Science.gov

Sample records for shortest path problems

  1. An improved Physarum polycephalum algorithm for the shortest path problem.

    PubMed

    Zhang, Xiaoge; Wang, Qing; Adamatzky, Andrew; Chan, Felix T S; Mahadevan, Sankaran; Deng, Yong

    2014-01-01

    Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960

  2. An Improved Physarum polycephalum Algorithm for the Shortest Path Problem

    PubMed Central

    Wang, Qing; Adamatzky, Andrew; Chan, Felix T. S.; Mahadevan, Sankaran

    2014-01-01

    Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960

  3. An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Gen, Mitsuo

    Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.

  4. An improved bio-inspired algorithm for the directed shortest path problem.

    PubMed

    Zhang, Xiaoge; Zhang, Yajuan; Deng, Yong

    2014-01-01

    Because most networks are intrinsically directed, the directed shortest path problem has been one of the fundamental issues in network optimization. In this paper, a novel algorithm for finding the shortest path in directed networks is proposed. It extends a bio-inspired path finding model of Physarum polycephalum, which is designed only for undirected networks, by adopting analog circuit analysis. Illustrative examples are given to show the effectiveness of the proposed algorithm in finding the directed shortest path. PMID:25405318

  5. The role of convexity for solving some shortest path problems in plane without triangulation

    NASA Astrophysics Data System (ADS)

    An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van

    2013-09-01

    Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.

  6. A Bio-Inspired Method for the Constrained Shortest Path Problem

    PubMed Central

    Wang, Hongping; Lu, Xi; Wang, Qing

    2014-01-01

    The constrained shortest path (CSP) problem has been widely used in transportation optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method. PMID:24959603

  7. The d-edge shortest-path problem for a Monge graph

    SciTech Connect

    Bein, W.W.; Larmore, L.L.; Park, J.K.

    1992-07-14

    A complete edge-weighted directed graph on vertices 1,2,...,n that assigns cost c(i,j) to the edge (i,j) is called Monge if its edge costs form a Monge array, i.e., for all i < k and j < l, c[i, j]+c[k,l]{le} < c[i,l]+c[k,j]. One reason Monge graphs are interesting is that shortest paths can be computed quite quickly in such graphs. In particular, Wilber showed that the shortest path from vertex 1 to vertex n of a Monge graph can be computed in O(n) time, and Aggarwal, Klawe, Moran, Shor, and Wilber showed that the shortest d-edge 1-to-n path (i.e., the shortest path among all 1-to-n paths with exactly d edges) can be computed in O(dn) time. This paper`s contribution is a new algorithm for the latter problem. Assuming 0 {le} c[i,j] {le} U and c[i,j + 1] + c[i + 1,j] {minus} c[i,j] {minus} c[i + 1, j + 1] {ge} L > 0 for all i and j, our algorithm runs in O(n(1 + 1g(U/L))) time. Thus, when d {much_gt} 1 + 1g(U/L), our algorithm represents a significant improvement over Aggarwal et al.`s O(dn)-time algorithm. We also present several applications of our algorithm; they include length-limited Huffman coding, finding the maximum-perimeter d-gon inscribed in a given convex n-gon, and a digital-signal-compression problem.

  8. Exploring the runtime of an evolutionary algorithm for the multi-objective shortest path problem.

    PubMed

    Horoba, Christian

    2010-01-01

    We present a natural vector-valued fitness function f for the multi-objective shortest path problem, which is a fundamental multi-objective combinatorial optimization problem known to be NP-hard. Thereafter, we conduct a rigorous runtime analysis of a simple evolutionary algorithm (EA) optimizing f. Interestingly, this simple general algorithm is a fully polynomial-time randomized approximation scheme (FPRAS) for the problem under consideration, which exemplifies how EAs are able to find good approximate solutions for hard problems. Furthermore, we present lower bounds for the worst-case optimization time. PMID:20560760

  9. Parallel shortest augmenting path algorithm for the assignment problem. Technical report

    SciTech Connect

    Balas, E.; Miller, D.; Pekny, J.; Toth, P.

    1989-04-01

    We describe a parallel version of the shortest augmenting path algorithm for the assignment problem. While generating the initial dual solution and partial assignment in parallel does not require substantive changes in the sequential algorithm, using several augmenting paths in parallel does require a new dual variable recalculation method. The parallel algorithm was tested on a 14-processor Butterfly Plus computer, on problems with up to 900 million variables. The speedup obtained increases with problem size. The algorithm was also embedded into a parallel branch and bound procedure for the traveling salesman problem on a directed graph, which was tested on the Butterfly Plus on problems involving up to 7,500 cities. To our knowledge, these are the largest assignment problems and traveling salesman problems solved so far.

  10. Physarum can compute shortest paths.

    PubMed

    Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish

    2012-09-21

    Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274

  11. A minimum resource neural network framework for solving multiconstraint shortest path problems.

    PubMed

    Zhang, Junying; Zhao, Xiaoxue; He, Xiaotao

    2014-08-01

    Characterized by using minimum hard (structural) and soft (computational) resources, a novel parameter-free minimal resource neural network (MRNN) framework is proposed for solving a wide range of single-source shortest path (SP) problems for various graph types. The problems are the k-shortest time path problems with any combination of three constraints: time, hop, and label constraints, and the graphs can be directed, undirected, or bidirected with symmetric and/or asymmetric traversal time, which can be real and time dependent. Isomorphic to the graph where the SP is to be sought, the network is activated by generating autowave at source neuron and the autowave travels automatically along the paths with the speed of a hop in an iteration. Properties of the network are studied, algorithms are presented, and computation complexity is analyzed. The framework guarantees globally optimal solutions of a series of problems during the iteration process of the network, which provides insight into why even the SP is still too long to be satisfied. The network facilitates very large scale integrated circuit implementation and adapt to very large scale problems due to its massively parallel processing and minimum resource utilization. When implemented in a sequentially processing computer, experiments on synthetic graphs, road maps of cities of the USA, and vehicle routing with time windows indicate that the MRNN is especially efficient for large scale sparse graphs and even dense graphs with some constraints, e.g., the CPU time taken and the iteration number used for the road maps of cities of the USA is even less than  ? 2% and 0.5% that of the Dijkstra's algorithm. PMID:25050952

  12. Floats, integers, and single source shortest paths

    NASA Astrophysics Data System (ADS)

    Thorup, Mikkel

    Floats are ugly, but to everyone but theoretical computer scientists, they are the real thing. A linear time algorithm is presented for the undirected single source shortest paths problem with positive floating point weights.

  13. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using ? -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  14. A fuzzy shortest path with the highest reliability

    NASA Astrophysics Data System (ADS)

    Keshavarz, Esmaile; Khorram, Esmaile

    2009-08-01

    This paper concentrates on a shortest path problem on a network where arc lengths (costs) are not deterministic numbers, but imprecise ones. Here, costs of the shortest path problem are fuzzy intervals with increasing membership functions, whereas the membership function of the total cost of the shortest path is a fuzzy interval with a decreasing linear membership function. By the max-min criterion suggested in [R.E. Bellman, L.A. Zade, Decision-making in a fuzzy environment, Management Science 17B (1970) 141-164], the fuzzy shortest path problem can be treated as a mixed integer nonlinear programming problem. We show that this problem can be simplified into a bi-level programming problem that is very solvable. Here, we propose an efficient algorithm, based on the parametric shortest path problem for solving the bi-level programming problem. An illustrative example is given to demonstrate our proposed algorithm.

  15. Shortest path and Schramm-Loewner Evolution

    PubMed Central

    Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.

    2014-01-01

    We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for ? = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019

  16. Distributional properties of stochastic shortest paths for smuggled nuclear material

    SciTech Connect

    Cuellar, Leticia; Pan, Feng; Roach, Fred; Saeger, Kevin J

    2011-01-05

    The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.

  17. Minimizing Average Shortest Path Distances via Shortcut Edge Addition

    NASA Astrophysics Data System (ADS)

    Meyerson, Adam; Tagiku, Brian

    We consider adding k shortcut edges (i.e. edges of small fixed length ? ? 0) to a graph so as to minimize the weighted average shortest path distance over all pairs of vertices. We explore several variations of the problem and give O(1)-approximations for each. We also improve the best known approximation ratio for metric k-median with penalties, as many of our approximations depend upon this bound. We give a (1+2(p+1)/?(p+1)-1,?)-approximation with runtime exponential in p. If we set ?= 1 (to be exact on the number of medians), this matches the best current k-median (without penalties) result.

  18. Corridor location: the multi-gateway shortest path model

    NASA Astrophysics Data System (ADS)

    Scaparra, Maria P.; Church, Richard L.; Medrano, F. Antonio

    2014-07-01

    The problem of corridor location can be found in a number of fields including power transmission, highways, and pipelines. It involves the placement of a corridor or rights-of-way that traverses a landscape starting at an origin and ending at a destination. Since most systems are subject to environmental review, it is important to generate competitive, but different alternatives. This paper addresses the problem of generating efficient, spatially different alternatives to the corridor location problem. We discuss the weaknesses in current models and propose a new approach which is designed to overcome many of these problems. We present an application of this model to a real landscape and compare the results to past work. Overall, the new model called the multi-gateway shortest path problem can generate a wide variety of efficient alignments, which eclipse what could be generated by past work.

  19. ON THE ACCELERATION OF SHORTEST PATH CALCULATIONS IN TRANSPORTATION NETWORKS

    SciTech Connect

    BAKER, ZACHARY K.; GOKHALE, MAYA B.

    2007-01-08

    Shortest path algorithms are a key element of many graph problems. They are used in such applications as online direction finding and navigation, as well as modeling of traffic for large scale simulations of major metropolitan areas. As the shortest path algorithms are an execution bottleneck, it is beneficial to move their execution to parallel hardware such as Field-Programmable Gate Arrays (FPGAs). Hardware implementation is accomplished through the use of a small A core replicated on the order of 20 times on an FPGA device. The objective is to maximize the use of on-board random-access memory bandwidth through the use of multi-threaded latency tolerance. Each shortest path core is responsible for one shortest path calculation, and when it is finished it outputs its result and requests the next source from a queue. One of the innovations of this approach is the use of a small bubble sort core to produce the extract-min function. While bubble sort is not usually considered an appropriate algorithm for any non-trivial usage, it is appropriate in this case as it can produce a single minimum out of the list in O(n) cycles, whwere n is the number of elements in the vertext list. The cost of this min operation does not impact the running time of the architecture, because the queue depth for fetching the next set of edges from memory is roughly equivalent to the number of cores in the system. Additionally, this work provides a collection of simulation results that model the behavior of the node queue in hardware. The results show that a hardware queue, implementing a small bubble-type minimum function, need only be on the order of 16 elements to provide both correct and optimal paths. Because the graph database size is measured in the hundreds of megabytes, the Cray SRAM memory is insufficient. In addition to the A* cores, they have developed a memory management system allowing round-robin servicing of the nodes as well as virtual memory managed over the Hypertransport bus. With support for a DRAM graph store with SRAM-based caching on the FPGA, the system provides a speedup of roughly 8.9x over the CPU-based implementation.

  20. Shortest Path Refinement for Motion Estimation from Tagged MR Images

    PubMed Central

    Liu, Xiaofeng; Prince, Jerry L.

    2013-01-01

    Magnetic resonance tagging makes it possible to measure the motion of tissues such as muscles in the heart and tongue. The harmonic phase (HARP) method largely automates the process of tracking points within tagged MR images, permitting many motion properties to be computed. However, HARP tracking can yield erroneous motion estimates due to: (1) large deformations between image frames; (2) through-plane motion; and (3) tissue boundaries. Methods that incorporate the spatial continuity of motion—so-called refinement or floodfilling methods—have previously been reported to reduce tracking errors. This paper presents a new refinement method based on shortest path computations. The method uses a graph representation of the image and seeks an optimal tracking order from a specified seed to each point in the image by solving a single source shortest path problem. This minimizes the potential errors for those path dependent solutions that are found in other refinement methods. In addition to this, tracking in the presence of through-plane motion is improved by introducing synthetic tags at the reference time (when the tissue is not deformed). Experimental results on both tongue and cardiac images show that the proposed method can track the whole tissue more robustly and is also computationally efficient. PMID:20304720

  1. Adaptive pyramidal clustering for shortest path determination

    NASA Astrophysics Data System (ADS)

    Olson, Keith; Speigle, Scott A.

    1996-05-01

    This paper will present a unique concept implemented in a software design that determines near optimal paths between hundreds of randomly connected nodes of interest in a faster time than current near optimal path determining algorithms. The adaptive pyramidal clustering (APC) approach to determining near optimal paths between numerous nodes uses an adaptive neural network along with classical heuristic search techniques. This combination is represented by a nearest neighbor clustering up function (performed by the neural network) and a trickle down pruning function (performed by the heuristic search). The function of the adaptive neural network is a significant reason why the APC algorithm is superior to several well known approaches. The APC algorithm has already been applied to autonomous route planning for unmanned ground vehicles. The intersections represent navigational waypoints that can be selected as source and destination locations. The APC algorithm then determines a near optimal path to navigate between the selected waypoints.

  2. Competition for Shortest Paths on Sparse Graphs

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho; Saad, David

    2012-05-01

    Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised.

  3. Competition for shortest paths on sparse graphs.

    PubMed

    Yeung, Chi Ho; Saad, David

    2012-05-18

    Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised. PMID:23003195

  4. Two betweenness centrality measures based on Randomized Shortest Paths

    NASA Astrophysics Data System (ADS)

    Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco

    2016-02-01

    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.

  5. Two betweenness centrality measures based on Randomized Shortest Paths.

    PubMed

    Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco

    2016-01-01

    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176

  6. Two betweenness centrality measures based on Randomized Shortest Paths

    PubMed Central

    Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco

    2016-01-01

    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176

  7. The Union of Shortest Path Trees of Functional Brain Networks.

    PubMed

    Meier, Jil; Tewarie, Prejaas; Van Mieghem, Piet

    2015-11-01

    Communication between brain regions is still insufficiently understood. Applying concepts from network science has shown to be successful in gaining insight in the functioning of the brain. Recent work has implicated that especially shortest paths in the structural brain network seem to play a major role in the communication within the brain. So far, for the functional brain network, only the average length of the shortest paths has been analyzed. In this article, we propose to construct the union of shortest path trees (USPT) as a new topology for the functional brain network. The minimum spanning tree, which has been successful in a lot of recent studies to comprise important features of the functional brain network, is always included in the USPT. After interpreting the link weights of the functional brain network as communication probabilities, the USPT of this network can be uniquely defined. Using data from magnetoencephalography, we applied the USPT as a method to find differences in the network topology of multiple sclerosis patients and healthy controls. The new concept of the USPT of the functional brain network also allows interesting interpretations and may represent the highways of the brain. PMID:26027712

  8. Shortest Path Planning for a Tethered Robot or an Anchored Cable

    SciTech Connect

    Xavier, P.G.

    1999-02-22

    We consider the problem of planning shortest paths for a tethered robot with a finite length tether in a 2D environment with polygonal obstacles. We present an algorithm that runs in time O((k{sub 1} + 1){sup 2}n{sup 4}) and finds the shortest path or correctly determines that none exists that obeys the constraints; here n is the number obstacle vertices, and k{sub 1} is the number loops in the initial configuration of the tether. The robot may cross its tether but nothing can cross obstacles, which cause the tether to bend. The algorithm applies as well for planning a shortest path for the free end of an anchored cable.

  9. A Graph Search Heuristic for Shortest Distance Paths

    SciTech Connect

    Chow, E

    2005-03-24

    This paper presents a heuristic for guiding A* search for finding the shortest distance path between two vertices in a connected, undirected, and explicitly stored graph. The heuristic requires a small amount of data to be stored at each vertex. The heuristic has application to quickly detecting relationships between two vertices in a large information or knowledge network. We compare the performance of this heuristic with breadth-first search on graphs with various topological properties. The results show that one or more orders of magnitude improvement in the number of vertices expanded is possible for large graphs, including Poisson random graphs.

  10. The Approximability of Shortest Path-Based Graph Orientations of Protein–Protein Interaction Networks

    PubMed Central

    Blokh, Dima; Sharan, Roded

    2013-01-01

    Abstract The graph orientation problem calls for orienting the edges of an undirected graph so as to maximize the number of prespecified source-target vertex pairs that admit a directed path from the source to the target. Most algorithmic approaches to this problem share a common preprocessing step, in which the input graph is reduced to a tree by repeatedly contracting its cycles. Although this reduction is valid from an algorithmic perspective, the assignment of directions to the edges of the contracted cycles becomes arbitrary and, consequently, the connecting source-target paths may be arbitrarily long. In the context of biological networks, the connection of vertex pairs via shortest paths is highly motivated, leading to the following variant: Given an undirected graph and a collection of source-target vertex pairs, assign directions to the edges so as to maximize the number of pairs that are connected by a shortest (in the original graph) directed path. Here we study this variant, provide strong inapproximability results for it, and propose approximation algorithms for the problem, as well as for relaxations where the connecting paths need only be approximately shortest. PMID:24073924

  11. Modeling shortest path selection of the ant Linepithema humile using psychophysical theory and realistic parameter values.

    PubMed

    von Thienen, Wolfhard; Metzler, Dirk; Witte, Volker

    2015-05-01

    The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches in the past decades. One model explains experimental observations in which Argentine ants (Linepithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest path experiments). This model serves as an important example for the emergence of collective behavior and self-organization in biological systems. In addition, it inspired the development of computer algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function describing how ants react to different pheromone concentrations is fundamental. However, the parameters of the choice function were not deduced experimentally but freely adapted so that the model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking about crucial model assumptions. A recent study on the Argentine ant provided this information by measuring the response of the ants to varying pheromone concentrations. In said study, the above mentioned choice function was fitted to the experimental data and its parameters were deduced. In addition, a psychometric function was fitted to the data and its parameters deduced. Based on these findings, it is possible to test the shortest path model by applying realistic parameter values. Here we present the results of such tests using Monte Carlo simulations of shortest path experiments with Argentine ants. We compare the choice function and the psychometric function, both with parameter values deduced from the above-mentioned experiments. Our results show that by applying the psychometric function, the shortest path experiments can be explained satisfactorily by the model. The study represents the first example of how psychophysical theory can be used to understand and model collective foraging behavior of ants based on trail pheromones. These findings may be important for other models of pheromone guided ant behavior and might inspire improved ACO algorithms. PMID:25769943

  12. Membrane Boundary Extraction Using a Circular Shortest Path Technique

    NASA Astrophysics Data System (ADS)

    Sun, Changming; Vallotton, Pascal; Wang, Dadong; Lopez, Jamie; Ng, Yvonne; James, David

    2007-11-01

    Membrane proteins represent over 50% of known drug targets. Accordingly, several widely used assays in the High Content Analysis area rely on quantitative measures of the translocation of proteins between intracellular organelles and the cell surface. In order to increase the sensitivity of these assays, one needs to measure the signal specifically along the membrane, requiring a precise segmentation of this compartment. Doing this manually is a very time-consuming practice, limited to an academic setting. Manual tracing of the membrane compartment also confronts us with issues of objectivity and reproducibility. In this paper, we present an approach based on a circular shortest path technique that enables us to segment the membrane compartment accurately and rapidly. This feature is illustrated using cells expressing epitope-tagged membrane proteins.

  13. Dynamic behavior of shortest path routing algorithms for communication networks

    NASA Astrophysics Data System (ADS)

    Bertsekas, D. P.

    1980-06-01

    Several proposed routing algorithms for store and forward communication networks, including one currently in operation in the ARPANET, route messages along shortest paths computed by using some set of link lengths. When these lengths depend on current traffic conditions as they must in an adaptive algorithm, dynamic behavior questions such as stability convergence, and speed of convergence are of interest. This paper is the first attempt to analyze systematically these issues. It is shown that minimum queuing delay path algorithms tend to exhibit violent oscillatory behavior in the absence of a damping mechanism. The oscillations can be damped by means of several types of schemes, two of which are analyzed in this paper. In the first scheme a constant bias is added to the queuing delay thereby providing a preference towards paths with a small number of links. In the second scheme the effects of several past routings are averaged as, for example, when the link lengths are computed and communicated asynchronously throughout the network.

  14. Training shortest-path tractography: Automatic learning of spatial priors.

    PubMed

    Kasenburg, Niklas; Liptrot, Matthew; Reislev, Nina Linde; Ørting, Silas N; Nielsen, Mads; Garde, Ellen; Feragen, Aasa

    2016-04-15

    Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted images. However, the output of tractography often requires post-processing to remove false positives and ensure a robust delineation of the studied tract, and this demands expert prior knowledge. Here we demonstrate how such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a shortest-path tractography approach to produce more robust results. We describe how such a prior can be automatically generated (learned) from a population, and we demonstrate that our framework also retains support for conventional interactive constraints such as waypoint regions. We apply our approach to the open access, high quality Human Connectome Project data, as well as a dataset acquired on a typical clinical scanner. Our results show that the use of a learned prior substantially increases the overlap of tractography output with a reference atlas on both populations, and this is confirmed by visual inspection. Furthermore, we demonstrate how a prior learned on the high quality dataset significantly increases the overlap with the reference for the more typical yet lower quality data acquired on a clinical scanner. We hope that such automatic incorporation of prior knowledge and the obviation of expert interactive tract delineation on every subject, will improve the feasibility of large clinical tractography studies. PMID:26804779

  15. Color texture classification using shortest paths in graphs.

    PubMed

    de Mesquita Sa Junior, Jarbas Joaci; Cortez, Paulo Cesar; Backes, Andre Ricardo

    2014-09-01

    Color textures are among the most important visual attributes in image analysis. This paper presents a novel method to analyze color textures by modeling a color image as a graph in two different and complementary manners (each color channel separately and the three color channels altogether) and by obtaining statistical moments from the shortest paths between specific vertices of this graph. Such an approach allows to create a set of feature vectors, which were extracted from VisTex, USPTex, and TC00013 color texture databases. The best classification results were 99.07%, 96.85%, and 91.54% (LDA with leave-one-out), 87.62%, 66.71%, and 88.06% (1NN with holdout), and 98.62%, 96.16%, and 91.34% (LDA with holdout) of success rate (percentage of samples correctly classified) for these three databases, respectively. These results prove that the proposed approach is a powerful tool for color texture analysis to be explored. PMID:24988594

  16. Shortest paths and load scaling in scale-free trees

    NASA Astrophysics Data System (ADS)

    Bollobás, Béla; Riordan, Oliver

    2004-03-01

    Szabó, Alava, and Kertész [Phys. Rev. E 66, 026101 (2002)] considered two questions about the scale-free random tree given by the m=1 case of the Barabási-Albert (BA) model (identical with a random tree model introduced by Szyma?ski in 1987): what is the distribution of the node to node distances, and what is the distribution of node loads, where the load on a node is the number of shortest paths passing through it? They gave heuristic answers to these questions using a “mean-field” approximation, replacing the random tree by a certain fixed tree with carefully chosen branching ratios. By making use of our earlier results on scale-free random graphs, we shall analyze the random tree rigorously, obtaining and proving very precise answers to these questions. We shall show that, after dividing by N (the number of nodes), the load distribution converges to an integer distribution X with Pr(X=c)=2/[(2c+1)(2c+3)], c=0,1,2,…, confirming the asymptotic power law with exponent -2 predicted by Szabó, Alava, and Kertész. For the distribution of node-node distances, we show asymptotic normality, and give a precise form for the (far from normal) large deviation law. We note that the mean-field methods used by Szabó, Alava, and Kertész give very good results for this model.

  17. Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.

    PubMed

    Qu, Hong; Yi, Zhang; Yang, Simon X

    2013-06-01

    Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach. PMID:23144039

  18. The “Path” Not Taken: Exploring Structural Differences in Mapped- Versus Shortest-Network-Path School Travel Routes

    PubMed Central

    Larsen, Kristian; Faulkner, Guy E.?J.; Stone, Michelle R.

    2013-01-01

    Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys?=?45%, girls?=?54%, unreported gender?=?1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648

  19. Formal language constrained path problems

    SciTech Connect

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  20. A single source k-shortest paths algorithm to infer regulatory pathways in a gene network

    PubMed Central

    Shih, Yu-Keng; Parthasarathy, Srinivasan

    2012-01-01

    Motivation: Inferring the underlying regulatory pathways within a gene interaction network is a fundamental problem in Systems Biology to help understand the complex interactions and the regulation and flow of information within a system-of-interest. Given a weighted gene network and a gene in this network, the goal of an inference algorithm is to identify the potential regulatory pathways passing through this gene. Results: In a departure from previous approaches that largely rely on the random walk model, we propose a novel single-source k-shortest paths based algorithm to address this inference problem. An important element of our approach is to explicitly account for and enhance the diversity of paths discovered by our algorithm. The intuition here is that diversity in paths can help enrich different functions and thereby better position one to understand the underlying system-of-interest. Results on the yeast gene network demonstrate the utility of the proposed approach over extant state-of-the-art inference algorithms. Beyond utility, our algorithm achieves a significant speedup over these baselines. Availability: All data and codes are freely available upon request. Contact: srini@cse.ohio-state.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689778

  1. Effective usage of shortest paths promotes transportation efficiency on scale-free networks

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Wu, Zhi-Xi; Cai, Kai-Quan

    2013-09-01

    With rapid economic and social development, the problem of traffic congestion is getting more and more serious. Accordingly, network traffic models have attracted extensive attention. In this paper, we introduce a shortest-remaining-path-first queuing strategy into a network traffic model on Barabási-Albert scale-free networks under efficient routing protocol, where one packet’s delivery priority is related to its current distance to the destination. Compared with the traditional first-in-first-out queuing strategy, although the network capacity has no evident changes, some other indexes reflecting transportation efficiency are significantly improved in the congestion state. Extensive simulation results and discussions are carried out to explain the phenomena. Our work may be helpful for the designing of optimal networked-traffic systems.

  2. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems

    NASA Astrophysics Data System (ADS)

    Kröger, Martin

    2005-06-01

    We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.

  3. The approach for shortest paths in fire succor based on component GIS technology

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhao, Yong; Dai, K. W.

    2007-06-01

    Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.

  4. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    PubMed

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  5. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    PubMed Central

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  6. K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks.

    PubMed

    He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan

    2015-01-01

    Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model's objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109

  7. K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks

    PubMed Central

    He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan

    2015-01-01

    Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model’s objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109

  8. Do people use the shortest path? An empirical test of Wardrop's first principle.

    PubMed

    Zhu, Shanjiang; Levinson, David

    2015-01-01

    Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis-St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756

  9. Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle

    PubMed Central

    Zhu, Shanjiang; Levinson, David

    2015-01-01

    Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis—St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756

  10. Modeling the average shortest-path length in growth of word-adjacency networks

    NASA Astrophysics Data System (ADS)

    Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł

    2015-03-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  11. Planning image-guided endovascular interventions: guidewire simulation using shortest path algorithms

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Singh, Vikas; Hoffmann, Kenneth R.; Noël, Peter B.; Xu, Jinhui

    2007-03-01

    Endovascular interventional procedures are being used more frequently in cardiovascular surgery. Unfortunately, procedural failure, e.g., vessel dissection, may occur and is often related to improper guidewire and/or device selection. To support the surgeon's decision process and because of the importance of the guidewire in positioning devices, we propose a method to determine the guidewire path prior to insertion using a model of its elastic potential energy coupled with a representative graph construction. The 3D vessel centerline and sizes are determined for a specified vessel. Points in planes perpendicular to the vessel centerline are generated. For each pair of consecutive planes, a vector set is generated which joins all points in these planes. We construct a graph representing these vector sets as nodes. The nodes representing adjacent vector sets are joined by edges with weights calculated as a function of the angle between the corresponding vectors (nodes). The optimal path through this weighted directed graph is then determined using shortest path algorithms, such as topological sort based shortest path algorithm or Dijkstra's algorithm. Volumetric data of an internal carotid artery phantom (Ø 3.5mm) were acquired. Several independent guidewire (Ø 0.4mm) placements were performed, and the 3D paths were determined using rotational angiography. The average RMS distance between the actual and the average simulated guidewire path was 0.7mm; the computation time to determine the path was 3 seconds. The ability to predict the guidewire path inside vessels may facilitate calculation of vessel-branch access and force estimation on devices and the vessel wall.

  12. Scaling of average weighted shortest path and average receiving time on weighted hierarchical networks

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Dai, Meifeng; Xi, Lifeng

    Recent work on the networks has focused on the weighted hierarchical networks that are significantly different from the un-weighted hierarchical networks. In this paper we study a family of weighted hierarchical networks which are recursively defined from an initial uncompleted graph, in which the weights of edges have been assigned to different values with certain scale. Firstly, we study analytically the average weighted shortest path (AWSP) on the weighted hierarchical networks. Using a recursive method, we determine explicitly the AWSP. The obtained rigorous solution shows that the networks grow unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded. Then, depending on a biased random walk, we research the mean first-passage time (MFPT) between a hub node and any peripheral node. Finally, we deduce the analytical expression of the average of MFPTs for a random walker originating from any node to first visit to a hub node, which is named as the average receiving time (ART). The obtained result shows that ART is bounded or grows sublinearly with the network order relating to the number of initial nodes and the weighted factor or grows quadratically with the iteration.

  13. Mining for novel tumor suppressor genes using a shortest path approach.

    PubMed

    Chen, Lei; Yang, Jing; Huang, Tao; Kong, Xiangyin; Lu, Lin; Cai, Yu-Dong

    2016-03-01

    Cancer, being among the most serious diseases, causes many deaths every year. Many investigators have devoted themselves to designing effective treatments for this disease. Cancer always involves abnormal cell growth with the potential to invade or spread to other parts of the body. In contrast, tumor suppressor genes (TSGs) act as guardians to prevent a disordered cell cycle and genomic instability in normal cells. Studies on TSGs can assist in the design of effective treatments against cancer. In this study, we propose a computational method to discover potential TSGs. Based on the known TSGs, a number of candidate genes were selected by applying the shortest path approach in a weighted graph that was constructed using protein-protein interaction network. The analysis of selected genes shows that some of them are new TSGs recently reported in the literature, while others may be novel TSGs. PMID:26209080

  14. Shortest path ray tracing in cell model with a second-level forward star

    NASA Astrophysics Data System (ADS)

    Mak, Sum; Koketsu, Kazuki

    2011-09-01

    The high-level forward star is routinely applied in seismic ray tracing using graph theory (sometimes referred to as the shortest path method) with a grid model. For a cell model, the forward star is often restricted to nodes at the same cell (i.e. first-level forward star). The performance of a cell model with second-level forward stars is found to be comparable in both computation time and accuracy to that of a doubly dense cell model with first-level forward stars. Moreover, the cell model with second-level forward stars has the advantage of halving the required computer storage. An optimization of the secondary node geometry leads to a further 20 per cent improvement in accuracy. Concepts derived from grid models for analytical error estimation are found to be less applicable to cell models. An empirical approach works better in the optimization of the secondary node geometry.

  15. Technical note: Quantification of neurocranial shape variation using the shortest paths connecting pairs of anatomical landmarks.

    PubMed

    Morita, Yusuke; Ogihara, Naomichi; Kanai, Takashi; Suzuki, Hiromasa

    2013-08-01

    Three-dimensional geometric morphometric techniques have been widely used in quantitative comparisons of craniofacial morphology in humans and nonhuman primates. However, few anatomical landmarks can actually be defined on the neurocranium. In this study, an alternative method is proposed for defining semi-landmarks on neurocranial surfaces for use in detailed analysis of cranial shape. Specifically, midsagittal, nuchal, and temporal lines were approximated using Bezier curves and equally spaced points along each of the curves were defined as semi-landmarks. The shortest paths connecting pairs of anatomical landmarks as well as semi-landmarks were then calculated in order to represent the surface morphology between landmarks using equally spaced points along the paths. To evaluate the efficacy of this method, the previously outlined technique was used in morphological analysis of sexual dimorphism in modern Japanese crania. The study sample comprised 22 specimens that were used to generate 110 anatomical semi-landmarks, which were used in geometric morphometric analysis. Although variations due to sexual dimorphism in human crania are very small, differences could be identified using the proposed landmark placement, which demonstrated the efficacy of the proposed method. PMID:23868177

  16. Identification of Colorectal Cancer Related Genes with mRMR and Shortest Path in Protein-Protein Interaction Network

    PubMed Central

    Liu, Lei; Cai, Yu-Dong; Chou, Kuo-Chen

    2012-01-01

    One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used to select differentially expressed genes as disease genes for quite a long time, while the latter has been widely used to study the mechanism of diseases. With the existing protein-protein interaction data from STRING (Search Tool for the Retrieval of Interacting Genes), a weighted functional protein association network was constructed. By means of the mRMR (Maximum Relevance Minimum Redundancy) approach, six genes were identified that can distinguish the colorectal tumors and normal adjacent colonic tissues from their gene expression profiles. Meanwhile, according to the shortest path approach, we further found an additional 35 genes, of which some have been reported to be relevant to colorectal cancer and some are very likely to be relevant to it. Interestingly, the genes we identified from both the gene expression profiles and the functional protein association network have more cancer genes than the genes identified from the gene expression profiles alone. Besides, these genes also had greater functional similarity with the reported colorectal cancer genes than the genes identified from the gene expression profiles alone. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying colorectal cancer genes. It has not escaped our notice that the method can be applied to identify the genes of other diseases as well. PMID:22496748

  17. Identification of Thyroid Carcinoma Related Genes with mRMR and Shortest Path Approaches

    PubMed Central

    Ji, Zhenhua; Liu, Haibin; Liu, Yueyang; Peng, Hu; Wu, Jian; Fan, Jingping

    2014-01-01

    Thyroid cancer is a malignant neoplasm originated from thyroid cells. It can be classified into papillary carcinomas (PTCs) and anaplastic carcinomas (ATCs). Although ATCs are in an very aggressive status and cause more death than PTCs, their difference is poorly understood at molecular level. In this study, we focus on the transcriptome difference among PTCs, ATCs and normal tissue from a published dataset including 45 normal tissues, 49 PTCs and 11 ATCs, by applying a machine learning method, maximum relevance minimum redundancy, and identified 9 genes (BCL2, MRPS31, ID4, RASAL2, DLG2, MY01B, ZBTB5, PRKCQ and PPP6C) and 1 miscRNA (miscellaneous RNA, LOC646736) as important candidates involved in the progression of thyroid cancer. We further identified the protein-protein interaction (PPI) sub network from the shortest paths among the 9 genes in a PPI network constructed based on STRING database. Our results may provide insights to the molecular mechanism of the progression of thyroid cancer. PMID:24718460

  18. A novel method for dendritic spines detection based on directional morphological filter and shortest path.

    PubMed

    Su, Ran; Sun, Changming; Zhang, Chao; Pham, Tuan D

    2014-12-01

    Dendritic spines are tiny membranous protrusions from neuron's dendrites. They play a very important role in the nervous system. A number of mental diseases such as Alzheimer's disease and mental retardation are revealed to have close relations with spine morphologies or spine number changes. Spines have various shapes, and spine images are often not of good quality; hence it is very challenging to detect spines in neuron images. This paper presents a novel pipeline to detect dendritic spines in 2D maximum intensity projection (MIP) images and a new dendrite backbone extraction method is developed in the pipeline. The strategy for the backbone extraction approach is that it iteratively refines the extraction result based on directional morphological filtering and improved Hessian filtering until a satisfactory extraction result is obtained. A shortest path method is applied along a backbone to extract the boundary of the dendrites. Spines are then segmented from the dendrites outside the extracted boundary. Touching spines will be split using a marker-controlled watershed algorithm. We present the results of our algorithm on real images and compare our algorithm with two other spine detection methods. The results show that the proposed approach can detect dendrites and spines more accurately. Measurements and classification of spines are also made in this paper. PMID:25155696

  19. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  20. The lawnmower problem and other geometric path covering problems

    SciTech Connect

    Fekete, S.; Arkin, E.; Mitchell, J.

    1994-12-31

    We discuss the Lawnmower Problem: Given a polygonal region, find the shortest closed path along which we have to move a given object (typically a square or a circle), such that any point of the region will be covered by the object for some position of it movement. In another version of the problem, known as the Milling Problem, the object has to stay within the region at all times. Practical motivations for considering the Lawnmower Problem come from manufacturing (spray painting, quality control), geography (aerial surveys), optimization (tour planning for a large number of clients with limited mobility), and gardening. The Milling Problem has gained attention by its importance for NC pocket machining. We show that both problems are NP-hard and discuss approximation methods for various versions of the problem.

  1. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  2. A Multilevel Probabilistic Beam Search Algorithm for the Shortest Common Supersequence Problem

    PubMed Central

    Gallardo, José E.

    2012-01-01

    The shortest common supersequence problem is a classical problem with many applications in different fields such as planning, Artificial Intelligence and especially in Bioinformatics. Due to its NP-hardness, we can not expect to efficiently solve this problem using conventional exact techniques. This paper presents a heuristic to tackle this problem based on the use at different levels of a probabilistic variant of a classical heuristic known as Beam Search. The proposed algorithm is empirically analysed and compared to current approaches in the literature. Experiments show that it provides better quality solutions in a reasonable time for medium and large instances of the problem. For very large instances, our heuristic also provides better solutions, but required execution times may increase considerably. PMID:23300667

  3. Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach

    PubMed Central

    Yuan, Fei; Zhang, Yu-Hang; Wan, Sibao; Wang, ShaoPeng; Kong, Xiang-Yin

    2015-01-01

    Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions. PMID:26613085

  4. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach

    PubMed Central

    Yuan, Fei; Zhou, You; Wang, Meng; Yang, Jing; Wu, Kai; Lu, Changhong; Kong, Xiangyin; Cai, Yu-Dong

    2015-01-01

    Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486

  5. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.

    PubMed

    Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi

    2016-01-01

    The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. PMID:25950737

  6. The terminal area automated path generation problem

    NASA Technical Reports Server (NTRS)

    Hsin, C.-C.

    1977-01-01

    The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.

  7. An Alternate Path To Stoichiometric Problem Solving.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    1997-01-01

    Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)

  8. Analyze bearing problems by ball path inspection

    SciTech Connect

    El Sherif, A.H. )

    1994-04-01

    Failure analysis of a component, such as a rolling element bearing, requires collecting specific operating data nd a precise interpretation of the visual evidence of failure. Close examination of the contact surface of ball path, which the rolling elements inscribe on the inner and outer raceways of the bearing, can reveal conditions such as overloading, misalignment, or improper installation that shortens bearing life. Careful analysis of these ball paths greatly helps in pinpointing the cause of failure. The paper describes what causes a ball path, a normal ball path for rolling element bearings, a ball path due to rotor unbalance, ball paths due to axial overloading, distorted bearing housing effect on ball paths, and effect of radial bearing misalignment on ball path.

  9. The graph-theoretic minimum energy path problem for ionic conduction

    NASA Astrophysics Data System (ADS)

    Kishida, Ippei

    2015-10-01

    A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to ?-AgI and the ionic conduction mechanism in ?-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  10. The optimal path-matching problem

    SciTech Connect

    Cunningham, W.H.; Geelen, J.F.

    1996-12-31

    We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we present results implying the polynomial-time solvability of the two problems. We also use our results to give the first strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and the first polynomial-time algorithm to compute the rank of a certain matrix of indeterminates. Our algorithmic results are based on polyhedral characterizations, and on the equivalence of separation and optimization.

  11. The traffic equilibrium problem with nonadditive path costs

    SciTech Connect

    Gabriel, S.A.; Bernstein, D.

    1995-08-21

    In this paper the authors present a version of the (static) traffic equilibrium problem in which the cost incurred on a path is not simply the sum of the costs on the arcs that constitute that path. The authors motivate this nonadditive version of the problem by describing several situations in which the classical additivity assumption fails. They also present an algorithm for solving nonadditive problems that is based on the recent NE/SQP algorithm, a fast and robust method for the nonlinear complementarity problem. Finally, they present a small example that illustrates both the importance of using nonadditive costs and the effectiveness of the NE/SQP method.

  12. Are linear prebuckling paths and linear stability problems mutually conditional?

    NASA Astrophysics Data System (ADS)

    Steinboeck, Andreas; Mang, Herbert A.

    2008-08-01

    Stability problems are termed linear if the tangent stiffness used for determining loss of stability has a specific, simple form. The term “linear prebuckling paths” refers to the shape of the load displacement diagrams before loss of stability. In this note, it will be shown that these two terms are not mutually conditional.

  13. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  14. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  15. Deferred path heuristic for the generalized tree alignment problem

    SciTech Connect

    Schwikowski, B.; Vingron, M.

    1997-12-01

    Many multiple alignment methods implicitly or explicitly try to minimize the amount of biological change implied by an alignment. At the level of sequences, biological change is measured along a phylogenetic tree, a structure frequently being predicted only after the multiple alignment instead of together with it. The Generalized Tree Alignment problem addresses both questions simultaneously. It can formally be viewed as a Steiner tree problem in sequence space and our approach merges a path heuristic for the construction of a Steiner tree with a clustering method as usually applied only to distance data. This combination is achieved using sequence graphs, a data structure for efficient representation of similar sequences. The method produces biologically meaningful answers while maintaining a guaranteed error bound. Although somewhat slower in practice than earlier method by Hein, the current approach achieves significantly better results in terms of the underlying scoring function. Furthermore, a variant of the algorithm is introduced that maintains a guaranteed error bound of (2 - 2/n) for n sequences. 27 refs., 4 figs., 2 tabs.

  16. Phase space path integral of two exactly-solvable problems on circle

    NASA Astrophysics Data System (ADS)

    Bentag, B.

    2012-06-01

    A relation between two exactly-solvable problems on a circle namely singular Coulomb and singular oscillator systems is established within the phase space path integral formalism via the delta functional method. It is shown that, by using a coordinate transformation the path integral for the one-dimensional singular Coulomb problem coincides to the onedimensional singular oscillator path integral to involve Pöschl-Teller-type path integral representation. The result of the singular oscillator problem is used to construct the energy spectrum and wave functions for singular Coulomb potential, exploiting the close correspondence that exists between the two systems.

  17. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  18. The properties of a homotopy path of nonlinear complementarity problems

    NASA Astrophysics Data System (ADS)

    Wang, Xiuyu; Jiang, Xingwu; Liu, Qinghuai

    2013-07-01

    In this paper, we study the following nonlinear complementarity problem: f : Rn-->Rn , find x >= 0 , such that f (x) >= 0, xT f (x) = 0. We use Poineare-Bohn's homotopy invariance theorem of degree to derive an alternative theorem, and give a new exceptional families. Based on this result, for the nonlinear complementarity problems with a quasi- * P - mapping or a P(? ,? ,? ) -mapping , a sufficiently condition is established to assure the existence and boundedness of solution curve.

  19. Shortest recurrence periods of novae

    SciTech Connect

    Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi; Nomoto, Ken'ichi

    2014-10-01

    Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ?} WD with a mass accretion rate of 3.6 × 10{sup –7} M {sub ?} yr{sup –1}. A 1 yr recurrence period is realized for very massive (? 1.3 M {sub ?}) WDs with very high accretion rates (? 1.5 × 10{sup –7} M {sub ?} yr{sup –1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.

  20. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing

    PubMed Central

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  1. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

    PubMed

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  2. Application of the CIRSSE cooperating robot path planner to the NASA Langley truss assembly problem

    NASA Technical Reports Server (NTRS)

    Weaver, Jonathan M.; Derby, Stephen J.

    1993-01-01

    A method for autonomously planning collision free paths for two cooperating robots in a static environment was developed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The method utilizes a divide-and-conquer type of heuristic and involves non-exhaustive mapping of configuration space. While there is no guarantee of finding a solution, the planner was successfully applied to a variety of problems including two cooperating 9 degrees of freedom (dof) robots. Although developed primarily for cooperating robots the method is also applicable to single robot path planning problems. A single 6 dof version of the planner was implemented for the truss assembly east, at NASA Langley's Automated Structural Assembly Lab (ASAL). The results indicate that the planner could be very useful in addressing the ASAL path planning problem and that further work along these lines is warranted.

  3. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  4. Search Path Mapping: A Versatile Approach for Visualizing Problem-Solving Behavior.

    ERIC Educational Resources Information Center

    Stevens, Ronald H.

    1991-01-01

    Computer-based problem-solving examinations in immunology generate graphic representations of students' search paths, allowing evaluation of how organized and focused their knowledge is, how well their organization relates to critical concepts in immunology, where major misconceptions exist, and whether proper knowledge links exist between content…

  5. Nonequilibrium problems in Quantum Field Theory and Schwinger's closed time path formalism

    NASA Astrophysics Data System (ADS)

    Cooper, Fred

    1995-04-01

    We review the closed time path formalism of Schwinger using a path integral approach. We apply this formalism to the study of pair production from strong external fields as well as the time evolution of a nonequilibrium chiral phase transition. In 1961 in his classic paper 'Brownian Motion of a Quantum Particle,' Schwinger solved the formidable technical problem of how to use the action principle to study initial value problems. Previously, the action principle was formulated to study only transition matrix elements from an earlier time to a later time. The elegant solution of this problem was the invention of the closed time path (CTP) formalism. This formalism was first used to study field theory problems by Mahanthappa and Bakshi. With the advent of supercomputers, it has now become possible to use this formalism to numerically solve important field theory questions which are presented as initial value problems. Two of these problems we shall review here. They are: (1) The time evolution of the quark-gluon plasma; and (2) Dynamical evolution of a non-equilibrium chiral phase transition following a relativistic heavy ion collision.

  6. Constrained Graph Optimization: Interdiction and Preservation Problems

    SciTech Connect

    Schild, Aaron V

    2012-07-30

    The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.

  7. High-order path-integral Monte Carlo methods for solving quantum dot problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2015-03-01

    The conventional second-order path-integral Monte Carlo method is plagued with the sign problem in solving many-fermion systems. This is due to the large number of antisymmetric free-fermion propagators that are needed to extract the ground state wave function at large imaginary time. In this work we show that optimized fourth-order path-integral Monte Carlo methods, which use no more than five free-fermion propagators, can yield accurate quantum dot energies for up to 20 polarized electrons with the use of the Hamiltonian energy estimator.

  8. Orbital Systolic Algorithms and Array Processors for Solution of the Algebraic Path Problem

    NASA Astrophysics Data System (ADS)

    Sedukhin, Stanislav G.; Miyazaki, Toshiaki; Kuroda, Kenichi

    The algebraic path problem (APP) is a general framework which unifies several solution procedures for a number of well-known matrix and graph problems. In this paper, we present a new 3-dimensional (3-D) orbital algebraic path algorithm and corresponding 2-D toroidal array processors which solve the n × n APP in the theoretically minimal number of 3n time-steps. The coordinated time-space scheduling of the computing and data movement in this 3-D algorithm is based on the modular function which preserves the main technological advantages of systolic processing: simplicity, regularity, locality of communications, pipelining, etc. Our design of the 2-D systolic array processors is based on a classical 3-D?2-D space transformation. We have also shown how a data manipulation (copying and alignment) can be effectively implemented in these array processors in a massively-parallel fashion by using a matrix-matrix multiply-add operation.

  9. Hard water problems and soft water paths: The "supply versus demand" conundrum

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2012-12-01

    Water problems are complex, interdisciplinary, and have profound effects on human and ecosystem health and well-being. And they are classic "hard" problems. Good science is necessary to solve these problems, but it is rarely sufficient. One of these hard problems is that of "perception" and "frame" - traditional water planners and managers frame freshwater as a "supply" problem, i.e., how can we access and deliver sufficient quantities of water of suitable quality, to satisfy perceived demand. In recent years, however, as water scarcity in different regions has increased due to growing populations and expanding economies, "peak water" limits (including peak renewable, non-renewable, and ecological limits) have started to constrain development of traditional "supply" options (Figure 1). That has led to new thinking about the other side of the equation: what is meant by water "demand" and can demand management tools and approaches offer a way to solve water problems. The "soft path for water" addresses this issue of water demand directly, but implementing demand-side solutions faces serious barriers. This talk will expound on the soft path approach and its potential to overcome some of the gridlock and stagnation in current water policy debates, with examples from both developed and developing countries, and different economic sectors.umulative global reservoir storage (major reservoirs) from 1900 to 2010, showing leveling off of traditional supply expansion. Data from the GRanD database.

  10. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  11. Short paths in expander graphs

    SciTech Connect

    Kleinberg, J.; Rubinfeld, R.

    1996-12-31

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratio in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.

  12. Application of complex path-independent integrals to problems of bending of thin elastic plates

    NASA Astrophysics Data System (ADS)

    Ioakimidis, N. I.

    1992-06-01

    Complex path-independent integrals have been already widely applied to problems of plane and antiplane elasticity for the determnation of a variety of quantities of interest including stress intensity factors, loading intensities and the positions of geometrical characteristic lengths of singularities in the elastic field (like cracks, holes and inclusions). In this paper, we show that the same results apply also to the case of problems of thin isotropic elastic plates under bending where the complex-variable formulation is also valid. We make reference to the experimental methods which are appropriate for these integrals in an engineering environment and, finally, we apply this approach to the location of a circular hole in the problem of bending of a thin plate. Numerical results are also presented.

  13. Does executive function mediate the path from mothers' depressive symptoms to young children's problem behaviors?

    PubMed

    Roman, Gabriela D; Ensor, Rosie; Hughes, Claire

    2016-02-01

    This study investigated the mediation role played by children's executive function in the relationship between exposure to mild maternal depressive symptoms and problem behaviors. At ages 2, 3, and 6years, 143 children completed executive function tasks and a verbal ability test. Mothers completed the Beck Depression Inventory at each time-point, and teachers completed the Strengths and Difficulties Questionnaire at child age 6. Longitudinal autoregressive mediation models showed a mediation effect that was significant and quite specific; executive function (and not verbal ability) at age 3 mediated the path between mothers' depressive symptoms (but not general social disadvantage) at the first time-point and children's externalizing and internalizing problems at age 6. Improving children's executive functioning might protect them against the adverse effects of exposure to maternal depressive symptoms. PMID:26550956

  14. All-Optical Monitoring Path Computation Using Lower Bounds of Required Number of Paths

    NASA Astrophysics Data System (ADS)

    Ogino, Nagao; Nakamura, Hajime

    To reduce the cost of fault management in all-optical networks, it is a promising approach to detect the degradation of optical signal quality solely at the terminal points of all-optical monitoring paths. The all-optical monitoring paths must be routed so that all single-link failures can be localized using route information of monitoring paths where signal quality degradation is detected. However, route computation for the all-optical monitoring paths that satisfy the above condition is time consuming. This paper proposes a procedure for deriving the lower bounds of the required number of monitoring paths to localize all single-link failures, and proposes an efficient monitoring path computation method based on the derived lower bounds. The proposed method repeats the route computation for the monitoring paths until feasible routes can be found, while the assumed number of monitoring paths increases, starting from the lower bounds. With the proposed method, the minimum number of monitoring paths with the overall shortest routes can be obtained quickly by solving several small-scale integer linear programming problems when the possible terminal nodes of monitoring paths are arbitrarily given. Thus, the proposed method can minimize the required number of monitors for detecting the degradation of signal quality and the total overhead traffic volume transferred through the monitoring paths.

  15. Robot path planning with distance-safety criterion

    NASA Technical Reports Server (NTRS)

    Suh, Suk-Hwan; Shin, Kang G.

    1987-01-01

    A method for determining an optimal path with a weighted distance-safety criterion is developed. The goal is to strike a compromise between the shortest path and the centerline path, which is safer. The method is composed of three parts: (i) construction of a region map by dividing the workspace, (ii) interregion optimization to determine the entry and departure points of the path in each region, and (iii) intraregion optimization for determining the (optimal) path segment within each region. The region map is generated by using an approximate Voronoi diagram, and region optimization is achieved using variational dynamic programming. Although developed for 2-D problems, the method can be easily extended to a class of 3-D problems. Numerical examples are presented to demonstrate the method.

  16. Path planning strategies for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A hierarchical software control architecture is introduced that uses as the main guidance function an arbitration-based scheme which is able to efficiently and robustly integrate disparate sensor data. The flexibility provided by such an architecture allows for very easy integration of any type of environmental sensing device into the path planning algorithm.

  17. Problem Adaptation Therapy (PATH) for Older Adults with Major Depression and Cognitive Impairment: A Randomized Clinical Trial

    PubMed Central

    Kiosses, Dimitris N.; Ravdin, Lisa D.; Gross, James J; Raue, Patrick; Kotbi, Nabil; Alexopoulos, George S.

    2015-01-01

    Importance Problem Adaptation Therapy (PATH) is a treatment for older adults with major depression, cognitive impairment (from mild cognitive deficits to moderate dementia) and disability. Antidepressants have limited efficacy in this population and psychosocial interventions are inadequately investigated. Objective To test the efficacy of 12-week PATH vs. Supportive Therapy for Cognitively Impaired patients (ST-CI) in reducing depression and disability in 74 older adults with major depression, cognitive impairment and disability. Design Randomized Controlled Trial from April 1, 2006 until September 31, 2011. Setting Weill-Cornell Institute of Geriatric Psychiatry; interventions were administered at participants’ homes. Participants Seventy-four older participants (age≥65 years) with major depression and cognitive impairment up to the level of moderate dementia were recruited through collaborating community agencies of Weill-Cornell Institute of Geriatric Psychiatry and were randomly assigned to 12 weekly sessions of PATH or ST-CI (14.8% attrition rate). Interventions Home-delivered PATH vs. home-delivered ST-CI. PATH integrates a problem solving approach with compensatory strategies, environmental adaptations, and caregiver participation to improve patients’ emotion regulation. ST-CI focuses on expression of affect, understanding and empathy. Main Outcome Measures Mixed-effects models for longitudinal data compared the efficacy of PATH to that of ST-CI in reducing depression (MADRS) and disability (WHODAS-II) over 12 weeks of treatment. Results PATH participants had significantly greater reduction in depression (treatment X time: F[1,179]=8.03, p=0.0051; Cohen’s D at 12 weeks: 0.60) and disability (treatment X time: F[1,169]=14.86, p=0.0002; Cohen’s D at 12 weeks: 0.67) than ST-CI participants over the 12-week period (primary outcomes). Further, PATH participants had significantly greater depression remission rates than ST-CI participants (37.84% vs. 13.51%; Chi-square: 5.74, df=1, p=0.0174; Number Needed to Treat (NNT)=4.11) (secondary outcome). Exploratory analysis showed that PATH led to greater reduction in depression than ST-CI even in the subgroup of participants with drug treatment resistant depression (F[1,72.7]=6.01, p=0.0166; Cohen’s d: week 12: 0.95). Conclusions and Relevance PATH was more efficacious than ST-CI in reducing depression and disability. PATH may provide relief to a large group of depressed, cognitively impaired older adults with few treatment options. PMID:25372657

  18. Finding the dominant energy transmission paths in statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Guasch, Oriol; Aragonès, Àngels

    2011-05-01

    A key issue for noise, vibration and harshness purposes, when modelling the vibroacoustic behaviour of a system, is that of determining how energy is transmitted from a given source, where external energy is being input, to a target where energy is to be reduced. In many situations of practical interest, a high percentage of the transmitted energy is driven by a limited set of dominant paths. For instance, this is at the core of the existence of transmission loss regulations between dwellings. In this work, it is shown that in the case of a system modelled with statistical energy analysis (SEA), the problem of ranking dominant paths can be posed as a variation of the so-called K shortest path problem in graph theory. An algorithm for the latter is then modified and adapted to obtain the sorted set of K dominant energy transmission paths in a SEA model. A numerical example to show its potential for practical applications is included.

  19. Path Planning with obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Krause, Donald M.

    1987-01-01

    The research report here summarizes a solution for two dimensional Path Planning with obstacle avoidance in a workspace with stationary obstacles. The solution finds the shortest path for the end effector of a manipulator arm. The program uses an overhead image of the robot work space and the starting and ending positions of the manipulator arm end effector to generate a search graph which is used to find the shortest path through the work area. The solution was originally implemented in VAX Pascal, but was later converted to VAX C.

  20. On Dirac-Coulomb problem in (2+1) dimensional space-time and path integral quantization

    NASA Astrophysics Data System (ADS)

    Haouat, S.; Chetouani, L.

    2012-06-01

    The problem of Dirac particle interacting with Coulomb potential in (2+1) dimensions is formulated in the framework of super-symmetric path integrals where the spin degrees of freedom are described by odd Grassmannian variables. The relative propagator is expressed through Cartesian coordinates in a Hamiltonian form by the use of an adequate transformation. The passage to the polar coordinates permitted us to calculate the fixed energy Green's function and to extract bound states and associating wave functions.

  1. On Dirac-Coulomb problem in (2+1) dimensional space-time and path integral quantization

    SciTech Connect

    Haouat, S.; Chetouani, L.

    2012-06-15

    The problem of Dirac particle interacting with Coulomb potential in (2+1) dimensions is formulated in the framework of super-symmetric path integrals where the spin degrees of freedom are described by odd Grassmannian variables. The relative propagator is expressed through Cartesian coordinates in a Hamiltonian form by the use of an adequate transformation. The passage to the polar coordinates permitted us to calculate the fixed energy Green's function and to extract bound states and associating wave functions.

  2. Probabilistic minimal path for automated esophagus segmentation

    NASA Astrophysics Data System (ADS)

    Rousson, Mikael; Bai, Ying; Xu, Chenyang; Sauer, Frank

    2006-03-01

    This paper introduces a probabilistic shortest path approach to extract the esophagus from CT images. In this modality, the absence of strong discriminative features in the observed image make the problem ill-posed without the introduction of additional knowledge constraining the problem. The solution presented in this paper relies on learning and integrating contextual information. The idea is to model spatial dependency between the structure of interest and neighboring organs that may be easier to extract. Observing that the left atrium (LA) and the aorta are such candidates for the esophagus, we propose to learn the esophagus location with respect to these two organs. This dependence is learned from a set of training images where all three structures have been segmented. Each training esophagus is registered to a reference image according to a warping that maps exactly the reference organs. From the registered esophagi, we define the probability of the esophagus centerline relative to the aorta and LA. To extract a new centerline, a probabilistic criterion is defined from a Bayesian formulation that combines the prior information with the image data. Given a new image, the aorta and LA are first segmented and registered to the reference shapes and then, the optimal esophagus centerline is obtained with a shortest path algorithm. Finally, relying on the extracted centerline, coupled ellipse fittings allow a robust detection of the esophagus outer boundary.

  3. A Comparison of Heuristic and Human Performance on Open Versions of the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    MacGregor, James N.; Chronicle, Edward P.; Ormerod, Thomas C.

    2006-01-01

    We compared the performance of three heuristics with that of subjects on variants of a well-known combinatorial optimization task, the Traveling Salesperson Problem (TSP). The present task consisted of finding the shortest path through an array of points from one side of the array to the other. Like the standard TSP, the task is computationally…

  4. A Comparison of Heuristic and Human Performance on Open Versions of the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    MacGregor, James N.; Chronicle, Edward P.; Ormerod, Thomas C.

    2006-01-01

    We compared the performance of three heuristics with that of subjects on variants of a well-known combinatorial optimization task, the Traveling Salesperson Problem (TSP). The present task consisted of finding the shortest path through an array of points from one side of the array to the other. Like the standard TSP, the task is computationally…

  5. Vervet monkeys use paths consistent with context-specific spatial movement heuristics.

    PubMed

    Teichroeb, Julie A

    2015-10-01

    Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems. PMID:26668734

  6. Methodology for Augmenting Existing Paths with Additional Parallel Transects

    SciTech Connect

    Wilson, John E.

    2013-09-30

    Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.

  7. On the dynamic Markov-Dubins problem: From path planning in robotics and biolocomotion to computational anatomy

    NASA Astrophysics Data System (ADS)

    Castro, Alex Lúcio; Koiller, Jair

    2013-01-01

    Andrei Andreyevich Markov proposed in 1889 the problem (solved by Dubins in 1957) of finding the twice continuously differentiable (arc length parameterized) curve with bounded curvature, of minimum length, connecting two unit vectors at two arbitrary points in the plane. In this note we consider the following variant, which we call the dynamic Markov-Dubins problem (dM-D): to find the time-optimal C 2 trajectory connecting two velocity vectors having possibly different norms. The control is given by a force whose norm is bounded. The acceleration may have a tangential component, and corners are allowed, provided the velocity vanishes there. We show that for almost all the two vectors boundary value conditions, the optimization problem has a smooth solution. We suggest some research directions for the dM-D problem on Riemannian manifolds, in particular we would like to know what happens if the underlying geodesic problem is completely integrable. Path planning in robotics and aviation should be the usual applications, and we suggest a pursuit problem in biolocomotion. Finally, we suggest a somewhat unexpected application to "dynamic imaging science". Short time processes (in medicine and biology, in environment sciences, geophysics, even social sciences?) can be thought as tangent vectors. The time needed to connect two processes via a dynamic Markov-Dubins problem provides a notion of distance. Statistical methods could then be employed for classification purposes using a training set.

  8. Associating approximate paths and temporal sequences of noisy detections: Application to the recovery of spatio-temporal cancer cell trajectories.

    PubMed

    Dorfer, Matthias; Kazmar, Tomáš; Šmíd, Mat?j; Sing, Sanchit; Kneißl, Julia; Keller, Simone; Debeir, Olivier; Luber, Birgit; Mattes, Julian

    2016-01-01

    In this paper we address the problem of recovering spatio-temporal trajectories of cancer cells in phase contrast video-microscopy where the user provides the paths on which the cells are moving. The paths are purely spatial, without temporal information. To recover the temporal information associated to a given path we propose an approach based on automatic cell detection and on a graph-based shortest path search. The nodes in the graph consist of the projections of the cell detections onto the geometrical cell path. The edges relate nodes which correspond to different frames of the sequence and potentially to the same cell and trajectory. In this directed graph we search for the shortest path and use it to define a temporal parametrization of the corresponding geometrical cell path. An evaluation based on 286 paths of 7 phase contrast microscopy videos shows that our algorithm allows to recover 92% of trajectory points with respect to the associated ground truth. We compare our method with a state-of-the-art algorithm for semi-automated cell tracking in phase contrast microscopy which requires interactively placed starting points for the cells to track. The comparison shows that supporting geometrical paths in combination with our algorithm allow us to obtain more reliable cell trajectories. PMID:25987193

  9. Paths to literacy and numeracy problems: evidence from two British birth cohorts

    PubMed Central

    Richards, M; Power, C; Sacker, A

    2012-01-01

    Objective To test a life course model linking circumstances of origin to self-reported literacy and numeracy problems in midlife, and to investigate the effects in this model of changing social circumstances in two post-war cohorts. Methods Based on data from men and women in the British 1946 and 1958 birth cohorts, we used the relative index of inequality and logistical regression to test associations between father’s occupation, childhood cognition, educational attainment, own occupation in the 3rd decade, and a binary variable representing self-reported literacy and numeracy problems in the 4th decade. Results There was a lower frequency of literacy and numeracy problems in the 1958 cohort compared to the 1946 cohort. In both cohorts there were associations between father’s occupation and childhood cognition, educational attainment and own occupation, a pattern that was mirrored by the associations between childhood cognition, educational attainment and own occupation to adult literacy and numeracy problems. Positive associations between childhood cognition and educational attainment, and between educational attainment and own occupation, were stronger in the 1946 cohort than in the 1958 cohort. However, inverse associations between educational attainment and literacy and numeracy problems were stronger in the 1958 cohort, possibly reflecting the expansion of secondary education in the intervening years. Conclusions Literacy and numeracy problems have a robust structure of life course associations, although the changing pattern of these associations may reflect important social structural changes from the early post war years to the early 1960s in the UK. PMID:18718979

  10. Status Problem and Expectations of Competence: A Challenging Path for Teachers

    ERIC Educational Resources Information Center

    Pescarmona, Isabella

    2015-01-01

    Complex Instruction (CI) is a cooperative learning approach, which aims at improving the equal status interaction among students working in groups who may be at different academic and social levels. Based on an ethnographic research, the article examines how a group of Italian primary school teachers understand the status problem and how the…

  11. Status Problem and Expectations of Competence: A Challenging Path for Teachers

    ERIC Educational Resources Information Center

    Pescarmona, Isabella

    2015-01-01

    Complex Instruction (CI) is a cooperative learning approach, which aims at improving the equal status interaction among students working in groups who may be at different academic and social levels. Based on an ethnographic research, the article examines how a group of Italian primary school teachers understand the status problem and how the…

  12. Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral

    NASA Astrophysics Data System (ADS)

    Tanizaki, Yuya; Nishimura, Hiromichi; Kashiwa, Kouji

    2015-05-01

    The fermion sign problem appearing in the mean-field approximation is considered, and the systematic computational scheme of the free energy is devised by using the Lefschetz-thimble method. We show that the Lefschetz-thimble method respects the reflection symmetry, which makes physical quantities manifestly real at any order of approximations using complex saddle points. The formula is demonstrated through the Airy integral as an example, and its application to the Polyakov-loop effective model of dense QCD is discussed in detail.

  13. A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms

    PubMed Central

    2014-01-01

    Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581

  14. From Parent to Child to Parent…: Paths In and Out of Problem Behavior

    PubMed Central

    Bradley, Robert H.; Corwyn, Robert

    2014-01-01

    This study used data from the NICHD Study of Early Child Care and Youth Development to examine relations between parenting, self-control and externalizing behavior from early childhood to mid-adolescence (N=956; 49.9% male). Results indicated that maternal sensitivity, parental harshness and productive activity are related to externalizing problems but that patterns of relations change from early childhood to middle childhood to adolescence, with evidence suggesting that externalizing behavior influences parenting more than the reverse from middle childhood onward. Self-control measured during early adolescence partially mediated relations between maternal sensitivity and adolescent-reported externalizing behavior. Parental monitoring during adolescence was also related to externalizing behavior at age 15. Monitoring partially mediated the relation between externalizing behavior in early adolescence and externalizing at age 15. PMID:23135289

  15. Obstacle-Aware Longest-Path Routing with Constraint Programming and Parallel MILP

    NASA Astrophysics Data System (ADS)

    Tseng, I.-Lun; Chen, Huan-Wen; Kao, Yung-Wei; Lee, Che-I.

    2011-08-01

    Longest-path routing problems, which can arise in the design of high-performance printed circuit boards (PCBs), have been proven to be NP-hard. In this article, we propose a constraint programming (CP) formulation and a mixed integer linear programming (MILP) formulation to gridded longest-path routing problems; each of which may contain obstacles. After a longest-path routing problem has been transformed into a CP problem, a CP solver can be used to find optimal solutions. On the other hand, parallel MILP solvers can be used to find optimal solutions after the longest-path routing problem has been transformed into an MILP problem. Also, suboptimal solutions can be generated in exchange for reduced execution time. The proposed formulation methods can also be used to solve shortest-path routing problems. Experimental results show that more than 3,700x speed-up can be achieved by using a parallel MILP solver with 16 threads in solving formulated longest-path routing problems. The execution time can be further reduced if a computer containing more processer cores is available.

  16. Computing the Length of the Shortest Telomere in the Nucleus

    NASA Astrophysics Data System (ADS)

    Dao Duc, K.; Holcman, D.

    2013-11-01

    The telomere length can either be shortened or elongated by an enzyme called telomerase after each cell division. Interestingly, the shortest telomere is involved in controlling the ability of a cell to divide. Yet, its dynamics remains elusive. We present here a stochastic approach where we model this dynamics using a Markov jump process. We solve the forward Fokker-Planck equation to obtain the steady state distribution and the statistical moments of telomere lengths. We focus specifically on the shortest one and we estimate its length difference with the second shortest telomere. After extracting key parameters such as elongation and shortening dynamics from experimental data, we compute the length of telomeres in yeast and obtain as a possible prediction the minimum concentration of telomerase required to ensure a proper cell division.

  17. Optimal parallel algorithms for problems modeled by a family of intervals

    NASA Technical Reports Server (NTRS)

    Olariu, Stephan; Schwing, James L.; Zhang, Jingyuan

    1992-01-01

    A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. Computational tools are developed, and it is shown how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.

  18. Information spread of emergency events: path searching on social networks.

    PubMed

    Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui

    2014-01-01

    Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323

  19. Limited Path Percolation in Complex Networks

    NASA Astrophysics Data System (ADS)

    López, Eduardo; Parshani, Roni; Cohen, Reuven; Carmi, Shai; Havlin, Shlomo

    2007-11-01

    We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than aℓij(a≥1) where ℓij is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p˜c=(κ0-1)(1-a)/a, where κ0≡⟨k2⟩/⟨k⟩ and k is the node degree. Above p˜c, order N nodes can communicate within the limited path length aℓij, while below p˜c, Nδ (δ<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.

  20. A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Fazlollahtabar, Hamed

    2008-01-01

    E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success…

  1. Fast marching methods for the continuous traveling salesman problem

    SciTech Connect

    Andrews, J.; Sethian, J.A.

    2008-12-01

    We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ('cities') in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the Traveling Salesman Problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The order of the heuristic algorithm is at worst case M * N logN, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.

  2. Path Finder

    Energy Science and Technology Software Center (ESTSC)

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  3. The relationship between neurobehavioural problems of severe traumatic brain injury (TBI), family functioning and the psychological well-being of the spouse/caregiver: path model analysis.

    PubMed

    Anderson, Malcolm I; Parmenter, Trevor R; Mok, Magdalena

    2002-09-01

    This study used a modern theory of stress as a framework to strengthen the understanding of the relationship between neurobehavioural problems of TBI, family functioning and psychological distress in spouse/caregivers. The research was an ex post facto design utilising a cross-sectional methodology. Path analysis was used to determine the structural effect of neurobehavioural problems on family functioning and psychological distress. Forty-seven female and 17 male spouse/caregivers of partners with severe TBI were recruited. Spouse/caregivers who reported partners with TBI as having high levels of behavioural and cognitive problems experienced high levels of unhealthy family functioning. High levels of unhealthy family functioning were related to high levels of distress in spouse/caregivers, as family functioning had a moderate influence on psychological distress. Furthermore, indirect effects of behavioural and cognitive problems operating through family functioning intensified the level of psychological distress experienced by spouse/caregivers. Additionally, spouse/caregivers who reported high levels of behavioural, communication and social problems in their partners also experienced high levels of psychological distress. This study was significant because the impact of TBI on the spouse/caregiver from a multidimensional perspective is an important and under-researched area in the brain injury and disability field. PMID:12217201

  4. A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Mohanty, Prases K.; Parhi, Dayal R.

    2014-12-01

    Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.

  5. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  6. The Role of Youth Problem Behaviors in the Path from Child Abuse and Neglect to Prostitution: A Prospective Examination

    ERIC Educational Resources Information Center

    Wilson, Helen W.; Widom, Cathy Spatz

    2010-01-01

    Behaviors beginning in childhood or adolescence may mediate the relationship between childhood maltreatment and involvement in prostitution. This paper examines 5 potential mediators: early sexual initiation, running away, juvenile crime, school problems, and early drug use. Using a prospective cohort design, abused and neglected children (ages…

  7. The Role of Youth Problem Behaviors in the Path from Child Abuse and Neglect to Prostitution: A Prospective Examination

    ERIC Educational Resources Information Center

    Wilson, Helen W.; Widom, Cathy Spatz

    2010-01-01

    Behaviors beginning in childhood or adolescence may mediate the relationship between childhood maltreatment and involvement in prostitution. This paper examines 5 potential mediators: early sexual initiation, running away, juvenile crime, school problems, and early drug use. Using a prospective cohort design, abused and neglected children (ages…

  8. Quartz fabric-based deformation thermometry: examples of its application, relationships to petrology-based PT paths, and potential problems

    NASA Astrophysics Data System (ADS)

    Law, Richard; Waters, Dave; Morgan, Sven; Stahr, Don; Francsis, Matthew; Ashley, Kyle; Kronenberg, Andreas; Thomas, Jay; Mazza, Sarah; Heaverlo, Nicholas

    2013-04-01

    The quartz c-axis fabric opening-angle thermometer proposed by Kruhl (1998) offers a potential analytical technique for estimating deformation temperatures in rocks deformed by crystal plastic flow. However, in addition to deformation temperature, opening-angle is also sensitive to other variables such as strain rate, degree of hydrolytic weakening, and 3D strain type. Unless the influence of these individual variables can be quantified, use of fabric opening-angle as a deformation thermometer remains problematic and controversial. Over the last decade close correlations between: a) deformation temperatures indicated by fabric opening-angles and, b) temperatures of metamorphism indicated by trace element and mineral phase equilibria analyses, have been reported from a range of different tectonic settings, thereby arguably giving support to the use of opening-angles as a deformation thermometer. However, it needs to be demonstrated that the similar temperatures estimated by the different methods are related to the same geologic event, and therefore occupy at least a similar position on the PTt path - something that is in practice difficult to achieve for an individual rock sample. In cases where temperatures indicated by opening angles and mineral assemblages are markedly different, these differences could, for example, be explained by penetrative deformation and mineral growth/diffusion occurring at different times. Alternatively, when apparent deformation temperatures based on quartz fabrics are significantly greater than temperatures indicated by synchronous metamorphic mineral assemblages, this might be due to extreme hydrolytic weakening of quartz. We illustrate this talk on the pros and cons of using fabric opening-angles as a deformation thermometer with examples from: a) Aureoles of forcibly emplaced plutons in the White-Inyo Range of eastern California where crystal-plastic deformation and recrystallization was short-lived and synchronous with contact metamorphism. b) Footwall to the South Tibetan Detachment in the Mount Everest area where deformation is demonstrably related to the exhumation stage of a petrologically well-constrained PT path. c) Hanging wall to the Main Central Thrust in the Sutlej Valley of NW India where deformation temperatures inferred from fabric opening angles are closely similar to temperatures of metamorphism indicated by garnet-biotite and oxygen isotope-based thermometry. d) Moine, Ben Hope and Naver thrust sheets of NW Scotland where structurally upwards-increasing deformation temperatures are compared with temperatures indicated by garnet-biotite thermometry. e) Mylonitic quartzites in footwall to Moine thrust at the Stack of Glencoul where hydrolytic weakening may have played an important role in deformation/recrystallization and associated fabric development. f) Thrust sheets in the Appalachians of Vermont that display a complex PTt history due to thrust sheet loading. Kruhl, J.H. 1998. Reply: Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology, 16, 142-146.

  9. The Shortest Modulation Period Blazhko RR Lyrae Star: SS Cancri

    NASA Astrophysics Data System (ADS)

    Jurcsik, J.; Szeidl, B.; Sódor, Á.; Dékány, I.; Hurta, Zs.; Posztobányi, K.; Vida, K.; Váradi, M.; Szing, A.

    2006-07-01

    Extended BV(RI)C CCD observations of SS Cnc, a short-period RRab star, are presented. Nearly 1400 data points in each band have been obtained, spanning over 79 days during the spring of 2005. The star exhibits light-curve modulation, the so-called Blazhko effect, with small amplitude (B maximum brightness varies by 0.1 mag) and with the shortest modulation period (5.309 days) ever observed. In the Fourier spectrum of the V light curve, the pulsation frequency components are detected up to the 24th harmonic order, and modulation sidelobe frequencies with significantly asymmetric amplitudes are seen up to the 15th and 9th orders for the lower and higher frequency components, respectively. A detailed comparison of the modulation behavior of SS Cnc and RR Gem, two recently discovered small-amplitude, short-modulation-period Blazhko stars, is presented. The modulation frequency (fm) appears in the Fourier spectrum of both stars with similar amplitude. We also demonstrate that the modulation frequencies have basically different properties from those of the pulsation and modulation sidelobe frequencies, indicating that the physics behind these frequency components is not the same. The discovery of small amplitude modulations of RRab stars cautions that the large photometric surveys (MACHO and OGLE) may seriously underestimate the number of modulated RR Lyrae stars.

  10. Dwarf novae in the shortest orbital period regime .

    NASA Astrophysics Data System (ADS)

    Uemura, M.; Kato, T.; Ohshima, T.; Nogami, D.; Maehara, H.

    Dwarf novae (DNe) having very short orbital periods (P_orb) are interesting objects in terms of two points of view: the binary evolution and the physics of accretion disks. They are considered as one of the final evolutionary stages of low-mass binaries. It is well known that the observed P_orb distribution of cataclysmic variables is inconsistent with that expected from population synthesis studies. We evaluate the intrinsic population of low activity DNe in the shortest P_orb regime, which could reconcile the discrepancy between the observation and theory. In the view point of the physics of accretion disks, short P_orb DNe, in particular, WZ Sge stars, have received attention because they exhibit unique variations, like early superhumps. We have recently developed a method to reconstruct the structure of disks using multi-band light curves of early superhumps. Here, we introduce the results of this method using the data of the dwarf nova, V455 And.

  11. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  12. Path ANalysis

    Energy Science and Technology Software Center (ESTSC)

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less

  13. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  14. Path planning under spatial uncertainty.

    PubMed

    Wiener, Jan M; Lafon, Matthieu; Berthoz, Alain

    2008-04-01

    In this article, we present experiments studying path planning under spatial uncertainties. In the main experiment, the participants' task was to navigate the shortest possible path to find an object hidden in one of four places and to bring it to the final destination. The probability of finding the object (probability matrix) was different for each of the four places and varied between conditions. Givensuch uncertainties about the object's location, planning a single path is not sufficient. Participants had to generate multiple consecutive plans (metaplans)--for example: If the object is found in A, proceed to the destination; if the object is not found, proceed to B; and so on. The optimal solution depends on the specific probability matrix. In each condition, participants learned a different probability matrix and were then asked to report the optimal metaplan. Results demonstrate effective integration of the probabilistic information about the object's location during planning. We present a hierarchical planning scheme that could account for participants' behavior, as well as for systematic errors and differences between conditions. PMID:18491490

  15. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  16. Skeleton-based fast path planning for UAV

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhou, Chengping; Ding, Mingyue; Cai, Chao

    2009-10-01

    A new path planning method for UAV in static workspace is presented. The method can find a nearly optimal path in short time which satisfies the UAV kinematic constraints. The method makes use of the skeletons to construct the graph of the planning space considering the configuration of the obstacles and utilizes the graph to find a shortest collision-free path, and a novel technique is utilized to convert the free path into a feasible path. The method can be applied to different applications and easy to be implemented. Experimental results showed that the path planning can be done in a fraction of second on a contemporary workstation (2-3 seconds) under the condition of satisfying the kinematic constraints.

  17. Trees, paths and avalanches on random networks

    NASA Astrophysics Data System (ADS)

    Dobrin, Radu

    The investigation of equilibrium and non-equilibrium processes in disordered systems and particularly the relation between them is a complex problem that deserves attention. We concentrate on analyzing several relations of this type and appropriate numerical solutions. Invasion percolation (IP) model was motivated by the problem of fluid displacement in disordered media but in principle it could be applied to any invasion process which evolves along the minimum resistance path. Finding the invasion paths is a global optimization problem where the front advances by occupying the least resistant bond. Once the invasion is finished, the union of all the invasion paths on the lattice forms a minimum energy spanning tree (MST). We show that the geometry of a MST on random graphs is universal. Due to this geometric universality, we are able to characterize the energy of this optimal tree for any type of disorder using a scaling distribution found using uniform disorder. Therefore we expect the hopping transport in random media to have universal behavior. Kinetic interfaces is an important branch of statistical mechanics, fueled by application such as fluid-fluid displacement, imbibition in porous media, flame fronts, tumors, etc. These processes can be unified via Kardar-Parisi-Zhang (KPZ) equation, which is mapped exactly to an equilibrium problem (DPRM). We are able to characterize both using Dijkstra's algorithm, which is known to generate shortest path tree in a random network. We found that while obtaining the polymers the algorithm develops a KPZ type interface. We have extracted the interface exponents for both 2d square lattice and 3 d cubic lattice, being in agreement with previously recorded results for KPZ. The IP and KPZ classes are known to be very different: while the first one generates a distinct self-similar (fractal) interface, the second one has a self-similar invasion front. Though they are different we are able to construct a generalized algorithm that interpolates between these two universality classes. We discuss the relationship with the IP, the directed polymer in a random media; and the implications for the broader issue of universality in disordered systems. Random Field Ising Model (RFIM) is one of the most important models of phase transitions in disordered systems. We present exact results for the critical behavior of the RFIM on complete graphs and trees, both at equilibrium and away from equilibrium, i.e., models for hysteresis and Barkhausen noise. We show that for stretched exponential and powerlaw distributions of random fields the behavior on complete graphs is non-universal, while the behavior on Cayley trees is universal even in the limit of large coordination. Until recently, the evolution of WWW, Internet, etc., was thought to be highly complex. The model proposed by Barabasi and Albert shows that such networks can be modeled with the help of "preferential attachment", i.e. a highly connected vertex has a higher chance to get further links compared with a weakly connected vertex. We find that the random network constructed from a self-organized critical mechanism, (IP), falls in the same class without imposing any "preferential" growth rule. The network obtained has a connectivity exponent gamma ≊ 2.45, close to the WWW outgoing-links exponent.

  18. Bicriteria network design problems

    SciTech Connect

    Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J.; Hunt, H.B. III

    1994-12-31

    We study several bicriteria network design problems phrased as follows: given an undirected graph and two minimization objectives with a budget specified on one objective, find a subgraph satisfying certain connectivity requirements that minimizes the second objective subject to the budget on the first. Define an ({alpha}, {beta})-approximation algorithm as a polynomial-time algorithm that produces a solution in which the first objective value is at most {alpha} times the budget, and the second objective value is at most {alpha} times the minimum cost of a network obeying the budget oil the first objective. We, present the first approximation algorithms for bicriteria problems obtained by combining classical minimization objectives such as the total edge cost of the network, the diameter of the network and a weighted generalization of the maximum degree of any node in the network. We first develop some formalism related to bicriteria problems that leads to a clean way to state bicriteria approximation results. Secondly, when the two objectives are similar but only differ based on the cost function under which they are computed we present a general parametric search technique that yields approximation algorithms by reducing the problem to one of minimizing a single objective of the same type. Thirdly, we present an O(log n, log n)-approximation algorithm for finding a diameter-constrained minimum cost spanning tree of an undirected graph on n nodes generalizing the notion of shallow, light trees and light approximate shortest-path trees that have been studied before. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. These pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.

  19. Challenging of path planning algorithms for autonomous robot in known environment

    NASA Astrophysics Data System (ADS)

    Farah, R. N.; Irwan, N.; Zuraida, Raja Lailatul; Shaharum, Umairah; Hanafi@Omar, Hafiz Mohd

    2014-06-01

    Most of the mobile robot path planning is estimated to reach its predetermined aim through the shortest path and avoiding the obstacles. This paper is a survey on path planning algorithms of various current research and existing system of Unmanned Ground Vehicles (UGV) where their challenging issues to be intelligent autonomous robot. The focuses are some short reviews on individual papers for UGV in the known environment. Methods and algorithms in path planning for the autonomous robot had been discussed. From the reviews, we obtained that the algorithms proposed are appropriate for some cases such as single or multiple obstacles, static or movement obstacle and optimal shortest path. This paper also describes some pros and cons for every reviewed paper toward algorithms improvement for further work.

  20. Counting paths in digraphs

    SciTech Connect

    Sullivan, Blair D; Seymour, Dr. Paul Douglas

    2010-01-01

    Say a digraph is k-free if it has no directed cycles of length at most k, for k {element_of} Z{sup +}. Thomasse conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most (n-1)n(n+1)/15. We present an unpublished result of Bondy proving there are at most 2n{sup 3}/25 such paths, and prove that for the class of circular interval digraphs, an upper bound of n{sup 3}/16 holds. We also study the problem of bounding the number of (non-induced) 4-vertex paths in 3-free digraphs. We show an upper bound of 4n{sup 4}/75 using Bondy's result for Thomasse's conjecture.

  1. Complexity analysis of pipeline mapping problems in distributed heterogeneous networks

    SciTech Connect

    Lin, Ying; Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S

    2009-04-01

    Largescale scientific applications require using various system resources to execute complex computing pipelines in distributed networks to support collaborative research. System resources are typically shared in the Internet or over dedicated connections based on their location, availability, capability, and capacity. Optimizing the network performance of computing pipelines in such distributed environments is critical to the success of these applications. We consider two types of largescale distributed applications: (1) interactive applications where a single dataset is sequentially processed along a pipeline; and (2) streaming applications where a series of datasets continuously flow through a pipeline. The computing pipelines of these applications consist of a number of modules executed in a linear order in network environments with heterogeneous resources under different constraints. Our goal is to find an efficient mapping scheme that allocates the modules of a pipeline to network nodes for minimum endtoend delay or maximum frame rate. We formulate the pipeline mappings in distributed environments as optimization problems and categorize them into six classes with different optimization goals and mapping constraints: (1) Minimum Endtoend Delay with No Node Reuse (MEDNNR), (2) Minimum Endtoend Delay with Contiguous Node Reuse (MEDCNR), (3) Minimum Endtoend Delay with Arbitrary Node Reuse (MEDANR), (4) Maximum Frame Rate with No Node Reuse or Share (MFRNNRS), (5) Maximum Frame Rate with Contiguous Node Reuse and Share (MFRCNRS), and (6) Maximum Frame Rate with Arbitrary Node Reuse and Share (MFRANRS). Here, 'contiguous node reuse' means that multiple contiguous modules along the pipeline may run on the same node and 'arbitrary node reuse' imposes no restriction on node reuse. Note that in interactive applications, a node can be reused but its resource is not shared. We prove that MEDANR is polynomially solvable and the rest are NP-complete. MEDANR, where either contiguous or noncontiguous modules in the pipeline can be mapped onto the same node, is essentially the Maximum n-hop Shortest Path problem, and can be solved using a dynamic programming method. In MEDNNR and MFRNNRS, any network node can be used only once, which requires selecting the same number of nodes for onetoone onto mapping. We show its NP-completeness by reducing from the Hamiltonian Path problem. Node reuse is allowed in MEDCNR, MFRCNRS and MFRANRS, which are similar to the Maximum n-hop Shortest Path problem that considers resource sharing. We prove their NP-completeness by reducing from the Disjoint-Connecting-Path Problem and Widest path with the Linear Capacity Constraints problem, respectively.

  2. Path planning control

    NASA Technical Reports Server (NTRS)

    Mcroberts, Malcolm

    1990-01-01

    Viewgraphs on path planning control are presented. Topics covered include: model based path planning; sensor based path planning; hybrid path planning; proximity sensor array; and applications for fuzzy logic.

  3. Minimum-Risk Path Finding by an Adaptive Amoebal Network

    NASA Astrophysics Data System (ADS)

    Nakagaki, Toshiyuki; Iima, Makoto; Ueda, Tetsuo; Nishiura, Yasumasa; Saigusa, Tetsu; Tero, Atsushi; Kobayashi, Ryo; Showalter, Kenneth

    2007-08-01

    When two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path. A model for an adaptive-tube network is presented that is in good agreement with the experimental observations.

  4. A novel approach of global path planning for UGV

    NASA Astrophysics Data System (ADS)

    Choe, TokSon; Park, YongWoon; Kim, Jun; Kang, Sin Cheon; Jee, Tae Young; Ryu, Chul-Hyung

    2006-05-01

    Global path planning (GPP) is the generation of an optimal trajectory to efficiently move from one position to specified target position with known environment. Most of GPP methodologies offer an optimal 2D-shortest path without considering vehicle parameters on the plain environments. However, it is motivated to consider 3D terrain and vehicle parameters to enhance traversability on the rough terrain. In this paper, we propose a novel approach of GPP method for unmanned ground vehicles (UGVs) by applying distance transform (3D to 2D) based on the slope of terrain. In addition, the generated path is modified by smoothing process based on the local path planning method which considers vehicle stability on the specified candidate curve and speed. The proposed methodology is tested by simulations and shows enhanced performance.

  5. Trajectory Generation and Path Planning for Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto

    2007-01-01

    This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.

  6. Calculating Least Risk Paths in 3d Indoor Space

    NASA Astrophysics Data System (ADS)

    Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.

    2013-08-01

    Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.

  7. Time optimal paths for high speed maneuvering

    SciTech Connect

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  8. Paths from Mother-Child and Father-Child Relationships to Externalizing Behavior Problems in Children Differing in Electrodermal Reactivity: a Longitudinal Study from Infancy to Age 10

    PubMed Central

    Kochanska, Grazyna; Brock, Rebecca L.; Chen, Kuan-Hua; Aksan, Nazan; Anderson, Steven W.

    2014-01-01

    Electrodermal hyporeactivity (or low skin conductance level, SCL) has been long established as a correlate of and diathesis for antisocial behavior, aggression, disregard for rules of conduct and feelings of others, and generally, externalizing behavior problems in children and adults. Much less is known, however, about how individual differences in children’s SCL and qualities of their early experiences in relationships with parents interact to produce antisocial outcomes. In a community sample of 102 families (51 girls), we examined children’s SCL, assessed in standard laboratory tasks at age 8 (N=81), as a moderator of the links between parent–child socialization history and children’s externalizing behavior problems at ages 8 and 10, reported by mothers and fathers in well-established instruments and by children in clinical interviews. Mother- and father-child socialization history was assessed in frequent, intensive observations. Parent–child mutually responsive orientation (MRO) was observed from infancy to age 10, parental power assertion was observed from 15 months to age 6 ½, and children reported their attachment security in interviews at age 8 and 10. For children with lower SCL, variations in mothers’ power assertion and father-child MRO were associated with parent-rated externalizing problems. The former interaction was consistent with diathesis-stress, and the latter with differential susceptibility. For children with higher SCL, there were no links between socialization history and externalizing problems. PMID:25218772

  9. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  10. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system.

    PubMed

    Sun, Xiankai; Liu, Hsi-Chun; Yariv, Amnon

    2009-02-01

    By analyzing the propagating behavior of the supermodes in a coupled-waveguide system, we have derived a universal criterion for designing adiabatic mode transformers. The criterion relates epsilon, the fraction of power scattered into the unwanted mode, to waveguide design parameters and gives the shortest possible length of an adiabatic mode transformer, which is approximately 2/piepsilon1/2 times the distance of maximal power transfer between the waveguides. The results from numerical calculations based on a transfer-matrix formalism support this theory very well. PMID:19183631

  11. Analyzing the applicability of the least risk path algorithm in indoor space

    NASA Astrophysics Data System (ADS)

    Vanclooster, A.; Viaene, P.; Van de Weghe, N.; Fack, V.; De Maeyer, Ph.

    2013-11-01

    Over the last couple of years, applications that support navigation and wayfinding in indoor environments have become one of the booming industries. However, the algorithmic support for indoor navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. In outdoor space, several alternative algorithms have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behavior (e.g. simplest paths, least risk paths). The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-story building. Several analyses compare shortest and least risk paths in indoor and in outdoor space. The results of these analyses indicate that the current outdoor least risk path algorithm does not calculate less risky paths compared to its shortest paths. In some cases, worse routes have been suggested. Adjustments to the original algorithm are proposed to be more aligned to the specific structure of indoor environments. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.

  12. By-passing the sign-problem in Fermion Path Integral Monte Carlo simulations by use of high-order propagators

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2014-03-01

    The sign-problem in PIMC simulations of non-relativistic fermions increases in serverity with the number of fermions and the number of beads (or time-slices) of the simulation. A large of number of beads is usually needed, because the conventional primitive propagator is only second-order and the usual thermodynamic energy-estimator converges very slowly from below with the total imaginary time. The Hamiltonian energy-estimator, while more complicated to evaluate, is a variational upper-bound and converges much faster with the total imaginary time, thereby requiring fewer beads. This work shows that when the Hamiltonian estimator is used in conjunction with fourth-order propagators with optimizable parameters, the ground state energies of 2D parabolic quantum-dots with approximately 10 completely polarized electrons can be obtain with ONLY 3-5 beads, before the onset of severe sign problems. This work was made possible by NPRP GRANT #5-674-1-114 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author.

  13. Modeling Strategic Optimization Criteria in Spatial Combinatorial Optimization Problems.

    PubMed

    Perelman, Brandon; Mueller, Shane

    2015-09-01

    In many real-world route planning and search tasks, humans must solve a combinatorial optimization problem that holds many similarities to the Euclidean Traveling Salesman Problem (TSP). The problem spaces used in real-world tasks differ most starkly from traditional TSP in terms of optimization criteria - Whereas the traditional TSP asks participants to connect all of the nodes to produce the solution that minimizes overall path length, real-world search tasks are often conducted with the goal of minimizing the duration of time required to find the target (i.e., the average distance between nodes). Traditional modeling approaches to TSP assume that humans solve these problems using intrinsic characteristics of the brain and perceptual system (e.g., hierarchical structure in the visual system). A consequence of these approaches is that they are not robust to strategic changes in the aforementioned optimization criteria during path planning. To investigate performance in these tasks, 28 participants solved 18 randomly-presented computer-based combinatorial optimization problems with two sets of task instructions, one designed to encourage shortest-path solutions and the other to encourage solutions that minimized the estimated time to find a target hidden among the nodes (i.e., locations). The node distributions were designed to discriminate between these two strategies. In nearly every case, participants were capable of strategically adapting optimization criteria based on instruction alone. These results indicate the importance of modeling cognition in behaviors that are traditionally thought to be driven automatically by perceptual processes. In addition, we discuss computational models that we have developed to produce optimization criteria-specific solutions to these combinatorial optimization problems using a strategic optimization parameter to guide solutions using a single underlying mechanism. Such models have applications in approximating human behavior in real-world tasks. Meeting abstract presented at VSS 2015. PMID:26326160

  14. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1989-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented here.

  15. Egocentric path integration models and their application to desert arthropods.

    PubMed

    Merkle, Tobias; Rost, Martin; Alt, Wolfgang

    2006-06-01

    Path integration enables desert arthropods to find back to their nest on the shortest track from any position. To perform path integration successfully, speeds and turning angles along the preceding outbound path have to be measured continuously and combined to determine an internal global vector leading back home at any time. A number of experiments have given an idea how arthropods might use allothetic or idiothetic signals to perceive their orientation and moving speed. We systematically review the four possible model descriptions of mathematically precise path integration, whereby we favour and elaborate the hitherto not used variant of egocentric cartesian coordinates. Its simple and intuitive structure is demonstrated in comparison to the other models. Measuring two speeds, the forward moving speed and the angular turning rate, and implementing them into a linear system of differential equations provides the necessary information during outbound route, reorientation process and return path. In addition, we propose several possible types of systematic errors that can cause deviations from the correct homeward course. Deviations have been observed for several species of desert arthropods in different experiments, but their origin is still under debate. Using our egocentric path integration model we propose simple error indices depending on path geometry that will allow future experiments to rule out or corroborate certain error types. PMID:16300795

  16. Maximum Flux Transition Paths of Conformational Change

    PubMed Central

    Zhao, Ruijun; Shen, Juanfang; Skeel, Robert D.

    2010-01-01

    Given two metastable states A and B of a biomolecular system, the problem is to calculate the likely paths of the transition from A to B. Such a calculation is more informative and more manageable if done for a reduced set of collective variables chosen so that paths cluster in collective variable space. The computational task becomes that of computing the “center” of such a cluster. A good way to define the center employs the concept of a committor, whose value at a point in collective variable space is the probability that a trajectory at that point will reach B before A. The committor “foliates” the transition region into a set of isocommittors. The maximum flux transition path is defined as a path that crosses each isocommittor at a point which (locally) has the highest crossing rate of distinct reactive trajectories. This path is based on the same principle as the minimum resistance path of Berkowitz et al (1983), but it has two advantages: (i) the path is invariant with respect to a change of coordinates in collective variable space and (ii) the differential equations that define the path are simpler. It is argued that such a path is nearer to an ideal path than others that have been proposed with the possible exception of the finite-temperature string method path. To make the calculation tractable, three approximations are introduced, yielding a path that is the solution of a nonsingular two-point boundary-value problem. For such a problem, one can construct a simple and robust algorithm. One such algorithm and its performance is discussed. PMID:20890401

  17. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability.

    PubMed

    Hemann, M T; Strong, M A; Hao, L Y; Greider, C W

    2001-10-01

    Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase. PMID:11595186

  18. TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE WHITE DWARF STARS

    SciTech Connect

    Mullally, F.; Badenes, Carles; Lupton, Robert; Thompson, Susan E.

    2009-12-10

    We report on the detection of the two shortest period non-interacting white dwarf binary systems. These systems, SDSS J143633.29+501026.8 and SDSS J105353.89+520031.0, were identified by searching for radial velocity variations in the individual exposures that make up the published spectra from the Sloan Digital Sky Survey. We followed up these systems with time series spectroscopy to measure the period and mass ratios of these systems. Although we only place a lower bound on the companion masses, we argue that they must also be white dwarf stars. With periods of approximately 1 hr, we estimate that the systems will merge in less than 100 Myr, but the merger product will likely not be massive enough to result in a Type 1a supernova.

  19. The absolute path command

    Energy Science and Technology Software Center (ESTSC)

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  20. Quantifying Kinetic Paths of Protein Folding

    PubMed Central

    Wang, Jin; Zhang, Kun; Lu, Hongyang; Wang, Erkang

    2005-01-01

    We propose a new approach to activated protein folding dynamics via a diffusive path integral framework. The important issues of kinetic paths in this situation can be directly addressed. This leads to the identification of the kinetic paths of the activated folding process, and provides a direct tool and language for the theoretical and experimental community to understand the problem better. The kinetic paths giving the dominant contributions to the long-time folding activation dynamics can be quantitatively determined. These are shown to be the instanton paths. The contributions of these instanton paths to the kinetics lead to the “bell-like” shape folding rate dependence on temperature, which is in good agreement with folding kinetic experiments and simulations. The connections to other approaches as well as the experiments of the protein folding kinetics are discussed. PMID:15994895

  1. Research on Taxiway Path Optimization Based on Conflict Detection

    PubMed Central

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485

  2. Research on Taxiway Path Optimization Based on Conflict Detection.

    PubMed

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485

  3. Numerical evaluation of Feynman path integrals

    NASA Astrophysics Data System (ADS)

    Baird, William Hugh

    1999-11-01

    The notion of path integration developed by Feynman, while an incredibly successful method of solving quantum mechanical problems, leads to frequently intractable integrations over an infinite number of paths. Two methods now exist which sidestep this difficulty by defining "densities" of actions which give the relative number of paths found at different values of the action. These densities are sampled by computer generation of paths and the propagators are found to a high degree of accuracy for the case of a particle on the infinite half line and in a finite square well in one dimension. The problem of propagation within a two dimensional radial well is also addressed as the precursor to the problem of a particle in a stadium (quantum billiard).

  4. Resonating-Valence-Bond Physics Is Not Always Governed by the Shortest Tunneling Loops

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Rousochatzakis, Ioannis

    2015-10-01

    It is well known that the low-energy sector of quantum spin liquids and other magnetically disordered systems is governed by short-ranged resonating-valence bonds. Here we show that the standard minimal truncation to the nearest-neighbor valence-bond basis fails completely even for systems where it should work the most, according to received wisdom. This paradigm shift is demonstrated for the quantum spin-1 /2 square kagome, where strong geometric frustration, similar to the kagome, prevents magnetic ordering down to zero temperature. The shortest tunneling events bear the strongest longer-range singlet fluctuations, leading to amplitudes that do not drop exponentially with the length of the loop L , and to an unexpected loop-six valence-bond crystal, which is otherwise very high in energy at the minimal truncation level. The low-energy effective description gives in addition a clear example of correlated loop processes that depend not only on the type of the loop but also on its lattice embedding, a direct manifestation of the long-range nature of the virtual singlets.

  5. Resonating-Valence-Bond Physics Is Not Always Governed by the Shortest Tunneling Loops.

    PubMed

    Ralko, Arnaud; Rousochatzakis, Ioannis

    2015-10-16

    It is well known that the low-energy sector of quantum spin liquids and other magnetically disordered systems is governed by short-ranged resonating-valence bonds. Here we show that the standard minimal truncation to the nearest-neighbor valence-bond basis fails completely even for systems where it should work the most, according to received wisdom. This paradigm shift is demonstrated for the quantum spin-1/2 square kagome, where strong geometric frustration, similar to the kagome, prevents magnetic ordering down to zero temperature. The shortest tunneling events bear the strongest longer-range singlet fluctuations, leading to amplitudes that do not drop exponentially with the length of the loop L, and to an unexpected loop-six valence-bond crystal, which is otherwise very high in energy at the minimal truncation level. The low-energy effective description gives in addition a clear example of correlated loop processes that depend not only on the type of the loop but also on its lattice embedding, a direct manifestation of the long-range nature of the virtual singlets. PMID:26550898

  6. A global path planning approach for redundant manipulators

    NASA Technical Reports Server (NTRS)

    Seereeram, Sanjeev; Wen, J.

    1993-01-01

    A new approach for global path planning of redundant manipulators is proposed. It poses the path planning problem as a finite time nonlinear control problem. The solution is found by a Newton-Raphson type algorithm. This technique is capable of handling various goal task descriptions as well as incorporating both joint and task space constraints. The algorithm has shown promising preliminary results in planning joint path sequences for 3R and 4R planar robots to meet Cartesian tip tracking and goal endpoint planning. It is robust with respect to local path planning problems such as singularity considerations and local minimum problems. Repetitive joint path solutions for cyclic end-effector tasks are also generated. Eventual goals of this work include implementation on full spatial robots, as well as provision of an interface for supervisory input to aid in path planning for more complex problems.

  7. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  8. Accretion disc mapping of the shortest period eclipsing binary SDSS J0926+36

    NASA Astrophysics Data System (ADS)

    Schlindwein, W.; Baptista, R.

    2014-10-01

    AM CVn stars are ultracompact binaries (P_{orb}< 65 min) where a hydrogen-deficient low-mass, degenerate donor star overfills its Roche lobe and transfers matter to a companion white dwarf via an accretion disc. SDSS J0926+36 is currently the only eclipsing AM CVn star and also the shortest period eclipsing binary known. Its light curve displays deep (˜ 2 mag) eclipses every 28.3 min, which last for ˜ 2 min, as well as ˜ 2 mag amplitude outbursts every ˜ 100-200 d. Superhumps were seen in its quiescent light curve in some occasions, probably as a reminiscence of a (in some cases undetected) previous outburst. Its eclipsing nature allows a unique opportunity to disentangle the emission from several different light sources, and to map the surface brightness distribution of its hydrogen-deficient accretion disc with the aid of maximum entropy eclipse mapping techniques. Here we report the eclipse mapping analysis of optical light curves of SDSS J0926+36, collected with the 2.4 m Liverpool Robotic Telescope, covering 20 orbits of the binary over 5 nights of observations between 2012 February and March. The object was in quiescence at all runs. Our data show no evidence of superhumps nor of orbital modulation due to anisotropic emission from a bright spot at disc rim. Accordingly, the average out-of-eclipse flux level is consistent with that of the superhump-subtracted previous light curves. We combined all runs to obtain an orbital light curve of improved S/N. The corresponding eclipse map shows a compact source at disc centre (T_{b}simeq 17000 K), a faint, cool accretion disc (˜ 4000 K) plus enhanced emission along the gas stream (˜ 6000 K) beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow at that epoch.

  9. AH Cam: A metal-rich RR Lyrae star with the shortest known Blazhko period

    NASA Technical Reports Server (NTRS)

    Smith, Horace A.; Matthews, Jaymie M.; Lee, Kevin M.; Williams, Jeffrey; Silbermann, N. A.; Bolte, Michael

    1994-01-01

    Analysis of 746 new V-band observations of the RR Lyrae star AH Cam obtained during 1989 - 1992 clearly show that its light curve cannot be described by a single period. In fact, at first glance, the Fourier spectrum of the photometry resembles that of a double-mode pulsator, with peaks at a fundamental period of 0.3686 d and an apparent secondary period of 0.2628 d. Nevertheless, the dual-mode solution is a poor fit to the data. Rather, we believe that AH Cam is a single-mode RR Lyrae star undergoing the Blazhko effect: periodic modulation of the amplitude and shape of its light curve. What was originally taken to be the period of the second mode is instead the 1-cycle/d alias of a modulation sidelobe in the Fourier spectrum. The data are well described by a modulation period of just under 11 d, which is the shortest Blazhko period reported to date in the literature and confirms the earlier suggestion by Goranskii. A low-resolution spectrum of AH Cam indicates that it is relatively metal rich, with delta-S less than or = 2. Its high metallicity and short modulation period may provide a critical test of at least one theory for the Blazhko effect. Moskalik's internal resonance model makes specific predictions of the growth rate of the fundamental model vs fundamental period. AH Cam falls outside the regime of other known Blazhko variables and resonance model predictions, but these are appropriate for metal-poor RR Lyrae stars. If the theory matches the behavior of AH Cam for a metal-rich stellar model, this would bolster the resonance hypothesis.

  10. Adaptable Path Planning in Regionalized Environments

    NASA Astrophysics Data System (ADS)

    Richter, Kai-Florian

    Human path planning relies on several more aspects than only geometric distance between two locations. These additional aspects mostly relate to the complexity of the traveled path. Accordingly, in recent years several cognitively motivated path search algorithms have been developed that try to minimize wayfinding complexity. However, the calculated paths may result in large detours as geometric properties of the network wayfinding occurs in are ignored. Simply adding distance as an additional factor to the cost function is a possible, but insufficient way of dealing with this problem. Instead, taking a global view on an environment by accounting for the heterogeneity of its structure allows for adapting the path search strategy. This heterogeneity can be used to regionalize the environment; each emerging region may require a different strategy for path planning. This paper presents such an approach to regionalized path planning. It argues for the advantages of the chosen approach, develops a measure for calculating wayfinding complexity that accounts for structural and functional aspects of wayfinding, and states a generic algorithm for regionalization. Finally, regionalized path planning is demonstrated in a sample scenario.

  11. Hybrid Genetic Algorithm with Fuzzy Logic Controller for Obstacle Location-Allocation Problem

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jyunichi; Wang, Xiaodong; Gen, Mitsuo; Yokota, Takao

    Location-allocation problem is known as one of the important problems faced in Industrial Engineering/Operations Research fields. One of important logistic tasks is transfer of manufactured products from plants to customers. If there is a need to supply products to large number of customers in a wide area, it is disadvantageous to deliver products from the only central distribution center or direct from plants. It is suitable to build up local distribution centers. In literature, different location models have been used according to characteristics of a distribution area. However, most of them related the location problem without obstacle. In this paper, an extended location-allocation problem with obstacles is considered. Since this problem is very complex and with many infeasible solutions, no direct method is effective to solve it, we propose a hybrid Genetic Algorithm (hGA) for effectively solving this problem. The proposed hGA combines two efficient methods based on Lagrangian relaxation and Dijkstra’s shortest path algorithm. To improve the performance of the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  12. At-Least Version of the Generalized Minimum Spanning Tree Problem: Optimization Through Ant Colony System and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Janich, Karl W.

    2005-01-01

    The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.

  13. Generic Equations for Constructing Smooth Paths Along Circles and Tangent Lines With Application to Airport Ground Paths

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith

    1998-01-01

    The primary purpose of this publication is to develop a mathematical model to describe smooth paths along any combination of circles and tangent lines. Two consecutive circles in a path are either tangent (externally or internally) or they appear on the same (lateral) or opposite (transverse) sides of a connecting tangent line. A path may start or end on either a segment or circle. The approach is to use mathematics common to robotics to design the path as a multilink manipulator. This approach allows a hierarchical view of the problem and keeps the notation manageable. A user simply specifies a few parameters to configure a path. Necessary and sufficient conditions automatically ensure the consistency of the inputs for a smooth path. Two example runway exit paths are given, and an angle to go assists in knowing when to switch from one path element to the next.

  14. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  15. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  16. Practical path planning among movable obstacles

    SciTech Connect

    Chen, Pang C.; Hwang, Yong K.

    1990-09-05

    Path planning among movable obstacles is a practical problem that is in need of a solution. In this paper an efficient heuristic algorithm that uses a generate-and-test paradigm: a good'' candidate path is hypothesized by a global planner and subsequently verified by a local planner. In the process of formalizing the problem, we also present a technique for modeling object interactions through contact. Our algorithm has been tested on a variety of examples, and was able to generate solutions within 10 seconds. 5 figs., 27 refs.

  17. Breast Contour Detection with Stable Paths

    NASA Astrophysics Data System (ADS)

    Cardoso, Jaime S.; Sousa, Ricardo; Teixeira, Luís F.; Cardoso, M. J.

    Breast cancer conservative treatment (BCCT), due to its proven oncological safety, is considered, when feasible, the gold standard of breast cancer treatment. However, aesthetic results are heterogeneous and difficult to evaluate in a standardized way, due to the lack of reproducibility of the subjective methods usually applied. The objective assessment methods, considered in the past as being less capable of evaluating all aspects of BCCT, are nowadays being preferred to overcome the drawbacks of the subjective evaluation. A computer-aided medical system was recently developed to objectively and automatically evaluate the aesthetic result of BCCT. In this system, the detection of the breast contour on the patient's digital photograph is a necessary step to extract the features subsequently used in the evaluation process. In this paper an algorithm based on the shortest path on a graph is proposed to detect automatically the breast contour. The proposed method extends an existing semi-automatic algorithm for the same purpose. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.

  18. Automatic tracking of neuro vascular tree paths

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, S.; Gopinath, A.; Mallya, Y.; Shriram, K. S.; Joshi, M.

    2006-03-01

    3-D analysis of blood vessels from volumetric CT and MR datasets has many applications ranging from examination of pathologies such as aneurysm and calcification to measurement of cross-sections for therapy planning. Segmentation of the vascular structures followed by tracking is an important processing step towards automating the 3-D vessel analysis workflow. This paper demonstrates a fast and automated algorithm for tracking the major arterial structures that have been previously segmented. Our algorithm uses anatomical knowledge to identify the start and end points in the vessel structure that allows automation. Voxel coding scheme is used to code every voxel in the vessel based on its geodesic distance from the start point. A shortest path based iterative region growing is used to extract the vessel tracks that are subsequently smoothed using an active contour method. The algorithm also has the ability to automatically detect bifurcation points of major arteries. Results are shown for tracking the major arteries such as the common carotid, internal carotid, vertebrals, and arteries coming off the Circle of Willis across multiple cases with various data related and pathological challenges from 7 CTA cases and 2 MR Time of Flight (TOF) cases.

  19. Transition Path Theory

    NASA Astrophysics Data System (ADS)

    vanden-Eijnden, E.

    The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to introduce the reader to the probabilistic framework one can use to characterize the mechanism of a reaction and obtain the probability density, current, rate, etc. of the reactive trajectories.

  20. Parallel dynamic programming for on-line flight path optimization

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Hu, K.

    1989-01-01

    Parallel systolic algorithms for dynamic programming(DP) and their respective hardware implementations are presented for a problem in on-line trajectory optimization. The method is applied to a model for helicopter flight path optimization through a complex constraint region. This problem has application to an air traffic control problem and also to a terrain following/threat avoidance problem.

  1. A modified reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Ganesh, G.; Whitaker, S.; Maki, G.

    1991-01-01

    High throughput is an overriding factor dictating system performance. A configurable data processor is presented which can be modified to optimize performance for a wide class of problems. The new processor is specifically designed for arbitrary data path operations and can be dynamically reconfigured.

  2. A Critical Path Analysis of Scientific Productivity.

    ERIC Educational Resources Information Center

    Loehle, Craig

    1994-01-01

    This article presents a queuing model simulation of scientific productivity utilizing critical path analysis. Creativity is found to have a large positive effect, a negative effect, or no effect on productivity, depending on the stage of the problem-solving process to which it is applied and the nature of the bottlenecks inherent to the specific…

  3. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  4. Multi-Level Indoor Path Planning Method

    NASA Astrophysics Data System (ADS)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Du, Z.; Zhang, Y.; Zeng, L.

    2015-05-01

    Indoor navigation is increasingly widespread in complex indoor environments, and indoor path planning is the most important part of indoor navigation. Path planning generally refers to finding the most suitable path connecting two locations, while avoiding collision with obstacles. However, it is a fundamental problem, especially for 3D complex building model. A common way to solve the issue in some applications has been approached in a number of relevant literature, which primarily operates on 2D drawings or building layouts, possibly with few attached attributes for obstacles. Although several digital building models in the format of 3D CAD have been used for path planning, they usually contain only geometric information while losing abundant semantic information of building components (e.g. types and attributes of building components and their simple relationships). Therefore, it becomes important to develop a reliable method that can enhance application of path planning by combining both geometric and semantic information of building components. This paper introduces a method that support 3D indoor path planning with semantic information.

  5. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    PubMed

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562

  6. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems

    PubMed Central

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562

  7. Path to the Profession

    ERIC Educational Resources Information Center

    Coleman, Toni

    2012-01-01

    A growing number of institutions are being more deliberate about bringing in fundraisers who fit the culture of the development department and about assessing skills and providing training that fill specific needs. Development shops are paying more attention to cultivating their staffs, staying attuned to employees' needs and creating career paths…

  8. Gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  9. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  10. THE STUDY OF COLLEGE ENVIRONMENTS USING PATH ANALYSIS.

    ERIC Educational Resources Information Center

    WERTS, CHARLES E.

    THIS STUDY ATTEMPTS TO DEMONSTRATE THAT PATH ANALYSIS IS A VALUABLE TOOL FOR INTERPRETING CORRELATIONS IN A CAUSAL SENSE. PATH ANALYSIS IS APPLIED TO A NONEXPERIMENTAL, PANEL SURVEY IN AN EFFORT TO DETERMINE WHETHER THE MORE SELECTIVE OR LESS SELECTIVE COLLEGES HAD A DIFFERENTIAL IMPACT ON THE EDUCATIONAL PLANS OF THEIR STUDENTS. THE PROBLEM IS TO…

  11. Path planning for everday robotics with SANDROS

    SciTech Connect

    Watterberg, P.; Xavier, P.; Hwang, Y.

    1997-02-01

    We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.

  12. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  13. Approximate path seeking for statistical iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Yang, Qiao; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    Statistical iterative reconstruction (IR) techniques have demonstrated many advantages in X-ray CT reconstruction. The statistical iterative reconstruction approach is often modeled as an optimization problem including a data fitting function and a penalty function. The tuning parameter values that regulate the strength of the penalty function are critical for achieving good reconstruction results. However, appropriate tuning parameter values that are suitable for the scan protocols and imaging tasks are often difficult to choose. In this work, we propose a path seeking algorithm that is capable of generating a series of IR images with different strengths of the penalty function. The path seeking algorithm uses the ratio of the gradients of the data fitting function and the penalty function to select pixels for small fixed size updates. We describe the path seeking algorithm for penalized weighted least squares (PWLS) with a Huber penalty function in both the directions of increasing and decreasing tuning parameter value. Simulations using the XCAT phantom show the proposed method produces path images that are very similar to the IR images that are computed via direct optimization. The root-mean- squared-error of one path image generated by the proposed method relative to full iterative reconstruction is about 6 HU for the entire image and 10 HU for a small region. Different path seeking directions, increment sizes and updating percentages of the path seeking algorithm are compared in simulations. The proposed method may reduce the dependence on selection of good tuning parameter values by instead generating multiple IR images, without significantly increasing the computational load.

  14. Path analysis in genetic epidemiology: a critique.

    PubMed Central

    Karlin, S; Cameron, E C; Chakraborty, R

    1983-01-01

    Path analysis, a form of general linear structural equation models, is used in studies of human genetics data to discern genetic, environmental, and cultural factors contributing to familial resemblance. It postulates a set of linear and additive parametric relationships between phenotypes and genetic and cultural variables and then essentially uses the assumption of multivariate normality to estimate and perform tests of hypothesis on parameters. Such an approach has been advocated for the analysis of genetic epidemiological data by D. C. Rao, N. Morton, C. R. Cloninger, L. J. Eaves, and W. E. Nance, among others. This paper reviews and evaluates the formulations, assumptions, methodological procedures, interpretations, and applications of path analysis. To give perspective, we begin with a discussion of path analysis as it occurs in the form of general linear causal models in several disciplines of the social sciences. Several specific path analysis models applied to lipoprotein concentrations, IQ, and twin data are then reviewed to keep the presentation self-contained. The bulk of the critical discussion that follows is directed toward the following four facets of path analysis: (1) coherence of model specification and applicability to data; (2) plausibility of modeling assumptions; (3) interpretability and utility of the model; and (4) validity of statistical and computational procedures. In the concluding section, a brief discussion of the problem of appropriate model selection is presented, followed by a number of suggestions of essentially model-free alternative methods of use in the treatment of complex structured data such as occurs in genetic epidemiology. PMID:6349335

  15. Perfect discretization of reparametrization invariant path integrals

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  16. QoS routing of multiple parallel paths in TDMA/CDMA ad hoc wireless networks

    NASA Astrophysics Data System (ADS)

    Wu, Huayi; Huang, Chuanhe; Jia, Xiaohua; Bai, Baohua

    2004-04-01

    This paper investigates the QoS routing in TDMA/CDMA ad hoc networks. Since the network topology may constantly change and the available bandwidth is very limited in ad hoc networks, it's quite often to see a call is blocked when a path with required bandwidth cannot be found in the system. Therefore, we try to find multiple paths whose aggregated bandwidth can meet the bandwidth requirement and whose delays are within the required delay bound and then use the multiple paths in parallel for the QoS transmission of the call. This QoS routing we proposed can significantly reduce the system blocking probability and thus make a better use of network resources. We discuss the process of searching multiple parallel paths and proposed three heuristics (according to three parameters: property of maximum bandwidth, property of shortest path, property of maximum ratio of bandwidth to hops) to choose a group of paths whose total bandwidth satisfies the requirement. Some simulations have been conducted and the simulation results have demonstrated the deference of blocking rate gained by using the proposed three heuristics and also shown the proposed algorithms out-perform one existent on-demand algorithm.

  17. Path integral quantization of parametrized field theory

    NASA Astrophysics Data System (ADS)

    Varadarajan, Madhavan

    2004-10-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard “Wick rotations” of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory.

  18. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.

  19. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.

  20. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  1. Portage and Path Dependence.

    PubMed

    Bleakley, Hoyt; Lin, Jeffrey

    2012-05-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  2. Semiclassical Ehrenfest paths

    NASA Astrophysics Data System (ADS)

    Liberalquino, Rafael; Parisio, Fernando

    2013-08-01

    Trajectories are a central concept in our understanding of classical phenomena and also in rationalizing quantum mechanical effects. In this work we provide a way to determine semiclassical paths, approximations to quantum averages in phase space, directly from classical trajectories. We avoid the need of intermediate steps, like particular solutions to the Schroedinger equation or numerical integration in phase space by considering the system to be initially in a coherent state and by assuming that its early dynamics is governed by the Heller semiclassical approximation. Our result is valid for short propagation times only, but gives non-trivial information on the quantum-classical transition.

  3. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  4. (Intrusion Path Analysis)

    SciTech Connect

    Hardwick, R D

    1989-01-01

    The design and implementation of an Intrusion Path Analysis (IPA) function came about as a result of the upgrades to the security systems at the Savannah River Site (SRS), near Aiken, South Carolina. The stated requirements for IPA were broad, leaving opportunity for creative freedom during design and development. The essential elements were that it: be based on alarm and sensor state data; consider insider as well as outsider threats; be flexible and easily enabled or disabled; not be processor intensive; and provide information to the operator in the event the analysis reveals possible path openings. The final design resulted from many and varied conceptual inputs, and will be implemented in selected test areas at SRS. It fulfils the requirements and: allows selective inclusion of sensors in the analysis; permits the formation of concentric rings of protection around assets; permits the defining of the number of rings which must be breached before issuing an alert; evaluates current sensor states as well as a recent, configurable history of sensor states; considers the sensors' physical location, with respect to the concentric rings; and enables changes for maintenance without software recompilation. 3 figs.

  5. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  6. Damage detection using frequency shift path

    NASA Astrophysics Data System (ADS)

    Wang, Longqi; Lie, Seng Tjhen; Zhang, Yao

    2016-01-01

    This paper introduces a novel concept called FREquency Shift (FRESH) path to describe the dynamic behavior of structures with auxiliary mass. FRESH path combines the effects of frequency shifting and amplitude changing into one space curve, providing a tool for analyzing structure health status and properties. A damage index called FRESH curvature is then proposed to detect local stiffness reduction. FRESH curvature can be easily adapted for a particular problem since the sensitivity of the index can be adjusted by changing auxiliary mass or excitation power. An algorithm is proposed to adjust automatically the contribution from frequency and amplitude in the method. Because the extraction of FRESH path requires highly accurate frequency and amplitude estimators; therefore, a procedure based on discrete time Fourier transform is introduced to extract accurate frequency and amplitude with the time complexity of O (n log n), which is verified by simulation signals. Moreover, numerical examples with different damage sizes, severities and damping are presented to demonstrate the validity of the proposed damage index. In addition, applications of FRESH path on two steel beams with different damages are presented and the results show that the proposed method is valid and computational efficient.

  7. Quad-rotor flight path energy optimization

    NASA Astrophysics Data System (ADS)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  8. Star-Paths, Stones and Horizon Astronomy

    NASA Astrophysics Data System (ADS)

    Brady, Bernadette

    2015-05-01

    Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.

  9. Interactive cutting path analysis programs

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  10. V753 MON: A UNIQUE CLOSE BINARY JUST AFTER THE EVOLUTIONARY STAGE WITH THE SHORTEST PERIOD DURING MASS TRANSFER

    SciTech Connect

    Qian, S.-B.; Zhang, J.; Wang, J.-J.; Zhu, L.-Y.; Liu, L.; Zhao, E. G.; Li, L.-J.; He, J.-J.

    2013-08-15

    We discovered that the O-C curve of V753 Mon shows an upward parabolic change while undergoing a cyclic variation with a period of 13.5 yr. The upward parabolic change reveals a long-term period increase at a rate of P-dot = +7.8 x 10{sup -8} days yr{sup -1}. Photometric solutions determined using the Wilson-Devinney method confirm that V753 Mon is a semi-detached binary system where the slightly less massive, hotter component star is transferring mass to the more massive one. This is in agreement with the long-term increase of the orbital period. The increase of the orbital period, the mass ratio very close to unity, and the semi-detached configuration with a less massive lobe-filling component all suggest that V753 Mon is on a key evolutionary stage just after the evolutionary stage with the shortest period during mass transfer. The results in this paper will shed light on the formation of massive contact binaries and the evolution of binary stars. The cyclic oscillation in the O-C diagram indicates that V753 Mon may be a triple system containing an extremely cool stellar companion that may play an important role for the formation and evolution in the binary system.

  11. Algorithms and Sensors for Small Robot Path Following

    NASA Technical Reports Server (NTRS)

    Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry

    2002-01-01

    Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.

  12. Path Flow Estimation Using Time Varying Coefficient State Space Model

    NASA Astrophysics Data System (ADS)

    Jou, Yow-Jen; Lan, Chien-Lun

    2009-08-01

    The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.

  13. Handbook of Feynman Path Integrals

    NASA Astrophysics Data System (ADS)

    Grosche, Christian, Steiner, Frank

    The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.

  14. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  15. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  16. Modelling of radiative transfer by the Monte Carlo method and solving the inverse problem based on a genetic algorithm according to experimental results of aerosol sensing on short paths using a femtosecond laser source

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Oshlakov, V. K.; Stepanov, A. N.; Sukhanov, A. Ya

    2015-02-01

    We consider the algorithms that implement a broadband ('multiwave') radiative transfer with allowance for multiple (aerosol) scattering and absorption by main atmospheric gases. In the spectral range of 0.6 - 1 ?m, a closed numerical simulation of modifications of the supercontinuum component of a probing femtosecond pulse is performed. In the framework of the algorithms for solving the inverse atmospheric-optics problems with the help of a genetic algorithm, we give an interpretation of the experimental backscattered spectrum of the supercontinuum. An adequate reconstruction of the distribution mode for the particles of artificial aerosol with the narrow-modal distributions in a size range of 0.5 - 2 mm and a step of 0.5 mm is obtained.

  17. Path integral learning of multidimensional movement trajectories

    NASA Astrophysics Data System (ADS)

    André, João; Santos, Cristina; Costa, Lino

    2013-10-01

    This paper explores the use of Path Integral Methods, particularly several variants of the recent Path Integral Policy Improvement (PI2) algorithm in multidimensional movement parametrized policy learning. We rely on Dynamic Movement Primitives (DMPs) to codify discrete and rhythmic trajectories, and apply the PI2-CMA and PIBB methods in the learning of optimal policy parameters, according to different cost functions that inherently encode movement objectives. Additionally we merge both of these variants and propose the PIBB-CMA algorithm, comparing all of them with the vanilla version of PI2. From the obtained results we conclude that PIBB-CMA surpasses all other methods in terms of convergence speed and iterative final cost, which leads to an increased interest in its application to more complex robotic problems.

  18. Collabortive Authoring of Walden's Paths

    SciTech Connect

    Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major

    2012-01-01

    This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.

  19. THE SHORTEST PERIOD sdB PLUS WHITE DWARF BINARY CD-30 11223 (GALEX J1411-3053)

    SciTech Connect

    Vennes, S.; Kawka, A.; Nemeth, P.; O'Toole, S. J.; Burton, D.

    2012-11-01

    We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M{sub 2}/M{sub Sun} {approx}> 0.77) assuming a canonical mass for the hot subdwarf (0.48 M{sub Sun }), although a white dwarf mass as low as 0.75 M{sub Sun} is allowable by postulating a subdwarf mass as low as 0.44 M{sub Sun }. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i {approx}> 68 Degree-Sign ) and, possibly, observable secondary transits (i {approx}> 74 Degree-Sign ). At the lowest permissible inclination and assuming a subdwarf mass of {approx}0.48 M{sub Sun }, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M{sub Sun} and would exceed it for a subdwarf mass above 0.48 M{sub Sun }. The system should be considered, like its sibling KPD 1930+2752, a candidate progenitor for a Type Ia supernova. The system should become semi-detached and initiate mass transfer within Almost-Equal-To 30 Myr.

  20. Incremental network design with topology augmentation on backup path provisioning in WDM mesh networks

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Ni, Wenda; Li, Yanhe; Zhang, Hanyi; Zheng, Xiaoping

    2010-12-01

    An incremental capacity allocation with topology augmentation problem is investigated in this paper to maximize the backup path provisioned services in WDM mesh networks. To tackle the optimal design problem, an integer linear programming (ILP) formulation is presented. Numerical results show that all the services can be provisioned a backup path with little number of new links added to the existing topology.

  1. Modeling of tool path for the CNC sheet cutting machines

    NASA Astrophysics Data System (ADS)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  2. Pathways with PathWhiz.

    PubMed

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  3. Pathways with PathWhiz

    PubMed Central

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  4. Two arm robot path planning in a static environment using polytopes and string stretching. Thesis

    NASA Technical Reports Server (NTRS)

    Schima, Francis J., III

    1990-01-01

    The two arm robot path planning problem has been analyzed and reduced into components to be simplified. This thesis examines one component in which two Puma-560 robot arms are simultaneously holding a single object. The problem is to find a path between two points around obstacles which is relatively fast and minimizes the distance. The thesis involves creating a structure on which to form an advanced path planning algorithm which could ideally find the optimum path. An actual path planning method is implemented which is simple though effective in most common situations. Given the limits of computer technology, a 'good' path is currently found. Objects in the workspace are modeled with polytopes. These are used because they can be used for rapid collision detection and still provide a representation which is adequate for path planning.

  5. Improving path planning with learning

    SciTech Connect

    Chen, P.C.

    1991-12-16

    We present a learning algorithm designed to improve robot path planning. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, it learns a sparse network of useful robot subgoals which guide and support fast planning. We analyze the algorithm theoretically by developing some general techniques useful in characterizing behaviors of probabilistic learning. We also demonstrate the effectiveness of the algorithm empirically with an existing path planner in practical environments. The learning algorithm not only reduces the time cost of existing planners, but also increases their capability in solving difficult tasks. 7 refs.

  6. Tapped-Hole Vent Path

    NASA Technical Reports Server (NTRS)

    Chandler, J. A.

    1983-01-01

    Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.

  7. Path-integral evidence

    NASA Astrophysics Data System (ADS)

    Kitching, T. D.; Taylor, A. N.

    2015-09-01

    Here we present a Bayesian formalism for the goodness of fit that is the evidence for a fixed functional form over the evidence for all functions that are a general perturbation about this form. This is done under the assumption that the statistical properties of the data can be modelled by a multivariate Gaussian distribution. We use this to show how one can optimize an experiment to find evidence for a fixed function over perturbations about this function. We apply this formalism to an illustrative problem of measuring perturbations in the dark energy equation of state about a cosmological constant.

  8. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.

    PubMed

    Desailly, Eric; Sardain, Philippe; Khouri, Nejib; Yepremian, Daniel; Lacouture, Patrick

    2010-09-17

    Associating musculoskeletal models to motion analysis data enables the determination of the muscular lengths, lengthening rates and moment arms of the muscles during the studied movement. Therefore, those models must be anatomically personalized and able to identify realistic muscular paths. Different kinds of algorithms exist to achieve this last issue, such as the wired models and the finite elements ones. After having studied the advantages and drawbacks of each one, we present the convex wrapping algorithm. Its purpose is to identify the shortest path from the origin to the insertion of a muscle wrapping over the underlying skeleton mesh while respecting possible non-sliding constraints. After the presentation of the algorithm, the results obtained are compared to a classically used wrapping surface algorithm (obstacle set method) by measuring the length and moment arm of the semitendinosus muscle during an asymptomatic gait. The convex wrapping algorithm gives an efficient and realistic way of identifying the muscular paths with respect to the underlying bones mesh without the need to define simplified geometric forms. It also enables the identification of the centroid path of the muscles if their thickness evolution function is known. All this presents a particular interest when studying populations presenting noticeable bone deformations, such as those observed in cerebral palsy or rheumatic pathologies. PMID:20627304

  9. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    PubMed Central

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  10. Harmonic Functions for Robot Path Construction

    NASA Astrophysics Data System (ADS)

    Connolly, C. I.; Burns, John B.; Weiss, Richard S.

    1990-02-01

    A frequent problem in the use of potential functions for robot path planning is that local minima often occur. These local minima may be eliminated by judicious selection of potential functions for goals and obstacles. Specifically, harmonic functions may be used without introducing such minima. While there are analytic, easily superposed solutions for impenetrable point obstacles, this is not the case for impenetrable obstacles with finite, nonzero extent (e.g., walls). Instead, numerical methods that are well suited to massively parallel computation can be used.

  11. Optimal Path to a Laser Fusion Energy Power Plant

    NASA Astrophysics Data System (ADS)

    Bodner, Stephen

    2013-10-01

    There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.

  12. The path of kyosei.

    PubMed

    Kaku, R

    1997-01-01

    Many global companies believe they have a moral duty to respond to the world's problems but are unsure how to do that and still pursue a reasonable profit for their shareholders. Ryuzaburo Kaku, honorary chairman of Canon, the Japanese technology company, suggests that companies consider kyosei, a business credo that he defines as a "spirit of cooperation" in which individuals and organizations work together for the common good. Kyosei, Kaku claims, has helped Canon make a significant and positive impact on many world problems as the company has grown to become one of the world's preeminent innovators and manufacturers of technology. The implementation of kyosei can be divided into five stages, with each stage building on the preceding one. In the first stage, companies must work to secure a predictable stream of profits and to establish strong market positions. From this foundation, they move on to the second stage, in which managers and workers resolve to cooperate with each other, recognizing that both groups are vital to the company's success. In the third stage, this sense of cooperation is extended beyond the company to encompass customers, suppliers, community groups, and even competitors. At the fourth stage, a company takes the cooperative spirit beyond national boundaries and addresses some of the global imbalances that plague the world. In the fifth stage, which companies rarely achieve, a company urges its national government to work toward rectifying global imbalances. For each stage, Kaku provides detailed examples from Cannon's own experience in putting the ideas of kyosei into practice. PMID:10168336

  13. Practical and conceptual path sampling issues

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.; Dellago, C.

    2015-09-01

    In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method's apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.

  14. Mobile transporter path planning using a genetic algorithm approach

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1988-01-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  15. PCB drill path optimization by combinatorial cuckoo search algorithm.

    PubMed

    Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G

    2014-01-01

    Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198

  16. PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm

    PubMed Central

    Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.

    2014-01-01

    Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198

  17. The Path Ahead

    NASA Astrophysics Data System (ADS)

    Tuszynski, Jack A.; Woolf, Nancy

    This chapter provides an introduction to the rest of the book, which has a multidisciplinary approach to the physics of consciousness. We summarize the various contributions and present our own point of view, which is that there are some deficiencies in defining higher-order consciousness in strict terms of classic physics. We favor a proposal that considers some aspects of quantum-mechanical operations among molecules involved with neurotransmission and mechanical transport of synaptic proteins. In our view, the wiring of the brain is not as complex, and certainly not as integrated, as commonly assumed. Instead, the wiring pattern redundantly obeys a few general principles focused on high resolution rather than crossmodal integration. Basing cognitive functions, such as higher-order consciousness, solely on electrophysiological responses in neural networks thus wired may not suffice. On the other hand, coherent quantum computing, executed by tubulins, the protein subunits of microtubules, may exert en masse influences over the transport of many receptor and scaffolding proteins to various activated synapses, thereby accounting for the unity of conscious experience. We discuss the potential problems of quantum computing, such as decoherence, and also present counterarguments, as well as recent empirical results consistent with the notion that quantum computing in the interiors of neurons, in particular, within the interiors of dendrites may indeed be possible.

  18. Heuristically optimal path scanning for high-speed multiphoton circuit imaging.

    PubMed

    Sadovsky, Alexander J; Kruskal, Peter B; Kimmel, Joseph M; Ostmeyer, Jared; Neubauer, Florian B; MacLean, Jason N

    2011-09-01

    Population dynamics of patterned neuronal firing are fundamental to information processing in the brain. Multiphoton microscopy in combination with calcium indicator dyes allows circuit dynamics to be imaged with single-neuron resolution. However, the temporal resolution of fluorescent measures is constrained by the imaging frequency imposed by standard raster scanning techniques. As a result, traditional raster scans limit the ability to detect the relative timing of action potentials in the imaged neuronal population. To maximize the speed of fluorescence measures from large populations of neurons using a standard multiphoton laser scanning microscope (MPLSM) setup, we have developed heuristically optimal path scanning (HOPS). HOPS optimizes the laser travel path length, and thus the temporal resolution of neuronal fluorescent measures, using standard galvanometer scan mirrors. Minimizing the scan path alone is insufficient for prolonged high-speed imaging of neuronal populations. Path stability and the signal-to-noise ratio become increasingly important factors as scan rates increase. HOPS addresses this by characterizing the scan mirror galvanometers to achieve prolonged path stability. In addition, the neuronal dwell time is optimized to sharpen the detection of action potentials while maximizing scan rate. The combination of shortest path calculation and minimization of mirror positioning time allows us to optically monitor a population of neurons in a field of view at high rates with single-spike resolution, ? 125 Hz for 50 neurons and ? 8.5 Hz for 1,000 neurons. Our approach introduces an accessible method for rapid imaging of large neuronal populations using traditional MPLSMs, facilitating new insights into neuronal circuit dynamics. PMID:21715667

  19. Heuristically optimal path scanning for high-speed multiphoton circuit imaging

    PubMed Central

    Sadovsky, Alexander J.; Kruskal, Peter B.; Kimmel, Joseph M.; Ostmeyer, Jared; Neubauer, Florian B.

    2011-01-01

    Population dynamics of patterned neuronal firing are fundamental to information processing in the brain. Multiphoton microscopy in combination with calcium indicator dyes allows circuit dynamics to be imaged with single-neuron resolution. However, the temporal resolution of fluorescent measures is constrained by the imaging frequency imposed by standard raster scanning techniques. As a result, traditional raster scans limit the ability to detect the relative timing of action potentials in the imaged neuronal population. To maximize the speed of fluorescence measures from large populations of neurons using a standard multiphoton laser scanning microscope (MPLSM) setup, we have developed heuristically optimal path scanning (HOPS). HOPS optimizes the laser travel path length, and thus the temporal resolution of neuronal fluorescent measures, using standard galvanometer scan mirrors. Minimizing the scan path alone is insufficient for prolonged high-speed imaging of neuronal populations. Path stability and the signal-to-noise ratio become increasingly important factors as scan rates increase. HOPS addresses this by characterizing the scan mirror galvanometers to achieve prolonged path stability. In addition, the neuronal dwell time is optimized to sharpen the detection of action potentials while maximizing scan rate. The combination of shortest path calculation and minimization of mirror positioning time allows us to optically monitor a population of neurons in a field of view at high rates with single-spike resolution, ?125 Hz for 50 neurons and ?8.5 Hz for 1,000 neurons. Our approach introduces an accessible method for rapid imaging of large neuronal populations using traditional MPLSMs, facilitating new insights into neuronal circuit dynamics. PMID:21715667

  20. Measurements of isocenter path characteristics of the gantry rotation axis with a smartphone application

    SciTech Connect

    Schiefer, H. Peters, S.; Plasswilm, L.; Ingulfsen, N.; Kluckert, J.

    2015-03-15

    Purpose: For stereotactic radiosurgery, the AAPM Report No. 54 [AAPM Task Group 42 (AAPM, 1995)] requires the overall stability of the isocenter (couch, gantry, and collimator) to be within a 1 mm radius. In reality, a rotating system has no rigid axis and thus no isocenter point which is fixed in space. As a consequence, the isocenter concept is reviewed here. It is the aim to develop a measurement method following the revised definitions. Methods: The mechanical isocenter is defined here by the point which rotates on the shortest path in the room coordinate system. The path is labeled as “isocenter path.” Its center of gravity is assumed to be the mechanical isocenter. Following this definition, an image-based and radiation-free measurement method was developed. Multiple marker pairs in a plane perpendicular to the assumed gantry rotation axis of a linear accelerator are imaged with a smartphone application from several rotation angles. Each marker pair represents an independent measuring system. The room coordinates of the isocenter path and the mechanical isocenter are calculated based on the marker coordinates. The presented measurement method is by this means strictly focused on the mechanical isocenter. Results: The measurement result is available virtually immediately following completion of measurement. When 12 independent measurement systems are evaluated, the standard deviations of the isocenter path points and mechanical isocenter coordinates are 0.02 and 0.002 mm, respectively. Conclusions: The measurement is highly accurate, time efficient, and simple to adapt. It is therefore suitable for regular checks of the mechanical isocenter characteristics of the gantry and collimator rotation axis. When the isocenter path is reproducible and its extent is in the range of the needed geometrical accuracy, it should be taken into account in the planning process. This is especially true for stereotactic treatments and radiosurgery.

  1. A bat algorithm with mutation for UCAV path planning.

    PubMed

    Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi

    2012-01-01

    Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518

  2. A Bat Algorithm with Mutation for UCAV Path Planning

    PubMed Central

    Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi

    2012-01-01

    Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518

  3. Heuristic optimization of the scanning path of particle therapy beams

    SciTech Connect

    Pardo, J.; Donetti, M.; Bourhaleb, F.; Ansarinejad, A.; Attili, A.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Givehchi, N.; La Rosa, A.; Marchetto, F.; Monaco, V.; Pecka, A.; Peroni, C.; Russo, G.; Sacchi, R.

    2009-06-15

    Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.

  4. Seismic refraction analysis: the path forward

    USGS Publications Warehouse

    Haines, Seth S.; Zelt, Colin; Doll, William

    2012-01-01

    Seismic Refraction Methods: Unleashing the Potential and Understanding the Limitations; Tucson, Arizona, 29 March 2012 A workshop focused on seismic refraction methods took place on 29 May 2012, associated with the 2012 Symposium on the Application of Geophysics to Engineering and Environmental Problems. This workshop was convened to assess the current state of the science and discuss paths forward, with a primary focus on near-surface problems but with an eye on all applications. The agenda included talks on these topics from a number of experts interspersed with discussion and a dedicated discussion period to finish the day. Discussion proved lively at times, and workshop participants delved into many topics central to seismic refraction work.

  5. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1993-03-01

    Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.

  6. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    NASA Astrophysics Data System (ADS)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  7. Energy aware path planning in complex four dimensional environments

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Anjan

    This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.

  8. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  9. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  10. Path-dependent entropy production

    NASA Astrophysics Data System (ADS)

    Kwon, Chulan

    2015-09-01

    A rigorous derivation of nonequilibrium entropy production via the path-integral formalism is presented. Entropy production is defined as the entropy change piled in a heat reservoir as a result of a nonequilibrium thermodynamic process. It is a central quantity by which various forms of the fluctuation theorem are obtained. The two kinds of the stochastic dynamics are investigated: the Langevin dynamics for an even-parity state and the Brownian motion of a single particle. Mathematical ambiguities in deriving the functional form of the entropy production, which depends on path in state space, are clarified by using a rigorous quantum mechanical approach.

  11. Maximum distributions of bridges of noncolliding Brownian paths

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Izumi, Minami; Katori, Makoto

    2008-11-01

    One-dimensional Brownian motion starting from the origin at time t=0 , conditioned to return to the origin at time t=1 and to stay positive during time interval 0paths attained in the time interval t?(0,1) are studied to characterize the statistics of random patterns of the repulsive paths on the spatiotemporal plane. For the outermost path, the distribution function of maximum value is exactly determined for general N . We show that the present N -path system of noncolliding Bessel bridges is realized as the positive-eigenvalue process of the 2N×2N matrix-valued Brownian bridge in the symmetry class C. Using this fact, computer simulations are performed and numerical results on the N dependence of the maximum-value distributions of the inner paths are reported. The present work demonstrates that the extreme-value problems of noncolliding paths are related to random matrix theory, the representation theory of symmetry, and number theory.

  12. Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods

    NASA Astrophysics Data System (ADS)

    Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.

    2015-11-01

    Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.

  13. Light transport on path-space manifolds

    NASA Astrophysics Data System (ADS)

    Jakob, Wenzel Alban

    The pervasive use of computer-generated graphics in our society has led to strict demands on their visual realism. Generally, users of rendering software want their images to look, in various ways, "real", which has been a key driving force towards methods that are based on the physics of light transport. Until recently, industrial practice has relied on a different set of methods that had comparatively little rigorous grounding in physics---but within the last decade, advances in rendering methods and computing power have come together to create a sudden and dramatic shift, in which physics-based methods that were formerly thought impractical have become the standard tool. As a consequence, considerable attention is now devoted towards making these methods as robust as possible. In this context, robustness refers to an algorithm's ability to process arbitrary input without large increases of the rendering time or degradation of the output image. One particularly challenging aspect of robustness entails simulating the precise interaction of light with all the materials that comprise the input scene. This dissertation focuses on one specific group of materials that has fundamentally been the most important source of difficulties in this process. Specular materials, such as glass windows, mirrors or smooth coatings (e.g. on finished wood), account for a significant percentage of the objects that surround us every day. It is perhaps surprising, then, that it is not well-understood how they can be accommodated within the theoretical framework that underlies some of the most sophisticated rendering methods available today. Many of these methods operate using a theoretical framework known as path space integration. But this framework makes no provisions for specular materials: to date, it is not clear how to write down a path space integral involving something as simple as a piece of glass. Although implementations can in practice still render these materials by side-stepping limitations of the theory, they often suffer from unusably slow convergence; improvements to this situation have been hampered by the lack of a thorough theoretical understanding. We address these problems by developing a new theory of path-space light transport which, for the first time, cleanly incorporates specular scattering into the standard framework. Most of the results obtained in the analysis of the ideally smooth case can also be generalized to rendering of glossy materials and volumetric scattering so that this dissertation also provides a powerful new set of tools for dealing with them. The basis of our approach is that each specular material interaction locally collapses the dimension of the space of light paths so that all relevant paths lie on a submanifold of path space. We analyze the high-dimensional differential geometry of this submanifold and use the resulting information to construct an algorithm that is able to "walk" around on it using a simple and efficient equation-solving iteration. This manifold walking algorithm then constitutes the key operation of a new type of Markov Chain Monte Carlo (MCMC) rendering method that computes lighting through very general families of paths that can involve arbitrary combinations of specular, near-specular, glossy, and diffuse surface interactions as well as isotropic or highly anisotropic volume scattering. We demonstrate our implementation on a range of challenging scenes and evaluate it against previous methods.

  14. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  15. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  16. Choosing the Path with Honor.

    ERIC Educational Resources Information Center

    Arredondo, Michael

    2002-01-01

    The author describes the difficulties of achieving his life-long dream of going to an Ivy League college, and how his Shawnee grandfather advised him to acquire the white man's skills and bring them back to his people. He advises young Native Americans to choose the more difficult, yet honorable path of serving their own people. (TD)

  17. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  18. Open problems in artificial life.

    PubMed

    Bedau, M A; McCaskill, J S; Packard, N H; Rasmussen, S; Adami, C; Green, D G; Ikegami, T; Kaneko, K; Ray, T S

    2000-01-01

    This article lists fourteen open problems in artificial life, each of which is a grand challenge requiring a major advance on a fundamental issue for its solution. Each problem is briefly explained, and, where deemed helpful, some promising paths to its solution are indicated. PMID:11348587

  19. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.

  20. Biodosimetry estimation using the ratio of the longest:shortest length in the premature chromosome condensation (PCC) method applying autocapture and automatic image analysis.

    PubMed

    González, Jorge E; Romero, Ivonne; Gregoire, Eric; Martin, Cécile; Lamadrid, Ana I; Voisin, Philippe; Barquinero, Joan-Francesc; García, Omar

    2014-09-01

    The combination of automatic image acquisition and automatic image analysis of premature chromosome condensation (PCC) spreads was tested as a rapid biodosimeter protocol. Human peripheral lymphocytes were irradiated with (60)Co gamma rays in a single dose of between 1 and 20 Gy, stimulated with phytohaemaglutinin and incubated for 48 h, division blocked with Colcemid, and PCC-induced by Calyculin A. Images of chromosome spreads were captured and analysed automatically by combining the Metafer 4 and CellProfiler platforms. Automatic measurement of chromosome lengths allows the calculation of the length ratio (LR) of the longest and the shortest piece that can be used for dose estimation since this ratio is correlated with ionizing radiation dose. The LR of the longest and the shortest chromosome pieces showed the best goodness-of-fit to a linear model in the dose interval tested. The application of the automatic analysis increases the potential use of the PCC method for triage in the event of massive radiation causalities. PMID:24789085

  1. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.

  2. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  3. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  4. Magnetohydrodynamics Using Path or Stream Functions

    NASA Astrophysics Data System (ADS)

    Naor, Yossi; Keshet, Uri

    2015-09-01

    Magnetization in highly conductive plasmas is ubiquitous to astronomical systems. Flows in such media can be described by three path functions {{{? }}}? , or, for a steady flow, by two stream functions {? }? and an additional field such as mass density ?, velocity v, or travel time {{? }}t. While typical analyses of a frozen magnetic field {\\boldsymbol{B}} are problem-specific and involve nonlocal gradients of the fluid element position {\\boldsymbol{x}}(t), we derive the general, local (in ? or ? space) solution {\\boldsymbol{B}}={(\\partial {\\boldsymbol{x}}/\\partial {{{? }}}? )}t{\\tilde{B}}? ? /\\tilde{? }, where Lagrangian constants denoted by a tilde are directly fixed at a boundary hypersurface \\tilde{H} on which {\\boldsymbol{B}} is known. For a steady flow, \\tilde{? }{\\boldsymbol{B}}/? ={(\\partial {\\boldsymbol{x}}/\\partial {? }? )}{{? }t}{\\tilde{B}}? +{\\boldsymbol{v}}{\\tilde{B}}3/\\tilde{v}; here the electric field {\\boldsymbol{E}}? ({\\tilde{B}}2{\\boldsymbol{\

  5. Ab initio path to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Binder, Sven; Langhammer, Joachim; Calci, Angelo; Roth, Robert

    2014-09-01

    We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16O to 132Sn, based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.

  6. How to (path-) integrate by differentiating

    NASA Astrophysics Data System (ADS)

    Kempf, Achim; Jackson, David M.; Morales, Alejandro H.

    2015-07-01

    Path integrals are at the heart of quantum field theory. In spite of their covariance and seeming simplicity, they are hard to define and evaluate. In contrast, functional differentiation, as it is used, for example, in variational problems, is relatively straightforward. This has motivated the development of new techniques that allow one to express functional integration in terms of functional differentiation. In fact, the new techniques allow one to express integrals in general through differentiation. These techniques therefore add to the general toolbox for integration and for integral transforms such as the Fourier and Laplace transforms. Here, we review some of these results, we give simpler proofs and we add new results, for example, on expressing the Laplace transform and its inverse in terms of derivatives, results that may be of use in quantum field theory, e.g., in the context of heat traces.

  7. Aircraft flight path angle display system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1991-01-01

    A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.

  8. Path entanglement of surface plasmons

    NASA Astrophysics Data System (ADS)

    Fakonas, James S.; Mitskovets, Anna; Atwater, Harry A.

    2015-02-01

    Metals can sustain traveling electromagnetic waves at their surfaces supported by the collective oscillations of their free electrons in unison. Remarkably, classical electromagnetism captures the essential physics of these ‘surface plasma’ waves using simple models with only macroscopic features, accounting for microscopic electron-electron and electron-phonon interactions with a single, semi-empirical damping parameter. Nevertheless, in quantum theory these microscopic interactions could be important, as any substantial environmental interactions could decohere quantum superpositions of surface plasmons, the quanta of these waves. Here we report a measurement of path entanglement between surface plasmons with 95% contrast, confirming that a path-entangled state can indeed survive without measurable decoherence. Our measurement suggests that elastic scattering mechanisms of the type that might cause pure dephasing in plasmonic systems must be weak enough not to significantly perturb the state of the metal under the experimental conditions we investigated.

  9. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  10. Transport path optimization algorithm based on fuzzy integrated weights

    NASA Astrophysics Data System (ADS)

    Hou, Yuan-Da; Xu, Xiao-Hao

    2014-11-01

    Natural disasters cause significant damage to roads, making route selection a complicated logistical problem. To overcome this complexity, we present a method of using a trapezoidal fuzzy number to select the optimal transport path. Using the given trapezoidal fuzzy edge coefficients, we calculate a fuzzy integrated matrix, and incorporate the fuzzy multi-weights into fuzzy integrated weights. The optimal path is determined by taking two sets of vertices and transforming undiscovered vertices into discoverable ones. Our experimental results show that the model is highly accurate, and requires only a few measurement data to confirm the optimal path. The model provides an effective, feasible, and convenient method to obtain weights for different road sections, and can be applied to road planning in intelligent transportation systems.

  11. Path planning using FMM with direction and curvature constrained

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Ding, Mingyue; Cai, Chao

    2009-10-01

    It is difficult to meet both direction and curvature constraints for traditional Fast Marching (FM) method in path planning. Based on adjusting the cost function in Eiknoal equation-the control equation for FM, a new model for computing the integrated cost function was presented in this paper. A relationship formula about curvature radius was obtained and three kinds of adjusting strategies were given; two of them were used to modify the route to meet with the requires of turning constraint in this paper. Experiments showed that the improved model can be used to plan the path with FMM for agent such as unmanned aerial vehicle (UAV) or robot, which is limited to pass through the scene matching areas. And our preliminary experiments demonstrated that the strategies are feasible and efficient to obtain path with certain curvature radius. The model can also be used to represent the problem such as an aircraft flying in a flow field.

  12. Algorithm of Finding Hypo-Critical Path in Network Planning

    NASA Astrophysics Data System (ADS)

    Qi, Jianxun; Zhao, Xiuhua

    Network planning technology could be used to represent project plan management, such Critical Path Method (CPM for short) and Performance Evaluation Review Technique (PERT for short) etc. Aiming at problem that how to find hypo-critical path in network planning, firstly, properties of total float. free float and safety float are analyzed, and total float theorem is deduced on the basis of above analysis; and secondly, simple algorithm of finding the hypo-critical path is designed by using these properties of float and total theorem, and correctness of the algorithm is analyzed. Proof shows that the algorithm could realize effect of whole optimization could be realized by part optimization. Finally, one illustration is given to expatiate the algorithm.

  13. Conditions for transmission path analysis in energy distribution models

    NASA Astrophysics Data System (ADS)

    Aragonès, Àngels; Guasch, Oriol

    2016-02-01

    In this work, we explore under which conditions transmission path analysis (TPA) developed for statistical energy analysis (SEA) can be applied to the less restrictive energy distribution (ED) models. It is shown that TPA can be extended without problems to proper-SEA systems whereas the situation is not so clear for quasi-SEA systems. In the general case, it has been found that a TPA can always be performed on an ED model if its inverse influence energy coefficient (EIC) matrix turns to have negative off-diagonal entries. If this condition is satisfied, it can be shown that the inverse EIC matrix automatically becomes an M-matrix. An ED graph can then be defined for it and use can be made of graph theory ranking path algorithms, previously developed for SEA systems, to classify dominant paths in ED models. A small mechanical system consisting of connected plates has been used to illustrate some of the exposed theoretical results.

  14. Daylighting design overlays for equidistant sun-path projections

    SciTech Connect

    Selkowitz, S.

    1981-08-01

    Projections of the Sun's daily and seasonal paths frequently are used to solve building design problems involving site obstructions and shading of fenestration. In the United States, equidistant projections are perhaps the most widely used (compared to other sunpath projections) because of the commercial availability of a complete set of sun-path diagrams for a range of useful latitudes. This paper describes the development of a set of overlays designed for use with sun-path projections to predict illumination on any building surface throughout the year for standard climatological conditions. Illumination is calculated for clear and overcast skies and for direct sunlight using algorithms recommended by the Commission Internationale de l'Eclairage (CIE). Values for illumination incident upon the surface, as well as transmitted through single and double glazing, can be calculated. Similar overlays for solar radiation are being developed.

  15. Accelerating cleanup: Paths to closure

    SciTech Connect

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  16. Classification of world sheet instantons and the path integral measure in string theories

    NASA Astrophysics Data System (ADS)

    Hong Gao, Yi; Li, Miao

    1987-10-01

    A classification of world sheet instantons propagating in some internal spaces is presented. The associated path integral measure problem or ?-angles, as discussed by Wen and Witten, and by Li, is addressed.

  17. Solving the Curriculum Sequencing Problem with DNA Computing Approach

    ERIC Educational Resources Information Center

    Debbah, Amina; Ben Ali, Yamina Mohamed

    2014-01-01

    In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…

  18. Solving the Curriculum Sequencing Problem with DNA Computing Approach

    ERIC Educational Resources Information Center

    Debbah, Amina; Ben Ali, Yamina Mohamed

    2014-01-01

    In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…

  19. Path planning for mobile robots based on visibility graphs and A* algorithm

    NASA Astrophysics Data System (ADS)

    Contreras, Juan D.; Martínez S., Fernando; Martínez S., Fredy H.

    2015-07-01

    One of most worked issues in the last years in robotics has been the study of strategies to path planning for mobile robots in static and observable conditions. This is an open problem without pre-defined rules (non-heuristic), which needs to measure the state of the environment, finds useful information, and uses an algorithm to select the best path. This paper proposes a simple and efficient geometric path planning strategy supported in digital image processing. The image of the environment is processed in order to identify obstacles, and thus the free space for navigation. Then, using visibility graphs, the possible navigation paths guided by the vertices of obstacles are produced. Finally the A* algorithm is used to find a best possible path. The alternative proposed is evaluated by simulation on a large set of test environments, showing in all cases its ability to find a free collision plausible path.

  20. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.

    PubMed

    Ma, Guilin; Gran, Fredrik; Jacobsen, Finn; Agerkvist, Finn

    2010-03-01

    Feedback whistling is one of the severe problems with hearing aids, especially in dynamic situations when the users hug, pick up a telephone, etc. This paper investigates the properties of the dynamic feedback paths of digital hearing aids and proposes a model based on a reflection assumption. The model is compared with two existing models: a direct model and an initialization model, using the measured dynamic feedback paths. The comparison shows that the proposed approach is able to model the dynamic feedback paths more efficiently and accurately in terms of mean-square error and maximum stable gain. The method is also extended to dual-microphone hearing aids to assess the possibility of relating the two dynamic feedback paths through the reflection model. However, it is found that in a complicated acoustic environment, the relation between the two feedback paths can be very intricate and difficult to exploit to yield better modeling of the dynamic feedback paths. PMID:20329846

  1. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  2. Hierarchical path planning and control of a small fixed-wing UAV: Theory and experimental validation

    NASA Astrophysics Data System (ADS)

    Jung, Dongwon

    2007-12-01

    Recently there has been a tremendous growth of research emphasizing control of unmanned aerial vehicles (UAVs) either in isolation or in teams. As a matter of fact, UAVs increasingly find their way into military and law enforcement applications (e.g., reconnaissance, remote delivery of urgent equipment/material, resource assessment, environmental monitoring, battlefield monitoring, ordnance delivery, etc.). This trend will continue in the future, as UAVs are poised to replace the human-in-the-loop during dangerous missions. Civilian applications of UAVs are also envisioned such as crop dusting, geological surveying, search and rescue operations, etc. In this thesis we propose a new online multiresolution path planning algorithm for a small UAV with limited on-board computational resources. The proposed approach assumes that the UAV has detailed information of the environment and the obstacles only in its vicinity. Information about far-away obstacles is also available, albeit less accurately. The proposed algorithm uses the fast lifting wavelet transform (FLWT) to get a multiresolution cell decomposition of the environment, whose dimension is commensurate to the on-board computational resources. A topological graph representation of the multiresolution cell decomposition is constructed efficiently, directly from the approximation and detail wavelet coefficients. Dynamic path planning is sequentially executed for an optimal path using the A* algorithm over the resulting graph. The proposed path planning algorithm is implemented on-line on a small autopilot. Comparisons with the standard D*-lite algorithm are also presented. We also investigate the problem of generating a smooth, planar reference path from a discrete optimal path. Upon the optimal path being represented as a sequence of cells in square geometry, we derive a smooth B-spline path that is constrained inside a channel that is induced by the geometry of the cells. To this end, a constrained optimization problem is formulated by setting up geometric linear constraints as well as boundary conditions. Subsequently, we construct B-spline path templates by solving a set of distinct optimization problems. For application in UAV motion planning, the path templates are incorporated to replace parts of the entire path by the smooth B-spline paths. Each path segment is stitched together while preserving continuity to obtain a final smooth reference path to be used for path following control. The path following control for a small fixed-wing UAV to track the prescribed smooth reference path is also addressed. Assuming the UAV is equipped with an autopilot for low level control, we adopt a kinematic error model with respect to the moving Serret-Frenet frame attached to a path for tracking controller design. A kinematic path following control law that commands heading rate is presented. Backstepping is applied to derive the roll angle command by taking into account the approximate closed-loop roll dynamics. A parameter adaptation technique is employed to account for the inaccurate time constant of the closed-loop roll dynamics during actual implementation. Finally, we implement the proposed hierarchical path control of a small UAV on the actual hardware platform, which is based on an 1/5 scale R/C model airframe (Decathlon) and the autopilot hardware and software. Based on the hardware-in-the-loop (HIL) simulation environment, the proposed hierarchical path control algorithm has been validated through on-line, real-time implementation on a small micro-controller. By a seamless integration of the control algorithms for path planning, path smoothing, and path following, it has been demonstrated that the UAV equipped with a small autopilot having limited computational resources manages to accomplish the path control objective to reach the goal while avoiding obstacles with minimal human intervention.

  3. Working on interesting problems

    NASA Astrophysics Data System (ADS)

    Smith, Arfon M.

    2015-01-01

    BSc Chemistry, The University of Sheffield 2001... PhD Astrochemistry, The University of Nottingham 2006... Scientist at GitHub Inc. 2013.From the outside, the path an individual has taken from academia to industry is not an obvious one. In this session I'll (try and) explain how an interest in software, engineering and chasing interesting problems makes internet startup in San Francisco a great home.

  4. Multiple paths to encephalization and technical civilizations.

    PubMed

    Schwartzman, David; Middendorf, George

    2011-12-01

    We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels. PMID:22139517

  5. Multiple Paths to Encephalization and Technical Civilizations

    NASA Astrophysics Data System (ADS)

    Schwartzman, David; Middendorf, George

    2011-12-01

    We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.

  6. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... gear retraction may not be begun until the airplane is airborne. (c) During the takeoff path determination in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...

  7. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 25.111 Section 25.111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path extends from a standing start to a point in...

  8. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... gear retraction may not be begun until the airplane is airborne. (c) During the takeoff path determination in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...

  9. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... gear retraction may not be begun until the airplane is airborne. (c) During the takeoff path determination in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...

  10. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... gear retraction may not be begun until the airplane is airborne. (c) During the takeoff path determination in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...

  11. Performance Analysis of Path Planning Modeling

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling

    Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.

  12. Evaluation of the Learning Path Specification

    ERIC Educational Resources Information Center

    Janssen, Jose; Berlanga, Adriana J.; Koper, Rob

    2011-01-01

    Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…

  13. Robust Path Planning and Feedback Design Under Stochastic Uncertainty

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars

    2008-01-01

    Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.

  14. Characterizing the Evolutionary Path(s) to Early Homo

    PubMed Central

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780

  15. Evaluation of guidewire path reproducibility.

    PubMed

    Schafer, Sebastian; Hoffmann, Kenneth R; Noël, Peter B; Ionita, Ciprian N; Dmochowski, Jacek

    2008-05-01

    The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters approximately 4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (512(3), 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17 +/- 0.02 mm (plastic-coated guidewire), 0.73 +/- 0.55 mm (steel guidewire) and 1.15 +/- 0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position. PMID:18561663

  16. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.

  17. Communication path for extreme environments

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  18. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  19. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  20. Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease.

    PubMed

    Nir, Talia M; Villalon-Reina, Julio E; Prasad, Gautam; Jahanshad, Neda; Joshi, Shantanu H; Toga, Arthur W; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Characterizing brain changes in Alzheimer's disease (AD) is important for patient prognosis and for assessing brain deterioration in clinical trials. In this diffusion weighted imaging study, we used a new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 113 people with mild cognitive impairment, and 37 AD patients. After clustering tractography using a region-of-interest atlas, we used a shortest path graph search through each bundle's fiber density map to derive maximum density paths (MDPs), which we registered across subjects. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found significant MD and FA differences between AD patients and CTL subjects, as well as MD differences between CTL and late mild cognitive impairment subjects. MD and FA were also associated with widely used clinical scores. As an MDP is a compact low-dimensional representation of white matter organization, we tested the utility of diffusion tensor imaging measures along these MDPs as features for support vector machine based classification of AD. PMID:25444597

  1. DTI-based maximum density path analysis and classification of Alzheimer’s disease

    PubMed Central

    Nir, Talia M.; Villalon-Reina, Julio E.; Prasad, Gautam; Jahanshad, Neda; Joshi, Shantanu H.; Toga, Arthur W.; Bernstein, Matt A.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2014-01-01

    Characterizing brain changes in Alzheimer’s disease (AD) is important for patient prognosis, and for assessing brain deterioration in clinical trials. In this diffusion tensor imaging study, we used a new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 113 people with mild cognitive impairment (MCI), and 37 AD patients. After clustering tractography using an ROI atlas, we used a shortest path graph search through each bundle’s fiber density map to derive maximum density paths (MDPs), which we registered across subjects. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found significant MD and FA differences between AD patients and CTL subjects as well as MD differences between CTL and late MCI subjects. MD and FA were also associated with widely used clinical scores (MMSE). As an MDP is a compact, low-dimensional representation of white matter organization, we tested the utility of DTI measures along these MDPs as features for support vector machine (SVM) based classification of AD. PMID:25444597

  2. Paths to adolescent parenthood: implications for prevention.

    PubMed

    Flick, L H

    1986-01-01

    Adolescent pregnancy and parenthood are increasingly common today and pose many problems for both the individual persons involved and society as a whole. For programs to address these issues successfully, factors associated with unintended pregnancy and resulting parenthood must first be identified and understood. This paper is a review of current research on the factors associated with the four steps leading to an adolescent becoming a parent. Being an adolescent parent requires taking a particular path at four crossroads: becoming sexually active, not using or incorrectly using contraceptives, carrying rather than aborting a pregnancy, and parenting rather than placing a child for adoption. Much research in the last 15 years has explored adolescent childbearing, but many studies only compared adolescent parents to nonparents to reach conclusions about differences in these groups. This review focuses on recent studies that explore the four processes, or crossroads, separately and it excludes studies that generalize and overlap these processes. Factors that influence adolescent behavior at multiple points on the path to parenthood indicate areas particularly relevant for preventive intervention. For instance, boyfriends exert influence at all four crossroads. Sexual activity and contraceptive use increase with longevity of relationships, yet closer relationships are less often associated with raising a child. Better general communication skills, and particularly an increased ability to discuss sexuality, increases use of contraceptives, and low educational and occupational aspirations appear to influence each successive turn toward parenthood. This summary of current research serves to highlight those individual, family, dyadic, and social factors that exert great impact on adolescent parenthood by influencing young people at each of the four crossroads. These factors suggest potentially effective points for intervention to reduce the incidence of adolescent parenthood. However, poverty, unemployment, and racism also play central roles in early intercourse and childbearing, and any attempt at fundamental change must take these forces into account. PMID:3083468

  3. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali; Powers, W. T.

    1995-01-01

    The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for the engine protection. The feasibility of the IR leak plume detection will be evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application. The theoretical analysis was undertaken with the objective of developing and testing simple, easy-to-use models to predict the amount of radiation coming from a radiation source, background plate (BP), which can be absorbed, emitted and scattered by the gas leaks.

  4. Terminal area guidance along curved paths: A stochastic control approach

    NASA Technical Reports Server (NTRS)

    Quaranta, J. E.; Foulkes, R. H., Jr.

    1976-01-01

    Stochastic control theory is applied to the problem of designing a digital flight compensator for terminal guidance along a helical flight path as a prelude to landing. The development of aircraft, wind, and measurement models is discussed along with a control scheme consisting of feedback gains multiplying estimate of the aircraft and wind states obtained from a Kalman one step predictor. Preliminary results are presented which indicate that the compensator performs satisfactorily in the presence of both steady winds and gusts.

  5. Path perception during rotation: influence of instructions, depth range, and dot density

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2004-01-01

    How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.

  6. Path integral simulations for nanoelectronics

    NASA Astrophysics Data System (ADS)

    Shumway, John

    2007-10-01

    As computer circuits shrink, devices are entering the nanoscale regime and quantum physics is becoming important. The biggest barrier to further decreases in size and increases in clock speed is excessive heat generation. Some physicists are proposing that many-body correlated quantum states of electrons may be exploited to make more energy efficient switches. In our research we are developing new simulation techniques to study highly correlated electron states in realistic device geometries and finite temperatures. The simulations are based on Feynman path integrals, which cast quantum statistical mechanics as a sum over worldlines, a mathematically equivalent alternative Schroedinger's differetial equation. Using Monte Carlo sampling on dozens to hundreds of electrons, we can simulate properties of an interacting electron fluid in a nanowire. Linear response theory relates fluctuations about equilibrium to conductivity. This gives us a new perspective on quantum phenomena, including quantized conductance steps and spin-charge separation.

  7. Balance Problems

    MedlinePLUS

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  8. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  9. Cumulative slant path rain attenuation associated with COMSTAR beacon at 28.56 GHz for Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1978-01-01

    Yearly, monthly, and time of day fade statistics are presented and characterized. A 19.04 GHz yearly fade distribution, corresponding to a second COMSTAR beacon frequency, is predicted using the concept of effective path length, disdrometer, and rain rate results. The yearly attenuation and rain rate distributions follow with good approximation log normal variations for most fade and rain rate levels. Attenuations were exceeded for the longest and shortest periods of times for all fades in August and February, respectively. The eight hour time period showing the maximum and minimum number of minutes over the year for which fades exceeded 12 db were approximately between 1600 to 2400, and 0400 to 1200 hours, respectively. In employing the predictive method for obtaining the 19.04 GHz fade distribution, it is demonstrated theoretically that the ratio of attenuations at two frequencies is minimally dependent of raindrop size distribution providing these frequencies are not widely separated.

  10. A dynamic path planning algorithm for UAV tracking

    NASA Astrophysics Data System (ADS)

    Chen, Hongda; Chang, K. C.; Agate, Craig S.

    2009-05-01

    A dynamic path-planning algorithm is proposed for UAV tracking. Based on tangent lines between two dynamic UAV turning and objective circles, analytical optimal path is derived with UAV operational constraints given a target position and the current UAV dynamic state. In this paper, we first illustrate that path planning for UAV tracking a ground target can be formulated as an optimal control problem consisting of a system dynamic, a set of boundary conditions, control constraints and a cost criterion. Then we derive close form solution to initiate dynamic tangent lines between UAV turning limit circle and an objective circle, which is a desired orbit pattern over a target. Basic tracking strategies are illustrated to find the optimal path for UAV tracking. Particle filter method is applied as a target is moving on a defined road network. Obstacle avoidance strategies are also addressed. With the help of computer simulations, we showed that the algorithm provides an efficient and effective tracking performance in various scenarios, including a target moving according to waypoints (time-based and/or speed-based) or a random kinematics model.

  11. Sequential Path Entanglement for Quantum Metrology

    PubMed Central

    Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.

    2013-01-01

    Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.

  12. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.

    PubMed

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582

  13. Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain

    PubMed Central

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582

  14. Escaping path approach for speckle noise reduction

    NASA Astrophysics Data System (ADS)

    Szczepanski, Marek; Radlak, Krystian

    2015-02-01

    A novel fast filtering technique for multiplicative noise removal in ultrasound images was presented in this paper. The proposed algorithm utilizes concept of digital paths created on the image grid presented in [1] adapted to the needs of multiplicative noise reduction. The new approach uses special type of digital paths so called Escaping Path Model and modified path length calculation based on topological as well as gray-scale distances. The experiments confirmed that the proposed algorithm achieves a comparable results with the existing state-of-the-art denoising schemes in suppressing multiplicative noise in ultrasound images.

  15. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    PubMed

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis. PMID:24571787

  16. Path planning for robotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sanderson, Arthur C.

    1993-01-01

    A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.

  17. Modeling growth paths of interacting crack pairs in elastic media.

    PubMed

    Ghelichi, Ramin; Kamrin, Ken

    2015-10-28

    The problem of predicting the growth of a system of cracks, each crack influencing the growth of the others, arises in multiple fields. We develop an analytical framework toward this aim, which we apply to the 'En-Passant' family of crack growth problems, in which a pair of initially parallel, offset cracks propagate nontrivially toward each other under far-field opening stress. We utilize boundary integral and perturbation methods of linear elasticity, linear elastic fracture mechanics, and common crack opening criteria to calculate the first analytical model for curved En-Passant crack paths. The integral system is reduced under a hierarchy of approximations, producing three methods of increasing simplicity for computing crack paths. The last such method is a major highlight of this work, using an asymptotic matching argument to predict crack paths based on superposition of simple, single-crack fields. Within the corresponding limits of the three methods, all three are shown to agree with each other. We provide comparisons to exact results and existing experimental data to verify certain approximation steps. PMID:26330342

  18. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  19. The Path-of-Probability Algorithm for Steering and Feedback Control of Flexible Needles

    PubMed Central

    Park, Wooram; Wang, Yunfeng; Chirikjian, Gregory S.

    2010-01-01

    In this paper we develop a new framework for path planning of flexible needles with bevel tips. Based on a stochastic model of needle steering, the probability density function for the needle tip pose is approximated as a Gaussian. The means and covariances are estimated using an error propagation algorithm which has second order accuracy. Then we adapt the path-of-probability (POP) algorithm to path planning of flexible needles with bevel tips. We demonstrate how our planning algorithm can be used for feedback control of flexible needles. We also derive a closed-form solution for the port placement problem for finding good insertion locations for flexible needles in the case when there are no obstacles. Furthermore, we propose a new method using reference splines with the POP algorithm to solve the path planning problem for flexible needles in more general cases that include obstacles. PMID:21151708

  20. The k-client problem

    SciTech Connect

    Alborzi, H.; Torng, E.; Uthaisombut, P.; Wagner, S.

    1997-06-01

    To model on-line systems which deal with multi-threaded inputs, we define and analyze the {kappa}-client problem, a dual of the {kappa}-server problem. In the {kappa}-client problem, there is a single server and {kappa} clients, each of which generates a sequence of requests for service in a metric space. At any time, each client has at most one outstanding request; that is, the i + 1{sup st} request of a client will not arrive until the i{sup th} request has been serviced. The crux of the problem is deciding which client`s request the single server should service rather than which server should be used to service the current request. We evaluate the performance of algorithms using the makespan, total completion time, and maximum response time cost functions. When restricted to the line metric space, the {kappa}-client problem models the disk scheduling problem in a multi-threaded environment. We derive tight results for several commonly studied disk scheduling algorithms such as the shortest seek time first and the elevator algorithms which help explain why elevator type algorithms perform well in practice when the disk is heavily loaded. In general, we show that several algorithms axe (2k - 1)-competitive and that no on-line algorithm is better than 1gk/2-competitive for the makespan and total completion time cost functions. When k = 2, the lower bounds improve to 25/9 and 3 for the makespan and total completion time cost functions, respectively. For the maximum response time cost function, we show that no on-line algorithm is better than {Omega}({sup 3}{radical}{Delta})-competitive where {Delta} is the maximum distance between any two requests. Surprisingly, our results axe essentially identical for both the line and general metric spaces.

  1. Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing

    SciTech Connect

    Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.

    2008-11-06

    In this paper we are going to discuss a variation on the problem of finding the shortest path between two points in optimal ship routing problems consisting of obstacles that are not allowed to be crossed by the path. Our main goal are going to be the construction of an appropriate algorithm, based in an earlier work by computing the shortest path between two points in the plane that avoids a set of polygonal obstacles.

  2. Gerbertian paths for the Jubilee

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2015-04-01

    Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.

  3. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  4. A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.

    PubMed

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383

  5. A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning

    PubMed Central

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383

  6. Ensuring critical event sequences in high integrity software by applying path expressions

    SciTech Connect

    Kidd, M.E.C.

    1996-07-01

    The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.

  7. Ensuring critical event sequences in high consequence computer based systems as inspired by path expressions

    SciTech Connect

    Kidd, M.E.C.

    1997-02-01

    The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.

  8. Definition and calculation of transmission paths within an S.E.A. framework

    NASA Astrophysics Data System (ADS)

    Magrans, F. X.

    1993-08-01

    Generally, the problem of soundproofing buildings has employed the concept that energy is transmitted along different paths from the source to the receiver. The S.E.A. systematizes the existence of acoustic and mechanical coupling in mechanical complexes. This study intends to systematize the concept of transmission paths, its numerical treatment, and its classification, taking the equations of S.E.A. as a reference framework.

  9. Elastic Optical Path Network Architecture: Framework for Spectrally-Efficient and Scalable Future Optical Networks

    NASA Astrophysics Data System (ADS)

    Jinno, Masahiko; Takara, Hidehiko; Sone, Yoshiaki; Yonenaga, Kazushige; Hirano, Akira

    This paper presents an elastic optical path network architecture as a novel networking framework to address the looming capacity crunch problem in internet protocol (IP) and optical networks. The basic idea is to introduce elasticity and adaptation into the optical domain to yield spectrally-efficient optical path accommodation, heightened network scalability through IP traffic offloading to the elastic optical layer, and enhanced survivability for serious disasters.

  10. Path-based rules in object-oriented programming

    SciTech Connect

    Crawford, J.M.; Dvorak, D.; Litman, D.; Mishra, A.; Patel-Schneider, P.F.

    1996-12-31

    Object-oriented programming has recently emerged as one of the most important programming paradigms. While object-oriented programming clearly owes an intellectual debt to AI, it appears to be displacing some AI techniques, such as rule-based programming, from the marketplace. This need not be so as path-based rules-forward-chaining production rules that are restricted to follow pointers between objects-fit into the object-oriented paradigm in a clean and elegant way. The combination of path-based rules and object-oriented programming should be useful in AI applications, and in the more general problem of transferring AI techniques to the larger computer science community.

  11. A Discrete History of the Lorentzian Path Integral

    NASA Astrophysics Data System (ADS)

    Loll, Renate

    In these lecture notes, I describe the motivation behind a recent formulation of a non-perturbative gravitational path integral for Lorentzian (instead of the usual Euclidean) space-times, and give a pedagogical introduction to its main features. At the regularized, discrete level this approach solves the problems of (i) having a well-defined Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to convergent sums over geometries. Although little is known as yet about the existence and nature of an underlying continuum theory of quantum gravity in four dimensions, there are already a number of beautiful results in d=2 and d=3 where continuum limits have been found. They include an explicit example of the inequivalence of the Euclidean and Lorentzian path integrals, a non-perturbative mechanism for the cancellation of the conformal factor, and the discovery that causality can act as an effective regulator of quantum geometry.

  12. Inadequacy of single-impulse transfers for path constrained rendezvous

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Soileau, K. M.

    1987-01-01

    The use of single-impulse techniques to maneuver from point to point about a large space structure (LSS) with an arbitrary geometrical configuration and spin is examined. Particular consideration is given to transfers with both endpoints on the forbidden zone surface. Clohessy-Wiltshire equations of relative motion are employed to solve path constrained rendezvous problems. External and internal transfers between arbitrary points are analyzed in terms of tangential departure and arrival conditions. It is observed that single-impulse techniques are inadequate for transferring about the exterior of any LSS; however, single-impulse transfers are applicable for transfers in the interior of LSSs. It is concluded that single-impulse transducers are not applicable for path constrained rendezvous guidance.

  13. Path integral Liouville dynamics for thermal equilibrium systems

    SciTech Connect

    Liu, Jian

    2014-06-14

    We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.

  14. Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning

    NASA Astrophysics Data System (ADS)

    Kawewong, Aram; Honda, Yutaro; Tsuboyama, Manabu; Hasegawa, Osamu

    Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.

  15. Deadlock-free Path Following Control with Collision Avoidance for Multiple Robots

    NASA Astrophysics Data System (ADS)

    Sakurama, Kazunori; Nakano, Kazushi

    This paper deals with a path following problem with collision avoidance for multiple robots. The path following aims to move the robots along reference paths with assigned velocities. When there are geometric errors between the robots' positions and the reference paths, or when the differences between their velocities and assigned velocities are not zero, we expect to reduce these errors. Unfortunately, if the multiple robots try to realize the exact path following, they may collide with one another in areas where the reference paths intersect. In this case, the robots have to avoid collision at the expense of the original paths. This paper introduces a value function including geometric and velocity errors, and proposes a new online collision avoidance method which constrains the value function. The proposed method minimizes the time derivative of the value function in each instance. Moreover, this method prevents deadlocks of the robots with the following strategy: design a time-varying function which moves slowly along the reference path for each robot, and append a penalty function to the value function which increases when the position of the robot becomes less than the time-varying function.

  16. Cooperative organic mine avoidance path planning

    NASA Astrophysics Data System (ADS)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  17. The Path of Carbon in Photosynthesis VI.

    DOE R&D Accomplishments Database

    Calvin, M.

    1949-06-30

    This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.

  18. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…

  19. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...

  20. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff path. For each commuter category airplane,...

  1. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...

  2. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...

  3. A Random Walk on a Circular Path

    ERIC Educational Resources Information Center

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  4. Balance Problems

    MedlinePLUS

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  5. Childbirth Problems

    MedlinePLUS

    ... labor starts before 37 completed weeks of pregnancy Problems with the umbilical cord Problems with the position of the baby, such as ... feet first Birth injuries For some of these problems, the baby may need to be delivered surgically ...

  6. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  7. The Path of Human Evolution

    NASA Astrophysics Data System (ADS)

    Feibel, C. S.

    2004-12-01

    A complex series of evolutionary steps, contingent upon a dynamic environmental context and a long biological heritage, have led to the ascent of Homo sapiens as a dominant component of the modern biosphere. In a field where missing links still abound and new discoveries regularly overturn theoretical paradigms, our understanding of the path of human evolution has made tremendous advances in recent years. Two major trends characterize the development of the hominin clade subsequent to its origins with the advent of upright bipedalism in the Late Miocene of Africa. One is a diversification into two prominent morphological branches, each with a series of 'twigs' representing evolutionary experimentation at the species or subspecies level. The second important trend, which in its earliest manifestations cannot clearly be ascribed to one or the other branch, is the behavioral complexity of an increasing reliance on technology to expand upon limited inherent morphological specializations and to buffer the organism from its environment. This technological dependence is directly associated with the expansion of hominin range outside Africa by the genus Homo, and is accelerated in the sole extant form Homo sapiens through the last 100 Ka. There are interesting correlates between the evolutionary and behavioral patterns seen in the hominin clade and environmental dynamics of the Neogene. In particular, the tempo of morphological and behavioral innovation may be tracking major events in Neogene climatic development as well as reflecting intervals of variability or stability. Major improvements in analytical techniques, coupled with important new collections and a growing body of contextual data are now making possible the integration of global, regional and local environmental archives with an improved biological understanding of the hominin clade to address questions of coincidence and causality.

  8. A new heuristic algorithm with shared segment-backup paths for trap avoidance in survivable optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Li, Lemin; Cao, Jin; Yu, Hongfang

    2006-11-01

    This paper proposes a new heuristic algorithm, called Quick Method with Shared Protection (QMSP), to protect the single-link failure in survivable WDM optical networks. QMSP first computes one primary path for each connection request. If the primary path is a trap path, QMSP will compute two segment-backup paths to avoid the trap problem based on the routing policy. Compared to previous algorithms, QMSP not only has better time complexity but also can obtain higher resource utilization ratio and lower blocking probability.

  9. A new heuristic algorithm with shared segment-backup paths for trap avoidance in survivable optical networks.

    PubMed

    Guo, Lei; Li, Lemin; Cao, Jin; Yu, Hongfang

    2006-11-13

    This paper proposes a new heuristic algorithm, called Quick Method with Shared Protection (QMSP), to protect the single-link failure in survivable WDM optical networks. QMSP first computes one primary path for each connection request. If the primary path is a trap path, QMSP will compute two segment-backup paths to avoid the trap problem based on the routing policy. Compared to previous algorithms, QMSP not only has better time complexity but also can obtain higher resource utilization ratio and lower blocking probability. PMID:19529513

  10. Nonholonomic catheter path reconstruction using electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  11. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  12. Automated flight path planning for virtual endoscopy.

    PubMed

    Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S

    1998-05-01

    In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images. PMID:9608471

  13. Problems pilots face involving wind shear

    NASA Technical Reports Server (NTRS)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  14. Dissociable cognitive mechanisms underlying human path integration.

    PubMed

    Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas

    2011-01-01

    Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration. PMID:20972774

  15. Optimization of Loading Paths for Tube Hydroforming

    NASA Astrophysics Data System (ADS)

    Jirathearanat, Suwat; Altan, Taylan

    2004-06-01

    An iterative FE simulation approach enhanced with numerical optimization schemes has been implemented for determination of optimum loading paths for tube hydroforming (THF) processes. A general optimization code, PAM-OPT, has been applied to optimize several THF processes simulated by PAM-STAMP. This paper discusses formulations of optimization of loading paths for various THF processes including a Y-shape and a complex structural part. In the process optimization, the loading paths were represented by piecewise-linear curve functions of which the control points were the design variables. Several objective functions and constraints were formulated to express the critical desirable part qualities.

  16. Path planning using optically computed potential fields

    NASA Technical Reports Server (NTRS)

    Reid, Max B.

    1993-01-01

    An algorithm for the optical computation of potential field maps suitable for mobile robot navigation is described and experimentally produced maps and paths are presented. The parallel analog optical computation employs a two-dimensional spatial light modulator on which an image of the potential field map is generated. Optically calculated fields contain no local minima, tend to produce paths centered in gaps between obstacles, and produce paths which give preference to wide gaps. Calculation of 128 x 128 pixel fields at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.

  17. Crack-path effect on material toughness

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1990-01-01

    The main features of a toughening mechanism associated with a curvilinear crack path are examined using a model consisting of a macrocrack in a brittle solid with a curvilinear segment at the crack tip. A numerical procedure for finite and semiinfinite cracks is formulated and evaluated using an example which has an exact solution (a finite crack in the form of a circular arc in a uniform stress field). It is shown that, for a relatively small amplitude of crack path oscillations, the toughening ratio can be taken equal to the ratio of the corresponding crack path lengths.

  18. Thermodynamic Metrics and Optimal Paths

    SciTech Connect

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  19. Thermodynamic metrics and optimal paths.

    PubMed

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model. PMID:23003019

  20. A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints

    NASA Technical Reports Server (NTRS)

    Divelbiss, Adam; Seereeram, Sanjeev; Wen, John T.

    1993-01-01

    Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima.

  1. Problem drinkers and their problems

    PubMed Central

    Buchan, I. C.; Buckley, E. G.; Deacon, G. L. S.; Irvine, R.; Ryan, M. P.

    1981-01-01

    From general practice records of 9,763 patients, 106 problem drinkers were compared with a control group. The drinkers had a substantially higher number of problems and they consulted their doctor and attended casualty departments frequently. Social and marital problems were especially prevalent in the families of problem drinkers. PMID:7277292

  2. Planning Paths Through Singularities in the Center of Mass Space

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Messner, William C.; Juang, Jer-Nan

    1998-01-01

    The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.

  3. Local-time representation of path integrals

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  4. Duality of quantum coherence and path distinguishability

    NASA Astrophysics Data System (ADS)

    Bera, Manabendra Nath; Qureshi, Tabish; Siddiqui, Mohd Asad; Pati, Arun Kumar

    2015-07-01

    We derive a generalized wave-particle duality relation for arbitrary multipath quantum interference phenomena. Beyond the conventional notion of the wave nature of a quantum system, i.e., the interference fringe visibility, we introduce a quantifier as the normalized quantum coherence, recently defined in the framework of quantum information theory. To witness the particle nature, we quantify the path distinguishability or the which-path information based on unambiguous quantum state discrimination. Then, the Bohr complementarity principle for multipath quantum interference can be stated as a duality relation between the quantum coherence and the path distinguishability. For two-path interference, the quantum coherence is identical to the interference fringe visibility, and the relation reduces to the well-known complementarity relation. The duality relation continues to hold in the case where mixedness is introduced due to possible decoherence effects.

  5. A chemist building paths to cell biology.

    PubMed

    Weibel, Douglas B

    2013-11-01

    Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path. PMID:24174456

  6. Riemann Curvature Tensor and Closed Geodesic Paths

    ERIC Educational Resources Information Center

    Morganstern, Ralph E.

    1977-01-01

    Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)

  7. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  8. BOOK REVIEW: Path Integrals in Field Theory: An Introduction

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    2004-06-01

    In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.

  9. Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant

    SciTech Connect

    Metaxas, Dimitrios

    2009-12-15

    For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite bound on the graviton mass.

  10. Bond paths are not chemical bonds.

    PubMed

    Bader, Richard F W

    2009-09-24

    This account takes to task papers that criticize the definition of a bond path as a criterion for the bonding between the atoms it links by mistakenly identifying it with a chemical bond. It is argued that the notion of a chemical bond is too restrictive to account for the physics underlying the broad spectrum of interactions between atoms and molecules that determine the properties of matter. A bond path on the other hand, as well as being accessible to experimental verification and subject to the theorems of quantum mechanics, is applicable to any and all of the interactions that account for the properties of matter. It is shown that one may define a bond path operator as a Dirac observable, making the bond path the measurable expectation value of a quantum mechanical operator. Particular attention is given to van der Waals interactions that traditionally are assumed to represent attractive interactions that are distinct from chemical bonding. They are assumed by some to act in concert with Pauli repulsions to account for the existence of condensed states of molecules. It is such dichotomies of interpretation that are resolved by the experimental detection of bond paths and the delineation of their properties in molecular crystals. Specific criticisms of the stabilization afforded by the presence of bond paths derived from spectroscopic measurements performed on dideuteriophenanthrene are shown to be physically unsound. The concept of a bond path as a "bridge of density" linking bonded atoms was introduced by London in 1928 following the definition of the electron density by Schrödinger in 1926. These papers marked the beginning of the theory of atoms in molecules linked by bond paths. PMID:19722600

  11. Performance analysis of CCSDS path service

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1989-01-01

    A communications service, called Path Service, is currently being developed by the Consultative Committee for Space Data Systems (CCSDS) to provide a mechanism for the efficient transmission of telemetry data from space to ground for complex space missions of the future. This is an important service, due to the large volumes of telemetry data that will be generated during these missions. A preliminary analysis of performance of Path Service is presented with respect to protocol-processing requirements and channel utilization.

  12. The Relationships between Problem Characteristics, Achievement-Related Behaviors, and Academic Achievement in Problem-Based Learning

    ERIC Educational Resources Information Center

    Sockalingam, Nachamma; Rotgans, Jerome I.; Schmidt, Henk G.

    2011-01-01

    This study investigated the influence of five problem characteristics on students' achievement-related classroom behaviors and academic achievement. Data from 5,949 polytechnic students in PBL curricula across 170 courses were analyzed by means of path analysis. The five problem characteristics were: (1) problem clarity, (2) problem familiarity,…

  13. Quantum cosmology based on discrete Feynman paths

    SciTech Connect

    Chew, Geoffrey F.

    2002-10-10

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.

  14. Handbook for the estimation of microwave propagation effects: Link calculations for earth-space paths (path loss and noise estimation)

    NASA Technical Reports Server (NTRS)

    Crane, R. K.; Blood, D. W.

    1979-01-01

    A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions.

  15. QoS routing via multiple paths using bandwidth reservation

    SciTech Connect

    Rao, N.S.V.; Batsell, S.G.

    1997-11-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate. They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete and propose a polynomial-time approximate solution.

  16. QoS routing via multiple paths using bandwidth reservation

    SciTech Connect

    Rao, N.S.V.; Batsell, S.G.

    1998-01-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate.They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete, and propose a polynomial-time approximately solution.

  17. Learning Problems

    MedlinePLUS

    ... Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? Learning Problems KidsHealth > For Kids > Learning Problems Print A ... for how to make it better. What Are Learning Disabilities? Learning disabilities aren't contagious, but they ...

  18. Joint Problems

    MedlinePLUS

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  19. Breathing Problems

    MedlinePLUS

    ... re not getting enough air. Sometimes mild breathing problems are from a stuffy nose or hard exercise. ... emphysema or pneumonia cause breathing difficulties. So can problems with your trachea or bronchi, which are part ...

  20. Walking Problems

    MedlinePLUS

    ... daily activities, get around, and exercise. Having a problem with walking can make daily life more difficult. ... walk is called your gait. A variety of problems can cause an abnormal gait and lead to ...

  1. The reaction path intrinsic reaction coordinate method and the Hamilton-Jacobi theory.

    PubMed

    Crehuet, Ramon; Bofill, Josep Maria

    2005-06-15

    The definition and location of an intrinsic reaction coordinate path is of crucial importance in many areas of theoretical chemistry. Differential equations used to define the path hitherto are complemented in this study with a variational principle of Fermat type, as Fukui [Int. J. Quantum Chem., Quantum Chem. Symp. 15, 633 (1981)] reported in a more general form some time ago. This definition is more suitable for problems where initial and final points are given. The variational definition can naturally be recast into a Hamilton-Jacobi equation. The character of the variational solution is studied via the Weierstrass necessary and sufficient conditions. The characterization of the local minima character of the intrinsic reaction coordinate is proved. Such result leads to a numerical algorithm to find intrinsic reaction coordinate paths based on the successive minimizations of the Weierstrass E-function evaluated on a guess curve connecting the initial and final points of the desired path. PMID:16008428

  2. Bioinspired Coordinated Path Following for Vessels with Speed Saturation Based on Virtual Leader

    PubMed Central

    Fu, Mingyu

    2016-01-01

    This paper investigates the coordinated path following of multiple marine vessels with speed saturation. Based on virtual leader strategy, the authors show how the neural dynamic model and passivity-based techniques are brought together to yield a distributed control strategy. The desired path following is achieved by means of a virtual dynamic leader, whose controller is designed based on the biological neural shunting model. Utilizing the characteristic of bounded and smooth output of neural dynamic model, the tracking error jump is avoided and speed saturation problem is solved in straight path. Meanwhile, the coordinated path following of multiple vessels with a desired spatial formation is achieved through defining the formation reference point. The consensus of formation reference point is realized by using the synchronization controller based on passivity. Finally, simulation results validate the effectiveness of the proposed coordinated algorithm.

  3. Solving Problems.

    ERIC Educational Resources Information Center

    Hale, Norman; Lindelow, John

    Chapter 12 in a volume on school leadership, this chapter cites the work of several authorities concerning problem-solving or decision-making techniques based on the belief that group problem-solving effort is preferable to individual effort. The first technique, force-field analysis, is described as a means of dissecting complex problems into…

  4. Automatic mapping of off-road vehicle trails and paths at Fort Riley Installation, Kansas

    NASA Astrophysics Data System (ADS)

    Oller, Adam

    The U.S. Army manages thousands of sites that cover millions of acres of land for various military training purposes and activities and often faces a great challenge on how to optimize the use of resources. A typical example is that the training activities often lead to off-road vehicle trails and paths and how to use the trails and paths in terms of minimizing maintenance cost becomes a problem. Being able to accurately extract and map the trails and paths is critical in advancing the U.S. Army's sustainability practices. The primary objective of this study is to develop a method geared specifically toward the military's needs of identifying and updating the off-road vehicle trails and paths for both environmental and economic purposes. The approach was developed using a well-known template matching program, called Feature Analyst, to analyze and extract the relevant trails and paths from Fort Riley's designated training areas. A 0.5 meter resolution false color infrared orthophoto with various spectral transformations/enhancements were used to extract the trails and paths. The optimal feature parameters for the highest accuracy of detecting the trails and paths were also investigated. A modified Heidke skill score was used for accuracy assessment of the outputs in comparison to the observed. The results showed the method was very promising, compared to traditional visual interpretation and hand digitizing. Moreover, suggested methods for extracting the trails and paths using remotely sensed images, including image spatial and spectral resolution, image transformations and enhancements, and kernel size, was obtained. In addition, the complexity of the trails and paths and the discussion on how to improve their extraction in the future were given.

  5. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied. PMID:25126607

  6. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  7. Calibration of neural networks using genetic algorithms, with application to optimal path planning

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel

    1987-01-01

    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.

  8. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881

  9. The formal path integral and quantum mechanics

    SciTech Connect

    Johnson-Freyd, Theo

    2010-11-15

    Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  10. Heterodyne interferometer with unequal path lengths

    SciTech Connect

    Kumar, Deepak; Bellan, Paul M.

    2006-08-15

    Laser interferometry is an extensively used diagnostic for plasma experiments. Existing plasma interferometers are designed on the presumption that the scene and reference beam path lengths have to be equal, a requirement that is costly in both the number of optical components and the alignment complexity. It is shown here that having equal path lengths is not necessary, instead, what is required is that the path length difference be an even multiple of the laser cavity length. This assertion has been verified in a heterodyne laser interferometer that measures typical line-average densities of {approx}10{sup 21}/m{sup 2} with an error of {approx}10{sup 19}/m{sup 2}.

  11. Molecular path control in zeolite membranes

    PubMed Central

    Dubbeldam, D.; Beerdsen, E.; Calero, S.; Smit, B.

    2005-01-01

    We report molecular simulations of diffusion in confinement showing a phenomenon that we denote as molecular path control (MPC); depending on loading, molecules follow a preferred pathway. MPC raises the important question to which extent the loading may affect the molecular trajectories in nanoporous materials. Through MPC one is able to manually adjust the ratio of the diffusivities through different types of pores, and as an application one can direct the flow of diffusing particles in membranes forward or sideward by simply adjusting the pressure, without the need for mechanical parts like valves. We show that the key ingredient of MPC is the anisotropic nature of the nanoporous material that results in a complex interplay between different diffusion paths as a function of loading. These paths may be controlled by changing the loading, either through a change in pressure or temperature. PMID:16109769

  12. Differentiable-path integrals in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Reyes, Ignacio

    2015-06-01

    A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of C?, by only allowing paths which possess at least ? derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ?D such that for time intervals longer than ?D the model behaves as usual quantum mechanics. However, for time scales smaller than ?D, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ? ? 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity , the canonical commutator, the Schrödinger equation and the energy levels of the harmonic oscillator. It is shown that an adequate choice of the parameters introduced makes the evolution unitary.

  13. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  14. Quantum state of wormholes and path integral

    SciTech Connect

    Garay, L.J. )

    1991-08-15

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.

  15. A taxonomy of integral reaction path analysis

    SciTech Connect

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  16. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  17. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  18. Path Analysis on Educational Fiscal Decision-Making Mechanism in China

    ERIC Educational Resources Information Center

    Zhao, Hongbin; Sun, Baicai

    2007-01-01

    In China's current educational fiscal decision making, problems are as follows: no law to trust or not abiding by available laws, absence of equity and efficiency, as well as the standardization of decision-making procedures. It is necessary to set up effective fiscal decision-making mechanism in education and rationally devise reliable paths.

  19. An Evaluation of the Preschool PATHS Curriculum on the Development of Preschool Children

    ERIC Educational Resources Information Center

    Hughes, Cerian; Cline, Tony

    2015-01-01

    This study evaluated the efficacy of preschool Promoting Alternative Thinking Strategies (PATHS), an early years curriculum designed to improve children's social and emotional competence, and reduce problem behaviour. Fifty-seven children aged three to four years took part in the study over one academic year. The control group (Group 1)…

  20. An Evaluation of the Preschool PATHS Curriculum on the Development of Preschool Children

    ERIC Educational Resources Information Center

    Hughes, Cerian; Cline, Tony

    2015-01-01

    This study evaluated the efficacy of preschool Promoting Alternative Thinking Strategies (PATHS), an early years curriculum designed to improve children's social and emotional competence, and reduce problem behaviour. Fifty-seven children aged three to four years took part in the study over one academic year. The control group (Group 1)…

  1. Clearing the Path tor All of Us Where Trains Once Ran.

    ERIC Educational Resources Information Center

    Mills, Judy

    1990-01-01

    Describes the concept behind the rail-to-trails movement; the history, process and problems of converting abandoned railroad beds to bike and walking paths. Introduces the concept and trend of ergo, or linear parks, corridors, and greenways to meet the increasing need for public access to land for recreational purposes. (MCO)

  2. Errata to the Werts-Linn Comments on Boyle's "Path Analysis and Ordinal Data."

    ERIC Educational Resources Information Center

    Werts, Charles E.; Linn, Robert L.

    The Werts-Linn procedure for dealing with categorical errors of measurement in "Comments on Boyle's 'Path Analysis and Ordinal Data'" in The American Journal of Sociology, volume 76, number 6, May 1971, is shown to be inappropriate to the problem of ordered categories. (For related document, see TM 002 301.) (DB)

  3. Path ordered operator formalism of gauge theories in two-dimensional space-time

    NASA Astrophysics Data System (ADS)

    Kikkawa, K.

    1980-05-01

    Two-dimensional gauge theories, both abelian and non-belian, are formulated in terms of gauge invariant path ordered operators (POO). The generators of the Poincaré group are constructed with POO's. An exact equation of motion for POO's is derived and is shown to reduce to the 't Hooft eigenvalue equation in QCD in the large N limit. Nowhere appear infrared problems.

  4. Analysis of the contact graph routing algorithm: Bounding interplanetary paths

    NASA Astrophysics Data System (ADS)

    Birrane, Edward; Burleigh, Scott; Kasch, Niels

    2012-06-01

    Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop-by-hop forwarding is presented as the CGR-EB algorithm. Future work is proposed to handle the presence of dynamic changes to the network, as produced by congestion, link disruption, and errors in the contact graph. We conclude that pre-computation, and thus CGR style algorithms, is the only efficient method of routing in a multi-node, multi-path interplanetary network and that algorithmic analysis is the key to its implementation in operational systems.

  5. Gas Path Sealing in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.

  6. Schröder Triangles, Paths, and Parallelogram Polyominoes

    NASA Astrophysics Data System (ADS)

    Pergola, Elisa; Sulanke, Robert A.

    1998-05-01

    This paper considers combinatorial interpretations for two triangular recurrence arrays containing the Schr�¶der numbers s_n = 1, 1, 3, 11, 45 197, ... and r_n = 1, 2, 6, 22, 90, 394, ... , for n = 0, 1, 2, .... These interpretations involve the enumeration of constrained lattice paths and bicolored parallelogram polyominoes, called zebras. In addition to two recent inductive constructions of zebras and their associated generating trees, we present two new ones and a bijection between zebras and constrained lattice paths. We use the constructions with generating function methods to count sets of zebras with respect to natural parameters.

  7. Diagnosis for Covariance Structure Models by Analyzing the Path

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Kouros, Chrystyna D.; Kelley, Ken

    2008-01-01

    When a covariance structure model is misspecified, parameter estimates will be affected. It is important to know which estimates are systematically affected and which are not. The approach of analyzing the path is both intuitive and informative for such a purpose. Different from path analysis, analyzing the path uses path tracing and elementary…

  8. Diagnosis for Covariance Structure Models by Analyzing the Path

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Kouros, Chrystyna D.; Kelley, Ken

    2008-01-01

    When a covariance structure model is misspecified, parameter estimates will be affected. It is important to know which estimates are systematically affected and which are not. The approach of analyzing the path is both intuitive and informative for such a purpose. Different from path analysis, analyzing the path uses path tracing and elementary…

  9. Exploring Career Paths. A Guide for Students and Their Families.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This five-section guide is designed to help students and their parents explore career paths. The first part of the guide is an introduction to the concept of career paths and an explanation of the steps students follow in exploring career paths. The second section, which makes up most of the booklet, covers five steps for exploring career paths:…

  10. Parking Problem

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This is the story of a real problem, not a problem that is contrived, or invented for the convenience of the appropriate planning tool. This activity by a group of students, defined simply as "8FN", might be likened to an "end of term concert". If you just happened to be a delegate at the ATM Conference 2003 you might remember the analogy. Social…

  11. Word Problems

    ERIC Educational Resources Information Center

    Fetrow, Jessica

    2009-01-01

    This study focused on how to help students translate word problems so that they understand how to solve them, and so they are successful with word problems. I have created three research questions to focus on during this research project. First, how will direct instruction of word meaning help clarify the operation needed, affect the achievement…

  12. Balance Problems

    MedlinePLUS

    ... our e-newsletter! Aging & Health A to Z Balance Problems Basic Facts & Information What are Balance Problems? Having good balance means being able to ... Only then can you “keep your balance.” Why Balance is Important Your feelings of dizziness may last ...

  13. Foot Problems

    MedlinePLUS

    ... thickened, or discolored toenails. Foot problems related to diabetes. Such as stubborn foot ulcers that are difficult to heal, loss of ... Older or obese people, women, and people with diabetes, cardiovascular ... have much higher rates of foot problems. For women, pain in the toes and ...

  14. Tooth Problems

    MedlinePLUS

    MENU Return to Web version Tooth Problems See complete list of charts. A tooth that causes ongoing pain may be a sign of a serious problem. Use ... you have an injury that knocked out a tooth? Yes You have TOOTH LOSS. DENTAL EMERGENCY See ...

  15. When Does Changing Representation Improve Problem-Solving Performance?

    NASA Technical Reports Server (NTRS)

    Holte, Robert; Zimmer, Robert; MacDonald, Alan

    1992-01-01

    The aim of changing representation is the improvement of problem-solving efficiency. For the most widely studied family of methods of change of representation it is shown that the value of a single parameter, called the expulsion factor, is critical in determining (1) whether the change of representation will improve or degrade problem-solving efficiency and (2) whether the solutions produced using the change of representation will or will not be exponentially longer than the shortest solution. A method of computing the expansion factor for a given change of representation is sketched in general and described in detail for homomorphic changes of representation. The results are illustrated with homomorphic decompositions of the Towers of Hanoi problem.

  16. The use of 3-D sensing techniques for on-line collision-free path planning

    NASA Technical Reports Server (NTRS)

    Hayward, V.; Aubry, S.; Jasiukajc, Z.

    1987-01-01

    The state of the art in collision prevention for manipulators with revolute joints, showing that it is a particularly computationally hard problem, is discussed. Based on the analogy with other hard or undecidable problems such as theorem proving, an extensible multi-resolution architecture for path planning, based on a collection of weak methods is proposed. Finally, the role that sensors can play for an on-line use of sensor data is examined.

  17. A Comparison of Two Path Planners for Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Tarokh, M.; Shiller, Z.; Hayati, S.

    1999-01-01

    The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared

  18. A path planning algorithm for lane-following-based autonomous mobile robot navigation

    NASA Astrophysics Data System (ADS)

    Aljeroudi, Yazan; Paulik, Mark; Krishnan, Mohan; Luo, Chaomin

    2010-01-01

    In this paper we address the problem of autonomous robot navigation in a "roadway" type environment, where the robot has to drive forward on a defined path that could be impeded by the presence of obstacles. The specific context is the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The task of the path planner is to ensure that the robot follows the path without turning back, as can happen in switchbacks, and/or leaving the course, as can happen in dashed or single lane line situations. A multi-behavior path planning algorithm is proposed. The first behavior determines a goal using a center of gravity (CoG) computation from the results of image processing techniques designed to extract lane lines. The second behavior is based on developing a sense of the current "general direction" of the contours of the course. This is gauged based on the immediate path history of the robot. An adaptive-weight-based fusion of the two behaviors is used to generate the best overall direction. This multi-behavior path planning strategy has been evaluated successfully in a Player/Stage simulation environment and subsequently implemented in the 2009 IGVC. The details of our experience will be presented at the conference.

  19. Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain

    PubMed Central

    Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil

    2011-01-01

    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266

  20. Selective disturbance rejection algorithms for mitigating non-common path errors within beam control systems

    NASA Astrophysics Data System (ADS)

    Ahn, Edwin S.; Carreras, Richard A.; Gibson, J. Steve

    2015-05-01

    The beam control system of a high energy laser (HEL) application can typically experience error amplification due to disturbance measurements that are associated with the non-common path of the optical train setup. In order to address this error, conventional schemes require offline identification or a calibration process to determine the non-common path error portion of a measured sequence that contains both common and non-common path disturbances. However, not only is it a challenging to model the properties of the non-common path disturbance alone but also a stationary model may not guarantee consistent jitter control performance and repeated calibration may be necessary. The paper first attempts to classify the non-common path error problem into two categories where the designer is only given one measurement or two measurements available for real-time processing. For the latter case, an adaptive correlated pre-filter is introduced here to provide in situ determination of the non-common path disturbance through an adaptive correlation procedure. Contrasting features and advantages of this algorithm will be demonstrated alongside a baseline approach of utilizing notch filters to bypass the non-common portion of the combined sequence.

  1. Evolvable neuronal paths: a novel basis for information and search in the brain.

    PubMed

    Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil

    2011-01-01

    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard 'genetic' informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266

  2. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  3. On the orthogonalised reverse path method for nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Muhamad, P.; Sims, N. D.; Worden, K.

    2012-09-01

    The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.

  4. Fault-tolerant multiprocessors with redundant-path interconnection networks

    SciTech Connect

    Not Available

    1986-04-01

    In this paper, the authors study fault-tolerant multiprocessor systems employing redundant-path multistage interconnection networks. Such systems permit interprocessor communication in the presence of faulty components in the network. The interconnection network considered is a delta network augmented with an extra switching stage in front. When the first and last stages are fault-free, the extra-stage delta networks continue to provide full access in the presence of all single and many multiple faults in switching elements of the intermediate stages. In this paper, they use graph-theoretic techniques to study the problem of routing permutations in extra-stage delta networks when faults are present in the network. They first formulate the problem of performing an arbitrary permutation on the fault-free network as a vertex-coloring problem and later extend this to networks with noncritical faults. Although the general problem of realizing a permutation in minimum number of passes is intractable, classes of permutations with some regularity can be routed optimally. To illustrate the idea, they consider the class of BPC (bit permute-complement) permutations: algorithms for performing arbitrary permutations in this class on the extra-stage delta network are given, both for the fault-free network and for a network with noncritical faults.

  5. Explore the Many Paths to Leadership

    ERIC Educational Resources Information Center

    Crow, Tracy

    2015-01-01

    The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…

  6. Motion on Cycloid Paths: A Project

    ERIC Educational Resources Information Center

    Gluck, P.

    2010-01-01

    This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…

  7. Career Paths for Managers in the Arts

    ERIC Educational Resources Information Center

    Inglis, Loretta; Cray, David

    2012-01-01

    In this article we examine the career paths of top-level managers in the arts. By analysing the training and work history of 23 managers in a variety of arts organisations we evaluate the utility of several existing theories for understanding careers that are characterised by low levels of initial knowledge, the absence of a clear method of entry…

  8. Visualizing Transmedia Networks: Links, Paths and Peripheries

    ERIC Educational Resources Information Center

    Ruppel, Marc Nathaniel

    2012-01-01

    'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…

  9. Inclination shallowing and preferred transitional VGP paths

    NASA Astrophysics Data System (ADS)

    Barton, C. E.; McFadden, P. L.

    1996-05-01

    Transitional VGP paths recorded in sediments cluster into two antipodal preferred longitude bands that tend to lie 90° away from their site longitudes, the latter also being clustered. VGP paths obtained from lava flow sequences, though much fewer, appear not to show these biases, suggesting a rock-magnetic influence on VGP paths recorded in sediments. Inclination shallowing of detrital magnetic remanence, enhanced under low transitional field strengths, is the most likely candidate. We illustrate the effects of inclination shallowing by applying a simple shallowing model (tan I R = f tan I A, where I A is the inclination of the magnetic remanence and I A is the inclination of the ambient field) with field variation to hypothetical data sets. Shallowing-induced clustering increases as f decreases and becomes extreme as f approaches 0.1. We have used the model to 'de-shallow' the available set of transitional VGP sediment records for various values of f. The probability that the observations arise from inclination shallowing of a uniform random distribution of paths increases as f decreases. When f drops to 0.13 there is a 50% chance of getting at least as much grouping as observed. To decide if inclination shallowing is a dominant factor in the clustering, we need to know whether such extreme shallowing is widespread in sedimentary records under transitional field conditions. Field and laboratory redeposition data are not yet adequate to resolve this question.

  10. Building a path in cell biology

    PubMed Central

    Voeltz, Gia; Cheeseman, Iain

    2012-01-01

    Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way. PMID:23112222

  11. The Erratic Path of Hungarian Higher Education

    ERIC Educational Resources Information Center

    Marcus, Jon

    2014-01-01

    This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…

  12. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff..., landing gear retraction must not be initiated until the airplane is airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...

  13. Thermo fields from Euclidean path integrals

    NASA Astrophysics Data System (ADS)

    Laflamme, R.

    1989-05-01

    The motive for the introduction of a fictitious field and the vacuum in thermo field dynamics is derived from Euclidean path integrals. We show that the occurrence of a fictitious system, both in the theory of Umezawa and Takahashi at finite temperature and the one of Israel for black hole backgrounds, can be related to the geometry of the Euclidean section of their spacetime.

  14. Photographic time studies of airplane paths

    NASA Technical Reports Server (NTRS)

    Von Baumhaur, A G

    1926-01-01

    The object of this report is the description of a method which seems to be practicable for determining the path of an airplane, especially in taking off and landing. This report tells how, by means of a camera, preferably a kinetograph, which simultaneously photographs a stop watch the distance of an airplane from the camera and its height above the ground can be determined.

  15. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  16. Modeling DNA Dynamics by Path Integrals

    NASA Astrophysics Data System (ADS)

    Zoli, Marco

    2013-02-01

    Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (bps). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The bps displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal geometry peculiar of B-DNA. I discuss the interplay between twisting of the double helix and anharmonic stacking along the molecule backbone suggesting an interesting relation between intrinsic nonlinear character of the microscopic interactions and molecular topology.

  17. Administrator Career Paths and Decision Processes

    ERIC Educational Resources Information Center

    Farley-Ripple, Elizabeth N.; Raffel, Jeffrey A.; Welch, Jennie Christine

    2012-01-01

    Purpose: The purpose of this paper is to present qualitative evidence on the processes and forces that shape school administrator career paths. Design/methodology/approach: An embedded case study approach is used to understand more than 100 administrator career transitions within the Delaware education system. Semi-structured interview data were…

  18. Motion on Cycloid Paths: A Project

    ERIC Educational Resources Information Center

    Gluck, P.

    2010-01-01

    This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…

  19. Four Paths that Led to Careers.

    ERIC Educational Resources Information Center

    Witherspoon, W. Roger

    1989-01-01

    Traces the alternative career paths that four minority individuals followed to professional journalism. Includes a potential doctoral candidate in 17th century poetry, a future aeronautical engineer, a jazz musician, and possible pharmacist. Contends that minorities must often approach the profession through alternative routes in order to succeed.…

  20. Manufacturing techniques - Split torque path helicopter transmission

    NASA Technical Reports Server (NTRS)

    Mitchell, George D., Jr.

    1991-01-01

    A description of the manufacturing techniques, capital equipment, tooling plan, and assembly methods necessary to manufacture the split torque path gearbox is presented. This transmission was designed and built for the advanced rotorcraft transmission program of the U.S. Army and NASA. Consideration is given to the engineering technology advancements along with a description of the integrated product development team process.

  1. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  2. Learning to improve path planning performance

    SciTech Connect

    Chen, Pang C.

    1995-04-01

    In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful.

  3. Explore the Many Paths to Leadership

    ERIC Educational Resources Information Center

    Crow, Tracy

    2015-01-01

    The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…

  4. Service-Learning Partnerships: Paths of Engagement

    ERIC Educational Resources Information Center

    Dorado, Silvia; Giles, Dwight E., Jr.

    2004-01-01

    This article furthers research and theory on the initiation and development of service-learning partnerships. It identifies three paths of engagement between university and community agencies: tentative engagement, aligned engagement, and committed engagement. This conceptualization helps to understand how service-learning partnerships evolve over…

  5. LONG PATH LASER OZONE MONITOR EVALUATION

    EPA Science Inventory

    The purpose of the study reported here was to evaluate a long path laser air pollution monitor developed for the U.S. Environmental Protection Agency (EPA) by the General Electric (GE) Company. The monitor was known as ILAMS (Infrared Laser Atmospheric Monitoring System) and desi...

  6. Judgments of Path, Not Heading, Guide Locomotion

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.

    2006-01-01

    To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient…

  7. Current SPE Hydrodynamic Modeling and Path Forward

    SciTech Connect

    Knight, Earl E.; Rougier, Esteban

    2012-08-14

    Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.

  8. The Erratic Path of Hungarian Higher Education

    ERIC Educational Resources Information Center

    Marcus, Jon

    2014-01-01

    This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…

  9. Visualizing Transmedia Networks: Links, Paths and Peripheries

    ERIC Educational Resources Information Center

    Ruppel, Marc Nathaniel

    2012-01-01

    'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…

  10. Light paths in a ferronematic cell.

    PubMed

    Sátiro, Caio

    2009-10-01

    The control of the light trajectories in a liquid crystal is studied through a theoretical model based in the variation of the molecular orientation of a ferronematic material. In this model, the director field is mapped into a Riemannian space where the light paths are obtained numerically through the calculation of the geodesics for the effective geometry perceived by light. PMID:19905373

  11. Gender Differences in Career Paths in Banking.

    ERIC Educational Resources Information Center

    Morgan, Sandra; And Others

    1993-01-01

    Analyzed career paths of middle managers in bank. Study of matched pairs found that men (n=25) advanced faster and reached middle management through fewer promotions and positions than did women (n=25). Men had significantly more work experience outside of banking. In banking careers, men held more jobs in lending, whereas women occupied more…

  12. Multi-instantons and exact results IV: Path integral formalism

    SciTech Connect

    Jentschura, Ulrich D.; Zinn-Justin, Jean

    2011-08-15

    Highlights: > O(N) anharmonic oscillators are considered in the path integral formalism. > Higher-order corrections to instantons are obtained using Feynman diagram calculations. > Generalized Bender-Wu formulas are confirmed. > The O(N) functional determinant describing the zero modes leads to higher-order terms. > Surprising cancellations are observed for the sextic oscillator. - Abstract: This is the fourth paper in a series devoted to the large-order properties of anharmonic oscillators. We attempt to draw a connection of anharmonic oscillators to field theory, by investigating the partition function in the path integral representation around both the Gaussian saddle point, which determines the perturbative expansion of the eigenvalues, as well as the nontrivial instanton saddle point. The value of the classical action at the saddle point is the instanton action which determines the large-order properties of perturbation theory by a dispersion relation. In order to treat the perturbations about the instanton, one has to take into account the continuous symmetries broken by the instanton solution because they lead to zero-modes of the fluctuation operator of the instanton configuration. The problem is solved by changing variables in the path integral, taking the instanton parameters as integration variables (collective coordinates). The functional determinant (Faddeev-Popov determinant) of the change of variables implies nontrivial modifications of the one-loop and higher-loop corrections about the instanton configuration. These are evaluated and compared to exact WKB calculations. A specific cancellation mechanism for the first perturbation about the instanton, which has been conjectured for the sextic oscillator based on a nonperturbative generalized Bohr-Sommerfeld quantization condition, is verified by an analytic Feynman diagram calculation.

  13. Photon path length retrieval from GOSAT observations

    NASA Astrophysics Data System (ADS)

    Kremmling, Beke; Penning de Vries, Marloes; Deutschmann, Tim; Wagner, Thomas

    2013-04-01

    The influence of clouds on the atmospheric radiation budget is investigated, focussing on the photon path length distributions of the scattered sunlight. Apart from the reflection of incoming solar radiation at the cloud top, clouds can also introduce a large number of additional scattering events causing an enhancement of the photon paths. In certain cloud formations, these scattering events also result in a ``ping-pong`` behaviour between different cloud patches and cloud layers. It has been shown from ground based measurements that it is possible to retrieve photon path lengths by analysis of high resolution oxygen A-band spectra (O. Funk et al.). This study uses similar space based measurements of the oxygen A-band for the path length retrieval. The oxygen A-band spectra are retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT) which was successfully launched in 2009. The high spectral resolution of the GOSAT TANSO-FTS instrument allows to almost completely resolve the individual absorption lines. The considered spectral range is particularly suitable for this study because it shows clear absorption structures of different strength. From the analysis of the spectral signatures, cloud properties and the underlying path length distributions can be derived. The retrieval is done by analysis and comparison of the extracted TANSO-FTS spectra with simulations from the Monte Carlo radiative transfer Model McArtim. The model permits modelling of altitude dependent oxygen absorption cross sections and three-dimensional cloud patterns. Case studies of clear and cloudy sky scenarios will be presented. Future studies will focus on more complicated cloud structures, especially considering three-dimensional geometries and heterogeneities.

  14. Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2009-02-12

    It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will turn to tunneling problems and show that the instanton can also be though of in the same way. I will do this for the classic problem of a double well potential in the extreme limit when the splitting between the two lowest levels is extremely small and the tunneling rate from one well to another is also very small.

  15. Potential theory, path integrals and the Laplacian of the indicator

    NASA Astrophysics Data System (ADS)

    Lange, Rutger-Jan

    2012-11-01

    This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the following seemingly ill-defined potential: V(x):=? {{?^2}}/2nabla_x^2{1_{{xin D}}} where the volatility is the reciprocal of the mass (i.e. m = 1/ ? 2) and ? = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac ?'-function, which can formally be defined as partial_x^2{1_{x>0 }} . We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:

    mode of convergence absorbed propagator reflected propagator convex domain alternating monotone concave domain monotone alternating
    We also discuss the third boundary problem (which poses Robin boundary conditions) and discuss an extension to moving domains.

  16. Sleep Problems

    MedlinePLUS

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  17. Kidney Problems

    MedlinePLUS

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...

  18. Thyroid Problems

    MedlinePLUS

    ... treated differently. Common thyroid disorders and problems include: Hypothyroidism Hypothyroidism is a disorder in which your thyroid doesn’ ... normal after you get better. If you have hypothyroidism, however, the levels of T4 in your blood ...

  19. Vision problems

    MedlinePLUS

    ... which nothing can be seen) Vision loss and blindness are the most severe vision problems. ... that look faded. The most common cause of blindness in people over age 60. Eye infection, inflammation, ...

  20. Prostate Problems

    MedlinePLUS

    ... penis. Men with this problem often have painful ejaculation. They may feel the need to urinate frequently, ... in the back, hips, or pelvis, and painful ejaculation. To find out if these symptoms are caused ...

  1. Prostate Problems

    MedlinePLUS

    ... penis. Men with this problem often have painful ejaculation. They may feel the need to urinate 3 ... in the back, hips, or pelvis, and painful ejaculation. To find out if these symptoms are caused ...

  2. Erection problems

    MedlinePLUS

    ... Some peptic ulcer medications Other physical causes: Low testosterone levels: This can make it difficult to get ... conditions such as diabetes, heart problems, or low testosterone A device you wear at night to check ...

  3. Tongue problems

    MedlinePLUS

    ... drug that causes the tongue swelling. Seek medical attention right away if swelling is starting to make ... that helps? Are there problems with the teeth, gums, lips, or throat? Does the tongue bleed? Do ...

  4. Path Planning of AN Autonomous Mobile Multi-Sensor Platform in a 3d Environment Using Newtonian Imperialist Competitive Optimization Method

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Afghan-Toloee, A.; Abbaspour, R. A.

    2013-09-01

    This paper addresses an innovative evolutionary computation approach to 3D path planning of autonomous UAVs in real environment. To solve this Np-hard problem, Newtonian imperialist competitive algorithm (NICA) was developed and extended for path planning problem. This paper is related to optimal trajectory-designing before UAV missions. NICA planner provides 3D optimal paths for UAV planning in real topography of north Tehran environment. To simulate UAV path planning, a real DTM is used to algorithm. For real-world applications, final generated paths should be smooth and also physical flyable that made the path planning problems complex and more constrained. The planner progressively presents a smooth 3D path from first position to mission target location. The objective function contains distinctive measures of the problem. Our main goal is minimization of the total mission time. For evaluating of NICA efficiency, it is compared with other three well-known methods, i.e. ICA, GA, and PSO. Then path planning of UAV will done. Finally simulations proved the high capabilities of proposed methodology.

  5. On-line success path monitoring: aid to restoring and maintaining plant safety

    SciTech Connect

    Betancourt, J.M.; Harmon, D.L.; Jamison, D.S.; Malliakos, A.; Rezendes, J.P.

    1984-08-01

    This report provides the basic methodology and the results of a conceptual evaluation of a technique of success path based functional recovery guideline support. The method for Success Path Monitoring (SPM) developed in this report is intended to enhance the relationship that currently exists between a Safety Parameter display system (SPDS) and symptoms by providing an operating crew the link needed to successfully identify problems impacting safety, select appropriate corrective procedures, and verify the success of mitigating actions. The 1979 accident at Three Mile Island (TMI) demonstrated that this type of information was needed as the resources available at that time to the operating crew were not adequate for their decision making.

  6. Path planning using a hybrid evolutionary algorithm based on tree structure encoding.

    PubMed

    Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  7. On the efficacy of spatial sampling using manual scanning paths to determine the spatial average sound pressure level in rooms.

    PubMed

    Hopkins, Carl

    2011-05-01

    In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations. PMID:21568406

  8. Density shrinking algorithm for community detection with path based similarity

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Hou, Yunting; Jiao, Yang; Li, Yong; Li, Xiaoxiao; Jiao, Licheng

    2015-09-01

    Community structure is ubiquitous in real world complex networks. Finding the communities is the key to understand the functions of those networks. A lot of works have been done in designing algorithms for community detection, but it remains a challenge in the field. Traditional modularity optimization suffers from the resolution limit problem. Recent researches show that combining the density based technique with the modularity optimization can overcome the resolution limit and an efficient algorithm named DenShrink was provided. The main procedure of DenShrink is repeatedly finding and merging micro-communities (broad sense) into super nodes until they cannot merge. Analyses in this paper show that if the procedure is replaced by finding and merging only dense pairs, both of the detection accuracy and runtime can be obviously improved. Thus an improved density-based algorithm: ImDS is provided. Since the time complexity, path based similarity indexes are difficult to be applied in community detection for high performance. In this paper, the path based Katz index is simplified and used in the ImDS algorithm.

  9. Preserving correlations between trajectories for efficient path sampling

    SciTech Connect

    Gingrich, Todd R.; Geissler, Phillip L.

    2015-06-21

    Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.

  10. Kinematics, controls, and path planning results for a redundant manipulator

    NASA Technical Reports Server (NTRS)

    Gretz, Bruce; Tilley, Scott W.

    1989-01-01

    The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.

  11. Efficient exploration of reaction paths via a freezing string method

    NASA Astrophysics Data System (ADS)

    Behn, Andrew; Zimmerman, Paul M.; Bell, Alexis T.; Head-Gordon, Martin

    2011-12-01

    The ability to efficiently locate transition states is critically important to the widespread adoption of theoretical chemistry techniques for their ability to accurately predict kinetic constants. Existing surface walking techniques to locate such transition states typically require an extremely good initial guess that is often beyond human intuition to estimate. To alleviate this problem, automated techniques to locate transition state guesses have been created that take the known reactant and product endpoint structures as inputs. In this work, we present a simple method to build an approximate reaction path through a combination of interpolation and optimization. Starting from the known reactant and product structures, new nodes are interpolated inwards towards the transition state, partially optimized orthogonally to the reaction path, and then frozen before a new pair of nodes is added. The algorithm is stopped once the string ends connect. For the practical user, this method provides a quick and convenient way to generate transition state structure guesses. Tests on three reactions (cyclization of cis,cis-2,4-hexadiene, alanine dipeptide conformation transition, and ethylene dimerization in a Ni-exchanged zeolite) show that this "freezing string" method is an efficient way to identify complex transition states with significant cost savings over existing methods, particularly when high quality linear synchronous transit interpolation is employed.

  12. Preserving correlations between trajectories for efficient path sampling

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Geissler, Phillip L.

    2015-06-01

    Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this "noise guidance" synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.

  13. On the complexity of Minimum Path Cover with Subpath Constraints for multi-assembly

    PubMed Central

    2014-01-01

    Background Multi-assembly problems have gathered much attention in the last years, as Next-Generation Sequencing technologies have started being applied to mixed settings, such as reads from the transcriptome (RNA-Seq), or from viral quasi-species. One classical model that has resurfaced in many multi-assembly methods (e.g. in Cufflinks, ShoRAH, BRANCH, CLASS) is the Minimum Path Cover (MPC) Problem, which asks for the minimum number of directed paths that cover all the nodes of a directed acyclic graph. The MPC Problem is highly popular because the acyclicity of the graph ensures its polynomial-time solvability. Results In this paper, we consider two generalizations of it dealing with integrating constraints arising from long reads or paired-end reads; these extensions have also been considered by two recent methods, but not fully solved. More specifically, we study the two problems where also a set of subpaths, or pairs of subpaths, of the graph have to be entirely covered by some path in the MPC. We show that in the case of long reads (subpaths), the generalized problem can be solved in polynomial-time by a reduction to the classical MPC Problem. We also consider the weighted case, and show that it can be solved in polynomial-time by a reduction to a min-cost circulation problem. As a side result, we also improve the time complexity of the classical minimum weight MPC Problem. In the case of paired-end reads (pairs of subpaths), the generalized problem becomes NP-hard, but we show that it is fixed-parameter tractable (FPT) in the total number of constraints. This computational dichotomy between long reads and paired-end reads is also a general insight into multi-assembly problems. PMID:25252805

  14. Computing LS factor by runoff paths on TIN

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Krasa, Josef; Bek, Stanislav

    2013-04-01

    The article shows results of topographic factor (the LS factor in USLE) derivation enhancement focused on detailed Airborne Laser Scanning (ALS) based DEMs. It describes a flow paths generation technique using triangulated irregular network (TIN) for terrain morphology description, which is not yet established in soil loss computations. This technique was compared with other procedures of flow direction and flow paths generation based on commonly used raster model (DEM). These overland flow characteristics together with therefrom derived flow accumulation are significant inputs for many scientific models. Particularly they are used in all USLE-based soil erosion models, from which USLE2D, RUSLE3D, Watem/Sedem or USPED can be named as the most acknowledged. Flow routing characteristics are also essential parameters in physically based hydrological and soil erosion models like HEC-HMS, Wepp, Erosion3D, LISEM, SMODERP, etc. Mentioned models are based on regular raster grids, where the identification of runoff direction is problematic. The most common method is Steepest descent (one directional flow), which corresponds well with the concentration of surface runoff into concentrated flow. The Steepest descent algorithm for the flow routing doesn't provide satisfying results, it often creates parallel and narrow flow lines while not respecting real morphological conditions. To overcome this problem, other methods (such as Flux Decomposition, Multiple flow, Deterministic Infinity algorithm etc.) separate the outflow into several components. This approach leads to unrealistic diffusion propagation of the runoff and makes it impossible to be used for simulation of dominant morphological features, such as artificial rills, hedges, sediment traps etc. The modern methods of mapping ground elevations, especially ALS, provide very detailed models even for large river basins, including morphological details. New algorithms for derivation a runoff direction have been developed as a part of the Atlas DMT software package. Starting points for the flow direction generation remain in regular grid (allowing easy contributing area assessment) while realistic direction paths are generated directly at TIN. It turns out that this procedure allows predicting actual runoff paths while ensuring the continuity of the potential runoff by sophisticated filling of sinks and flats. The algorithm is being implemented in a new USLE based erosion model ATLAS EROSION aiming to enhance designing of technical (morphological) soil erosion measures using detailed DEMs. The research has been supported by the research project No. TA02020647 " Atlas EROZE - a modern tool for soil erosion assessment".

  15. Real-time fuzzy inference based robot path planning

    NASA Technical Reports Server (NTRS)

    Pacini, Peter J.; Teichrow, Jon S.

    1990-01-01

    This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.

  16. Direct path integral estimators for isotope fractionation ratios

    SciTech Connect

    Cheng, Bingqing; Ceriotti, Michele

    2014-12-28

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  17. Approximate resolution of hard numbering problems

    SciTech Connect

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  18. A GIS-based decision support system for determining the shortest and safest route to forest fires: a case study in Mediterranean Region of Turkey.

    PubMed

    Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun

    2012-03-01

    The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area. PMID:21509512

  19. Volcanic eruption induced WWVB transmission path interruption

    NASA Astrophysics Data System (ADS)

    Buckmaster, H. A.; Hansen, C. H.

    1985-07-01

    It is reported that the 60 kHz transmission of WWVB from Fort Collins, Colorado, was not received in Calgary, Alberta, Canada, for about 11 h from 1109 UT to 2153 UT on July 23, 1980. It is suggested that this transmission path interruption is correlated with the 15 km height ash cloud due to the July 22, 1980 volcanic eruption of Mount St. Helens as it drifted eastward interrupting both the ground- and first hop sky-wave paths and that this ash cloud is the source of the conductivity and/or ionization necessary to produce this interruption. Small phase retardations are also reported which could be correlated with other Mount St. Helens volcanic events during May-July 1980.

  20. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  1. Hamiltonian formalism and path entropy maximization

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; González, Diego

    2015-10-01

    Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.

  2. Degenerate optimal paths in thermally isolated systems.

    PubMed

    Acconcia, Thiago V; Bonança, Marcus V S

    2015-04-01

    We present an analysis of the work performed on a system of interest that is kept thermally isolated during the switching of a control parameter. We show that there exists, for a certain class of systems, a finite-time family of switching protocols for which the work is equal to the quasistatic value. These optimal paths are obtained within linear response for systems initially prepared in a canonical distribution. According to our approach, such protocols are composed of a linear part plus a function which is odd with respect to time reversal. For systems with one degree of freedom, we claim that these optimal paths may also lead to the conservation of the corresponding adiabatic invariant. This points to an interesting connection between work and the conservation of the volume enclosed by the energy shell. To illustrate our findings, we solve analytically the harmonic oscillator and present numerical results for certain anharmonic examples. PMID:25974472

  3. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  4. Adaptive path planning for flexible manufacturing

    SciTech Connect

    Chen, Pang C.

    1994-08-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for automating flexible manufacturing in incrementally-changing environments. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.

  5. Mining Preferred Traversal Paths with HITS

    NASA Astrophysics Data System (ADS)

    Yeh, Jieh-Shan; Lin, Ying-Lin; Chen, Yu-Cheng

    Web usage mining can discover useful information hidden in web logs data. However, many previous algorithms do not consider the structure of web pages, but regard all web pages with the same importance. This paper utilizes HITS values and PNT preferences as measures to mine users' preferred traversal paths. Wë structure mining uses HITS (hypertext induced topic selection) to rank web pages. PNT (preferred navigation tree) is an algorithm that finds users' preferred navigation paths. This paper introduces the Preferred Navigation Tree with HITS (PNTH) algorithm, which is an extension of PNT. This algorithm uses the concept of PNT and takes into account the relationships among web pages using HITS algorithm. This algorithm is suitable for E-commerce applications such as improving web site design and web server performance.

  6. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023

  7. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies

    NASA Astrophysics Data System (ADS)

    Mielke, Steven L.; Truhlar, Donald G.

    2016-01-01

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  8. Quantitative Molecular Thermochemistry Based on Path Integrals

    SciTech Connect

    Glaesemann, K R; Fried, L E

    2005-03-14

    The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group.

  9. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  10. Evolutionary software for autonomous path planning

    SciTech Connect

    Couture, S; Hage, M

    1999-02-10

    This research project demonstrated the effectiveness of using evolutionary software techniques in the development of path-planning algorithms and control programs for mobile vehicles in radioactive environments. The goal was to take maximum advantage of the programmer's intelligence by tasking the programmer with encoding the measures of success for a path-planning algorithm, rather than developing the path-planning algorithms themselves. Evolutionary software development techniques could then be used to develop algorithms most suitable to the particular environments of interest. The measures of path-planning success were encoded in the form of a fitness function for an evolutionary software development engine. The task for the evolutionary software development engine was to evaluate the performance of individual algorithms, select the best performers for the population based on the fitness function, and breed them to evolve the next generation of algorithms. The process continued for a set number of generations or until the algorithm converged to an optimal solution. The task environment was the navigation of a rover from an initial location to a goal, then to a processing point, in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were more complex than algorithms and less optimal in a given environment. However, after training in a variety of different environments, they were more robust and could perform acceptably in environments they were not trained in. This paper describes the evolutionary software development engine and the performance of algorithms and programs evolved by it for the chosen task.

  11. Fast parallel algorithms for finding Hamiltonian paths and cycles in a tournament

    SciTech Connect

    Soroker, D.

    1987-01-01

    A tournament is a digraph T = (V,E) in which, for every pair of vertices, ..mu.. an ..nu.., exactly one of (..mu..,..nu..), (..nu..,..mu..) is in E. Two classical theorems about tournaments are that every tournament has a Hamiltonian path and that every strongly connected tournament has a Hamiltonian cycle. Furthermore, it is known how to find these in polynomial time. In this paper the authors discuss the parallel complexity of these problems. Their main result is that constructing a Hamiltonian path in a general tournament and a Hamiltonian cycle in a strongly connected tournament are both in NC. In addition, they give an NC algorithm for finding a Hamiltonain path with one fixed endpoint.

  12. Genetic Fuzzy Control for Path-Tracking of an Autonomous Robotic Bicycle

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Keng; Dao, Thanh-Son

    Due to its non-holonomic constraints and a highly unstable nature, the autonomous bicycle is difficult to be controlled for tracking a target path while retaining its balance. As a result of the non-holonomic constraint conditions, the instantaneous velocity of the vehicle is limited to certain directions. Constraints of this kind occur under the no-slip condition. In this study, the problem of optimization of fuzzy logic controllers (FLCs) for path-tracking of an autonomous robotic bicycle using genetic algorithm (GA) is focused. In order to implement path-tracking algorithm, strategies for balancing and tracking a given roll-angle are also addressed. The proposed strategy optimizes FLCs by keeping the rule-table fixed and tuning their membership functions by introducing the scaling factors (SFs) and deforming coefficients (DCs). The numerical simualtions prove the effectiveness of the proposed structure of the genetic fuzzy controller for the developed bicycle system.

  13. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2014-10-01

    The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.

  14. Automatic tool path generation for finish machining

    SciTech Connect

    Kwok, Kwan S.; Loucks, C.S.; Driessen, B.J.

    1997-03-01

    A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch diameter CBN grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm.

  15. Conductivity of soils with preferential flow paths

    SciTech Connect

    Lin, J.; Govindaraju, R.S.

    1996-12-31

    Laboratory soil column experiments were conducted to study the distribution of preferential flow paths resulting from removal of fine-size clay particles. These experiments specifically studied the influence of clay (kaolinite) percentage in sand-clay mixtures and the effect of hydraulic gradients on pore evolution. Analysis of the effluent during the experiments indicated that clay particles were removed from the soil column, accompanied by an increase in porosity and hydraulic conductivity. Dye experiments were conducted on the same columns to stain the pathways where clay particle removal occurred. It was observed that pore formation was fairly uniform in some cases, while other cases showed distinct preferential flow path formation. A physically-based model was used to identify a dimensionless parameter, G, which expresses the ratio of detachment and deposition forces at any space-time location. A model, based on equivalent media theory, is proposed to describe the hydraulic conductivity of soils with preferential flow paths. Future work will test the theoretical expressions for conductivity with experimental results, and investigate the relationship between G and the equivalent conductivity for such soils.

  16. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1995-03-01

    To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.

  17. Path Models of Vocal Emotion Communication.

    PubMed

    Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R

    2015-01-01

    We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076

  18. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  19. Path Models of Vocal Emotion Communication

    PubMed Central

    Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R.

    2015-01-01

    We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076

  20. Hair Problems

    MedlinePLUS

    ... an inch. Most hairs grow for up to six years and then fall out. New hairs grow in their place. Hair helps keep you warm. It also protects your eyes, ears and nose from small particles in the air. Common problem with the hair and scalp include hair loss, infections, and flaking.