turkmen, M.; Unal, Y. S.; Onol, B.; Ozdemir, E. T.

    2012-04-01

    Although discontinuous behavior of wind field makes energy production more difficult, wind energy is the fastest growing renewable energy sector in Turkey which is the 6th largest electricity market in Europe. Short-term prediction systems, which capture the dynamical and statistical nature of the wind field in spatial and time scales, need to be advanced in order to increase the wind power prediction accuracy by using appropriate numerical weather forecast models. Therefore, in this study, performances of the next generation mesoscale Numerical Weather Forecasting model, WRF, and The Fifth-Generation NCAR/Penn State Mesoscale Model, MM5, have been compared for the Western Part of Turkey. MM5 has been widely used by Turkish State Meteorological Service from which MM5 results were also obtained. Two wind farms of the West Turkey have been analyzed for the model comparisons by using two different model domain structures. Each model domain has been constructed by 3 nested domains downscaling from 9km to 1km resolution by the ratio of 3. Since WRF and MM5 models have no exactly common boundary layer, cumulus, and microphysics schemes, the similar physics schemes have been chosen for these two models in order to have reasonable comparisons. The preliminary results show us that, depending on the location of the wind farms, MM5 wind speed RMSE values are 1 to 2 m/s greater than that of WRF values. Since 1 to 2 m/s errors can be amplified when wind speed is converted to wind power; it is decided that the WRF model results are going to be used for the rest of the project.

  11. JPSS Proving Ground Activities with NASA's Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.

    2015-12-01

    Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed

  12. Simple Measures of Function and Symptoms in Hospitalized Heart Failure Patients Predict Short-Term Cardiac Event-Free Survival

    PubMed Central

    Cataldo, Janine; Mackin, Lynda

    2014-01-01

    Background. Heart failure (HF) is a prevalent chronic condition where patients experience numerous uncomfortable symptoms, low functional status, and high mortality rates. Objective. To determine whether function and/or symptoms predict cardiac event-free survival in hospitalized HF patients within 90 days of hospital discharge. Methods. Inpatients (N = 32) had HF symptoms assessed with 4 yes/no questions. Function was determined with NYHA Classification, Katz Index of Activities of Daily Living (ADLs), and directly with the short physical performance battery (SPPB). Survival was analyzed with time to the first postdischarge cardiac event with events defined as cardiac rehospitalization, heart transplantation, or death. Results. Mean age was 58.2 13.6 years. Patient reported ADL function was nearly independent (5.6 1.1) while direct measure (SPPB) showed moderate functional limitation (6.4 3.1). Within 90 days, 40.6% patients had a cardiac event. At discharge, each increase in NYHA Classification was associated with a 3.4-fold higher risk of cardiac events (95% CI 1.48.5). Patients reporting symptoms of dyspnea, fatigue, and orthopnea before discharge had a 4.0-fold, 9.7-fold, and 12.8-fold, respectively, greater risk of cardiac events (95% CI 1.213.2; 1.275.1; 1.799.7). Conclusions. Simple assessments of function and symptoms easily performed at discharge may predict short-term cardiac outcomes in hospitalized HF patients. PMID:24672717

  13. Prediction of short term re-exacerbation in patients with acute exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    Liu, Dong; Peng, Shao-Hua; Zhang, Jing; Bai, Si-Hong; Liu, Hai-Xia; Qu, Jie-Ming

    2015-01-01

    Background The objective of the study is to develop a scoring system for predicting a 90-day re-exacerbation in hospitalized patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Methods A total of 176 consecutive hospitalized patients with AECOPD were included. The sociodemographic characteristics, status before acute exacerbation (AE), presentations of and treatment for the current AE, and the re-exacerbation in 90 days after discharge from hospital were collected. Results The re-exacerbation rate in 90 days was 48.9% (86 out of 176). It was associated with the degree of lung function impairment (Global initiative for chronic Obstructive Lung Disease [GOLD] grades), frequency of AE in the previous year, and parameters of the current AE, including pleural effusion, use of accessory respiratory muscles, inhaled long-acting -2-agonists, inhaled corticosteroids, controlled oxygen therapy, noninvasive mechanical ventilation, and length of hospital stay, but was not associated with body mass index, modified Medical Research Council scale, or chronic obstructive pulmonary disease assessment test. A subgroup of ten variables was selected and developed into the re-exacerbation index scoring system (age grades, GOLD grades, AE times in the previous year, pleural effusion, use of accessory respiratory muscles, noninvasive mechanical ventilation, controlled oxygen therapy, inhaled long-acting -2-agonists and inhaled corticosteroids, and length of hospital stay). The re-exacerbation index showed good discrimination for re-exacerbation, with a C-statistic of 0.750 (P<0.001). Conclusion A comprehensive assessment integrating parameters of stable chronic obstructive pulmonary disease, clinical presentations at exacerbation, and treatment showed a strong predictive capacity for short-term outcome in patients with AECOPD. Further studies are required to verify these findings. PMID:26170655

  14. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACK DAM Reservoir, Turkey

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    first step, a hydrological model with an embedded snow module is used to establish a rainfall-runoff relationship to calculate the inflow into the dam reservoir. The basin is divided into four sub-basins, along with the three elevation zones for each subbasin. Hydro-meteorological data are collected via 11 automated stations in and around the basin and a semi-distributed rainfall-runoff model, HEC-HMS, is calibrated for sub-basins. Then, HEC-ResSim is used to create simulation alternatives of reservoir system according to user defined guide curves and rules based on internal and/or external variables. The decision support modeling scenarios are tested with Numerical Weather Prediction Mesoscale Model 5 (MM5) daily total precipitation and daily average temperature data. Predicted precipitation and temperature data are compared with ground observations to examine the consistency. Predicted inflows computed by HEC-HMS are used as main forcing inputs into HEC-ResSim for the short term operation of reservoir during the flood events.

  15. Short-Term Prognosis of Transient Ischemic Attack and Predictive Value of the ABCD2 Score in Hong Kong Chinese

    PubMed Central

    Chiu, Lai Hong Simon; Yau, Wah Hon; Leung, Ling Pong; Pang, Peter; Tsui, Chee Tat; Wan, Kuang An; Au, Thomas Tak-shun; Fong, Wing Chi; Chung, Shun Hang Joseph

    2014-01-01

    Background Literature on prognosis of transient ischemic attack (TIA) in Chinese is scarce. The short-term prognosis of TIA and the predictive value of the ABCD2 score in Hong Kong Chinese patients attending the emergency department (ED) were studied to provide reference for TIA patient management in our ED. Methods A cohort of TIA patients admitted through the ED to 13 acute public hospitals in 2006 was recruited through the centralized electronic database by the Hong Kong Hospital Authority (HA). All inpatients were e-coded by the HA according to the International Classification of Diseases, Ninth Revision (ICD9). Electronic records and hard copies were studied up to 90 days after a TIA. The stroke risk of a separate TIA cohort diagnosed by the ED was compared. Results In the 1,000 recruited patients, the stroke risk after a TIA at days 2, 7, 30, and 90 was 0.2, 1.4, 2.9, and 4.4%, respectively. Antiplatelet agents were prescribed in 89%, warfarin in 6.9%, statin in 28.6%, antihypertensives in 39.3%, and antidiabetics in 11.9% of patients after hospitalization. Before the index TIA, the prescribed medications were 27.6, 3.7, 11.3, 27.1, and 9.7%, respectively. The accuracy of the ABCD2 score in predicting stroke risk was 0.607 at 7 days, 0.607 at 30 days, and 0.574 at 90 days. At 30 days, the p for trend across ABCD2 score levels was 0.038 (OR for every score point = 1.36, p = 0.040). Diabetes mellitus, previous stroke and carotid bruit were associated with stroke within 90 days (p = 0.038, 0.045, 0.030, respectively). A total of 45.4% of CTs of the brain showed lacunar infarcts or small vessel disease. There was an increased stroke risk at 90 days in patients with old or new infarcts on CT or MRI. Patients with carotid stenosis 70% had an increased stroke risk within 30 (OR = 6.335, p = 0.013) and 90 days (OR = 3.623, p = 0.050). Stroke risks at days 2, 7, 30, and 90 in the 289 TIA patients diagnosed by the ED were 0.35, 2.4, 5.2, and 6.2%, respectively

  16. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network

    NASA Astrophysics Data System (ADS)

    Barrick, Donald; Fernandez, Vicente; Ferrer, Maria I.; Whelan, Chad; Breivik, yvind

    2012-05-01

    In order to address the need for surface trajectory forecasts following deployment of coastal HF radar systems during emergency-response situations (e.g., search and rescue, oil spill), a short-term predictive system (STPS) based on only a few hours data background is presented. First, open-modal analysis (OMA) coefficients are fitted to 1-D surface currents from all available radar stations at each time interval. OMA has the effect of applying a spatial low-pass filter to the data, fills gaps, and can extend coverage to areas where radial vectors are available from a single radar only. Then, a set of temporal modes is fitted to the time series of OMA coefficients, typically over a short 12-h trailing period. These modes include tidal and inertial harmonics, as well as constant and linear trends. This temporal model is the STPS basis for producing up to a 12-h current vector forecast from which a trajectory forecast can be derived. We show results of this method applied to data gathered during the September 2010 rapid-response demonstration in northern Norway. Forecasted coefficients, currents, and trajectories are compared with the same measured quantities, and statistics of skill are assessed employing 16 24-h data sets. Forecasted and measured kinetic variances of the OMA coefficients typically agreed to within 10-15%. In one case where errors were larger, strong wind changes are suspected and examined as the cause. Sudden wind variability is not included properly within the STPS attack we presently employ and will be a subject for future improvement.

  17. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake.

    PubMed

    Bakun, W H; Aagaard, B; Dost, B; Ellsworth, W L; Hardebeck, J L; Harris, R A; Ji, C; Johnston, M J S; Langbein, J; Lienkaemper, J J; Michael, A J; Murray, J R; Nadeau, R M; Reasenberg, P A; Reichle, M S; Roeloffs, E A; Shakal, A; Simpson, R W; Waldhauser, F

    2005-10-13

    Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen. Here we show what these data, when combined with data from earlier Parkfield earthquakes, tell us about earthquake physics and earthquake prediction. The 2004 Parkfield earthquake, with its lack of obvious precursors, demonstrates that reliable short-term earthquake prediction still is not achievable. To reduce the societal impact of earthquakes now, we should focus on developing the next generation of models that can provide better predictions of the strength and location of damaging ground shaking. PMID:16222291

  18. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case Study

    EPA Science Inventory

    Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...

  19. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  20. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    SciTech Connect

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  1. Implementation of the Short-Term Ensemble Prediction System (STEPS) in Belgium and verification of case studies

    NASA Astrophysics Data System (ADS)

    Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent

    2014-05-01

    The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales. The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also considered by stochastic modelling in order to reflect their typical spatial and temporal variability. Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK ("forecasting and management of extreme rainfall induced risks in the urban environment"). The project deals with the nowcasting of rainfall and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive Analysis). This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS products for potential hydrological users and a preliminary verification of the nowcasts

  2. Geochemical challenge to earthquake prediction.

    PubMed Central

    Wakita, H

    1996-01-01

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665

  3. Prediction of earthquake-triggered landslide event sizes

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Havenith, Hans-Balder; Schlgel, Romy

    2016-04-01

    Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important

  4. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi

    2010-01-01

    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  5. INTEGRATION OF SHORT-TERM CO-SEISMIC DEFORMATION (InSAR) IN THE GEOMORPHIC DEVELOPMENT OF AN ACTIVELY UPLIFTING FOOTWALL, LAQUILA EARTHQUAKE (06 APRIL, 2009), ITALY

    NASA Astrophysics Data System (ADS)

    Berti, C.; Pazzaglia, F. J.; Ramage, J. M.; Miccadei, E.; Piacentini, T.

    2009-12-01

    Central Italy is a well know region of frequent seismic activity focused along the topographic axis of the Apennines, with several, damaging > M. 5 events in the past decade. Conversely, the integrated effect of these earthquakes in shaping the long term development of the landscape is a poorly understood, but potentially powerful process in describing the regions paleoseismicity and steadiness of hazardous earthquakes. The recent M. 6.3 LAquila earthquake of 06 April, 2009 ruptured a fault in a region of well-known geologic, geomorphic, and geodetic constraining data including hanging wall continental basin Quaternary deposits, footwall stream networks with distinct knickpoints, a dense GPS network, and InSAR interferometry. Collectively, the geodetic data describe the short-term, co- and immediately post-seismic behavior of the earthquake, whereas the geologic and geomorphic data record how discrete rupture events are encoded in the landscape and reflected in processes actively shaping the topography. Envisat and ALOS derived interferograms generated using ROI PAC show close spatial overlap of the InSAR-determined rupture and the Paganica fault, separating a deeply incised, uplifted carbonate footwall block and an actively subsiding Quaternary continental basin. Deposition in the continental basin has been unsteady and is commonly attributed to climate-modulated sediment flux from the uplifted footwall. We note however, that the longitudinal profiles of streams in the footwall are marked by distinct knickpoints that do not correspond to known or obvious lithologic or structural controls. Rather, the knickpoints are located a linear distance from the Paganica fault and at a topographic elevation consistent with detachment-limited stream-power erosional retreat processes instigated by instantaneous base level fall at the mountain front. Furthermore, the magnitude of river incision and elevation of the knickpoints scales with the co-seismic deformation pattern

  6. Predicting pathogen growth during short-term temperature abuse of raw pork, beef, and poultry products: use of an isothermal-based predictive tool.

    PubMed

    Ingham, Steven C; Fanslau, Melody A; Burnham, Greg M; Ingham, Barbara H; Norback, John P; Schaffner, Donald W

    2007-06-01

    A computer-based tool (available at: www.wisc.edu/foodsafety/meatresearch) was developed for predicting pathogen growth in raw pork, beef, and poultry meat. The tool, THERM (temperature history evaluation for raw meats), predicts the growth of pathogens in pork and beef (Escherichia coli O157:H7, Salmonella serovars, and Staphylococcus aureus) and on poultry (Salmonella serovars and S. aureus) during short-term temperature abuse. The model was developed as follows: 25-g samples of raw ground pork, beef, and turkey were inoculated with a five-strain cocktail of the target pathogen(s) and held at isothermal temperatures from 10 to 43.3 degrees C. Log CFU per sample data were obtained for each pathogen and used to determine lag-phase duration (LPD) and growth rate (GR) by DMFit software. The LPD and GR were used to develop the THERM predictive tool, into which chronological time and temperature data for raw meat processing and storage are entered. The THERM tool then predicts a delta log CFU value for the desired pathogen-product combination. The accuracy of THERM was tested in 20 different inoculation experiments that involved multiple products (coarse-ground beef, skinless chicken breast meat, turkey scapula meat, and ground turkey) and temperature-abuse scenarios. With the time-temperature data from each experiment, THERM accurately predicted the pathogen growth and no growth (with growth defined as delta log CFU > 0.3) in 67, 85, and 95% of the experiments with E. coli 0157:H7, Salmonella serovars, and S. aureus, respectively, and yielded fail-safe predictions in the remaining experiments. We conclude that THERM is a useful tool for qualitatively predicting pathogen behavior (growth and no growth) in raw meats. Potential applications include evaluating process deviations and critical limits under the HACCP (hazard analysis critical control point) system. PMID:17612076

  7. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  8. Intermediate-term earthquake prediction.

    PubMed Central

    Keilis-Borok, V I

    1996-01-01

    An earthquake of magnitude M and linear source dimension L(M) is preceded within a few years by certain patterns of seismicity in the magnitude range down to about (M - 3) in an area of linear dimension about 5L-10L. Prediction algorithms based on such patterns may allow one to predict approximately 80% of strong earthquakes with alarms occupying altogether 20-30% of the time-space considered. An area of alarm can be narrowed down to 2L-3L when observations include lower magnitudes, down to about (M - 4). In spite of their limited accuracy, such predictions open a possibility to prevent considerable damage. The following findings may provide for further development of prediction methods: (i) long-range correlations in fault system dynamics and accordingly large size of the areas over which different observed fields could be averaged and analyzed jointly, (ii) specific symptoms of an approaching strong earthquake, (iii) the partial similarity of these symptoms worldwide, (iv) the fact that some of them are not Earth specific: we probably encountered in seismicity the symptoms of instability common for a wide class of nonlinear systems. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:11607660

  9. Dim prospects for earthquake prediction

    NASA Astrophysics Data System (ADS)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a proven nonscience [Geller, 1997a] is a paradigm for others to copy.Readers are invited to verify for themselves that neither proven nonscience norv any similar phrase was used by Geller [1997a].

  10. A Distributed Web-based Solution for Ionospheric Model Real-time Management, Monitoring, and Short-term Prediction

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Maurits, S.; Watkins, B.

    2006-12-01

    provide inputs for the next ionospheic model time step and then stored in a MySQL database as the first part of the time-specific record. The RMM then performs synchronization of the input times with the current model time, prepares a decision on initialization for the next model time step, and monitors its execution. Then, as soon as the model completes computations for the next time step, RMM visualizes the current model output into various short-term (about 1-2 hours) forecasting products and compares prior results with available ionospheric measurements. The RMM places prepared images into the MySQL database, which can be located on a different computer node, and then proceeds to the next time interval continuing the time-loop. The upper-level interface of this real-time system is the a PHP-based Web site (http://www.arsc.edu/SpaceWeather/new). This site provides general information about the Earth polar and adjacent mid-latitude ionosphere, allows for monitoring of the current developments and short-term forecasts, and facilitates access to the comparisons archive stored in the database.

  11. A note on evaluating VAN earthquake predictions

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-Akis; Melis, Nicos S.

    The evaluation of the success level of an earthquake prediction method should not be based on approaches that apply generalized strict statistical laws and avoid the specific nature of the earthquake phenomenon. Fault rupture processes cannot be compared to gambling processes. The outcome of the present note is that even an ideal earthquake prediction method is still shown to be a matter of a chancy association between precursors and earthquakes if we apply the same procedure proposed by Mulargia and Gasperini [1992] in evaluating VAN earthquake predictions. Each individual VAN prediction has to be evaluated separately, taking always into account the specific circumstances and information available. The success level of epicenter prediction should depend on the earthquake magnitude, and magnitude and time predictions may depend on earthquake clustering and the tectonic regime respectively.

  12. Short-term memory

    NASA Astrophysics Data System (ADS)

    Toulouse, G.

    This is a rather bold attempt to bridge the gap between neuron structure and psychological data. We try to answer the question: Is there a relation between the neuronal connectivity in the human cortex (around 5,000) and the short-term memory capacity (72)? Our starting point is the Hopfield model (Hopfield 1982), presented in this volume by D.J. Amit.

  13. Comparison of short-term rainfall forecasts for model-based flow prediction in urban drainage systems.

    PubMed

    Thorndahl, Sren; Poulsen, Troels Sander; Bvith, Thomas; Borup, Morten; Ahm, Malte; Nielsen, Jesper Ellerbk; Grum, Morten; Rasmussen, Michael R; Gill, Rasphall; Mikkelsen, Peter Steen

    2013-01-01

    Forecast-based flow prediction in drainage systems can be used to implement real-time control of drainage systems. This study compares two different types of rainfall forecast - a radar rainfall extrapolation-based nowcast model and a numerical weather prediction model. The models are applied as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real-time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 h. The best performance of the system is found using the radar nowcast for the short lead times and the weather model for larger lead times. PMID:23863443

  14. Applying artificial neural network to the short-term prediction of electron density structure using GPS occultation data

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Hu, Xiong; Zhang, Xunjie

    2002-05-01

    Artificial neural network (ANN) is used for assimilating of GPS ionospheric occulted data in order to take full advantage of the abundant GPS occulted data. A feedforward, full-connected network is chosen based on the back-propagation algorithm. Universal time, latitude, longitude, height, Kp index, and F10.7 solar flux are chosen as the input vectors of the network while the electron density as the output vectors. The GPS occultation data on May 24th, 1996 were taken as training samples to train an ANN, and then the well-trained ANN was used to predict the electron density on 25th. Comparison of the predicted results and observed data demonstrated that ANN is a promising method in assimilating the GPS occulted data to establish the ionospheric weather prediction model. Furthermore, the accurate and abundant observations are essential for ensuring the good performance of ANN.

  15. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    NASA Astrophysics Data System (ADS)

    de Montera, L.; Mallet, C.; Barths, L.; Gol, P.

    2008-08-01

    This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  16. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromtre Photovoltaque, Le journal des nergies renouvables, April 2012."

  17. Short-term prognostic factors in lumbar disc surgery: the low back prognostic score is of predictive value.

    PubMed

    Woertgen, C; Gliese, M; Rothoerl, R D; Holzschuh, M; Schlaier, J; Ullrich, O W; Brawanski, A

    1998-01-01

    In order to determine prognostic factors of lumbar disc surgery, we examined 107 patients who were conventionally operated on in a prospective, consecutive study. We analysed general data, the case history, the neurological examination at admission and all data from imaging examinations and therapy. In addition, all patients received a questionnaire based on the Low Back Outcome Score [9, 10]. The patients were re-examined after 2-8 months (103 days mean). According to their ratings on a pain grading scale, the patients were divided into a group with favorable and another with unfavorable results. These groups were analysed in relation to the patients' initial condition. At follow up, 88% of the patients had either completely recovered or their complaints had been relieved. According to the Low Back Outcome Score (LBOS), 64.5% went well. Used to evaluate the initial condition of the patients on admission the LBOS was able to predict favorable outcome in 68% and unfavorable outcome in 50%. To improve the prognostic value, we combined significant questions of the LBOS with the pain grading scale and significant prognostic factors to form a new prognostic score (Low Back Prognostic Score). With this new score we were able to predict a favorable outcome in 84% of our patients, and an unfavorable outcome in 71%. The Low Back Prognostic score seems to provide a sensitive method for predicting a favorable or unfavorable outcome for patients scheduled to undergo lumbar disc surgery. PMID:9577926

  18. Prediction of earthquake response spectra

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical equations for predicting earthquake response spectra in terms of magnitude, distance, and site conditions, using a two-stage regression method similar to the one we used previously for peak horizontal acceleration and velocity. We analyzed horizontal pseudo-velocity response at 5 percent damping for 64 records of 12 shallow earthquakes in Western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. We developed predictive equations for 12 different periods between 0.1 and 4.0 s, both for the larger of two horizontal components and for the random horizontal component. The resulting spectra show amplification at soil sites compared to rock sites for periods greater than or equal to 0.3 s, with maximum amplification exceeding a factor of 2 at 2.0 s. For periods less than 0.3 s there is slight deamplification at the soil sites. These results are generally consistent with those of several earlier studies. A particularly significant aspect of the predicted spectra is the change of shape with magnitude (confirming earlier results by McGuire and by Irifunac and Anderson). This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Nuclear Regulatory Commission's Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficient for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 7 km of a magnitude 6.5 earthquake and within about 15 km of a magnitude 7.5 event. The amount by

  19. Prediction of Short-Term Outcome in Acute Superior Vestibular Nerve Failure: Three-Dimensional Video-Head-Impulse Test and Caloric Irrigation

    PubMed Central

    Rambold, Holger A.

    2015-01-01

    This retrospective study examines acute unilateral vestibular failure (up to seven days after onset) with modern vestibular testing (caloric irrigation and video-head-impulse test, vHIT) in 54 patients in order to test if the short-term outcome of the patients depends on the lesion pattern defined by the two tests. Patients were grouped according to a pathological unilateral caloric weakness without a pathological vHIT: group I; additional a pathological vHIT of the lateral semicircular canal (SCC): group II; and an additional pathological vHIT of the anterior SCC: group III. Patients with involvement of the posterior SCC were less frequent and not included in the analysis. Basic parameters, such as age of the subjects, days after symptom onset, gender, side of the lesion, treatment, and dizziness handicap inventory, were not different in groups I to III. The frequency of pathological clinical findings and pathological quantified measurements increased from groups I to III. The outcome parameter days spent in the hospital was significantly higher in group III compared to group I. The analysis shows that differential vestibular testing predicts short-term outcome of the patients and might be in future important to treat and coach patients with vestibular failure. PMID:26649042

  20. Earthquake prediction decision and risk matrix

    NASA Astrophysics Data System (ADS)

    Zou, Qi-Jia

    1993-08-01

    The issuance of an earthquake prediction must cause widespread social responses. It is suggested and discussed in this paper that the comprehensive decision issue for earthquake prediction considering the factors of the social and economic cost. The method of matrix decision for earthquake prediction (MDEP) is proposed in this paper and it is based on the risk matrix. The goal of decision is that search the best manner issuing earthquake prediction so that minimize the total losses of economy. The establishment and calculation of the risk matrix is discussed, and the decision results taking account of economic factors and not considering the economic factors are compared by examples in this paper.

  1. Assessment of Bacterial Communities and Predictive Functional Profiling in Soils Subjected to Short-Term Fumigation-Incubation.

    PubMed

    Chen, Lin; Luo, Yu; Xu, Jianming; Yu, Zhuyun; Zhang, Kaile; Brookes, Philip C

    2016-07-01

    Previous investigations observed that when soil was fumigated with ethanol-free CHCl3 for 24h and then incubated under appropriate conditions, after the initial flush of CO2 was over, soil organic carbon (SOC) mineralization continued at the same rate as in the non-fumigated soil. This indicates that, following fumigation, the much diminished microbial population still retained the same ability to mineralize SOC as the much larger non-fumigated population. We hypothesize that although fumigation drastically alters the soil bacterial community abundance, composition, and diversity, it has little influence on the bacterial C-metabolic functions. Here, we conducted a 30-day incubation experiment involving a grassland soil and an arable soil with and without CHCl3 fumigation. At days 0, 7, and 30 of the incubation, the bacterial abundances were determined by quantitative PCR, and the bacterial community composition and diversity were assessed via the 16S rRNA gene amplicon sequencing. PICRUSt was used to predict the metagenome functional content from the sequence data. Fumigation considerably changed the composition and decreased the abundance and diversity of bacterial community at the end of incubation. At day 30, Firmicutes (mainly Bacilli) accounted for 70.9 and 94.6% of the total sequences in the fumigated grassland and arable soil communities, respectively. The two fumigated soil communities exhibited large compositional and structural differences during incubation. The families Paenibacillaceae, Bacillaceae, and Symbiobacteriaceae dominated the bacterial community in the grassland soil, and Alicyclobacillaceae in the arable soil. Fumigation had little influence on the predicted abundances of KEGG orthologs (KOs) assigned to the metabolism of the main acid esters, saccharides, amino acids, and lipids in the grassland soil community. The saccharide-metabolizing KO abundances were decreased, but the acid ester- and fatty acid-metabolizing KO abundances were

  2. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma.

    PubMed

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-08-01

    The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC).Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D*, and f) and DCE-MRI parameters (K, Kep, and Ve) values and their percentage changes (%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups.None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher %D values than did the residual group (all P<0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P<0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively).IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and %D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  3. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher %D values than did the residual group (all P<0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P<0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and %D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  4. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult.

    PubMed

    Paolini, Brielle M; Laurienti, Paul J; Simpson, Sean L; Burdette, Jonathan H; Lyday, Robert G; Rejeski, W Jack

    2015-01-01

    Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI) scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus) were highly integrated as evidenced by the results of a principal component analysis (PCA). After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy) and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  5. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult

    PubMed Central

    Paolini, Brielle M.; Laurienti, Paul J.; Simpson, Sean L.; Burdette, Jonathan H.; Lyday, Robert G.; Rejeski, W. Jack

    2015-01-01

    Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI) scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus) were highly integrated as evidenced by the results of a principal component analysis (PCA). After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy) and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  6. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  7. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  8. The PER (Preoperative Esophagectomy Risk) Score: A Simple Risk Score to Predict Short-Term and Long-Term Outcome in Patients with Surgically Treated Esophageal Cancer

    PubMed Central

    Reeh, Matthias; Metze, Johannes; Uzunoglu, Faik G.; Nentwich, Michael; Ghadban, Tarik; Wellner, Ullrich; Bockhorn, Maximilian; Kluge, Stefan; Izbicki, Jakob R.; Vashist, Yogesh K.

    2016-01-01

    Abstract Esophageal resection in patients with esophageal cancer (EC) is still associated with high mortality and morbidity rates. We aimed to develop a simple preoperative risk score for the prediction of short-term and long-term outcomes for patients with EC treated by esophageal resection. In total, 498 patients suffering from esophageal carcinoma, who underwent esophageal resection, were included in this retrospective cohort study. Three preoperative esophagectomy risk (PER) groups were defined based on preoperative functional evaluation of different organ systems by validated tools (revised cardiac risk index, model for end-stage liver disease score, and pulmonary function test). Clinicopathological parameters, morbidity, and mortality as well as disease-free survival (DFS) and overall survival (OS) were correlated to the PER score. The PER score significantly predicted the short-term outcome of patients with EC who underwent esophageal resection. PER 2 and PER 3 patients had at least double the risk of morbidity and mortality compared to PER 1 patients. Furthermore, a higher PER score was associated with shorter DFS (P<0.001) and OS (P<0.001). The PER score was identified as an independent predictor of tumor recurrence (hazard ratio [HR] 2.1; P<0.001) and OS (HR 2.2; P<0.001). The PER score allows preoperative objective allocation of patients with EC into different risk categories for morbidity, mortality, and long-term outcomes. Thus, multicenter studies are needed for independent validation of the PER score. PMID:26886613

  9. Prediction of long-term cumulative incidences based on short-term parametric model for competing risks: application in early breast cancer.

    PubMed

    Cabarrou, B; Belin, L; Somda, S M; Falcou, M C; Pierga, J Y; Kirova, Y; Delord, J P; Asselain, B; Filleron, T

    2016-04-01

    Use of parametric statistical models can be a solution to reduce the follow-up period time required to estimate long-term survival. Mould and Boag were the first to use the lognormal model. Competing risks methodology seems more suitable when a particular event type is of interest than classical survival analysis. The objective was to evaluate the ability of the Jeong and Fine model to predict long-term cumulative incidence. Survival data recorded by Institut Curie (Paris) from 4761 breast cancer patients treated and followed between 1981 and 2013 were used. Long-term cumulative incidence rates predicted by the model using short-term follow-up data were compared to non-parametric estimation using complete follow-up data. 20- or 25-year cumulative incidence rates for loco-regional recurrence and distant metastasis predicted by the model using a maximum of 10years of follow-up data had a maximum difference of around 6% compared to non-parametric estimation. Prediction rates were underestimated for the third and composite event (contralateral or second cancer or death). Predictive ability of Jeong and Fine model on breast cancer data was generally good considering the short follow-up period time used for the estimation especially when a proportion of patient did not experience loco-regional recurrence or distant metastasis. PMID:27075918

  10. Scoring annual earthquake predictions in China

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Jiang, Changsheng

    2012-02-01

    The Annual Consultation Meeting on Earthquake Tendency in China is held by the China Earthquake Administration (CEA) in order to provide one-year earthquake predictions over most China. In these predictions, regions of concern are denoted together with the corresponding magnitude range of the largest earthquake expected during the next year. Evaluating the performance of these earthquake predictions is rather difficult, especially for regions that are of no concern, because they are made on arbitrary regions with flexible magnitude ranges. In the present study, the gambling score is used to evaluate the performance of these earthquake predictions. Based on a reference model, this scoring method rewards successful predictions and penalizes failures according to the risk (probability of being failure) that the predictors have taken. Using the Poisson model, which is spatially inhomogeneous and temporally stationary, with the Gutenberg-Richter law for earthquake magnitudes as the reference model, we evaluate the CEA predictions based on 1) a partial score for evaluating whether issuing the alarmed regions is based on information that differs from the reference model (knowledge of average seismicity level) and 2) a complete score that evaluates whether the overall performance of the prediction is better than the reference model. The predictions made by the Annual Consultation Meetings on Earthquake Tendency from 1990 to 2003 are found to include significant precursory information, but the overall performance is close to that of the reference model.

  11. Impact of meso-net observations on short-term prediction of intense weather systems during PRWONAM: Part IOn wind variations

    NASA Astrophysics Data System (ADS)

    Rao, Kusuma G.; Ramakrishna, G.; Narendra Reddy, N.

    2011-06-01

    Short-term prediction of wind variations as a function of height using the PSU/NCAR MM5 model with an optimum horizontal resolution of 3 km, and assimilation of meso-network measurements of PRWONAM, has been carried out for the southern peninsular region of India. The studies were made within the framework of the PRWONAM programme. The observed wind data used here are from the MST radar at Gadanki and GP Sondes at a few locations (SHAR, Bangalore, Gadanki, Chennai, Arakkonam, Cochin) in the peninsular region. During the southwest monsoon season, the wind fields showed coherent pattern in the vertical unlike during the spring season. Comparisons in wind variations between predictions and observations for Gadanki revealed an average bias of 3.84 m s-1 in the predicted mean wind above 8 km during the spring season, with 75% (63%) of instantaneous predictions falling in 5 m s-1 error bounds with (without) bias correction. The percentage within these limits below 8 km altitude is 90%.

  12. Peer Experiences in Short-Term Residential Treatment: Individual and Group-Moderated Prediction of Behavioral Responses to Peers and Adults.

    PubMed

    Cardoos, Stephanie L; Zakriski, Audrey L; Wright, Jack C; Parad, Harry W

    2015-08-01

    This research examined the independent and interactional contributions of peer experiences and group aggression to youth behavioral adjustment in short-term residential treatment. Participants were 219 youth (M age=12.70, SD=2.76; 71% male) nested in 28 same-age, same-sex treatment groups. Sociometric interviews assessed social preference and victimization. Daily behavioral observations by staff assessed overall levels of treatment group aggression, as well as aggressive, withdrawn, and prosocial responses to specific social events. End-of-summer behavioral responses (to all events; to peers; to adults) were predicted, controlling for initial levels of these responses. Social preference predicted higher end-of-summer prosocial responses, and victimization predicted lower prosocial and higher withdrawn responses. Each interacted with group aggression in some analyses, with more positive peer experiences only predicting more favorable responses in groups that were low or average in aggression. Interactant-specific analyses revealed that some of these associations were broad, whereas others applied only to adults. For example, group aggression moderated the association between social preference and aggressive responses to adults but not peers. Gender differences were also interactant-specific. Results highlight the importance of peer experiences in group treatment and underscore the value of both aggregation and disaggregation over interactants in analyses of behavioral adjustment. PMID:25539594

  13. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPo

  14. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to Climate in a Box systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the Climate in a Box system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASAs Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the Climate in a Box system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed

  15. Earthquake Prediction: Is It Better Not to Know?

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Discusses economic, social and political consequences of earthquake prediction. Reviews impact of prediction on China's recent (February, 1975) earthquake. Diagrams a chain of likely economic consequences from predicting an earthquake. (CS)

  16. Raising the science awareness of first year undergraduate students via an earthquake prediction seminar

    NASA Astrophysics Data System (ADS)

    Gilstrap, T. D.

    2011-12-01

    The public is fascinated with and fearful of natural hazards such as earthquakes. After every major earthquake there is a surge of interest in earthquake science and earthquake prediction. Yet many people do not understand the challenges of earthquake prediction and the need to fund earthquake research. An earthquake prediction seminar is offered to first year undergraduate students to improve their understanding of why earthquakes happen, how earthquake research is done and more specifically why it is so challenging to issue short-term earthquake prediction. Some of these students may become scientists but most will not. For the majority this is an opportunity to learn how science research works and how it is related to policy and society. The seminar is seven weeks long, two hours per week and has been taught every year for the last four years. The material is presented conceptually; there is very little quantitative work involved. The class starts with a field trip to the Randolph College Seismic Station where students learn about seismographs and the different types of seismic waves. Students are then provided with basic background on earthquakes. They learn how to pick arrival times using real seismograms, how to use earthquake catalogues, how to predict the arrival of an earthquake wave at any location on Earth. Next they learn about long, intermediate, short and real time earthquake prediction. Discussions are an essential part of the seminar. Students are challenged to draw their own conclusions on the pros and cons of earthquake prediction. Time is designated to discuss the political and economic impact of earthquake prediction. At the end of the seven weeks students are required to write a paper and discuss the need for earthquake prediction. The class is not focused on the science but rather the links between the science issues and their economical and political impact. Weekly homework assignments are used to aid and assess students' learning. Pre and

  17. Short-Term Surveillance of Cytokines and C-Reactive Protein Cannot Predict Efficacy of Fecal Microbiota Transplantation for Ulcerative Colitis

    PubMed Central

    Li, Pan; He, Zhi; Long, Chuyan; Wei, Lu; Peng, Zhaoyuan; Ji, Guozhong; Zhang, Faming

    2016-01-01

    Objective There were no reports on predicting long-term efficacy of fecal microbiota transplantation (FMT) for ulcerative colitis (UC). This study aimed to detect short-term changes of cytokines and C-reactive protein (CRP) in patients with UC undergoing FMT, and to evaluate the predictive value of CRP and cytokines for the long-term efficacy of FMT. Methods Nineteen patients with moderate to severe UC (Mayo score 6) were treated with single fresh FMT through mid-gut. Serum samples were collected before and three days post-FMT. Clinical responses were evaluated by a minimum follow-up of three months. Patients with clinical improvement and remission at the assessment point of three-month were included as response group, while patients without clinical improvement or remission were included as non-response group. Serum concentrations of cytokines (IL-1, IL-2, IL-4, IL-6, IL-10, IL-11, IL-17A, IFN-, TNF, TNFR-1, TNFR-2, MCP-1, G-CSF, GM-CSF) and CRP were assayed to predict the clinical response of FMT. Results In total, 10.5% (2/19) of patients achieved clinical remission and 47.4% (9/19) achieved clinical improvement (Response group, including clinical remission and clinical improvement), 42.1% (8/19) failed to benefit from FMT (Non-response group). In both Response group and Non-response group, the level of CRP at three days after FMT didnt show significant decrease compared with that before FMT (p>0.05). However, in Response group, CRP level at three months after FMT decreased significantly than that before FMT (p<0.05). Compared with healthy controls (n = 9), patients with UC showed a higher baseline level of serum IL-6, TNFR-2 and G-CSF, and a lower level of IL-2 and IL-4 (p<0.05). In both Response group and Non-response group, none of the eleven detectable cytokines showed a significant difference between the value at three days after FMT and that before FMT (p>0.05). Conclusions Patients with moderate to severe UC presented a complex disorder of

  18. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  19. Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: source parameters and limits of very short-term strain detection

    NASA Astrophysics Data System (ADS)

    Canitano, Alexandre; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2015-08-01

    Volumetric strain changes associated with the October 2013 M w 6.2 Ruisui earthquake were recorded by a network made up with four borehole Sacks-Evertson dilatometers in eastern Taiwan. These instruments are located within 25-30 km of the seismic source providing also high-resolution near-field observations. Co-seismic offsets larger than a few 102 n were seen by most of the sensors. We relocated the 30 km 30 km fault plane through a grid-search approach. The inferred fault parameters (217, 48, 49) are in reasonable agreement with those resulting from the inversions of long-period seismic waves (209, 59, 50) as well as from GPS data inversion (200, 45, 42). Moreover, analysis of the 100-Hz sampling data 10 s before seismic radiations indicate no pre-seismic strain change emergent from the instrumental noise level (from 10 -2 to 10 -1 n ). Such an observation sets limits on any precursory change in a nucleation area, taken to have dimensions of about 250-300 m, seconds before the mainshock. Thus, the upper limit of any pre-seismic moment is about 10 -5 % of the total seismic moment of the Ruisui earthquake.

  20. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  1. The parkfield, california, earthquake prediction experiment.

    PubMed

    Bakun, W H; Lindh, A G

    1985-08-16

    Five moderate (magnitude 6) earthquakes with similar features have occurred on the Parkfield section of the San Andreas fault in central California since 1857. The next moderate Parkfield earthquake is expected to occur before 1993. The Parkfield prediction experiment is designed to monitor the details of the final stages of the earthquake preparation process; observations and reports of seismicity and aseismic slip associated with the last moderate Parkfield earthquake in 1966 constitute much of the basis of the design of the experiment. PMID:17739363

  2. Pilot study on the short-term prediction of symptoms in children with hay fever monitored with e-Health technology.

    PubMed

    Costa, C; Menesatti, P; Brighetti, M A; Travaglini, A; Rimatori, V; Di Rienzo Businco, A; Pelosi, S; Bianchi, A; Matricardi, P M; Tripodi, S

    2014-11-01

    Forecasting symptoms of pollen-related allergic rhinoconjunctivitis at the level of individual patients would be useful to improve disease control and plan pharmacological intervention. Information Technology nowadays facilitates a more efficient and easier monitoring of patients with chronic diseases. We aimed this study at testing the efficiency of a model to short-term forecast symptoms of pollen-AR at the "individual" patient level. We analysed the data prospectively acquired from a group of 21 Italian children affected by pollen-related allergic rhinoconjunctivitis and recorded their symptoms and medication "Average Combined Score" (ACS) on a daily basis during April-June 2010-2011 through an informatics platform (Allergymonitor). The dataset used for prediction included 15 variables in four categories: (A) date, (B) meteo-climatic, (C) atmospheric concentration of 5 pollen taxa, and (D) intensity of the patient's IgE sensitization. A Partial Least Squares Discriminant Analysis approach was used in order to predict ACS values above a fixed threshold value (0.5). The best performing predicting model correctly classified 77.8% 10.3% and 75.5% 13.2% of the recorded days in the model and test years, respectively. In this model, 9/21 patients showed 80% correct classification of the recorded days in both years. A better performance was associated with a higher degree of patient's atopic sensitization and a time lag > 1. Symptom forecasts of seasonal allergic rhinitis are possible in highly polysensitised patients in areas with complex pollen exposure. However, only predictive models tailored to the individual patient's allergic susceptibility are accurate enough. Multicenter studies in large population samples adopting the same acquisition data system on smart phones are now needed to confirm this encouraging outcome. PMID:25398165

  3. Long and Short-term Hydro-Tectonic Events in the South-Iceland Seismic Zone, Associated with Two Large Earthquakes in June 2000

    NASA Astrophysics Data System (ADS)

    Bjornsson, G.; Flovenz, O. G.; Saemundsson, K.

    2001-12-01

    Two large earthquakes (M 6.6), which struck the S-Iceland Seismic Zone on June 17 and June 21 2000, caused considerable pressure changes in geothermal as well as groundwater reservoirs. These reservoirs range in depth from surface down to a minimum of 2 km. An effort has been made to collect and analyze the hydraulic changes caused by the quakes. Four primary sets of hydraulic events are identified from these data. Firstly, pre-quake fluctuations on a time scale of 23 hours to 6 months. Secondly, immediate pressure changes, perfectly correlated to the focal mechanism of the two quakes. Thirdly, a recovery period of several weeks to months, which in some cases may correlate with a new stress field and, consequently, a change in the shallow crust permeability. These permanent permeability changes have enhanced productivity of two geothermal reservoirs by as much as 1/3. Fourthly, we have identified after-quake local hydraulic perturbations, which may relate to a sudden change in fracture porosity or a change of reservoir status from confined to unconfined. Other events are also of interest, like an ice dammed flooding of a major river in January 2001, near the fault zone of the June 21 quake. This hydraulic load caused lively and synchronized pressure fluctuations in two wells, 15-20 km away. The data collected by the after-quake monitoring program strongly suggest that hydraulic pressure is a valuable parameter in understanding tectonic processes within the S-Iceland seismic zone.

  4. G-Protein/-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligandreceptor interactions is complicated. Here, we identified the G-protein/-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the 2-adrenergic receptor (2AR) with a diverse collection of ligands and correlation analysis of their G protein/-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the -arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  5. Predictive Factors Affecting the Short Term and Long Term Exodrift in Patients with Intermittent Exotropia after Bilateral Rectus Muscle Recession and Its Effect on Surgical Outcome

    PubMed Central

    Yam, Jason C. S.; Chong, Gabriela S. L.; Wu, Patrick K. W.; Wong, Ursula S. F.; Chan, Clement W. N.; Ko, Simon T. C.

    2014-01-01

    Purpose. To determine the predictive factors that affect short term and long term postoperative drift in intermittent exotropia after bilateral lateral rectus recession and to evaluate its effect on surgical outcome. Methods. Retrospective review of 203 patients with diagnosis of intermittent exotropia, who had surgical corrections with more than 3 years of followup. Different preoperative parameters were obtained and evaluated using Pearson's correlation analysis. Results. The proportion of exodrift increased from 62% at 6 weeks to 84% at 3 years postoperatively. The postoperative drift was 4.3 8.1PD at 6 weeks, 5.8 8.4PD at 6 months, 7.2 8.3PD at 1 year, 7.4 8.4PD at 2 years, and 7.7 8.5PD at 3 years. Preoperative deviation and initial overcorrection were significant factors affecting the postoperative drift at 3 years (r = 0.177, P = 0.011, r = 0.349, and P < 0.001, resp.). Conclusions. Postoperative exodrift along three years occurs in a majority of patients after bilateral lateral rectus recession for intermittent exotropia. The long term surgical success is significantly affected by this postoperative exodrift. A larger preoperative deviation and a larger initial overcorrection are associated with a larger early and late postoperative exodrift. PMID:25093170

  6. G-Protein/-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation.

    PubMed

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand-receptor interactions is complicated. Here, we identified the G-protein/-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the 2-adrenergic receptor (2AR) with a diverse collection of ligands and correlation analysis of their G protein/-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the -arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  7. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    NASA Technical Reports Server (NTRS)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  8. Strong ground motion prediction using virtual earthquakes.

    PubMed

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion. PMID:24458636

  9. Earthquake source inversion of tsunami runup prediction

    NASA Astrophysics Data System (ADS)

    Sekar, Anusha

    Our goal is to study two inverse problems: using seismic data to invert for earthquake parameters and using tide gauge data to invert for earthquake parameters. We focus on the feasibility of using a combination of these inverse problems to improve tsunami runup prediction. A considerable part of the thesis is devoted to studying the seismic forward operator and its modeling using immersed interface methods. We develop an immersed interface method for solving the variable coefficient advection equation in one dimension with a propagating singularity and prove a convergence result for this method. We also prove a convergence result for the one-dimensional acoustic system of partial differential equations solved using immersed interface methods with internal boundary conditions. Such systems form the building blocks of the numerical model for the earthquake. For a simple earthquake-tsunami model, we observe a variety of possibilities in the recovery of the earthquake parameters and tsunami runup prediction. In some cases the data are insufficient either to invert for the earthquake parameters or to predict the runup. When more data are added, we are able to resolve the earthquake parameters with enough accuracy to predict the runup. We expect that this variety will be true in a real world three dimensional geometry as well.

  10. Methodology to predict long-term cancer survival from short-term data using Tobacco Cancer Risk and Absolute Cancer Cure models

    NASA Astrophysics Data System (ADS)

    Mould, R. F.; Lederman, M.; Tai, P.; Wong, J. K. M.

    2002-11-01

    Three parametric statistical models have been fully validated for cancer of the larynx for the prediction of long-term 15, 20 and 25 year cancer-specific survival fractions when short-term follow-up data was available for just 1-2 years after the end of treatment of the last patient. In all groups of cases the treatment period was only 5 years. Three disease stage groups were studied, T1N0, T2N0 and T3N0. The models are the Standard Lognormal (SLN) first proposed by Boag (1949 J. R. Stat. Soc. Series B 11 15-53) but only ever fully validated for cancer of the cervix, Mould and Boag (1975 Br. J. Cancer 32 529-50), and two new models which have been termed Tobacco Cancer Risk (TCR) and Absolute Cancer Cure (ACC). In each, the frequency distribution of survival times of defined groups of cancer deaths is lognormally distributed: larynx only (SLN), larynx and lung (TCR) and all cancers (ACC). All models each have three unknown parameters but it was possible to estimate a value for the lognormal parameter S a priori. By reduction to two unknown parameters the model stability has been improved. The material used to validate the methodology consisted of case histories of 965 patients, all treated during the period 1944-1968 by Dr Manuel Lederman of the Royal Marsden Hospital, London, with follow-up to 1988. This provided a follow-up range of 20- 44 years and enabled predicted long-term survival fractions to be compared with the actual survival fractions, calculated by the Kaplan and Meier (1958 J. Am. Stat. Assoc. 53 457-82) method. The TCR and ACC models are better than the SLN model and for a maximum short-term follow-up of 6 years, the 20 and 25 year survival fractions could be predicted. Therefore the numbers of follow-up years saved are respectively 14 years and 19 years. Clinical trial results using the TCR and ACC models can thus be analysed much earlier than currently possible. Absolute cure from cancer was also studied, using not only the prediction models which

  11. Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain

    NASA Astrophysics Data System (ADS)

    Rincn, A.; Jorba, O.; Baldasano, J. M.

    2010-09-01

    The increased contribution of solar energy in power generation sources requires an accurate estimation of surface solar irradiance conditioned by geographical, temporal and meteorological conditions. The knowledge of the variability of these factors is essential to estimate the expected energy production and therefore help stabilizing the electricity grid and increase the reliability of available solar energy. The use of numerical meteorological models in combination with statistical post-processing tools may have the potential to satisfy the requirements for short-term forecasting of solar irradiance for up to several days ahead and its application in solar devices. In this contribution, we present an assessment of a short-term irradiance prediction system based on the WRF-ARW mesoscale meteorological model (Skamarock et al., 2005) and several post-processing tools in order to improve the overall skills of the system in an annual simulation of the year 2004 in Spain. The WRF-ARW model is applied with 4 km x 4 km horizontal resolution and 38 vertical layers over the Iberian Peninsula. The hourly model irradiance is evaluated against more than 90 surface stations. The stations are used to assess the temporal and spatial fluctuations and trends of the system evaluating three different post-processes: Model Output Statistics technique (MOS; Glahn and Lowry, 1972), Recursive statistical method (REC; Boi, 2004) and Kalman Filter Predictor (KFP, Bozic, 1994; Roeger et al., 2003). A first evaluation of the system without post-processing tools shows an overestimation of the surface irradiance, due to the lack of atmospheric absorbers attenuation different than clouds not included in the meteorological model. This produces an annual BIAS of 16 W m-2 h-1, annual RMSE of 106 W m-2 h-1 and annual NMAE of 42%. The largest errors are observed in spring and summer, reaching RMSE of 350 W m-2 h-1. Results using Kalman Filter Predictor show a reduction of 8% of RMSE, 83% of BIAS

  12. Possibility of Earthquake-prediction by analyzing VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Prediction of seismic events is one of the most challenging jobs for the scientific community. Conventional ways for prediction of earthquakes are to monitor crustal structure movements, though this method has not yet yield satisfactory results. Furthermore, this method fails to give any short-term prediction. Recently, it is noticed that prior to any seismic event a huge amount of energy is released which may create disturbances in the lower part of D-layer/E-layer of the ionosphere. This ionospheric disturbance may be used as a precursor of earthquakes. Since VLF radio waves propagate inside the wave-guide formed by lower ionosphere and Earth's surface, this signal may be used to identify ionospheric disturbances due to seismic activity. We have analyzed VLF signals to find out the correlations, if any, between the VLF signal anomalies and seismic activities. We have done both the case by case study and also the statistical analysis using a whole year data. In both the methods we found that the night time amplitude of VLF signals fluctuated anomalously three days before the seismic events. Also we found that the terminator time of the VLF signals shifted anomalously towards night time before few days of any major seismic events. We calculate the D-layer preparation time and D-layer disappearance time from the VLF signals. We have observed that this D-layer preparation time and D-layer disappearance time become anomalously high 1-2 days before seismic events. Also we found some strong evidences which indicate that it may possible to predict the location of epicenters of earthquakes in future by analyzing VLF signals for multiple propagation paths.

  13. Short-term prediction of the foF2 critical frequency in the high latitude ionosphere for DIAS extending services

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna

    2013-04-01

    Ionospheric forecasting products and services for Europe are provided routinely by the European Digital upper Atmosphere Server, DIAS (http://dias.space.noa.gr). These include alerts and warnings for upcoming ionospheric storm time disturbances as well as single station and regional ionospheric forecasts up to 24 hours ahead for the middle latitude European region. However, in order to meet the users' requirements, it is planned within the Space Situational Awareness Programme of the European Space Agency the extension of the DIAS forecasting services to cover the whole European region, including Scandinavia. To this effect, the Solar Wind driven autoregression model for Ionospheric short-term Forecast (SWIF) will be applied. In the operational mode, SWIF combines historical and real-time ionospheric observations with solar wind parameters obtained in real time at L1 point from ACE spacecraft through the cooperation of an autoregression forecasting algorithm, namely TSAR with an empirical ionospheric storm time model, namely STIM that is triggered by solar wind disturbances detected by STIM's alert detection algorithm. The ionospheric storm time response is then empirically formulated taken into account the latitude and the local time of the observation point at the storm onset. SWIF's prediction efficiency was recently fully documented for the middle latitude ionosphere. As a first step towards the operational implementation of the SWIF for high latitude ionospheric forecasts, the work presented here includes the evaluation of the SWIF's performance over high latitude locations and under disturbed geophysical conditions based on historical data. For this purpose, all available high latitude foF2 observations obtained during a significant number of selected storm events occurred in the previous as well as the current solar cycle are analyzed in respect with the foF2 reference level and the model's predictions. The results verify the validity of STIM's storm alert

  14. Short-term energy outlook: Methodology

    NASA Astrophysics Data System (ADS)

    Cornett, C.; Paxson, D.; Reznek, A. P.; Chu, C.; Sitzer, S.; Gamson, N.; Childress, J. P.; Paul, S.; Weigel, H.; Sutton, S.

    1981-05-01

    Detailed discussions of forecasting methodology and analytical topics concerning short-term energy markets are presented. Major assumptions necessary to make the energy forecasts are also discussed. Supplementary analyses of topics related to short-term energy forecasting are also given. The discussions relate to the forecasts prepared using the short term integrated forecasting system. This set of computer models uses data from various sources to develop energy supply and demand balances. Econmetric models used to predict the demand for petroleum products, natural gas, coal, and electricity are discussed. Price prediction models are also discussed. The role of oil inventories in world oil markets is reviewed. Various relationship between weather patterns and energy consumption are discussed.

  15. A Short-term In vivo Screen using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation.

    EPA Science Inventory

    This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be ...

  16. An Exemplar-Familiarity Model Predicts Short-Term and Long-Term Probe Recognition across Diverse Forms of Memory Search

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.

    2014-01-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across

  17. The Relative Predictive Contribution and Causal Role of Phoneme Awareness, Rhyme Awareness, and Verbal Short-Term Memory in Reading Skills: A Review

    ERIC Educational Resources Information Center

    Melby-Lervag, Monica

    2012-01-01

    The acknowledgement that educational achievement is highly dependent on successful reading development has led to extensive research on its underlying factors. A strong argument has been made for a causal relationship between reading and phoneme awareness; similarly, causal relations have been suggested for reading with short-term memory and rhyme

  18. The Relative Predictive Contribution and Causal Role of Phoneme Awareness, Rhyme Awareness and Verbal Short-Term Memory in Reading Skills: A Review

    ERIC Educational Resources Information Center

    Melby-Lervag, Monica

    2012-01-01

    The acknowledgement that educational achievement is highly dependent on successful reading development, has led to extensive research on its underlying factors. Evidence clearly suggests that the relation between reading skills, phoneme awareness, rhyme awareness, and verbal short-term memory is more than a mere association. A strong argument has

  19. Practical approaches to earthquake prediction and warning

    NASA Astrophysics Data System (ADS)

    Kisslinger, Carl

    1984-04-01

    The title chosen for this renewal of the U.S.-Japan prediction seminar series reflects optimism, perhaps more widespread in Japan than in the United States, that research on earthquake prediction has progressed to a stage at which it is appropriate to begin testing operational forecast systems. This is not to suggest that American researchers do not recognize very substantial gains in understanding earthquake processes and earthquake recurrence, but rather that we are at the point of initiating pilot prediction experiments rather than asserting that we are prepared to start making earthquake predictions in a routine mode.For the sixth time since 1964, with support from the National Science Foundation and the Japan Society for the Promotion of Science, as well as substantial support from the U.S. Geological Survey (U.S.G.S.) for participation of a good representation of its own scientists, earthquake specialists from the two countries came together on November 7-11, 1983, to review progress of the recent past and share ideas about promising directions for future efforts. If one counts the 1980 Ewing symposium on prediction, sponsored by Lamont-Doherty Geological Observatory, which, though multinational, served the same purpose, one finds a continuity in these interchanges that has made them especially productive and stimulating for both scientific communities. The conveners this time were Chris Scholz, Lamont-Doherty, for the United States and Tsuneji Rikitake, Nihon University, for Japan.

  20. Microearthquake networks and earthquake prediction

    USGS Publications Warehouse

    Lee, W.H.K.; Steward, S. W.

    1979-01-01

    A microearthquake network is a group of highly sensitive seismographic stations designed primarily to record local earthquakes of magnitudes less than 3. Depending on the application, a microearthquake network will consist of several stations or as many as a few hundred . They are usually classified as either permanent or temporary. In a permanent network, the seismic signal from each is telemetered to a central recording site to cut down on the operating costs and to allow more efficient and up-to-date processing of the data. However, telemetering can restrict the location sites because of the line-of-site requirement for radio transmission or the need for telephone lines. Temporary networks are designed to be extremely portable and completely self-contained so that they can be very quickly deployed. They are most valuable for recording aftershocks of a major earthquake or for studies in remote areas.

  1. Analytical Conditions for Compact Earthquake Prediction Approaches

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2009-04-01

    This paper concerns itself with The atmosphere and ionosphere include non-uniform electric charge and current distributions during the earthquake activity. These charges and currents move irregularly when an activity is scheduled for an earthquake at the future. The electromagnetic characteristics of the region over the earth change to domains where irregular transportations of non-uniform electric charges are observed; therefore, the electromagnetism in the plasma, which moves irregularly and contains non-uniform charge distributions, is studied. These cases of charge distributions are called irregular and non-uniform plasmas. It is called the seismo-plasma if irregular and non-uniform plasma defines a real earthquake activity, which will come to truth. Some signals involving the above-mentioned coupling effects generate some analytical conditions giving the predictability of seismic processes [1]-[5]. These conditions will be discussed in this paper. 2 References [1] T. Sengor, "The electromagnetic device optimization modeling of seismo-electromagnetic processes," IUGG Perugia 2007. [2] T. Sengor, "The electromagnetic device optimization modeling of seismo-electromagnetic processes for Marmara Sea earthquakes," EGU 2008. [3] T. Sengor, "On the exact interaction mechanism of electromagnetically generated phenomena with significant earthquakes and the observations related the exact predictions before the significant earthquakes at July 1999-May 2000 period," Helsinki Univ. Tech. Electrom. Lab. Rept. 368, May 2001. [4] T. Sengor, "The Observational Findings Before The Great Earthquakes Of December 2004 And The Mechanism Extraction From Associated Electromagnetic Phenomena," Book of XXVIIIth URSI GA 2005, pp. 191, EGH.9 (01443) and Proceedings 2005 CD, New Delhi, India, Oct. 23-29, 2005. [5] T. Sengor, "The interaction mechanism among electromagnetic phenomena and geophysical-seismic-ionospheric phenomena with extraction for exact earthquake prediction genetics," 10

  2. Intermediate- and long-term earthquake prediction.

    PubMed

    Sykes, L R

    1996-04-30

    Progress in long- and intermediate-term earthquake prediction is reviewed emphasizing results from California. Earthquake prediction as a scientific discipline is still in its infancy. Probabilistic estimates that segments of several faults in California will be the sites of large shocks in the next 30 years are now generally accepted and widely used. Several examples are presented of changes in rates of moderate-size earthquakes and seismic moment release on time scales of a few to 30 years that occurred prior to large shocks. A distinction is made between large earthquakes that rupture the entire downdip width of the outer brittle part of the earth's crust and small shocks that do not. Large events occur quasi-periodically in time along a fault segment and happen much more often than predicted from the rates of small shocks along that segment. I am moderately optimistic about improving predictions of large events for time scales of a few to 30 years although little work of that type is currently underway in the United States. Precursory effects, like the changes in stress they reflect, should be examined from a tensorial rather than a scalar perspective. A broad pattern of increased numbers of moderate-size shocks in southern California since 1986 resembles the pattern in the 25 years before the great 1906 earthquake. Since it may be a long-term precursor to a great event on the southern San Andreas fault, that area deserves detailed intensified study. PMID:11607658

  3. Intermediate- and long-term earthquake prediction.

    PubMed Central

    Sykes, L R

    1996-01-01

    Progress in long- and intermediate-term earthquake prediction is reviewed emphasizing results from California. Earthquake prediction as a scientific discipline is still in its infancy. Probabilistic estimates that segments of several faults in California will be the sites of large shocks in the next 30 years are now generally accepted and widely used. Several examples are presented of changes in rates of moderate-size earthquakes and seismic moment release on time scales of a few to 30 years that occurred prior to large shocks. A distinction is made between large earthquakes that rupture the entire downdip width of the outer brittle part of the earth's crust and small shocks that do not. Large events occur quasi-periodically in time along a fault segment and happen much more often than predicted from the rates of small shocks along that segment. I am moderately optimistic about improving predictions of large events for time scales of a few to 30 years although little work of that type is currently underway in the United States. Precursory effects, like the changes in stress they reflect, should be examined from a tensorial rather than a scalar perspective. A broad pattern of increased numbers of moderate-size shocks in southern California since 1986 resembles the pattern in the 25 years before the great 1906 earthquake. Since it may be a long-term precursor to a great event on the southern San Andreas fault, that area deserves detailed intensified study. Images Fig. 1 PMID:11607658

  4. The First Results of Testing Methods and Algorithms for Automatic Real Time Identification of Waveforms Introduction from Local Earthquakes in Increased Level of Man-induced Noises for the Purposes of Ultra-short-term Warning about an Occurred Earthquake

    NASA Astrophysics Data System (ADS)

    Gravirov, V. V.; Kislov, K. V.

    2009-12-01

    The chief hazard posed by earthquakes consists in their suddenness. The number of earthquakes annually recorded is in excess of 100,000; of these, over 1000 are strong ones. Great human losses usually occur because no devices exist for advance warning of earthquakes. It is therefore high time that mobile information automatic systems should be developed for analysis of seismic information at high levels of manmade noise. The systems should be operated in real time with the minimum possible computational delays and be able to make fast decisions. The chief statement of the project is that sufficiently complete information about an earthquake can be obtained in real time by examining its first onset as recorded by a single seismic sensor or a local seismic array. The essential difference from the existing systems consists in the following: analysis of local seismic data at high levels of manmade noise (that is, when the noise level may be above the seismic signal level), as well as self-contained operation. The algorithms developed during the execution of the project will be capable to be used with success for individual personal protection kits and for warning the population in earthquake-prone areas over the world. The system being developed for this project uses P and S waves as well. The difference in the velocities of these seismic waves permits a technique to be developed for identifying a damaging earthquake. Real time analysis of first onsets yields the time that remains before surface waves arrive and the damage potential of these waves. Estimates show that, when the difference between the earthquake epicenter and the monitored site is of order 200 km, the time difference between the arrivals of P waves and surface waves will be about 30 seconds, which is quite sufficient to evacuate people from potentially hazardous space, insertion of moderators at nuclear power stations, pipeline interlocking, transportation stoppage, warnings issued to rescue services

  5. Increased 1,5-Anhydroglucitol Predicts Glycemic Remission in Patients with Newly Diagnosed Type 2 Diabetes Treated with Short-Term Intensive Insulin Therapy

    PubMed Central

    Liu, Liehua; Wan, Xuesi; Liu, Juan; Huang, Zhimin; Cao, Xiaopei

    2012-01-01

    Abstract Background Short-term intensive insulin therapy has been shown to induce long-term glycemic remission in patients with newly diagnosed type 2 diabetes. However, predictors of remission are still uncertain. This study was conducted to evaluate whether changes of 1,5-anhydroglucitol (1,5AG) and fructosamine (FA) could be a predictor of remission. Subjects and Methods Newly diagnosed drug-naive patients with type 2 diabetes (n=64) were enrolled. After baseline assessments, continuous subcutaneous insulin infusion (CSII) was administered in all patients until euglycemia was achieved and maintained for another 2 weeks. Patients were subsequently followed monthly for 3 months. 1,5AG and FA were measured before and after therapy and at 1-month follow-up. Results After CSII, A1C and FA decreased from baseline, whereas 1,5AG increased. 1,5AG was higher at 1-month follow-up (11.54.1 vs. 6.72.8mg/L, P<0.001), whereas FA was lower (273.156.1 vs. 316.239.3mol/L, P=0.021) in the remission group. Stepwise logistic regression analysis showed that 1,5AG at 1-month follow-up rather than FA was an independent predictor of remission after adjusting for other confounders (odds ratio 1.56, 95% confidence interval [CI] 1.152.12, P=0.004). The area under the curve of the receiver operating characteristic curve analysis was 0.85 (95% CI 0.750.96, P<0.001). The optimal cutoff point for 1,5AG at 1-month follow-up was 8.9mg/L (specificity, 83.3%; sensitivity, 78.6%). Conclusions Improvement of 1,5AG predicts maintenance of glycemic remission after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. PMID:22731793

  6. [Short-term occupational disability].

    PubMed

    Bebensee, H; Conrad, P; Hein, R

    1994-01-01

    The present political discussion about absenteeism in industry and introduction of days of absence in case of sickness emphasises the amount of short-term sickness cases. More or less openly the misuse of continued salary payment via "unauthorized" working inability is discussed: this is often connected with the increased absenteeism on Mondays and Fridays. From the point of view of the Legal Health Insurances this thesis of misuse is investigated in an analysis of cases of short-term work disability. PMID:8148587

  7. A radon detector for earthquake prediction

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2010-04-01

    Recent events in Haiti and Chile remind us of the devastation that can be wrought by an earthquake, especially when it strikes without warning. For centuries, people living in seismically active regions have reported a number of strange occurrences immediately prior to a quake, including unexpected weather phenomena and even unusual behaviour among animals. In more recent times, some scientists have suggested other precursors, such as sporadic bursts of electromagnetic radiation from the fault zone. Unfortunately, none of these suggestions has led to a robust, scientific method for earthquake prediction. Now, however, a group of physicists, led by physics Nobel laureate Georges Charpak, has developed a new detector that could measure one of the more testable earthquake precursors - the suggestion that radon gas is released from fault zones prior to earth slipping, writes James Dacey.

  8. Earthquake prediction: Simple methods for complex phenomena

    NASA Astrophysics Data System (ADS)

    Luen, Bradley

    2010-09-01

    Earthquake predictions are often either based on stochastic models, or tested using stochastic models. Tests of predictions often tacitly assume predictions do not depend on past seismicity, which is false. We construct a naive predictor that, following each large earthquake, predicts another large earthquake will occur nearby soon. Because this "automatic alarm" strategy exploits clustering, it succeeds beyond "chance" according to a test that holds the predictions _xed. Some researchers try to remove clustering from earthquake catalogs and model the remaining events. There have been claims that the declustered catalogs are Poisson on the basis of statistical tests we show to be weak. Better tests show that declustered catalogs are not Poisson. In fact, there is evidence that events in declustered catalogs do not have exchangeable times given the locations, a necessary condition for the Poisson. If seismicity followed a stochastic process, an optimal predictor would turn on an alarm when the conditional intensity is high. The Epidemic-Type Aftershock (ETAS) model is a popular point process model that includes clustering. It has many parameters, but is still a simpli_cation of seismicity. Estimating the model is di_cult, and estimated parameters often give a non-stationary model. Even if the model is ETAS, temporal predictions based on the ETAS conditional intensity are not much better than those of magnitude-dependent automatic (MDA) alarms, a much simpler strategy with only one parameter instead of _ve. For a catalog of Southern Californian seismicity, ETAS predictions again o_er only slight improvement over MDA alarms

  9. 76 FR 19123 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ....S. Geological Survey National Earthquake Prediction Evaluation Council (NEPEC) AGENCY: U.S... Earthquake Prediction Evaluation Council (NEPEC) will hold a 1-day meeting on April 16, 2011. The meeting... the Director of the U.S. Geological Survey on proposed earthquake predictions, on the completeness...

  10. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  11. On the earthquake predictability of fault interaction models

    PubMed Central

    Marzocchi, W; Melini, D

    2014-01-01

    Space-time clustering is the most striking departure of large earthquakes occurrence process from randomness. These clusters are usually described ex-post by a physics-based model in which earthquakes are triggered by Coulomb stress changes induced by other surrounding earthquakes. Notwithstanding the popularity of this kind of modeling, its ex-ante skill in terms of earthquake predictability gain is still unknown. Here we show that even in synthetic systems that are rooted on the physics of fault interaction using the Coulomb stress changes, such a kind of modeling often does not increase significantly earthquake predictability. Earthquake predictability of a fault may increase only when the Coulomb stress change induced by a nearby earthquake is much larger than the stress changes caused by earthquakes on other faults and by the intrinsic variability of the earthquake occurrence process. PMID:26074643

  12. Neural network models for earthquake magnitude prediction using multiple seismicity indicators.

    PubMed

    Panakkat, Ashif; Adeli, Hojjat

    2007-02-01

    Neural networks are investigated for predicting the magnitude of the largest seismic event in the following month based on the analysis of eight mathematically computed parameters known as seismicity indicators. The indicators are selected based on the Gutenberg-Richter and characteristic earthquake magnitude distribution and also on the conclusions drawn by recent earthquake prediction studies. Since there is no known established mathematical or even empirical relationship between these indicators and the location and magnitude of a succeeding earthquake in a particular time window, the problem is modeled using three different neural networks: a feed-forward Levenberg-Marquardt backpropagation (LMBP) neural network, a recurrent neural network, and a radial basis function (RBF) neural network. Prediction accuracies of the models are evaluated using four different statistical measures: the probability of detection, the false alarm ratio, the frequency bias, and the true skill score or R score. The models are trained and tested using data for two seismically different regions: Southern California and the San Francisco bay region. Overall the recurrent neural network model yields the best prediction accuracies compared with LMBP and RBF networks. While at the present earthquake prediction cannot be made with a high degree of certainty this research provides a scientific approach for evaluating the short-term seismic hazard potential of a region. PMID:17393560

  13. 77 FR 53225 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Geological Survey National Earthquake Prediction Evaluation Council (NEPEC) AGENCY: Department of the... National Earthquake Prediction Evaluation Council (NEPEC) will hold a 1\\1/2\\ day meeting on September 17 and 18, 2012, at the U.S. Geological Survey National Earthquake Information Center (NEIC),...

  14. 78 FR 64973 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Geological Survey National Earthquake Prediction Evaluation Council (NEPEC) AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: Pursuant to Public Law 96-472, the National Earthquake... proposed earthquake predictions, on the completeness and scientific validity of the available data...

  15. The late Professor Takahiro Hagiwara: His career with earthquake prediction

    NASA Astrophysics Data System (ADS)

    Ohtake, Masakazu

    2004-08-01

    Takahiro Hagiwara, Professor Emeritus of the University of Tokyo, was born in 1908, and passed away in 1999. His name is inseparably tied with earthquake prediction, especially as the founder of the earthquake prediction program of Japan, and as a distinguished leader of earthquake prediction research in the world. This short article describes the career of Prof. Hagiwara focusing on his contribution to earthquake prediction research. I also sketch his activities in the development of instruments, and the multi-disciplinary observation of the Matsushiro earthquake swarm to show the starting point of his scientific strategy: good observation.

  16. Earthquakes

    ERIC Educational Resources Information Center

    Roper, Paul J.; Roper, Jere Gerard

    1974-01-01

    Describes the causes and effects of earthquakes, defines the meaning of magnitude (measured on the Richter Magnitude Scale) and intensity (measured on a modified Mercalli Intensity Scale) and discusses earthquake prediction and control. (JR)

  17. From Earthquake Prediction Research to Time-Variable Seismic Hazard Assessment Applications

    NASA Astrophysics Data System (ADS)

    Bormann, Peter

    2011-01-01

    The first part of the paper defines the terms and classifications common in earthquake prediction research and applications. This is followed by short reviews of major earthquake prediction programs initiated since World War II in several countries, for example the former USSR, China, Japan, the United States, and several European countries. It outlines the underlying expectations, concepts, and hypotheses, introduces the technologies and methodologies applied and some of the results obtained, which include both partial successes and failures. Emphasis is laid on discussing the scientific reasons why earthquake prediction research is so difficult and demanding and why the prospects are still so vague, at least as far as short-term and imminent predictions are concerned. However, classical probabilistic seismic hazard assessments, widely applied during the last few decades, have also clearly revealed their limitations. In their simple form, they are time-independent earthquake rupture forecasts based on the assumption of stable long-term recurrence of earthquakes in the seismotectonic areas under consideration. Therefore, during the last decade, earthquake prediction research and pilot applications have focused mainly on the development and rigorous testing of long and medium-term rupture forecast models in which event probabilities are conditioned by the occurrence of previous earthquakes, and on their integration into neo-deterministic approaches for improved time-variable seismic hazard assessment. The latter uses stress-renewal models that are calibrated for variations in the earthquake cycle as assessed on the basis of historical, paleoseismic, and other data, often complemented by multi-scale seismicity models, the use of pattern-recognition algorithms, and site-dependent strong-motion scenario modeling. International partnerships and a global infrastructure for comparative testing have recently been developed, for example the Collaboratory for the Study of

  18. A short-term in vivo screen using fetal testosterone production, a key event in the phthalate adverse outcome pathway, to predict disruption of sexual differentiation.

    PubMed

    Furr, Johnathan R; Lambright, Christy S; Wilson, Vickie S; Foster, Paul M; Gray, Leon E

    2014-08-01

    This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be used to screen chemicals that produce adverse developmental outcomes via disruption of the androgen synthesis pathway more rapidly and efficiently, and with fewer animals than a postnatal one-generation study. Pregnant rats were dosed from gestational day (GD) 14 to 18 at one dose level with one of 27 chemicals including PEs, PE alternatives, pesticides known to inhibit steroidogenesis, an estrogen and a potent PPAR agonist and ex vivo testis testosterone production (T Prod) was measured on GD 18. We also included some chemicals with "unknown" activity including DMEP, DHeP, DHEH, DPHCH, DAP, TOTM, tetrabromo-diethyl hexyl phthalate (BrDEHP), and a relatively potent environmental estrogen BPAF. Dose-response studies also were conducted with this protocol with 11 of the above chemicals to determine their relative potencies. CD-1 mice also were exposed to varying dose levels of DPeP from GD 13 to 17 to determine if DPeP reduced T Prod in this species since there is a discrepancy among the results of in utero studies of PEs in mice. Compared to the known male reproductive effects of the PEs in rats the FPS correctly identified all known "positives" and "negatives" tested. Seven of eight "unknowns" tested were "negatives", they did not reduce T Prod, whereas DAP produced an "equivocal" response. Finally, a dose-response study with DPeP in CD-1 mice revealed that fetal T Prod can be inhibited by exposure to a PE in utero in this species, but at a higher dose level than required in rats.Key words. Phthalate Syndrome, Fetal endocrine biomarkers, Phthalate adverse outcome pathway, testosterone production, fetal rat testis. PMID:24798384

  19. Prediction of Earthquakes by Lunar Cicles

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.

    2007-05-01

    Prediction of Earthquakes by Lunar Cicles Author ; Guillermo Rodriguez Rodriguez Afiliation Geophysic and Astrophysicist. Retired I have exposed this idea to many meetings of EGS, UGS, IUGG 95, from 80, 82.83,and AGU 2002 Washington and 2003 Niza I have thre aproximition in Time 1 Earthquakes hapen The same day of the years every 18 or 19 years (cicle Saros ) Some times in the same place or anhother very far . In anhother moments of the year , teh cicle can be are ; 14 years, 26 years, 32 years or the multiples o 18.61 years expecial 55, 93, 224, 150 ,300 etcetc. For To know the day in the year 2 Over de cicle o one Lunation ( Days over de date of new moon) The greats Earthquakes hapens with diferents intervals of days in the sucesives lunations (aproximately one month) like we can be see in the grafic enclosed. For to know the day of month 3 Over each day I have find that each 28 day repit aproximately the same hour and minute. The same longitude and the same latitud in all earthquakes , also the littles ones . This is very important because we can to proposse only the precaution of wait it in the street or squares Whenever some times the cicles can be longuers or more littles This is my special way of cientific metode As consecuence of the 1 and 2 principe we can look The correlation between years separated by cicles of the 1 tipe For example 1984 and 2002 0r 2003 and consecutive years include 2007...During 30 years I have look de dates. I am in my subconcense the way but I can not make it in scientific formalisme

  20. A Short-term In Vivo Screen Using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation

    PubMed Central

    Wilson, Vickie S.; Foster, Paul M.; Gray, Leon E.

    2014-01-01

    This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be used to screen chemicals that produce adverse developmental outcomes via disruption of the androgen synthesis pathway more rapidly and efficiently, and with fewer animals than a postnatal one-generation study. Pregnant rats were dosed from gestational day (GD) 14 to 18 at one dose level with one of 27 chemicals including PEs, PE alternatives, pesticides known to inhibit steroidogenesis, an estrogen and a potent PPAR agonist and ex vivo testis testosterone production (T Prod) was measured on GD 18. We also included some chemicals with unknown activity including DMEP, DHeP, DHEH, DPHCH, DAP, TOTM, tetrabromo-diethyl hexyl phthalate (BrDEHP), and a relatively potent environmental estrogen BPAF. Dose-response studies also were conducted with this protocol with 11 of the above chemicals to determine their relative potencies. CD-1 mice also were exposed to varying dose levels of DPeP from GD 13 to 17 to determine if DPeP reduced T Prod in this species since there is a discrepancy among the results of in utero studies of PEs in mice. Compared to the known male reproductive effects of the PEs in rats the FPS correctly identified all known positives and negatives tested. Seven of eight unknowns tested were negatives, they did not reduce T Prod, whereas DAP produced an equivocal response. Finally, a dose-response study with DPeP in CD-1 mice revealed that fetal T Prod can be inhibited by exposure to a PE in utero in this species, but at a higher dose level than required in rats.Key words. Phthalate Syndrome, Fetal endocrine biomarkers, Phthalate adverse outcome pathway, testosterone production, fetal rat testis. PMID:24798384

  1. An evaluation of the seismic- window theory for earthquake prediction.

    USGS Publications Warehouse

    McNutt, M.; Heaton, T.H.

    1981-01-01

    Reports studies designed to determine whether earthquakes in the San Francisco Bay area respond to a fortnightly fluctuation in tidal amplitude. It does not appear that the tide is capable of triggering earthquakes, and in particular the seismic window theory fails as a relevant method of earthquake prediction. -J.Clayton

  2. Turning the rumor of May 11, 2011 earthquake prediction In Rome, Italy, into an information day on earthquake hazard

    NASA Astrophysics Data System (ADS)

    Amato, A.; Cultrera, G.; Margheriti, L.; Nostro, C.; Selvaggi, G.; INGVterremoti Team

    2011-12-01

    headquarters until 9 p.m.: families, school classes with and without teachers, civil protection groups, journalists. This initiative, built up in a few weeks, had a very large feedback, also due to the media highlighting the presumed prediction. Although we could not rule out the possibility of a strong earthquake in central Italy (with effects in Rome) we tried to explain the meaning of short term earthquake prediction vs. probabilistic seismic hazard assessment. Despite many people remained with the fear (many decided to take a day off and leave the town or stay in public parks), we contributed to reduce this feeling and therefore the social cost of this strange Roman day. Moreover, another lesson learned is that these (fortunately sporadic) circumstances, when people's attention is high, are important opportunities for science communication. We thank all the INGV colleagues who contributed to the May 11 Open Day, in particular the Press Office, the Educational and Outreach laboratory, the Graphics Laboratory and SissaMedialab. P.S. no large earthquake happened

  3. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  4. Gambling scores for earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  5. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (<6.5R) can be predicted with very good accuracy window (+-1 day). In this contribution we present an improvement modification to the FDL method, the MFDL method, which performs better than the FDL. We use the FDL numbers to develop possible earthquakes dates but with the important difference that the starting seed date is a trigger planetary aspect prior to the earthquake. Typical planetary aspects are Moon conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with

  6. Quantifying characteristic growth dynamics in a semiarid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a simple 4 parameter coupled-reservoir model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...

  7. Onboard Short Term Plan Viewer

    NASA Technical Reports Server (NTRS)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  8. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the POUNDS Lost study)123

    PubMed Central

    Ivanescu, Andrada E; Martin, Corby K; Heymsfield, Steven B; Marshall, Kaitlyn; Bodrato, Victoria E; Williamson, Donald A; Anton, Stephen D; Sacks, Frank M; Ryan, Donna; Bray, George A

    2015-01-01

    Background: Currently, early weight-loss predictions of long-term weight-loss success rely on fixed percent-weight-loss thresholds. Objective: The objective was to develop thresholds during the first 3 mo of intervention that include the influence of age, sex, baseline weight, percent weight loss, and deviations from expected weight to predict whether a participant is likely to lose 5% or more body weight by year 1. Design: Data consisting of month 1, 2, 3, and 12 treatment weights were obtained from the 2-y Preventing Obesity Using Novel Dietary Strategies (POUNDS Lost) intervention. Logistic regression models that included covariates of age, height, sex, baseline weight, target energy intake, percent weight loss, and deviation of actual weight from expected were developed for months 1, 2, and 3 that predicted the probability of losing <5% of body weight in 1 y. Receiver operating characteristic (ROC) curves, area under the curve (AUC), and thresholds were calculated for each model. The AUC statistic quantified the ROC curves capacity to classify participants likely to lose <5% of their body weight at the end of 1 y. The models yielding the highest AUC were retained as optimal. For comparison with current practice, ROC curves relying solely on percent weight loss were also calculated. Results: Optimal models for months 1, 2, and 3 yielded ROC curves with AUCs of 0.68 (95% CI: 0.63, 0.74), 0.75 (95% CI: 0.71, 0.81), and 0.79 (95% CI: 0.74, 0.84), respectively. Percent weight loss alone was not better at identifying true positives than random chance (AUC 0.50). Conclusions: The newly derived models provide a personalized prediction of long-term success from early weight-loss variables. The predictions improve on existing fixed percent-weight-loss thresholds. Future research is needed to explore model application for informing treatment approaches during early intervention. The POUNDS Lost study was registered at clinicaltrials.gov as NCT00072995. PMID:25733628

  9. Role of assessment components and recent adverse outcomes in risk estimation and prediction: Use of the Short Term Assessment of Risk and Treatability (START) in an adult secure inpatient mental health service.

    PubMed

    O'Shea, Laura E; Dickens, Geoffrey L

    2016-06-30

    The Short Term Assessment of Risk and Treatability is a structured judgement tool used to inform risk estimation for multiple adverse outcomes. In research, risk estimates outperform the tool's strength and vulnerability scales for violence prediction. Little is known about what its'component parts contribute to the assignment of risk estimates and how those estimates fare in prediction of non-violent adverse outcomes compared with the structured components. START assessment and outcomes data from a secure mental health service (N=84) was collected. Binomial and multinomial regression analyses determined the contribution of selected elements of the START structured domain and recent adverse risk events to risk estimates and outcomes prediction for violence, self-harm/suicidality, victimisation, and self-neglect. START vulnerabilities and lifetime history of violence, predicted the violence risk estimate; self-harm and victimisation estimates were predicted only by corresponding recent adverse events. Recent adverse events uniquely predicted all corresponding outcomes, with the exception of self-neglect which was predicted by the strength scale. Only for victimisation did the risk estimate outperform prediction based on the START components and recent adverse events. In the absence of recent corresponding risk behaviour, restrictions imposed on the basis of START-informed risk estimates could be unwarranted and may be unethical. PMID:27138837

  10. Comparison of the ability of the PDD-ICG clearance test, CTP, MELD, and MELD-Na to predict short-term and medium-term mortality in patients with decompensated hepatitis B cirrhosis

    PubMed Central

    Cheng, Xiang-Pu; Zhao, Jing; Chen, Yu; Meng, Fan-Kun; Xu, Bin; Yu, Hong-Wei; Meng, Qing-Hua; Liu, Yan-Min; Zhang, Shi-Bin; Meng, Sha; Zhang, Jing-Yun; Zhang, Jin-Yan; Duan, Zhong-Ping

    2016-01-01

    Objective Various methods, including the indocyanine green (ICG) clearance test, the ChildTurcottePugh score (CTP), model for end-stage liver disease (MELD), and MELD combined with serum sodium concentration (MELD-Na), have been used widely in liver function evaluation in patients with end-stage liver disease. In this study, we compared the ability of these methods to predict mortality in patients with decompensated hepatitis B cirrhosis. Methods A total of 98 patients with decompensated hepatitis B cirrhosis were included in this study and followed up for 12 months. The ICG-derived measurements (ICG-PDR, ICG-R15, EHBF), CTP, MELD, and MELD-Na were obtained within 2 days after patients admission and patients survival at 1, 3, 6, and 12 months was recorded. Receiver operating curve was used to evaluate the ability of these methods to predict mortality in these patients with decompensated hepatitis B cirrhosis. Results At 1 month, 3 months, 6 months and 12 months, the cumulative number of deaths and liver transplant recipients was 12 (12.2%), 17 (17.3%), 21 (21.4%) and 25 (25.5%), respectively. The ICG-derived measurements, CTP, MELD, and MELD-Na of nonsurvivors were significantly different compared with that in survivors. All methods yielded viable values in predicting short-term and medium-term prognosis for patients with decompensated hepatitis B cirrhosis, with most area under the curve exceeding 0.8. Moreover, the ICG-derived measurements showed a significant correlation with that of CTP, MELD, and MELD-Na. Conclusion All four methods, ICG clearance test, CTP, MELD, and MELD-Na, provided reliable prediction of mortality in patients with decompensated hepatitis B cirrhosis for both short-term and medium-term prognosis. PMID:26649802

  11. Testing prediction methods: Earthquake clustering versus the Poisson model

    USGS Publications Warehouse

    Michael, A.J.

    1997-01-01

    Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.

  12. Comparison of very short-term load forecasting techniques

    SciTech Connect

    Liu, K.; Kwan, C.; Lewis, F.L.; Subbarayan, S.; Shoults, R.R.; Manry, M.T.; Naccarino, J.

    1996-05-01

    Three practical techniques--Fuzzy Logic (FL), Neural Networks (NN), and Auto-regressive model (AR)--for very short-term load forecasting have been proposed and discussed in this paper. Their performances are evaluated through a simulation study. The preliminary study shows that it is feasible to design a simple, satisfactory dynamic forecaster to predict the very short-term load trends on-line. FL and NN can be good candidates for this application.

  13. Short Term Exogenic Climate Change Forcing

    NASA Astrophysics Data System (ADS)

    Krahenbuhl, Daniel

    Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.

  14. The Australian Air Quality Forecasting System: Exploring First Steps Towards Determining The Limits of Predictability For Short-Term Ozone Forecasting

    NASA Astrophysics Data System (ADS)

    Cope, M. E.; Hess, G. D.; Lee, S.; Tory, K. J.; Burgers, M.; Dewundege, P.; Johnson, M.

    2005-08-01

    Physical parameterisations of turbulent transfer processes in the atmospheric boundary layer, such as the stability parameterisations developed by Joost Businger, and recent advances in computing capabilities, have been important factors leading to the emergence of operational, numerical air quality forecasting systems. The present paper investigates the performance of the Australian Air Quality Forecasting System (AAQFS) in forecasting the peak 1 h ozone for the current or next day. These 24/36 h forecasts are generated for the Sydney and Melbourne regions and issued twice daily. Quantitative evidence is presented of the potential for the AAQFS to provide accurate numerical air quality forecasts. A second goal is to provide an initial benchmark for investigating the limits of predictability for air quality in the Sydney and Melbourne regions by looking at the dependence of the forecasts on the domain spatial scale (while maintaining the same model grid resolution), the starting time and length of the forecast (0000 UTC starts are 36-h forecasts and 1200 UTC starts are 24-h forecasts), and the sophistication of the photochemical mechanism (simple chemistry, Generic Reaction Set (GRS) and complex chemistry, Carbon Bond IV (CBIV)). The probability of detection by the forecast model is much better than persistence, showing considerable skill. The normalised bias, in general, decreases going from regional scale to sub-regional scale and becomes negative at the station scale. In Melbourne the gross error increases as the domain spatial scale decreases, but in Sydney there is a dip in the error at the sub-regional scale due to a sampling artifact. Better results are obtained at the smaller domain scales for 1200 UTC forecasts in Sydney. These are attributed to the shorter forecast period and secondarily to greater model spin-up effects at 0000 UTC. In Melbourne the results are ambiguous. Similar conclusions are derived from scatter plots of forecasts versus observations

  15. Plasma d-Dimer as a Useful Marker Predicts Severity of Atherosclerotic Lesion and Short-Term Outcome in Patients With Coronary Artery Disease.

    PubMed

    Gong, Ping; Yang, Sheng-Hua; Li, Sha; Luo, Song-Hui; Zeng, Rui-Xiang; Zhang, Yan; Guo, Yuan-Lin; Zhu, Cheng-Gang; Xu, Rui-Xia; Li, Jian-Jun

    2016-10-01

    Increased d-dimer is indicative of a hypercoagulable state and found to be associated with acute coronary syndromes. The present study aimed to evaluate whether plasma d-dimer levels could predict subsequent major clinical events in patients with coronary artery disease (CAD). First, 2209 angiographic-proven patients with CAD were consecutively enrolled. Then, all patients were subjected to follow up for an average of 18 months (ranged from 14 to 1037 days). The relationships of the plasma d-dimer with the severity of CAD and future clinical outcomes were evaluated. We found that plasma d-dimer was higher in patients with prior myocardial infarction (MI) than that in patients with nonprior MI (P = .006). Multivariate linear regression analysis suggested that the plasma d-dimer was linked to the severity of CAD assessed by Gensini score ( = 0.052, 95% confidence interval [CI]: 1.20-6.84, P = .005) even after adjusting for confounding factors. During the follow-up, 42 patients underwent prespecified outcomes. After adjustment for multiple variables in the Cox regression model, the d-dimer levels remained to be a potential predictor of total outcome (hazard ratio = 1.22, 95% CI: 1.09-1.37, P = .001). Therefore, plasma d-dimer levels appeared to be a useful predictor for the severity of CAD and the subsequent major clinical events. PMID:26936933

  16. A New Bayesian Network-Based Risk Stratification Model for Prediction of Short-term and Long-term LVAD Mortality

    PubMed Central

    Loghmanpour, Natasha A.; Kanwar, Manreet K.; Druzdzel, Marek J.; Benza, Raymond L.; Murali, Srinivas; Antaki, James F.

    2015-01-01

    Existing risk assessment tools for patient selection for left ventricular assist devices (LVADs) such as the Destination Therapy Risk Score (DTRS) and HeartMate II Risk Score (HMRS) have limited predictive ability. This study aims to overcome the limitations of traditional statistical methods by performing the first application of Bayesian analysis to the comprehensive INTERMACS dataset and comparing it to HMRS. We retrospectively analyzed 8,050 continuous flow (CF) LVAD patients and 226 pre-implant variables. We then derived Bayesian models for mortality at each of five time endpoints post-implant (30 day, 90 day, 6 month, 1 year, and 2 year), achieving accuracies of 95, 90, 90, 83, and 78%, Kappa values of 0.43, 0.37, 0.37, 0.45, and 0.43, and area under the ROC of 91, 82, 82, 80 and 81% respectively. This was in comparison to the HMRS with an ROC of 57 and 60% at 90-days and 1-year, respectively. Pre-implant interventions such as dialysis, ECMO, and ventilators were major contributing risk markers. Bayesian models have the ability to reliably represent the complex causal relationships of multiple variables on clinical outcomes. Their potential to develop a reliable risk stratification tool for use in clinical decision making on LVAD patients encourages further investigation. PMID:25710772

  17. Gambling score in earthquake prediction analysis

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.

    2011-03-01

    The number of successes and the space-time alarm rate are commonly used to characterize the strength of an earthquake prediction method and the significance of prediction results. It has been recently suggested to use a new characteristic to evaluate the forecaster's skill, the gambling score (GS), which incorporates the difficulty of guessing each target event by using different weights for different alarms. We expand parametrization of the GS and use the M8 prediction algorithm to illustrate difficulties of the new approach in the analysis of the prediction significance. We show that the level of significance strongly depends (1) on the choice of alarm weights, (2) on the partitioning of the entire alarm volume into component parts and (3) on the accuracy of the spatial rate measure of target events. These tools are at the disposal of the researcher and can affect the significance estimate. Formally, all reasonable GSs discussed here corroborate that the M8 method is non-trivial in the prediction of 8.0 M < 8.5 events because the point estimates of the significance are in the range 0.5-5 per cent. However, the conservative estimate 3.7 per cent based on the number of successes seems preferable owing to two circumstances: (1) it is based on relative values of the spatial rate and hence is more stable and (2) the statistic of successes enables us to construct analytically an upper estimate of the significance taking into account the uncertainty of the spatial rate measure.

  18. Economics of solar energy: Short term costing

    NASA Astrophysics Data System (ADS)

    Klee, H.

    The solar economics based on life cycle costs are refuted as both imaginary and irrelevant. It is argued that predicting rates of inflation and fuel escalation, expected life, maintenance costs, and legislation over the next ten to twenty years is pure guesswork. Furthermore, given the high mobility level of the U.S. population, the average consumer is skeptical of long run arguments which will pay returns only to the next owners. In the short term cost analysis, the house is sold prior to the end of the expected life of the system. The cash flow of the seller and buyer are considered. All the relevant factors, including the federal tax credit and the added value of the house because of the solar system are included.

  19. Predicting the short-term risk of diabetes in HIV-positive patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study

    PubMed Central

    Petoumenos, Kathy; Worm, Signe W; Fontas, Eric; Weber, Rainer; De Wit, Stephane; Bruyand, Mathias; Reiss, Peter; El-Sadr, Wafaa; Monforte, Antonella D'Arminio; Friis-Mller, Nina; Lundgren, Jens D; Law, Matthew G

    2012-01-01

    Introduction HIV-positive patients receiving combination antiretroviral therapy (cART) frequently experience metabolic complications such as dyslipidemia and insulin resistance, as well as lipodystrophy, increasing the risk of cardiovascular disease (CVD) and diabetes mellitus (DM). Rates of DM and other glucose-associated disorders among HIV-positive patients have been reported to range between 2 and 14%, and in an ageing HIV-positive population, the prevalence of DM is expected to continue to increase. This study aims to develop a model to predict the short-term (six-month) risk of DM in HIV-positive populations and to compare the existing models developed in the general population. Methods All patients recruited to the Data Collection on Adverse events of Anti-HIV Drugs (D:A:D) study with follow-up data, without prior DM, myocardial infarction or other CVD events and with a complete DM risk factor profile were included. Conventional risk factors identified in the general population as well as key HIV-related factors were assessed using Poisson-regression methods. Expected probabilities of DM events were also determined based on the Framingham Offspring Study DM equation. The D:A:D and Framingham equations were then assessed using an internal-external validation process; area under the receiver operating characteristic (AUROC) curve and predicted DM events were determined. Results Of 33,308 patients, 16,632 (50%) patients were included, with 376 cases of new onset DM during 89,469 person-years (PY). Factors predictive of DM included higher glucose, body mass index (BMI) and triglyceride levels, and older age. Among HIV-related factors, recent CD4 counts of<200 cells/L and lipodystrophy were predictive of new onset DM. The mean performance of the D:A:D and Framingham equations yielded AUROC of 0.894 (95% CI: 0.849, 0.940) and 0.877 (95% CI: 0.823, 0.932), respectively. The Framingham equation over-predicted DM events compared to D:A:D for lower glucose and lower

  20. Short-term intercultural psychotherapy: ethnographic inquiry.

    PubMed

    Seeley, Karen M

    2004-01-01

    This article examines the challenges specific to short-term intercultural treatments and recently developed approaches to intercultural treatments based on notions of cultural knowledge and cultural competence. The article introduces alternative approaches to short-term intercultural treatments based on ethnographic inquiry adapted for clinical practice. Such approaches allow clinicians conducting short-term intercultural treatments to foreground clients' indigenous conceptions of selfhood, mind, relationship, and emotional disturbance, and thus to more fully grasp their internal, interpersonal, and external worlds. This article demonstrates the uses of clinically adapted ethnographic inquiry in three short-term intercultural cases. PMID:14964524

  1. Long-term predictability of regions and dates of strong earthquakes

    NASA Astrophysics Data System (ADS)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    parameters and seismic events. Further development of the H-104 method is the plotting of H-104 trajectories in two-dimensional time coordinates. The method provides the dates of future earthquakes for several (3-4) sequential time intervals multiple of 104 days. The H-104 method could be used together with the empirical scheme for short-term earthquake prediction reducing the date uncertainty. Using the H-104 method, it is developed the following long-term forecast of seismic activity. 1. The total number of M6+ earthquakes expected in the time frames: - 10.01-07.02: 14; - 08.02-08.03: 17; - 09.03-06.04: 9. 3. The potential days of M6+ earthquakes expected in the period of 10.01.2016-06.04.2016 are the following: - in January: 17, 18, 23, 24, 26, 28, 31; - in February: 01, 02, 05, 12, 15, 18, 20, 23; - in March: 02, 04, 05, 07 (M7+ is possible), 09, 10, 17 (M7+ is possible), 19, 20 (M7+ is possible), 23 (M7+ is possible), 30; - in April: 02, 06. The work was financially supported by the Ministry of Education and Science of the Russian Federation (contract No. 14.577.21.0109, project UID RFMEFI57714X0109)

  2. Predicting the endpoints of earthquake ruptures.

    PubMed

    Wesnousky, Steven G

    2006-11-16

    The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate. PMID:17108963

  3. 76 FR 69761 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ....S. Geological Survey National Earthquake Prediction Evaluation Council (NEPEC) AGENCY: U.S. Geological Survey. ACTION: Notice of Meeting. SUMMARY: Pursuant to Public Law 96-472, the National Earthquake... Government. The Council shall advise the Director of the U.S. Geological Survey on proposed...

  4. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  5. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  6. Quantitative Earthquake Prediction on Global and Regional Scales

    SciTech Connect

    Kossobokov, Vladimir G.

    2006-03-23

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  7. Earthquake prediction: The interaction of public policy and science

    USGS Publications Warehouse

    Jones, L.M.

    1996-01-01

    Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake.

  8. Earthquake prediction: the interaction of public policy and science.

    PubMed Central

    Jones, L M

    1996-01-01

    Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake. PMID:11607656

  9. In-situ fluid-pressure measurements for earthquake prediction: An example from a deep well at Hi Vista, California

    NASA Astrophysics Data System (ADS)

    Healy, John H.; Urban, T. C.

    1984-03-01

    Short-term earthquake prediction requires sensitive instruments for measuring the small anomalous changes in stress and strain that precede earthquakes. Instruments installed at or near the surface have proven too noisy for measuring anomalies of the size expected to occur, and it is now recognized that even to have the possibility of a reliable earthquake-prediction system will require instruments installed in drill holes at depths sufficient to reduce the background noise to a level below that of the expected premonitory signals. We are conducting experiments to determine the maximum signal-to-noise improvement that can be obtained in drill holes. In a 592 m well in the Mojave Desert near Hi Vista, California, we measured water-level changes with amplitudes greater than 10 cm, induced by earth tides. By removing the effects of barometric pressure and the stress related to earth tides, we have achieved a sensitivity to volumetric strain rates of 10-9 to 10-10 per day. Further improvement may be possible, and it appears that a successful earthquake-prediction capability may be achieved with an array of instruments installed in drill holes at depths of about 1 km, assuming that the premonitory strain signals are, in fact, present.

  10. In-situ fluid-pressure measurements for earthquake prediction: An example from a deep well at Hi Vista, California

    USGS Publications Warehouse

    Healy, J.H.; Urban, T.C.

    1985-01-01

    Short-term earthquake prediction requires sensitive instruments for measuring the small anomalous changes in stress and strain that precede earthquakes. Instruments installed at or near the surface have proven too noisy for measuring anomalies of the size expected to occur, and it is now recognized that even to have the possibility of a reliable earthquake-prediction system will require instruments installed in drill holes at depths sufficient to reduce the background noise to a level below that of the expected premonitory signals. We are conducting experiments to determine the maximum signal-to-noise improvement that can be obtained in drill holes. In a 592 m well in the Mojave Desert near Hi Vista, California, we measured water-level changes with amplitudes greater than 10 cm, induced by earth tides. By removing the effects of barometric pressure and the stress related to earth tides, we have achieved a sensitivity to volumetric strain rates of 10-9 to 10-10 per day. Further improvement may be possible, and it appears that a successful earthquake-prediction capability may be achieved with an array of instruments installed in drill holes at depths of about 1 km, assuming that the premonitory strain signals are, in fact, present. ?? 1985 Birkha??user Verlag.

  11. Relation between Intelligence and Short-Term Memory

    ERIC Educational Resources Information Center

    Cohen, Ronald L.; Sandberg, Tor

    1977-01-01

    Intelligence and short-term memory correlations in children were measured using probed serial recall of supraspan digit lists. Results showed the predictive power of intelligence to range from a maximum in the case of recall for recency items to practically zero in the case of primacy items. (Author/MV)

  12. Interference-Based Forgetting in Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Lewandowsky, Stephan; Geiger, Sonja M.; Oberauer, Klaus

    2008-01-01

    This article presents four experiments that tested predictions of SOB (Serial Order in a Box), an interference-based theory of short-term memory. Central to SOB is the concept of novelty-sensitive encoding, which holds that items are encoded to the extent that they differ from already-encoded information. On the additional assumption that

  13. Reconstructing Clusters for Preconditioned Short-term Load Forecasting

    NASA Astrophysics Data System (ADS)

    Itagaki, Tadahiro; Mori, Hiroyuki

    This paper presents a new preconditioned method for short-term load forecasting that focuses on more accurate predicted value. In recent years, the deregulated and competitive power market increases the degree of uncertainty. As a result, more sophisticated short-term load forecasting techniques are required to deal with more complicated load behavior. To alleviate the complexity of load behavior, this paper presents a new preconditioned model. In this paper, clustering results are reconstructed to equalize the number of learning data after clustering with the Kohonen-based neural network. That enhances a short-term load forecasting model at each reconstructed cluster. The proposed method is successfully applied to real data of one-step ahead daily maximum load forecasting.

  14. Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions

    NASA Astrophysics Data System (ADS)

    Zechar, J. Douglas; Zhuang, Jiancang

    2010-09-01

    In 2003, the Reverse Tracing of Precursors (RTP) algorithm attracted the attention of seismologists and international news agencies when researchers claimed two successful predictions of large earthquakes. These researchers had begun applying RTP to seismicity in Japan, California, the eastern Mediterranean and Italy; they have since applied it to seismicity in the northern Pacific, Oregon and Nevada. RTP is a pattern recognition algorithm that uses earthquake catalogue data to declare alarms, and these alarms indicate that RTP expects a moderate to large earthquake in the following months. The spatial extent of alarms is highly variable and each alarm typically lasts 9 months, although the algorithm may extend alarms in time and space. We examined the record of alarms and outcomes since the prospective application of RTP began, and in this paper we report on the performance of RTP to date. To analyse these predictions, we used a recently developed approach based on a gambling score, and we used a simple reference model to estimate the prior probability of target earthquakes for each alarm. Formally, we believe that RTP investigators did not rigorously specify the first two `successful' predictions in advance of the relevant earthquakes; because this issue is contentious, we consider analyses with and without these alarms. When we included contentious alarms, RTP predictions demonstrate statistically significant skill. Under a stricter interpretation, the predictions are marginally unsuccessful.

  15. Short-Term Uplift Rates and the Mountain Building Process in Southern Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Herring, Thomas A.; Meigs, Andrew; Meigs, Andrew

    1998-01-01

    We have used GPS at 10 stations in southern Alaska with three epochs of measurements to estimate short-term uplift rates. A number of great earthquakes as well as recent large earthquakes characterize the seismicity of the region this century. To reliably estimate uplift rates from GPS data, numerical models that included both the slip distribution in recent large earthquakes and the general slab geometry were constructed.

  16. Efficiency test of earthquake prediction around Thessaloniki from electrotelluric precursors

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Varotsos, P.; Alexopoulos, K.; Nomicos, K.

    1985-11-01

    Since the completion of the network in January 1983, the electric field of the earth has been continuously monitored at four sites near Thessaloniki, the capital of northern Greece. From the present study and from previous investigations by similar measurements in Greece, it is evident that transient changes of the electrotelluric field occur prior to earthquakes. The analysis of these electric forerunners leads in many cases to a successful prediction of the epicentral area, the magnitude and the time of the impending event. Predictions prior to regional earthquakes are issued and documented with telegrams. From November 1983 until the end of May 1984 twelve earthquakes ( M L > 3.5 ) occurred in the vicinity of Thessaloniki. Ten of these were predicted and warnings given by telegram, whereas two smaller seismic events were missed. Two additional predictions were unsuccessful. Independent of their magnitudes, predicted events took place within a time window of 6 hrs to 6 days after the observations of the electrotelluric anomalies. The accuracy of the predicted epicenters in eight cases is better than 100 km, which corresponds roughly to the mean distance between the electric stations. Magnitude estimates deviate by less than 0.5 magnitude units from the seismically observed ones. Considering the two largest earthquakes, it is shown that the probability of making each of these predictions by chance is of the order of 10 -2.

  17. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  18. Implications of fault constitutive properties for earthquake prediction.

    PubMed Central

    Dieterich, J H; Kilgore, B

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks. Images Fig. 3 PMID:11607666

  19. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory

  20. Shaky grounds of earthquake hazard assessment, forecasting, and prediction

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2012-12-01

    The quality of the fit of a trivial or, conversely, delicately-designed model to the observed natural phenomena is the fundamental pillar stone of any forecasting, including seismic hazard assessment, earthquake forecasting, and prediction. Using precise mathematical and logical systems outside their range of applicability can mislead to scientifically groundless conclusions, which unwise application can be extremely dangerous in assessing expected risk and losses. Are the relationships that are commonly used to assess seismic hazard enough valid to qualify for being useful laws describing earthquake sequences? Seismic evidences accumulated to-date demonstrate clearly that most of the empirical statistical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site. Seismic events, including mega-earthquakes, are clustered displaying behaviors that are far from independent. Their distribution in space is possibly fractal, definitely, far from uniform even in a single fault zone. Evidently, such a situation complicates design of reliable methodologies for earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. The situation is not hopeless due to available geological evidences and deterministic pattern recognition approaches, specifically, when intending to predict predictable, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades.

  1. Theoretical models of synaptic short term plasticity

    PubMed Central

    Hennig, Matthias H.

    2013-01-01

    Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536

  2. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these timedependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazardgroundmotion exceedance probabilities as well as shortterm rupture probabilitiesin concert with the longterm forecasts of probabilistic seismichazard analysis (PSHA).

  3. Rock friction and its implications for earthquake prediction examined via models of Parkfield earthquakes.

    PubMed Central

    Tullis, T E

    1996-01-01

    The friction of rocks in the laboratory is a function of time, velocity of sliding, and displacement. Although the processes responsible for these dependencies are unknown, constitutive equations have been developed that do a reasonable job of describing the laboratory behavior. These constitutive laws have been used to create a model of earthquakes at Parkfield, CA, by using boundary conditions appropriate for the section of the fault that slips in magnitude 6 earthquakes every 20-30 years. The behavior of this model prior to the earthquakes is investigated to determine whether or not the model earthquakes could be predicted in the real world by using realistic instruments and instrument locations. Premonitory slip does occur in the model, but it is relatively restricted in time and space and detecting it from the surface may be difficult. The magnitude of the strain rate at the earth's surface due to this accelerating slip seems lower than the detectability limit of instruments in the presence of earth noise. Although not specifically modeled, microseismicity related to the accelerating creep and to creep events in the model should be detectable. In fact the logarithm of the moment rate on the hypocentral cell of the fault due to slip increases linearly with minus the logarithm of the time to the earthquake. This could conceivably be used to determine when the earthquake was going to occur. An unresolved question is whether this pattern of accelerating slip could be recognized from the microseismicity, given the discrete nature of seismic events. Nevertheless, the model results suggest that the most likely solution to earthquake prediction is to look for a pattern of acceleration in microseismicity and thereby identify the microearthquakes as foreshocks. Images Fig. 4 Fig. 4 Fig. 5 Fig. 7 PMID:11607668

  4. Rock friction and its implications for earthquake prediction examined via models of Parkfield earthquakes.

    PubMed

    Tullis, T E

    1996-04-30

    The friction of rocks in the laboratory is a function of time, velocity of sliding, and displacement. Although the processes responsible for these dependencies are unknown, constitutive equations have been developed that do a reasonable job of describing the laboratory behavior. These constitutive laws have been used to create a model of earthquakes at Parkfield, CA, by using boundary conditions appropriate for the section of the fault that slips in magnitude 6 earthquakes every 20-30 years. The behavior of this model prior to the earthquakes is investigated to determine whether or not the model earthquakes could be predicted in the real world by using realistic instruments and instrument locations. Premonitory slip does occur in the model, but it is relatively restricted in time and space and detecting it from the surface may be difficult. The magnitude of the strain rate at the earth's surface due to this accelerating slip seems lower than the detectability limit of instruments in the presence of earth noise. Although not specifically modeled, microseismicity related to the accelerating creep and to creep events in the model should be detectable. In fact the logarithm of the moment rate on the hypocentral cell of the fault due to slip increases linearly with minus the logarithm of the time to the earthquake. This could conceivably be used to determine when the earthquake was going to occur. An unresolved question is whether this pattern of accelerating slip could be recognized from the microseismicity, given the discrete nature of seismic events. Nevertheless, the model results suggest that the most likely solution to earthquake prediction is to look for a pattern of acceleration in microseismicity and thereby identify the microearthquakes as foreshocks. PMID:11607668

  5. Improving creativity performance by short-term meditation

    PubMed Central

    2014-01-01

    Background One form of meditation intervention, the integrative body-mind training (IBMT) has been shown to improve attention, reduce stress and change self-reports of mood. In this paper we examine whether short-term IBMT can improve performance related to creativity and determine the role that mood may play in such improvement. Methods Forty Chinese undergraduates were randomly assigned to short-term IBMT group or a relaxation training (RT) control group. Mood and creativity performance were assessed by the Positive and Negative Affect Schedule (PANAS) and Torrance Tests of Creative Thinking (TTCT) questionnaire respectively. Results As predicted, the results indicated that short-term (30min per day for 7days) IBMT improved creativity performance on the divergent thinking task, and yielded better emotional regulation than RT. In addition, cross-lagged analysis indicated that both positive and negative affect may influence creativity in IBMT group (not RT group). Conclusions Our results suggested that emotion-related creativity-promoting mechanism may be attributed to short-term meditation. PMID:24645871

  6. Improving Reproductive Performance: Long and Short Term

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements in reproductive performance for beef herds can be classified as short term (current year) or long term (lifetime production) and can be applied to and measured in individual animals or the entire herd. In other species, results show that rearing young animals under caloric restriction ...

  7. Spanish: Familiarization and Short-Term Training.

    ERIC Educational Resources Information Center

    Arbelaez, Vicente; And Others

    The State Department's Foreign Service Institute short-term, intensive course in Spanish language and culture for government employees going to work in Spanish-speaking countries contains an introductory section and 38 lessons and 10 related audio cassettes intended as the basis for a ten-week program with an instructor. The lessons cover these

  8. Metropolitan French: Familiarization & Short-Term Training.

    ERIC Educational Resources Information Center

    Iszkowski, Marie-Charlotte

    The U.S. Department of State's Foreign Service Institute French Familiarization and Short-Term (FAST) course for personnel working and living in France consists of 10 weeks of French language instruction combined with practical and cultural information. An introductory section outlines FAST course objectives and sample teaching techniques in

  9. Short-Term Play Therapy for Children.

    ERIC Educational Resources Information Center

    Kaduson, Heidi Gerard, Ed.; Schaefer, Charles E., Ed.

    Play therapy offers a powerful means of helping children resolve a wide range of psychological difficulties, and many play approaches are ideally suited to short-term work. This book brings together leading play therapists to share their expertise on facilitating children's healing in a shorter time frame. The book provides knowledge and skills

  10. Short-Term Study Abroad, 2001: IIE's Complete Guide to Summer and Short-Term Study.

    ERIC Educational Resources Information Center

    O'Sullivan, Marie, Ed.

    This guide, formerly called "Vacation Study Abroad," lists short-term educational programs of varying lengths from 1 week to several months. Offerings are for the winter and spring breaks, the summer, and other short-term intervals. Some 60% of these programs are sponsored by U.S. accredited colleges and universities. The guide also offers