An improved Physarum polycephalum algorithm for the shortest path problem.
Zhang, Xiaoge; Wang, Qing; Adamatzky, Andrew; Chan, Felix T S; Mahadevan, Sankaran; Deng, Yong
2014-01-01
Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960
An Improved Physarum polycephalum Algorithm for the Shortest Path Problem
Wang, Qing; Adamatzky, Andrew; Chan, Felix T. S.; Mahadevan, Sankaran
2014-01-01
Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
Randomized shortest-path problems: two related models.
Saerens, Marco; Achbany, Youssef; Fouss, François; Yen, Luh
2009-08-01
This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected. PMID:19323635
An improved bio-inspired algorithm for the directed shortest path problem.
Zhang, Xiaoge; Zhang, Yajuan; Deng, Yong
2014-01-01
Because most networks are intrinsically directed, the directed shortest path problem has been one of the fundamental issues in network optimization. In this paper, a novel algorithm for finding the shortest path in directed networks is proposed. It extends a bio-inspired path finding model of Physarum polycephalum, which is designed only for undirected networks, by adopting analog circuit analysis. Illustrative examples are given to show the effectiveness of the proposed algorithm in finding the directed shortest path. PMID:25405318
The role of convexity for solving some shortest path problems in plane without triangulation
NASA Astrophysics Data System (ADS)
An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van
2013-09-01
Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.
Shortest Paths between Shortest Paths and Independent Sets
NASA Astrophysics Data System (ADS)
Kamiński, Marcin; Medvedev, Paul; Milanič, Martin
We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and P 4-free graphs).
Probabilistic inference and ranking of gene regulatory pathways as a shortest-path problem
2013-01-01
Background Since the advent of microarray technology, numerous methods have been devised to infer gene regulatory relationships from gene expression data. Many approaches that infer entire regulatory networks. This produces results that are rich in information and yet so complex that they are often of limited usefulness for researchers. One alternative unit of regulatory interactions is a linear path between genes. Linear paths are more comprehensible than networks and still contain important information. Such paths can be extracted from inferred regulatory networks or inferred directly. Since criteria for inferring networks generally differs from criteria for inferring paths, indirect and direct inference of paths may achieve different results. Results This paper explores a strategy to infer linear pathways by converting the path inference problem into a shortest-path problem. The edge weights used are the negative log-transformed probabilities of directness derived from the posterior joint distributions of pairwise mutual information between gene expression levels. Directness is inferred using the data processing inequality. The method was designed with two goals. One is to achieve better accuracy in path inference than extraction of paths from inferred networks. The other is to facilitate priorization of interactions for laboratory validation. A method is proposed for achieving this by ranking paths according to the joint probability of directness of each path's edges. The algorithm is evaluated using simulated expression data and is compared to extraction of shortest paths from networks inferred by two alternative methods, ARACNe and a minimum spanning tree algorithm. Conclusions Direct path inference appears to achieve accuracy competitive with that obtained by extracting paths from networks inferred by the other methods. Preliminary exploration of the use of joint edge probabilities to rank paths is largely inconclusive. Suggestions for a better framework for such comparisons are discussed. PMID:24266986
The d-edge shortest-path problem for a Monge graph
Bein, W.W.; Larmore, L.L.; Park, J.K.
1992-07-14
A complete edge-weighted directed graph on vertices 1,2,...,n that assigns cost c(i,j) to the edge (i,j) is called Monge if its edge costs form a Monge array, i.e., for all i < k and j < l, c[i, j]+c[k,l]{le} < c[i,l]+c[k,j]. One reason Monge graphs are interesting is that shortest paths can be computed quite quickly in such graphs. In particular, Wilber showed that the shortest path from vertex 1 to vertex n of a Monge graph can be computed in O(n) time, and Aggarwal, Klawe, Moran, Shor, and Wilber showed that the shortest d-edge 1-to-n path (i.e., the shortest path among all 1-to-n paths with exactly d edges) can be computed in O(dn) time. This paper`s contribution is a new algorithm for the latter problem. Assuming 0 {le} c[i,j] {le} U and c[i,j + 1] + c[i + 1,j] {minus} c[i,j] {minus} c[i + 1, j + 1] {ge} L > 0 for all i and j, our algorithm runs in O(n(1 + 1g(U/L))) time. Thus, when d {much_gt} 1 + 1g(U/L), our algorithm represents a significant improvement over Aggarwal et al.`s O(dn)-time algorithm. We also present several applications of our algorithm; they include length-limited Huffman coding, finding the maximum-perimeter d-gon inscribed in a given convex n-gon, and a digital-signal-compression problem.
Parallel shortest augmenting path algorithm for the assignment problem. Technical report
Balas, E.; Miller, D.; Pekny, J.; Toth, P.
1989-04-01
We describe a parallel version of the shortest augmenting path algorithm for the assignment problem. While generating the initial dual solution and partial assignment in parallel does not require substantive changes in the sequential algorithm, using several augmenting paths in parallel does require a new dual variable recalculation method. The parallel algorithm was tested on a 14-processor Butterfly Plus computer, on problems with up to 900 million variables. The speedup obtained increases with problem size. The algorithm was also embedded into a parallel branch and bound procedure for the traveling salesman problem on a directed graph, which was tested on the Butterfly Plus on problems involving up to 7,500 cities. To our knowledge, these are the largest assignment problems and traveling salesman problems solved so far.
Physarum can compute shortest paths.
Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish
2012-09-21
Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274
An Improved Ant Colony Algorithm for the Shortest Path Problem in Time-Dependent Networks
NASA Astrophysics Data System (ADS)
Chang, Qing; Liu, Yongqiang; Xiong, Huagang
Research of the shortest path problem in time-dependent networks has important practical value. An improved pheromone update strategy suitable for time-dependent networks was proposed. Under this strategy, the residual pheromone of each road can accurately reflect the change of weighted value of each road. An improved selection strategy between adjacent cities was used to compute the cities' transfer probabilities, as a result, the amount of calculation is greatly reduced. To avoid the algorithm converging to the local optimal solution, the ant colony algorithm was combined with genetic algorithm. In this way, the solutions after each traversal were used as the initial species to carry out single-point crossover. An improved ant colony algorithm for the shortest path problem in time-dependent networks based on these improved strategies was presented. The simulation results show that the improved algorithm has greater probability to get the global optimal solution, and the convergence rate of algorithm is better than traditional ant colony algorithm.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
A fuzzy shortest path with the highest reliability
NASA Astrophysics Data System (ADS)
Keshavarz, Esmaile; Khorram, Esmaile
2009-08-01
This paper concentrates on a shortest path problem on a network where arc lengths (costs) are not deterministic numbers, but imprecise ones. Here, costs of the shortest path problem are fuzzy intervals with increasing membership functions, whereas the membership function of the total cost of the shortest path is a fuzzy interval with a decreasing linear membership function. By the max-min criterion suggested in [R.E. Bellman, L.A. Zade, Decision-making in a fuzzy environment, Management Science 17B (1970) 141-164], the fuzzy shortest path problem can be treated as a mixed integer nonlinear programming problem. We show that this problem can be simplified into a bi-level programming problem that is very solvable. Here, we propose an efficient algorithm, based on the parametric shortest path problem for solving the bi-level programming problem. An illustrative example is given to demonstrate our proposed algorithm.
Shortest path and Schramm-Loewner Evolution
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
2014-01-01
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019
Distributional properties of stochastic shortest paths for smuggled nuclear material
Cuellar, Leticia; Pan, Feng; Roach, Fred; Saeger, Kevin J
2011-01-05
The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.
Shortest Path Edit Distance for Enhancing UMLS Integration and Audit.
Rudniy, Alex; Geller, James; Song, Min
2010-01-01
Expansion of the UMLS is an important long-term research project. This paper proposes Shortest Path Edit Distance (SPED) as an algorithm for improving existing source-integration and auditing techniques. We use SPED as a string similarity measure for UMLS terms that are known to be synonyms because they are assigned to the same concept. We compare SPED with several other well known string matching algorithms using two UMLS samples as test bed. One of those samples is SNOMED-based. SPED transforms the task of calculating edit distance among two strings into a problem of finding a shortest path from a source to a destination in a node and link graph. In the algorithm, the two strings are used to construct the graph. The Pulling algorithm is applied to find a shortest path, which determines the string similarity value. SPED was superior for one of the data sets, with a precision of 0.6. PMID:21347068
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
Al Nasr, Kamal; Ranjan, Desh; Zubair, Mohammad; Chen, Lin; He, Jing
2014-01-01
Electron cryomicroscopy is becoming a major experimental technique in solving the structures of large molecular assemblies. More and more three-dimensional images have been obtained at the medium resolutions between 5 and 10 Å. At this resolution range, major α-helices can be detected as cylindrical sticks and β-sheets can be detected as plain-like regions. A critical question in de novo modeling from cryo-EM images is to determine the match between the detected secondary structures from the image and those on the protein sequence. We formulate this matching problem into a constrained graph problem and present an O(Δ(2)N(2)2(N)) algorithm to this NP-Hard problem. The algorithm incorporates the dynamic programming approach into a constrained K-shortest path algorithm. Our method, DP-TOSS, has been tested using α-proteins with maximum 33 helices and α-β proteins up to five helices and 12 β-strands. The correct match was ranked within the top 35 for 19 of the 20 α-proteins and all nine α-β proteins tested. The results demonstrate that DP-TOSS improves accuracy, time and memory space in deriving the topologies of the secondary structure elements for proteins with a large number of secondary structures and a complex skeleton. PMID:26355788
Corridor location: the multi-gateway shortest path model
NASA Astrophysics Data System (ADS)
Scaparra, Maria P.; Church, Richard L.; Medrano, F. Antonio
2014-07-01
The problem of corridor location can be found in a number of fields including power transmission, highways, and pipelines. It involves the placement of a corridor or rights-of-way that traverses a landscape starting at an origin and ending at a destination. Since most systems are subject to environmental review, it is important to generate competitive, but different alternatives. This paper addresses the problem of generating efficient, spatially different alternatives to the corridor location problem. We discuss the weaknesses in current models and propose a new approach which is designed to overcome many of these problems. We present an application of this model to a real landscape and compare the results to past work. Overall, the new model called the multi-gateway shortest path problem can generate a wide variety of efficient alignments, which eclipse what could be generated by past work.
ON THE ACCELERATION OF SHORTEST PATH CALCULATIONS IN TRANSPORTATION NETWORKS
BAKER, ZACHARY K.; GOKHALE, MAYA B.
2007-01-08
Shortest path algorithms are a key element of many graph problems. They are used in such applications as online direction finding and navigation, as well as modeling of traffic for large scale simulations of major metropolitan areas. As the shortest path algorithms are an execution bottleneck, it is beneficial to move their execution to parallel hardware such as Field-Programmable Gate Arrays (FPGAs). Hardware implementation is accomplished through the use of a small A core replicated on the order of 20 times on an FPGA device. The objective is to maximize the use of on-board random-access memory bandwidth through the use of multi-threaded latency tolerance. Each shortest path core is responsible for one shortest path calculation, and when it is finished it outputs its result and requests the next source from a queue. One of the innovations of this approach is the use of a small bubble sort core to produce the extract-min function. While bubble sort is not usually considered an appropriate algorithm for any non-trivial usage, it is appropriate in this case as it can produce a single minimum out of the list in O(n) cycles, whwere n is the number of elements in the vertext list. The cost of this min operation does not impact the running time of the architecture, because the queue depth for fetching the next set of edges from memory is roughly equivalent to the number of cores in the system. Additionally, this work provides a collection of simulation results that model the behavior of the node queue in hardware. The results show that a hardware queue, implementing a small bubble-type minimum function, need only be on the order of 16 elements to provide both correct and optimal paths. Because the graph database size is measured in the hundreds of megabytes, the Cray SRAM memory is insufficient. In addition to the A* cores, they have developed a memory management system allowing round-robin servicing of the nodes as well as virtual memory managed over the Hypertransport bus. With support for a DRAM graph store with SRAM-based caching on the FPGA, the system provides a speedup of roughly 8.9x over the CPU-based implementation.
Competition for Shortest Paths on Sparse Graphs
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho; Saad, David
2012-05-01
Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised.
Two betweenness centrality measures based on Randomized Shortest Paths.
Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco
2016-01-01
This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176
Two betweenness centrality measures based on Randomized Shortest Paths
NASA Astrophysics Data System (ADS)
Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco
2016-02-01
This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.
Two betweenness centrality measures based on Randomized Shortest Paths
Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco
2016-01-01
This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176
A Graph Search Heuristic for Shortest Distance Paths
Chow, E
2005-03-24
This paper presents a heuristic for guiding A* search for finding the shortest distance path between two vertices in a connected, undirected, and explicitly stored graph. The heuristic requires a small amount of data to be stored at each vertex. The heuristic has application to quickly detecting relationships between two vertices in a large information or knowledge network. We compare the performance of this heuristic with breadth-first search on graphs with various topological properties. The results show that one or more orders of magnitude improvement in the number of vertices expanded is possible for large graphs, including Poisson random graphs.
Blokh, Dima; Sharan, Roded
2013-01-01
Abstract The graph orientation problem calls for orienting the edges of an undirected graph so as to maximize the number of prespecified source-target vertex pairs that admit a directed path from the source to the target. Most algorithmic approaches to this problem share a common preprocessing step, in which the input graph is reduced to a tree by repeatedly contracting its cycles. Although this reduction is valid from an algorithmic perspective, the assignment of directions to the edges of the contracted cycles becomes arbitrary and, consequently, the connecting source-target paths may be arbitrarily long. In the context of biological networks, the connection of vertex pairs via shortest paths is highly motivated, leading to the following variant: Given an undirected graph and a collection of source-target vertex pairs, assign directions to the edges so as to maximize the number of pairs that are connected by a shortest (in the original graph) directed path. Here we study this variant, provide strong inapproximability results for it, and propose approximation algorithms for the problem, as well as for relaxations where the connecting paths need only be approximately shortest. PMID:24073924
von Thienen, Wolfhard; Metzler, Dirk; Witte, Volker
2015-05-01
The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches in the past decades. One model explains experimental observations in which Argentine ants (Linepithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest path experiments). This model serves as an important example for the emergence of collective behavior and self-organization in biological systems. In addition, it inspired the development of computer algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function describing how ants react to different pheromone concentrations is fundamental. However, the parameters of the choice function were not deduced experimentally but freely adapted so that the model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking about crucial model assumptions. A recent study on the Argentine ant provided this information by measuring the response of the ants to varying pheromone concentrations. In said study, the above mentioned choice function was fitted to the experimental data and its parameters were deduced. In addition, a psychometric function was fitted to the data and its parameters deduced. Based on these findings, it is possible to test the shortest path model by applying realistic parameter values. Here we present the results of such tests using Monte Carlo simulations of shortest path experiments with Argentine ants. We compare the choice function and the psychometric function, both with parameter values deduced from the above-mentioned experiments. Our results show that by applying the psychometric function, the shortest path experiments can be explained satisfactorily by the model. The study represents the first example of how psychophysical theory can be used to understand and model collective foraging behavior of ants based on trail pheromones. These findings may be important for other models of pheromone guided ant behavior and might inspire improved ACO algorithms. PMID:25769943
Membrane Boundary Extraction Using a Circular Shortest Path Technique
NASA Astrophysics Data System (ADS)
Sun, Changming; Vallotton, Pascal; Wang, Dadong; Lopez, Jamie; Ng, Yvonne; James, David
2007-11-01
Membrane proteins represent over 50% of known drug targets. Accordingly, several widely used assays in the High Content Analysis area rely on quantitative measures of the translocation of proteins between intracellular organelles and the cell surface. In order to increase the sensitivity of these assays, one needs to measure the signal specifically along the membrane, requiring a precise segmentation of this compartment. Doing this manually is a very time-consuming practice, limited to an academic setting. Manual tracing of the membrane compartment also confronts us with issues of objectivity and reproducibility. In this paper, we present an approach based on a circular shortest path technique that enables us to segment the membrane compartment accurately and rapidly. This feature is illustrated using cells expressing epitope-tagged membrane proteins.
Damage detection via shortest-path network sampling
NASA Astrophysics Data System (ADS)
Ciulla, Fabio; Perra, Nicola; Baronchelli, Andrea; Vespignani, Alessandro
2014-05-01
Large networked systems are constantly exposed to local damages and failures that can alter their functionality. The knowledge of the structure of these systems is, however, often derived through sampling strategies whose effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged, not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the damage detection and the number of probes used to sample the network. We test and measure the efficiency of our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the damage precisely.
Dynamic behavior of shortest path routing algorithms for communication networks
NASA Astrophysics Data System (ADS)
Bertsekas, D. P.
1980-06-01
Several proposed routing algorithms for store and forward communication networks, including one currently in operation in the ARPANET, route messages along shortest paths computed by using some set of link lengths. When these lengths depend on current traffic conditions as they must in an adaptive algorithm, dynamic behavior questions such as stability convergence, and speed of convergence are of interest. This paper is the first attempt to analyze systematically these issues. It is shown that minimum queuing delay path algorithms tend to exhibit violent oscillatory behavior in the absence of a damping mechanism. The oscillations can be damped by means of several types of schemes, two of which are analyzed in this paper. In the first scheme a constant bias is added to the queuing delay thereby providing a preference towards paths with a small number of links. In the second scheme the effects of several past routings are averaged as, for example, when the link lengths are computed and communicated asynchronously throughout the network.
Training shortest-path tractography: Automatic learning of spatial priors.
Kasenburg, Niklas; Liptrot, Matthew; Reislev, Nina Linde; Ørting, Silas N; Nielsen, Mads; Garde, Ellen; Feragen, Aasa
2016-04-15
Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted images. However, the output of tractography often requires post-processing to remove false positives and ensure a robust delineation of the studied tract, and this demands expert prior knowledge. Here we demonstrate how such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a shortest-path tractography approach to produce more robust results. We describe how such a prior can be automatically generated (learned) from a population, and we demonstrate that our framework also retains support for conventional interactive constraints such as waypoint regions. We apply our approach to the open access, high quality Human Connectome Project data, as well as a dataset acquired on a typical clinical scanner. Our results show that the use of a learned prior substantially increases the overlap of tractography output with a reference atlas on both populations, and this is confirmed by visual inspection. Furthermore, we demonstrate how a prior learned on the high quality dataset significantly increases the overlap with the reference for the more typical yet lower quality data acquired on a clinical scanner. We hope that such automatic incorporation of prior knowledge and the obviation of expert interactive tract delineation on every subject, will improve the feasibility of large clinical tractography studies. PMID:26804779
Effective usage of shortest paths promotes transportation efficiency on scale-free networks
NASA Astrophysics Data System (ADS)
Du, Wen-Bo; Wu, Zhi-Xi; Cai, Kai-Quan
2013-09-01
With rapid economic and social development, the problem of traffic congestion is getting more and more serious. Accordingly, network traffic models have attracted extensive attention. In this paper, we introduce a shortest-remaining-path-first queuing strategy into a network traffic model on Barabsi-Albert scale-free networks under efficient routing protocol, where one packets delivery priority is related to its current distance to the destination. Compared with the traditional first-in-first-out queuing strategy, although the network capacity has no evident changes, some other indexes reflecting transportation efficiency are significantly improved in the congestion state. Extensive simulation results and discussions are carried out to explain the phenomena. Our work may be helpful for the designing of optimal networked-traffic systems.
Formal language constrained path problems
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
The approach for shortest paths in fire succor based on component GIS technology
NASA Astrophysics Data System (ADS)
Han, Jie; Zhao, Yong; Dai, K. W.
2007-06-01
Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan
2015-01-01
Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model's objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109
He, Yunyue; Liu, Zhong; Shi, Jianmai; Wang, Yishan; Zhang, Jiaming; Liu, Jinyuan
2015-01-01
Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model’s objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior. PMID:26226109
Do people use the shortest path? An empirical test of Wardrop's first principle.
Zhu, Shanjiang; Levinson, David
2015-01-01
Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis-St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756
Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle
Zhu, Shanjiang; Levinson, David
2015-01-01
Most recent route choice models, following either the random utility maximization or rule-based paradigm, require explicit enumeration of feasible routes. The quality of model estimation and prediction is sensitive to the appropriateness of the consideration set. However, few empirical studies of revealed route characteristics have been reported in the literature. This study evaluates the widely applied shortest path assumption by evaluating routes followed by residents of the Minneapolis—St. Paul metropolitan area. Accurate Global Positioning System (GPS) and Geographic Information System (GIS) data were employed to reveal routes people used over an eight to thirteen week period. Most people did not choose the shortest path. Using three weeks of that data, we find that current route choice set generation algorithms do not reveal the majority of paths that individuals took. Findings from this study may guide future efforts in building better route choice models. PMID:26267756
Protein-fold recognition using an improved single-source K diverse shortest paths algorithm.
Lhota, John; Xie, Lei
2016-04-01
Protein structure prediction, when construed as a fold recognition problem, is one of the most important applications of similarity search in bioinformatics. A new protein-fold recognition method is reported which combines a single-source K diverse shortest path (SSKDSP) algorithm with Enrichment of Network Topological Similarity (ENTS) algorithm to search a graphic feature space generated using sequence similarity and structural similarity metrics. A modified, more efficient SSKDSP algorithm is developed to improve the performance of graph searching. The new implementation of the SSKDSP algorithm empirically requires 82% less memory and 61% less time than the current implementation, allowing for the analysis of larger, denser graphs. Furthermore, the statistical significance of fold ranking generated from SSKDSP is assessed using ENTS. The reported ENTS-SSKDSP algorithm outperforms original ENTS that uses random walk with restart for the graph search as well as other state-of-the-art protein structure prediction algorithms HHSearch and Sparks-X, as evaluated by a benchmark of 600 query proteins. The reported methods may easily be extended to other similarity search problems in bioinformatics and chemoinformatics. The SSKDSP software is available at http://compsci.hunter.cuny.edu/~leixie/sskdsp.html. Proteins 2016; 84:467-472. © 2016 Wiley Periodicals, Inc. PMID:26800480
Modeling the average shortest-path length in growth of word-adjacency networks
NASA Astrophysics Data System (ADS)
Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.
Modeling the average shortest-path length in growth of word-adjacency networks.
Kulig, Andrzej; Drożdż, Stanisław; Kwapień, Jarosław; Oświȩcimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained. PMID:25871160
Task-parallel implementation of 3D shortest path raytracing for geophysical applications
NASA Astrophysics Data System (ADS)
Giroux, Bernard; Larouche, Benoît
2013-04-01
This paper discusses two variants of the shortest path method and their parallel implementation on a shared-memory system. One variant is designed to perform raytracing in models with stepwise distributions of interval velocity while the other is better suited for continuous velocity models. Both rely on a discretization scheme where primary nodes are located at the corners of cuboid cells and where secondary nodes are found on the edges and sides of the cells. The parallel implementations allow raytracing concurrently for different sources, providing an attractive framework for ray-based tomography. The accuracy and performance of the implementations were measured by comparison with the analytic solution for a layered model and for a vertical gradient model. Mean relative error less than 0.2% was obtained with 5 secondary nodes for the layered model and 9 secondary nodes for the gradient model. Parallel performance depends on the level of discretization refinement, on the number of threads, and on the problem size, with the most determinant variable being the level of discretization refinement (number of secondary nodes). The results indicate that a good trade-off between speed and accuracy is achieved with the number of secondary nodes equal to 5. The programs are written in C++ and rely on the Standard Template Library and OpenMP.
NASA Astrophysics Data System (ADS)
Schafer, Sebastian; Singh, Vikas; Hoffmann, Kenneth R.; Noël, Peter B.; Xu, Jinhui
2007-03-01
Endovascular interventional procedures are being used more frequently in cardiovascular surgery. Unfortunately, procedural failure, e.g., vessel dissection, may occur and is often related to improper guidewire and/or device selection. To support the surgeon's decision process and because of the importance of the guidewire in positioning devices, we propose a method to determine the guidewire path prior to insertion using a model of its elastic potential energy coupled with a representative graph construction. The 3D vessel centerline and sizes are determined for a specified vessel. Points in planes perpendicular to the vessel centerline are generated. For each pair of consecutive planes, a vector set is generated which joins all points in these planes. We construct a graph representing these vector sets as nodes. The nodes representing adjacent vector sets are joined by edges with weights calculated as a function of the angle between the corresponding vectors (nodes). The optimal path through this weighted directed graph is then determined using shortest path algorithms, such as topological sort based shortest path algorithm or Dijkstra's algorithm. Volumetric data of an internal carotid artery phantom (Ø 3.5mm) were acquired. Several independent guidewire (Ø 0.4mm) placements were performed, and the 3D paths were determined using rotational angiography. The average RMS distance between the actual and the average simulated guidewire path was 0.7mm; the computation time to determine the path was 3 seconds. The ability to predict the guidewire path inside vessels may facilitate calculation of vessel-branch access and force estimation on devices and the vessel wall.
The tomography of human mobility -- what do shortest-path trees reveal?
NASA Astrophysics Data System (ADS)
Grady, Daniel; Thiemann, Christian; Brockmann, Dirk
2010-03-01
Similar to illustrating the anatomy of organs using pictures of tissue slices taken at various depths, we construct shortest-path trees of different nodes to create a tomogram of large-scale mobility networks. This tomography allows us to measure global properties of the system conditioned on a reference location in the network to gain a fuller characterization of a node. Using this technqiue, we discovered a new symmetry that characterizes a large class of mobility networks. Furthermore, introducing the notion of tree similarity, we devised a new technique for clustering nodes with similar topological footprint, yielding a new, unique and efficient method for community identification in these networks and extracting their topological backbone. We applied these methods to a multi-scale human mobility network obtained from the dollar-bill-tracking site wheresgoerge.com and to the U.S. and world-wide air transportation network.
Shortest path ray tracing in cell model with a second-level forward star
NASA Astrophysics Data System (ADS)
Mak, Sum; Koketsu, Kazuki
2011-09-01
The high-level forward star is routinely applied in seismic ray tracing using graph theory (sometimes referred to as the shortest path method) with a grid model. For a cell model, the forward star is often restricted to nodes at the same cell (i.e. first-level forward star). The performance of a cell model with second-level forward stars is found to be comparable in both computation time and accuracy to that of a doubly dense cell model with first-level forward stars. Moreover, the cell model with second-level forward stars has the advantage of halving the required computer storage. An optimization of the secondary node geometry leads to a further 20 per cent improvement in accuracy. Concepts derived from grid models for analytical error estimation are found to be less applicable to cell models. An empirical approach works better in the optimization of the secondary node geometry.
Mining for novel tumor suppressor genes using a shortest path approach.
Chen, Lei; Yang, Jing; Huang, Tao; Kong, Xiangyin; Lu, Lin; Cai, Yu-Dong
2016-03-01
Cancer, being among the most serious diseases, causes many deaths every year. Many investigators have devoted themselves to designing effective treatments for this disease. Cancer always involves abnormal cell growth with the potential to invade or spread to other parts of the body. In contrast, tumor suppressor genes (TSGs) act as guardians to prevent a disordered cell cycle and genomic instability in normal cells. Studies on TSGs can assist in the design of effective treatments against cancer. In this study, we propose a computational method to discover potential TSGs. Based on the known TSGs, a number of candidate genes were selected by applying the shortest path approach in a weighted graph that was constructed using protein-protein interaction network. The analysis of selected genes shows that some of them are new TSGs recently reported in the literature, while others may be novel TSGs. PMID:26209080
Su, Ran; Sun, Changming; Zhang, Chao; Pham, Tuan D
2014-12-01
Dendritic spines are tiny membranous protrusions from neuron's dendrites. They play a very important role in the nervous system. A number of mental diseases such as Alzheimer's disease and mental retardation are revealed to have close relations with spine morphologies or spine number changes. Spines have various shapes, and spine images are often not of good quality; hence it is very challenging to detect spines in neuron images. This paper presents a novel pipeline to detect dendritic spines in 2D maximum intensity projection (MIP) images and a new dendrite backbone extraction method is developed in the pipeline. The strategy for the backbone extraction approach is that it iteratively refines the extraction result based on directional morphological filtering and improved Hessian filtering until a satisfactory extraction result is obtained. A shortest path method is applied along a backbone to extract the boundary of the dendrites. Spines are then segmented from the dendrites outside the extracted boundary. Touching spines will be split using a marker-controlled watershed algorithm. We present the results of our algorithm on real images and compare our algorithm with two other spine detection methods. The results show that the proposed approach can detect dendrites and spines more accurately. Measurements and classification of spines are also made in this paper. PMID:25155696
Identification of Thyroid Carcinoma Related Genes with mRMR and Shortest Path Approaches
Ji, Zhenhua; Liu, Haibin; Liu, Yueyang; Peng, Hu; Wu, Jian; Fan, Jingping
2014-01-01
Thyroid cancer is a malignant neoplasm originated from thyroid cells. It can be classified into papillary carcinomas (PTCs) and anaplastic carcinomas (ATCs). Although ATCs are in an very aggressive status and cause more death than PTCs, their difference is poorly understood at molecular level. In this study, we focus on the transcriptome difference among PTCs, ATCs and normal tissue from a published dataset including 45 normal tissues, 49 PTCs and 11 ATCs, by applying a machine learning method, maximum relevance minimum redundancy, and identified 9 genes (BCL2, MRPS31, ID4, RASAL2, DLG2, MY01B, ZBTB5, PRKCQ and PPP6C) and 1 miscRNA (miscellaneous RNA, LOC646736) as important candidates involved in the progression of thyroid cancer. We further identified the protein-protein interaction (PPI) sub network from the shortest paths among the 9 genes in a PPI network constructed based on STRING database. Our results may provide insights to the molecular mechanism of the progression of thyroid cancer. PMID:24718460
The lawnmower problem and other geometric path covering problems
Fekete, S.; Arkin, E.; Mitchell, J.
1994-12-31
We discuss the Lawnmower Problem: Given a polygonal region, find the shortest closed path along which we have to move a given object (typically a square or a circle), such that any point of the region will be covered by the object for some position of it movement. In another version of the problem, known as the Milling Problem, the object has to stay within the region at all times. Practical motivations for considering the Lawnmower Problem come from manufacturing (spray painting, quality control), geography (aerial surveys), optimization (tour planning for a large number of clients with limited mobility), and gardening. The Milling Problem has gained attention by its importance for NC pocket machining. We show that both problems are NP-hard and discuss approximation methods for various versions of the problem.
NASA Astrophysics Data System (ADS)
Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart
2013-09-01
The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.
NASA Astrophysics Data System (ADS)
Shen, Yi; Ren, Gang; Liu, Yang
2016-06-01
In this paper, we propose a biased-shortest path method with minimal congestion. In the method, we use linear-prediction to estimate the queue length of nodes, and propose a dynamic accepting probability function for nodes to decide whether accept or reject the incoming packets. The dynamic accepting probability function is based on the idea of homogeneous network flow and is developed to enable nodes to coordinate their queue length to avoid congestion. A path strategy incorporated with the linear-prediction of the queue length and the dynamic accepting probability function of nodes is designed to allow packets to be automatically delivered on un-congested paths with short traveling time. Our method has the advantage of low computation cost because the optimal paths are dynamically self-organized by nodes in the delivering process of packets with local traffic information. We compare our method with the existing methods such as the efficient path method (EPS) and the optimal path method (OPS) on the BA scale-free networks and a real example. The numerical computations show that our method performs best for low network load and has minimum run time due to its low computational cost and local routing scheme.
Yuan, Fei; Zhang, Yu-Hang; Wan, Sibao; Wang, ShaoPeng; Kong, Xiang-Yin
2015-01-01
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions. PMID:26613085
Yuan, Fei; Zhou, You; Wang, Meng; Yang, Jing; Wu, Kai; Lu, Changhong; Kong, Xiangyin; Cai, Yu-Dong
2015-01-01
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486
Probabilistic shortest path tractography in DTI using Gaussian Process ODE solvers.
Schober, Michael; Kasenburg, Niklas; Feragen, Aasa; Hennig, Philipp; Hauberg, Soren
2014-01-01
Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity between regions of interest and contribute a Gaussian Process tractography algorithm which allows for both quantification and visualization of its posterior uncertainty. We use the uncertainty both in visualization of individual tracts as well as in heat maps of tract locations. Finally, we provide a quantitative evaluation of different metrics and algorithms showing that the adjoint metric (8] combined with our algorithm produces paths which agree most often with experts. PMID:25320808
Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi
2016-01-01
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. PMID:25950737
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
An Alternate Path To Stoichiometric Problem Solving.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
1997-01-01
Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)
Gap Filling as Exact Path Length Problem.
Salmela, Leena; Sahlin, Kristoffer; Mäkinen, Veli; Tomescu, Alexandru I
2016-05-01
One of the last steps in a genome assembly project is filling the gaps between consecutive contigs in the scaffolds. This problem can be naturally stated as finding an s-t path in a directed graph whose sum of arc costs belongs to a given range (the estimate on the gap length). Here s and t are any two contigs flanking a gap. This problem is known to be NP-hard in general. Here we derive a simpler dynamic programming solution than already known, pseudo-polynomial in the maximum value of the input range. We implemented various practical optimizations to it, and compared our exact gap-filling solution experimentally to popular gap-filling tools. Summing over all the bacterial assemblies considered in our experiments, we can in total fill 76% more gaps than the best previous tool, and the gaps filled by our method span 136% more sequence. Furthermore, the error level of the newly introduced sequence is comparable to that of the previous tools. The experiments also show that our exact approach does not easily scale to larger genomes, where the problem is in general difficult for all tools. PMID:26959081
The optimal path-matching problem
Cunningham, W.H.; Geelen, J.F.
1996-12-31
We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we present results implying the polynomial-time solvability of the two problems. We also use our results to give the first strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and the first polynomial-time algorithm to compute the rank of a certain matrix of indeterminates. Our algorithmic results are based on polyhedral characterizations, and on the equivalence of separation and optimization.
The traffic equilibrium problem with nonadditive path costs
Gabriel, S.A.; Bernstein, D.
1995-08-21
In this paper the authors present a version of the (static) traffic equilibrium problem in which the cost incurred on a path is not simply the sum of the costs on the arcs that constitute that path. The authors motivate this nonadditive version of the problem by describing several situations in which the classical additivity assumption fails. They also present an algorithm for solving nonadditive problems that is based on the recent NE/SQP algorithm, a fast and robust method for the nonlinear complementarity problem. Finally, they present a small example that illustrates both the importance of using nonadditive costs and the effectiveness of the NE/SQP method.
An Application of Calculus: Optimum Parabolic Path Problem
ERIC Educational Resources Information Center
Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali
2009-01-01
A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object
An Application of Calculus: Optimum Parabolic Path Problem
ERIC Educational Resources Information Center
Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali
2009-01-01
A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…
Solving a Hamiltonian Path Problem with a bacterial computer
Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T
2009-01-01
Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction. PMID:19630940
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Delavar, Mahmoud R.; Frank, Andrew U.
2012-08-01
The personalized urban multi-criteria quasi-optimum path problem (PUMQPP) is a branch of multi-criteria shortest path problems (MSPPs) and it is classified as a NP-hard problem. To solve the PUMQPP, by considering dependent criteria in route selection, there is a need for approaches that achieve the best compromise of possible solutions/routes. Recently, invasive weed optimization (IWO) algorithm is introduced and used as a novel algorithm to solve many continuous optimization problems. In this study, the modified algorithm of IWO was designed, implemented, evaluated, and compared with the genetic algorithm (GA) to solve the PUMQPP in a directed urban transportation network. In comparison with the GA, the results have shown the significant superiority of the proposed modified IWO algorithm in exploring a discrete search-space of the urban transportation network. In this regard, the proposed modified IWO algorithm has reached better results in fitness function, quality metric and running-time values in comparison with those of the GA.
Fusion proteins as alternate crystallization paths to difficult structure problems
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua
1994-01-01
The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.
The properties of a homotopy path of nonlinear complementarity problems
NASA Astrophysics Data System (ADS)
Wang, Xiuyu; Jiang, Xingwu; Liu, Qinghuai
2013-07-01
In this paper, we study the following nonlinear complementarity problem: f : Rn-->Rn , find x >= 0 , such that f (x) >= 0, xT f (x) = 0. We use Poineare-Bohn's homotopy invariance theorem of degree to derive an alternative theorem, and give a new exceptional families. Based on this result, for the nonlinear complementarity problems with a quasi- * P - mapping or a P(? ,? ,? ) -mapping , a sufficiently condition is established to assure the existence and boundedness of solution curve.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Genetic algorithms, path relinking, and the flowshop sequencing problem.
Reeves, C R; Yamada, T
1998-01-01
In a previous paper, a simple genetic algorithm (GA) was developed for finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop sequencing problem (PFSP). The performance of the algorithm was comparable to that of a naive neighborhood search technique and a proven simulated annealing algorithm. However, recent results have demonstrated the superiority of a tabu search method in solving the PFSP. In this paper, we reconsider the implementation of a GA for this problem and show that by taking into account the features of the landscape generated by the operators used, we are able to improve its performance significantly. PMID:10021740
NASA Astrophysics Data System (ADS)
Diot, Emilie; Gavoille, Cyril
In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.
Shortest recurrence periods of novae
Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi; Nomoto, Ken'ichi
2014-10-01
Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ☉} WD with a mass accretion rate of 3.6 × 10{sup –7} M {sub ☉} yr{sup –1}. A 1 yr recurrence period is realized for very massive (≳ 1.3 M {sub ☉}) WDs with very high accretion rates (≳ 1.5 × 10{sup –7} M {sub ☉} yr{sup –1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.
Instability Paths in the Kirchhoff-Plateau Problem
NASA Astrophysics Data System (ADS)
Giusteri, Giulio G.; Franceschini, Paolo; Fried, Eliot
2016-04-01
The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a soap film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. Adopting a variational approach, we define an energy associated with shape deformations of the system and then derive general equilibrium and (linear) stability conditions by considering the first and second variations of the energy functional. We analyze in detail the transition to instability of flat circular configurations, which are ground states for the system in the absence of surface tension, when the latter is progressively increased. Such a theoretical study is particularly useful here, since the many different perturbations that can lead to instability make it challenging to perform an exhaustive experimental investigation. We generalize previous results, since we allow the filament to possess a curved intrinsic shape and also to display anisotropic flexural properties (as happens when the cross section of the filament is noncircular). This is accomplished by using a rod energy which is familiar from the modeling of DNA filaments. We find that the presence of intrinsic curvature is necessary to obtain a first buckling mode which is not purely tangent to the spanning surface. We also elucidate the role of twisting buckling modes, which become relevant in the presence of flexural anisotropy.
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
A Probabilistic PTAS for Shortest Common Superstring
NASA Astrophysics Data System (ADS)
Plociennik, Kai
We consider approximation algorithms for the shortest common superstring problem (SCS). It is well-known that there is a constant f > 1 such that there is no efficient approximation algorithm for SCS achieving a factor of at most f in the worst case, unless P = NP. We study SCS on random inputs and present an approximation scheme that achieves, for every ɛ> 0, a 1 + ɛ-approximation in expected polynomial time. This result applies not only if the letters are chosen independently at random, but also to the more realistic mixing model, which allows dependencies among the letters of the random strings. Our result is based on a sharp tail bound on the optimal compression, which improves a previous result by Frieze and Szpankowski.
A Path Analysis of Social Problem-Solving as a Predictor of White Racial Identity
ERIC Educational Resources Information Center
Carr, Amanda G.; Caskie, Grace I. L.
2010-01-01
This study examined (a) whether a developmental model or a model in which all subscales' measurement errors are correlated best explains the relationships among White racial identity (WRI) statuses, and (b) social problem-solving (SPS) skills as a predictor of WRI. Path analysis was conducted with a sample of 255 White undergraduate students from…
Search Path Mapping: A Versatile Approach for Visualizing Problem-Solving Behavior.
ERIC Educational Resources Information Center
Stevens, Ronald H.
1991-01-01
Computer-based problem-solving examinations in immunology generate graphic representations of students' search paths, allowing evaluation of how organized and focused their knowledge is, how well their organization relates to critical concepts in immunology, where major misconceptions exist, and whether proper knowledge links exist between content…
Constrained Graph Optimization: Interdiction and Preservation Problems
Schild, Aaron V
2012-07-30
The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.
Kiosses, Dimitris N.; Arean, Patricia A.; Teri, Linda; Alexopoulos, George S.
2010-01-01
Objectives This preliminary study examines the efficacy of 12-week home-delivered Problem Adaptation Therapy (PATH) vs. home-delivered Supportive Therapy (ST) in reducing depression and disability in 30 depressed, cognitively impaired, disabled older adults. Design A 12-week randomized clinical trial. Research assistants were unaware of the participants' randomization status. Assessments were conducted at baseline, 6 and 12 weeks. Setting Weill Cornell - Advanced Center for Interventions and Services Research (ACISR). Participants Thirty elders with major depression, cognitive impairment, and disability were recruited through advertisement and the Home-Delivered Meals Program of the Westchester County Department of Senior Programs and Services. Intervention PATH is a home-delivered intervention designed to reduce depression and disability in depressed, cognitively impaired, disabled elders. PATH is based on Problem Solving Therapy (PST) and integrates environmental adaptation and caregiver participation. PATH is consistent with Lawton's ecological model of adaptive functioning in aging. Measurements Depression and disability were measured with Hamilton Depression Rating Scale – 24 items and Sheehan Disability Scale, respectively. Client Satisfaction Questionnaire was used to assess patient satisfaction with treatment. Results Mixed-effects model analyses revealed that PATH was more efficacious than ST in reducing depression and disability at 12 weeks. Participants in both treatment groups were satisfied with treatment. Conclusions This preliminary study suggests that PATH is well accepted and efficacious in depressed elders with major depression, cognitive impairment, and disability. Because this population may not adequately respond to antidepressant medication treatment, PATH may provide relief to many patients who would otherwise remain depressed and suffer. PMID:20808092
High-order path-integral Monte Carlo methods for solving quantum dot problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
The conventional second-order path-integral Monte Carlo method is plagued with the sign problem in solving many-fermion systems. This is due to the large number of antisymmetric free-fermion propagators that are needed to extract the ground state wave function at large imaginary time. In this work we show that optimized fourth-order path-integral Monte Carlo methods, which use no more than five free-fermion propagators, can yield accurate quantum dot energies for up to 20 polarized electrons with the use of the Hamiltonian energy estimator.
Short paths in expander graphs
Kleinberg, J.; Rubinfeld, R.
1996-12-31
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratio in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Roman, Gabriela D; Ensor, Rosie; Hughes, Claire
2016-02-01
This study investigated the mediation role played by children's executive function in the relationship between exposure to mild maternal depressive symptoms and problem behaviors. At ages 2, 3, and 6years, 143 children completed executive function tasks and a verbal ability test. Mothers completed the Beck Depression Inventory at each time-point, and teachers completed the Strengths and Difficulties Questionnaire at child age 6. Longitudinal autoregressive mediation models showed a mediation effect that was significant and quite specific; executive function (and not verbal ability) at age 3 mediated the path between mothers' depressive symptoms (but not general social disadvantage) at the first time-point and children's externalizing and internalizing problems at age 6. Improving children's executive functioning might protect them against the adverse effects of exposure to maternal depressive symptoms. PMID:26550956
Robot path planning with distance-safety criterion
NASA Technical Reports Server (NTRS)
Suh, Suk-Hwan; Shin, Kang G.
1987-01-01
A method for determining an optimal path with a weighted distance-safety criterion is developed. The goal is to strike a compromise between the shortest path and the centerline path, which is safer. The method is composed of three parts: (i) construction of a region map by dividing the workspace, (ii) interregion optimization to determine the entry and departure points of the path in each region, and (iii) intraregion optimization for determining the (optimal) path segment within each region. The region map is generated by using an approximate Voronoi diagram, and region optimization is achieved using variational dynamic programming. Although developed for 2-D problems, the method can be easily extended to a class of 3-D problems. Numerical examples are presented to demonstrate the method.
Going against the flow: finding the optimal path
NASA Astrophysics Data System (ADS)
Talbot, Julian
2010-01-01
We consider the problem of finding the optimum path of a boat traversing a straight in a current. The path of the shortest time is found using the calculus of variations with the constraint that the boat must land directly opposite to its starting point. We compare the optimal trajectory with that where the boat's local orientation is always directed to the arrival point. When analytical solutions cannot be found we use numerical methods. The level of the exposition is suitable for advanced undergraduate students, graduate students and general physicists.
Kiosses, Dimitris N.; Ravdin, Lisa D.; Gross, James J; Raue, Patrick; Kotbi, Nabil; Alexopoulos, George S.
2015-01-01
Importance Problem Adaptation Therapy (PATH) is a treatment for older adults with major depression, cognitive impairment (from mild cognitive deficits to moderate dementia) and disability. Antidepressants have limited efficacy in this population and psychosocial interventions are inadequately investigated. Objective To test the efficacy of 12-week PATH vs. Supportive Therapy for Cognitively Impaired patients (ST-CI) in reducing depression and disability in 74 older adults with major depression, cognitive impairment and disability. Design Randomized Controlled Trial from April 1, 2006 until September 31, 2011. Setting Weill-Cornell Institute of Geriatric Psychiatry; interventions were administered at participants’ homes. Participants Seventy-four older participants (age≥65 years) with major depression and cognitive impairment up to the level of moderate dementia were recruited through collaborating community agencies of Weill-Cornell Institute of Geriatric Psychiatry and were randomly assigned to 12 weekly sessions of PATH or ST-CI (14.8% attrition rate). Interventions Home-delivered PATH vs. home-delivered ST-CI. PATH integrates a problem solving approach with compensatory strategies, environmental adaptations, and caregiver participation to improve patients’ emotion regulation. ST-CI focuses on expression of affect, understanding and empathy. Main Outcome Measures Mixed-effects models for longitudinal data compared the efficacy of PATH to that of ST-CI in reducing depression (MADRS) and disability (WHODAS-II) over 12 weeks of treatment. Results PATH participants had significantly greater reduction in depression (treatment X time: F[1,179]=8.03, p=0.0051; Cohen’s D at 12 weeks: 0.60) and disability (treatment X time: F[1,169]=14.86, p=0.0002; Cohen’s D at 12 weeks: 0.67) than ST-CI participants over the 12-week period (primary outcomes). Further, PATH participants had significantly greater depression remission rates than ST-CI participants (37.84% vs. 13.51%; Chi-square: 5.74, df=1, p=0.0174; Number Needed to Treat (NNT)=4.11) (secondary outcome). Exploratory analysis showed that PATH led to greater reduction in depression than ST-CI even in the subgroup of participants with drug treatment resistant depression (F[1,72.7]=6.01, p=0.0166; Cohen’s d: week 12: 0.95). Conclusions and Relevance PATH was more efficacious than ST-CI in reducing depression and disability. PATH may provide relief to a large group of depressed, cognitively impaired older adults with few treatment options. PMID:25372657
Path optimization with limited sensing ability
Kang, Sung Ha Kim, Seong Jun Zhou, Haomin
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.
Path optimization with limited sensing ability
NASA Astrophysics Data System (ADS)
Kang, Sung Ha; Kim, Seong Jun; Zhou, Haomin
2015-10-01
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.
On Dirac-Coulomb problem in (2+1) dimensional space-time and path integral quantization
Haouat, S.; Chetouani, L.
2012-06-15
The problem of Dirac particle interacting with Coulomb potential in (2+1) dimensions is formulated in the framework of super-symmetric path integrals where the spin degrees of freedom are described by odd Grassmannian variables. The relative propagator is expressed through Cartesian coordinates in a Hamiltonian form by the use of an adequate transformation. The passage to the polar coordinates permitted us to calculate the fixed energy Green's function and to extract bound states and associating wave functions.
Computing paths and cycles in biological interaction graphs
Klamt, Steffen; von Kamp, Axel
2009-01-01
Background Interaction graphs (signed directed graphs) provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops) and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results was possible) this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusion The calculation of shortest positive/negative paths and cycles in interaction graphs is an important method for network analysis in Systems Biology. This contribution draws the attention of the community to this important computational problem and provides a number of new algorithms, partially specifically tailored for biological interaction graphs. All algorithms have been implemented in the CellNetAnalyzer framework which can be downloaded for academic use at . PMID:19527491
Probabilistic minimal path for automated esophagus segmentation
NASA Astrophysics Data System (ADS)
Rousson, Mikael; Bai, Ying; Xu, Chenyang; Sauer, Frank
2006-03-01
This paper introduces a probabilistic shortest path approach to extract the esophagus from CT images. In this modality, the absence of strong discriminative features in the observed image make the problem ill-posed without the introduction of additional knowledge constraining the problem. The solution presented in this paper relies on learning and integrating contextual information. The idea is to model spatial dependency between the structure of interest and neighboring organs that may be easier to extract. Observing that the left atrium (LA) and the aorta are such candidates for the esophagus, we propose to learn the esophagus location with respect to these two organs. This dependence is learned from a set of training images where all three structures have been segmented. Each training esophagus is registered to a reference image according to a warping that maps exactly the reference organs. From the registered esophagi, we define the probability of the esophagus centerline relative to the aorta and LA. To extract a new centerline, a probabilistic criterion is defined from a Bayesian formulation that combines the prior information with the image data. Given a new image, the aorta and LA are first segmented and registered to the reference shapes and then, the optimal esophagus centerline is obtained with a shortest path algorithm. Finally, relying on the extracted centerline, coupled ellipse fittings allow a robust detection of the esophagus outer boundary.
Vervet monkeys use paths consistent with context-specific spatial movement heuristics.
Teichroeb, Julie A
2015-10-01
Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems. PMID:26668734
ERIC Educational Resources Information Center
MacGregor, James N.; Chronicle, Edward P.; Ormerod, Thomas C.
2006-01-01
We compared the performance of three heuristics with that of subjects on variants of a well-known combinatorial optimization task, the Traveling Salesperson Problem (TSP). The present task consisted of finding the shortest path through an array of points from one side of the array to the other. Like the standard TSP, the task is computationally…
A path-following interior-point algorithm for linear and quadratic problems
Wright, S.J.
1993-12-01
We describe an algorithm for the monotone linear complementarity problem that converges for many positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementary solution, the method converges subquadratically. We show that the algorithm and its convergence extend readily to the mixed monotone linear complementarity problem and, hence, to all the usual formulations of the linear programming and convex quadratic programming problems.
Dorfer, Matthias; Kazmar, Tomáš; Šmíd, Matěj; Sing, Sanchit; Kneißl, Julia; Keller, Simone; Debeir, Olivier; Luber, Birgit; Mattes, Julian
2016-01-01
In this paper we address the problem of recovering spatio-temporal trajectories of cancer cells in phase contrast video-microscopy where the user provides the paths on which the cells are moving. The paths are purely spatial, without temporal information. To recover the temporal information associated to a given path we propose an approach based on automatic cell detection and on a graph-based shortest path search. The nodes in the graph consist of the projections of the cell detections onto the geometrical cell path. The edges relate nodes which correspond to different frames of the sequence and potentially to the same cell and trajectory. In this directed graph we search for the shortest path and use it to define a temporal parametrization of the corresponding geometrical cell path. An evaluation based on 286 paths of 7 phase contrast microscopy videos shows that our algorithm allows to recover 92% of trajectory points with respect to the associated ground truth. We compare our method with a state-of-the-art algorithm for semi-automated cell tracking in phase contrast microscopy which requires interactively placed starting points for the cells to track. The comparison shows that supporting geometrical paths in combination with our algorithm allow us to obtain more reliable cell trajectories. PMID:25987193
Shortest link method for contact detection in discrete element method
NASA Astrophysics Data System (ADS)
Nezami, Erfan G.; Hashash, Youssef M. A.; Zhao, Dawei; Ghaboussi, Jamshid
2006-07-01
With the increasing demand for discrete element simulations with larger number of particles and more realistic particle geometries, the need for efficient contact detection algorithms is more evident. To date, the class of common plane (CP) methods is among the most effective and widely used contact detection algorithms in discrete element simulations of polygonal and polyhedral particles. This paper introduces a new approach to obtain the CP by employing a newly introduced concept of shortest link. Among all the possible line segments that connect any point on the surface of particle A to any point on the surface of particle B, the one with the shortest length defines the shortest link between the two particles. The perpendicular bisector plane of the shortest link fulfils all the conditions of a CP, suggesting that CP can be obtained by seeking the shortest link. A new algorithm, called shortest link method (SLM), is proposed to obtain the shortest link and subsequently the CP between any two polyhedral particles. Comparison of the analysis time between SLM and previously introduced algorithms demonstrate that SLM results in a substantial speed up for polyhedral particles contact detection.
NASA Astrophysics Data System (ADS)
Castro, Alex Lúcio; Koiller, Jair
2013-01-01
Andrei Andreyevich Markov proposed in 1889 the problem (solved by Dubins in 1957) of finding the twice continuously differentiable (arc length parameterized) curve with bounded curvature, of minimum length, connecting two unit vectors at two arbitrary points in the plane. In this note we consider the following variant, which we call the dynamic Markov-Dubins problem (dM-D): to find the time-optimal C 2 trajectory connecting two velocity vectors having possibly different norms. The control is given by a force whose norm is bounded. The acceleration may have a tangential component, and corners are allowed, provided the velocity vanishes there. We show that for almost all the two vectors boundary value conditions, the optimization problem has a smooth solution. We suggest some research directions for the dM-D problem on Riemannian manifolds, in particular we would like to know what happens if the underlying geodesic problem is completely integrable. Path planning in robotics and aviation should be the usual applications, and we suggest a pursuit problem in biolocomotion. Finally, we suggest a somewhat unexpected application to "dynamic imaging science". Short time processes (in medicine and biology, in environment sciences, geophysics, even social sciences?) can be thought as tangent vectors. The time needed to connect two processes via a dynamic Markov-Dubins problem provides a notion of distance. Statistical methods could then be employed for classification purposes using a training set.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.
ERIC Educational Resources Information Center
Brody, Gene H.; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C.
2004-01-01
A 4-wave longitudinal design was used to examine protective links from child competence to behavioral problems in first- (M=10.97 years) and second- (M=8.27 years) born rural African American children. At 1-year intervals, teachers assessed child behavioral problems, mothers reported their psychological functioning, and both mothers and children…
ERIC Educational Resources Information Center
Maguin, Eugene; And Others
1994-01-01
Examined the effectiveness of an intervention program to prevent conduct problems among the preschool sons of 104 alcoholic fathers. The 10-month intervention combined parent training and marital counseling and had significant positive effects on the children's negative, prosocial, and affective behavior at program termination. Only the prosocial…
Paths to literacy and numeracy problems: evidence from two British birth cohorts
Richards, M; Power, C; Sacker, A
2012-01-01
Objective To test a life course model linking circumstances of origin to self-reported literacy and numeracy problems in midlife, and to investigate the effects in this model of changing social circumstances in two post-war cohorts. Methods Based on data from men and women in the British 1946 and 1958 birth cohorts, we used the relative index of inequality and logistical regression to test associations between father’s occupation, childhood cognition, educational attainment, own occupation in the 3rd decade, and a binary variable representing self-reported literacy and numeracy problems in the 4th decade. Results There was a lower frequency of literacy and numeracy problems in the 1958 cohort compared to the 1946 cohort. In both cohorts there were associations between father’s occupation and childhood cognition, educational attainment and own occupation, a pattern that was mirrored by the associations between childhood cognition, educational attainment and own occupation to adult literacy and numeracy problems. Positive associations between childhood cognition and educational attainment, and between educational attainment and own occupation, were stronger in the 1946 cohort than in the 1958 cohort. However, inverse associations between educational attainment and literacy and numeracy problems were stronger in the 1958 cohort, possibly reflecting the expansion of secondary education in the intervening years. Conclusions Literacy and numeracy problems have a robust structure of life course associations, although the changing pattern of these associations may reflect important social structural changes from the early post war years to the early 1960s in the UK. PMID:18718979
Status Problem and Expectations of Competence: A Challenging Path for Teachers
ERIC Educational Resources Information Center
Pescarmona, Isabella
2015-01-01
Complex Instruction (CI) is a cooperative learning approach, which aims at improving the equal status interaction among students working in groups who may be at different academic and social levels. Based on an ethnographic research, the article examines how a group of Italian primary school teachers understand the status problem and how the…
From Parent to Child to Parent…: Paths In and Out of Problem Behavior
Bradley, Robert H.; Corwyn, Robert
2014-01-01
This study used data from the NICHD Study of Early Child Care and Youth Development to examine relations between parenting, self-control and externalizing behavior from early childhood to mid-adolescence (N=956; 49.9% male). Results indicated that maternal sensitivity, parental harshness and productive activity are related to externalizing problems but that patterns of relations change from early childhood to middle childhood to adolescence, with evidence suggesting that externalizing behavior influences parenting more than the reverse from middle childhood onward. Self-control measured during early adolescence partially mediated relations between maternal sensitivity and adolescent-reported externalizing behavior. Parental monitoring during adolescence was also related to externalizing behavior at age 15. Monitoring partially mediated the relation between externalizing behavior in early adolescence and externalizing at age 15. PMID:23135289
Wilson, Helen W.; Widom, Cathy Spatz
2009-01-01
Behaviors beginning in childhood or adolescence may mediate the relationship between childhood maltreatment and involvement in prostitution. This paper examines five potential mediators: early sexual initiation, running away, juvenile crime, school problems, and early drug use. Using a prospective cohort design, abused and neglected children (ages 0–11) with cases processed during 1967–1971 were matched with non-abused, non-neglected children and followed into young adulthood. Data are from in-person interviews at approximate age 29 and arrest records through 1994. Structural Equation Modeling tested path models. Results indicated that victims of child abuse and neglect were at increased risk for all problem behaviors, except drug use. In the full model, only early sexual initiation remained significant as a mediator in the pathway from child abuse and neglect to prostitution. Findings were generally consistent for physical and sexual abuse and neglect. These findings suggest that interventions to reduce problem behaviors among maltreated children may also reduce their risk for prostitution later in life. PMID:20186260
Information Spread of Emergency Events: Path Searching on Social Networks
Hu, Hongzhi; Wu, Tunan
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323
Information spread of emergency events: path searching on social networks.
Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323
Optimal parallel algorithms for problems modeled by a family of intervals
NASA Technical Reports Server (NTRS)
Olariu, Stephan; Schwing, James L.; Zhang, Jingyuan
1992-01-01
A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. Computational tools are developed, and it is shown how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.
Pair correlations in classical crystals: The shortest-graph method
NASA Astrophysics Data System (ADS)
Yurchenko, Stanislav O.; Kryuchkov, Nikita P.; Ivlev, Alexei V.
2015-07-01
The shortest-graph method is applied to calculate the pair correlation functions of crystals. The method is based on the representation of individual correlation peaks by the Gaussian functions, summed along the shortest graph connecting the two given points. The analytical expressions for the Gaussian parameters are derived for two- and three-dimensional crystals. The obtained results are compared with the pair correlation functions deduced from the molecular dynamics simulations of Yukawa, inverse-power law, Weeks-Chandler-Andersen, and Lennard-Jones crystals. By calculating the Helmholtz free energy, it is shown that the method is particularly accurate for soft interparticle interactions and for low temperatures, i.e., when the anharmonicity effects are insignificant. The accuracy of the method is further demonstrated by deriving the solid-solid transition line for Yukawa crystals, and the compressibility for inverse-power law crystals.
Computing geodesic paths on manifolds.
Kimmel, R; Sethian, J A
1998-07-21
The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. PMID:9671694
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Robb, Richard
2006-03-01
The degree of match between the delineation result produced by a segmentation technique and the ground truth can be assessed using robust "presence-absence" resemblance measures. Previously, we had investigated and introduced an exhaustive list of similarity indices for assessing multiple segmentation techniques. However, these measures are highly sensitive to even minor boundary perturbations which imminently manifest in the segmentations of random biphasic spaces reminiscent of the stochastic pore-solid distributions in the tissue engineering scaffolds. This paper investigates the ideas adapted from ecology to emphasize global resemblances and ignore minor local dissimilarities. It uses concepts from graph theory to perform controlled local mutations in order to maximize the similarities. The effect of this adjustment is investigated on a comprehensive list (forty nine) of similarity indices sensitive to the over- and under- estimation errors associated with image delineation tasks.
A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed
2008-01-01
E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success
Limited Path Percolation in Complex Networks
NASA Astrophysics Data System (ADS)
López, Eduardo; Parshani, Roni; Cohen, Reuven; Carmi, Shai; Havlin, Shlomo
2007-11-01
We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than aℓij(a≥1) where ℓij is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p˜c=(κ0-1)(1-a)/a, where κ0≡⟨k2⟩/⟨k⟩ and k is the node degree. Above p˜c, order N nodes can communicate within the limited path length aℓij, while below p˜c, Nδ (δ<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.
Dispersion of nonlinear group velocity determines shortest envelope solitons
NASA Astrophysics Data System (ADS)
Amiranashvili, Sh.; Bandelow, U.; Akhmediev, N.
2011-10-01
We demonstrate that a generalized nonlinear Schrödinger equation (NSE), which includes dispersion of the intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity times squared pulse duration is constant. For short durations, this scaling gets violated and a cusp of the envelope may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.
Optimal paths through downbursts
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.
1989-01-01
The control of an aircraft's takeoff path through a downburst is presently formulated as a dynamic optimization problem with minimum-altitude constraint and two different performance measures; a landing path through a downburst is also discussed. Paths are determined which, in addition to maximizing an airspeed/altitude combination immediately after downburst penetration, minimize deviation from the intended flight path. For mild-to-moderate downbursts, the performance strategy maintains altitude at the expense of airspeed loss, while the survival strategy involves a descent of the aircraft to the minimum altitude in order to obtain greater airspeed. For a severe downburst, both optimal paths maintain minimum altitude.
Rigdon, J. Brian; Smith, Marcus Daniel; Mulder, Samuel A
2014-01-07
PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).
A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2014-12-01
Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.
ERIC Educational Resources Information Center
Wolfle, Lee M.
The purpose of this paper is to illuminate the advantages of path analysis for the exposition of results in data analytic papers. Probably the greatest advantage is that it provides a means by which the nature of the problem may be handily summarized. The method of path analysis, although conceived over sixty years ago by Sewell Wright, has only…
Dwarf novae in the shortest orbital period regime .
NASA Astrophysics Data System (ADS)
Uemura, M.; Kato, T.; Ohshima, T.; Nogami, D.; Maehara, H.
Dwarf novae (DNe) having very short orbital periods (P_orb) are interesting objects in terms of two points of view: the binary evolution and the physics of accretion disks. They are considered as one of the final evolutionary stages of low-mass binaries. It is well known that the observed P_orb distribution of cataclysmic variables is inconsistent with that expected from population synthesis studies. We evaluate the intrinsic population of low activity DNe in the shortest P_orb regime, which could reconcile the discrepancy between the observation and theory. In the view point of the physics of accretion disks, short P_orb DNe, in particular, WZ Sge stars, have received attention because they exhibit unique variations, like early superhumps. We have recently developed a method to reconstruct the structure of disks using multi-band light curves of early superhumps. Here, we introduce the results of this method using the data of the dwarf nova, V455 And.
ERIC Educational Resources Information Center
Wilson, Helen W.; Widom, Cathy Spatz
2010-01-01
Behaviors beginning in childhood or adolescence may mediate the relationship between childhood maltreatment and involvement in prostitution. This paper examines 5 potential mediators: early sexual initiation, running away, juvenile crime, school problems, and early drug use. Using a prospective cohort design, abused and neglected children (ages…
NASA Astrophysics Data System (ADS)
Rehmat, Abeera Parvaiz
As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.
ERIC Educational Resources Information Center
Wilson, Helen W.; Widom, Cathy Spatz
2010-01-01
Behaviors beginning in childhood or adolescence may mediate the relationship between childhood maltreatment and involvement in prostitution. This paper examines 5 potential mediators: early sexual initiation, running away, juvenile crime, school problems, and early drug use. Using a prospective cohort design, abused and neglected children (ages
NASA Astrophysics Data System (ADS)
Law, Richard; Waters, Dave; Morgan, Sven; Stahr, Don; Francsis, Matthew; Ashley, Kyle; Kronenberg, Andreas; Thomas, Jay; Mazza, Sarah; Heaverlo, Nicholas
2013-04-01
The quartz c-axis fabric opening-angle thermometer proposed by Kruhl (1998) offers a potential analytical technique for estimating deformation temperatures in rocks deformed by crystal plastic flow. However, in addition to deformation temperature, opening-angle is also sensitive to other variables such as strain rate, degree of hydrolytic weakening, and 3D strain type. Unless the influence of these individual variables can be quantified, use of fabric opening-angle as a deformation thermometer remains problematic and controversial. Over the last decade close correlations between: a) deformation temperatures indicated by fabric opening-angles and, b) temperatures of metamorphism indicated by trace element and mineral phase equilibria analyses, have been reported from a range of different tectonic settings, thereby arguably giving support to the use of opening-angles as a deformation thermometer. However, it needs to be demonstrated that the similar temperatures estimated by the different methods are related to the same geologic event, and therefore occupy at least a similar position on the PTt path - something that is in practice difficult to achieve for an individual rock sample. In cases where temperatures indicated by opening angles and mineral assemblages are markedly different, these differences could, for example, be explained by penetrative deformation and mineral growth/diffusion occurring at different times. Alternatively, when apparent deformation temperatures based on quartz fabrics are significantly greater than temperatures indicated by synchronous metamorphic mineral assemblages, this might be due to extreme hydrolytic weakening of quartz. We illustrate this talk on the pros and cons of using fabric opening-angles as a deformation thermometer with examples from: a) Aureoles of forcibly emplaced plutons in the White-Inyo Range of eastern California where crystal-plastic deformation and recrystallization was short-lived and synchronous with contact metamorphism. b) Footwall to the South Tibetan Detachment in the Mount Everest area where deformation is demonstrably related to the exhumation stage of a petrologically well-constrained PT path. c) Hanging wall to the Main Central Thrust in the Sutlej Valley of NW India where deformation temperatures inferred from fabric opening angles are closely similar to temperatures of metamorphism indicated by garnet-biotite and oxygen isotope-based thermometry. d) Moine, Ben Hope and Naver thrust sheets of NW Scotland where structurally upwards-increasing deformation temperatures are compared with temperatures indicated by garnet-biotite thermometry. e) Mylonitic quartzites in footwall to Moine thrust at the Stack of Glencoul where hydrolytic weakening may have played an important role in deformation/recrystallization and associated fabric development. f) Thrust sheets in the Appalachians of Vermont that display a complex PTt history due to thrust sheet loading. Kruhl, J.H. 1998. Reply: Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology, 16, 142-146.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Snell, Mark K.
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.
Energy Science and Technology Software Center (ESTSC)
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.
1983-01-01
Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.
Pedestrian traffic: on the quickest path
NASA Astrophysics Data System (ADS)
Kretz, Tobias
2009-03-01
When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either 'move as far as possible toward the destination' or—reformulated—'of all coordinates accessible in this time step move to the one with the smallest distance to the destination'. On top of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation such as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one: however, the tricky part—and therefore in a strict sense the contribution of this work—is (a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, (b) do this with limited computational effort and (c) keep agents' movement at very low densities unaltered.
Route choices of transport bicyclists: a comparison of actually used and shortest routes
2014-01-01
Background Despite evidence that environmental features are related to physical activity, the association between the built environment and bicycling for transportation remains a poorly investigated subject. The aim of the study was to improve our understanding of the environmental determinants of bicycling as a means of transportation in urban European settings by comparing the spatial differences between the routes actually used by bicyclists and the shortest possible routes. Methods In the present study we examined differences in the currently used and the shortest possible bicycling routes, with respect to distance, type of street, and environmental characteristics, in the city of Graz, Austria. The objective measurement methods of a Global Positioning System (GPS) and a Geographic Information System (GIS) were used. Results Bicycling routes actually used were significantly longer than the shortest possible routes. Furthermore, the following attributes were also significantly different between the used route compared to the shortest possible route: Bicyclists often used bicycle lanes and pathways, flat and green areas, and they rarely used main roads and crossings. Conclusion The results of the study support our hypothesis that bicyclists prefer bicycle pathways and lanes instead of the shortest possible routes. This underlines the importance of a well-developed bicycling infrastructure in urban communities. PMID:24597725
Tracing path-guided apparent motion in human primary visual cortex V1.
Akselrod, Michel; Herzog, Michael H; Öğmen, Haluk
2014-01-01
Vision is a constructive process. For example, a square, flashed at two distinct locations one after the other, appears to move smoothly between the two locations rather than as two separate flashes (apparent motion). Apparent motion is usually perceived along the shortest path between locations. Previous studies have shown that retinotopic activity in V1 correlates well with the subjective filling-in in apparent motion. If V1 activity truly reflects illusory motion, it should flexibly reflect filling-in of any path, subjectively perceived. Here, we used a path-guided apparent motion paradigm in which a faint cue, presented in addition to the squares, leads to a curved illusory motion path. We found retinotopic activity in V1 to reflect the illusory filling-in of the curved path, similarly to filling-in with linear, shortest paths. Moreover, our results show that activity along the linear path was less selective to stimulus conditions than the activity along the curved path. This finding may be interpreted as V1 activity representing a small subset of infinitely many possible solutions to ambiguous stimuli, whilst giving more weight to the shortest path/energy solution. PMID:25317907
Sampling diffusive transition paths
F. Miller III, Thomas; Predescu, Cristian
2006-10-12
We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.
Trees, paths and avalanches on random networks
NASA Astrophysics Data System (ADS)
Dobrin, Radu
The investigation of equilibrium and non-equilibrium processes in disordered systems and particularly the relation between them is a complex problem that deserves attention. We concentrate on analyzing several relations of this type and appropriate numerical solutions. Invasion percolation (IP) model was motivated by the problem of fluid displacement in disordered media but in principle it could be applied to any invasion process which evolves along the minimum resistance path. Finding the invasion paths is a global optimization problem where the front advances by occupying the least resistant bond. Once the invasion is finished, the union of all the invasion paths on the lattice forms a minimum energy spanning tree (MST). We show that the geometry of a MST on random graphs is universal. Due to this geometric universality, we are able to characterize the energy of this optimal tree for any type of disorder using a scaling distribution found using uniform disorder. Therefore we expect the hopping transport in random media to have universal behavior. Kinetic interfaces is an important branch of statistical mechanics, fueled by application such as fluid-fluid displacement, imbibition in porous media, flame fronts, tumors, etc. These processes can be unified via Kardar-Parisi-Zhang (KPZ) equation, which is mapped exactly to an equilibrium problem (DPRM). We are able to characterize both using Dijkstra's algorithm, which is known to generate shortest path tree in a random network. We found that while obtaining the polymers the algorithm develops a KPZ type interface. We have extracted the interface exponents for both 2d square lattice and 3 d cubic lattice, being in agreement with previously recorded results for KPZ. The IP and KPZ classes are known to be very different: while the first one generates a distinct self-similar (fractal) interface, the second one has a self-similar invasion front. Though they are different we are able to construct a generalized algorithm that interpolates between these two universality classes. We discuss the relationship with the IP, the directed polymer in a random media; and the implications for the broader issue of universality in disordered systems. Random Field Ising Model (RFIM) is one of the most important models of phase transitions in disordered systems. We present exact results for the critical behavior of the RFIM on complete graphs and trees, both at equilibrium and away from equilibrium, i.e., models for hysteresis and Barkhausen noise. We show that for stretched exponential and powerlaw distributions of random fields the behavior on complete graphs is non-universal, while the behavior on Cayley trees is universal even in the limit of large coordination. Until recently, the evolution of WWW, Internet, etc., was thought to be highly complex. The model proposed by Barabasi and Albert shows that such networks can be modeled with the help of "preferential attachment", i.e. a highly connected vertex has a higher chance to get further links compared with a weakly connected vertex. We find that the random network constructed from a self-organized critical mechanism, (IP), falls in the same class without imposing any "preferential" growth rule. The network obtained has a connectivity exponent gamma ≊ 2.45, close to the WWW outgoing-links exponent.
Challenging of path planning algorithms for autonomous robot in known environment
NASA Astrophysics Data System (ADS)
Farah, R. N.; Irwan, N.; Zuraida, Raja Lailatul; Shaharum, Umairah; Hanafi@Omar, Hafiz Mohd
2014-06-01
Most of the mobile robot path planning is estimated to reach its predetermined aim through the shortest path and avoiding the obstacles. This paper is a survey on path planning algorithms of various current research and existing system of Unmanned Ground Vehicles (UGV) where their challenging issues to be intelligent autonomous robot. The focuses are some short reviews on individual papers for UGV in the known environment. Methods and algorithms in path planning for the autonomous robot had been discussed. From the reviews, we obtained that the algorithms proposed are appropriate for some cases such as single or multiple obstacles, static or movement obstacle and optimal shortest path. This paper also describes some pros and cons for every reviewed paper toward algorithms improvement for further work.
Bicriteria network design problems
Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J.; Hunt, H.B. III
1994-12-31
We study several bicriteria network design problems phrased as follows: given an undirected graph and two minimization objectives with a budget specified on one objective, find a subgraph satisfying certain connectivity requirements that minimizes the second objective subject to the budget on the first. Define an ({alpha}, {beta})-approximation algorithm as a polynomial-time algorithm that produces a solution in which the first objective value is at most {alpha} times the budget, and the second objective value is at most {alpha} times the minimum cost of a network obeying the budget oil the first objective. We, present the first approximation algorithms for bicriteria problems obtained by combining classical minimization objectives such as the total edge cost of the network, the diameter of the network and a weighted generalization of the maximum degree of any node in the network. We first develop some formalism related to bicriteria problems that leads to a clean way to state bicriteria approximation results. Secondly, when the two objectives are similar but only differ based on the cost function under which they are computed we present a general parametric search technique that yields approximation algorithms by reducing the problem to one of minimizing a single objective of the same type. Thirdly, we present an O(log n, log n)-approximation algorithm for finding a diameter-constrained minimum cost spanning tree of an undirected graph on n nodes generalizing the notion of shallow, light trees and light approximate shortest-path trees that have been studied before. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. These pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.
ERIC Educational Resources Information Center
Ruby, Alan; Simons, Fran
This paper discusses the three phases of the recent and future work of the Network groups--Network 1--of the OECD/CERI International Indicators Project. Essentially, Network 1's responsibility is to develop and test "participation" indicators on enrollments, educational career paths, and school leavers at different stages of the member countries'…
Complexity analysis of pipeline mapping problems in distributed heterogeneous networks
Lin, Ying; Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S
2009-04-01
Largescale scientific applications require using various system resources to execute complex computing pipelines in distributed networks to support collaborative research. System resources are typically shared in the Internet or over dedicated connections based on their location, availability, capability, and capacity. Optimizing the network performance of computing pipelines in such distributed environments is critical to the success of these applications. We consider two types of largescale distributed applications: (1) interactive applications where a single dataset is sequentially processed along a pipeline; and (2) streaming applications where a series of datasets continuously flow through a pipeline. The computing pipelines of these applications consist of a number of modules executed in a linear order in network environments with heterogeneous resources under different constraints. Our goal is to find an efficient mapping scheme that allocates the modules of a pipeline to network nodes for minimum endtoend delay or maximum frame rate. We formulate the pipeline mappings in distributed environments as optimization problems and categorize them into six classes with different optimization goals and mapping constraints: (1) Minimum Endtoend Delay with No Node Reuse (MEDNNR), (2) Minimum Endtoend Delay with Contiguous Node Reuse (MEDCNR), (3) Minimum Endtoend Delay with Arbitrary Node Reuse (MEDANR), (4) Maximum Frame Rate with No Node Reuse or Share (MFRNNRS), (5) Maximum Frame Rate with Contiguous Node Reuse and Share (MFRCNRS), and (6) Maximum Frame Rate with Arbitrary Node Reuse and Share (MFRANRS). Here, 'contiguous node reuse' means that multiple contiguous modules along the pipeline may run on the same node and 'arbitrary node reuse' imposes no restriction on node reuse. Note that in interactive applications, a node can be reused but its resource is not shared. We prove that MEDANR is polynomially solvable and the rest are NP-complete. MEDANR, where either contiguous or noncontiguous modules in the pipeline can be mapped onto the same node, is essentially the Maximum n-hop Shortest Path problem, and can be solved using a dynamic programming method. In MEDNNR and MFRNNRS, any network node can be used only once, which requires selecting the same number of nodes for onetoone onto mapping. We show its NP-completeness by reducing from the Hamiltonian Path problem. Node reuse is allowed in MEDCNR, MFRCNRS and MFRANRS, which are similar to the Maximum n-hop Shortest Path problem that considers resource sharing. We prove their NP-completeness by reducing from the Disjoint-Connecting-Path Problem and Widest path with the Linear Capacity Constraints problem, respectively.
Minimum-Risk Path Finding by an Adaptive Amoebal Network
NASA Astrophysics Data System (ADS)
Nakagaki, Toshiyuki; Iima, Makoto; Ueda, Tetsuo; Nishiura, Yasumasa; Saigusa, Tetsu; Tero, Atsushi; Kobayashi, Ryo; Showalter, Kenneth
2007-08-01
When two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path. A model for an adaptive-tube network is presented that is in good agreement with the experimental observations.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Calculating Least Risk Paths in 3d Indoor Space
NASA Astrophysics Data System (ADS)
Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.
2013-08-01
Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.
Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.
Esau, Michael; Rozema, Mark; Zhang, Tuo Huang; Zeng, Dawson; Chiu, Stephanie; Kwan, Rachel; Moorhouse, Cadence; Murray, Cameron; Tseng, Nien-Tsu; Ridgway, Doug; Sauvageau, Dominic; Ellison, Michael
2014-12-19
The Traveling Salesman Problem involves finding the shortest possible route visiting all destinations on a map only once before returning to the point of origin. The present study demonstrates a strategy for solving Traveling Salesman Problems using modified E. coli cells as processors for massively parallel computing. Sequential, combinatorial DNA assembly was used to generate routes, in the form of plasmids made up of marker genes, each representing a path between destinations, and short connecting linkers, each representing a given destination. Upon growth of the population of modified E. coli, phenotypic selection was used to eliminate invalid routes, and statistical analysis was performed to successfully identify the optimal solution. The strategy was successfully employed to solve a four-destination test problem. PMID:25524102
NASA Astrophysics Data System (ADS)
Ohno, Akiyoshi; Nishi, Tatsushi; Inuiguchi, Masahiro; Takahashi, Satoru; Ueda, Kenji
In this paper, we propose a column generation for the train-set scheduling problem with regular maintenance constraints. The problem is to allocate the minimum train-set to the train operations required to operate a given train timetable. In the proposed method, a tight lower bound can be obtained from the continuous relaxation for Dantzig-Wolfe reformulation by column generation. The subproblem for the column generation is an elementary shortest path problem with resource constraints. A labeling algorithm is applied to solve the subproblem. In order to reduce the computational effort for solving subproblems, a new state space relaxation of the subproblem is developed in the labeling algorithm. An upper bound is computed by a heuristic algorithm. Computational results demonstrate the effectiveness of the proposed method.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Calix[4]pyrroles with Shortest Possible Strap: Exclusively Selective toward Fluoride Ion.
Samanta, Ritwik; Kumar, B Sathish; Panda, Pradeepta K
2015-09-01
Four new calix[4]pyrroles with the shortest possible strap so far through ortho-linking of the aromatic unit have been synthesized, including a naphthalene-derived fluorescent receptor. They show exclusive selectivity toward the fluoride ion as confirmed by (1)H NMR, isothermal titration calorimetry, and fluorescence spectroscopic study. Anion affinity could also be modulated further via functionalization at the strap. Computational analysis displays calix[4]pyrroles binding to fluoride ion in a very unusual 1,3-alternate conformation where the anion resides on the opposite side of the strap. PMID:26313641
Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system.
Sun, Xiankai; Liu, Hsi-Chun; Yariv, Amnon
2009-02-01
By analyzing the propagating behavior of the supermodes in a coupled-waveguide system, we have derived a universal criterion for designing adiabatic mode transformers. The criterion relates epsilon, the fraction of power scattered into the unwanted mode, to waveguide design parameters and gives the shortest possible length of an adiabatic mode transformer, which is approximately 2/piepsilon1/2 times the distance of maximal power transfer between the waveguides. The results from numerical calculations based on a transfer-matrix formalism support this theory very well. PMID:19183631
Constrained motion control on a hemispherical surface: path planning.
Berman, Sigal; Liebermann, Dario G; McIntyre, Joseph
2014-03-01
Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path (the shortest path between 2 points on a sphere) is advantageous not only in terms of path length but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from 11 healthy subjects. The task comprised point-to-point motion between targets at two elevations (30° and 60°). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements compared with the others. The "better" performance reflects the dynamical advantages of following the geodesic path and may also reflect invariant features of control policies used to produce such a surface-constrained motion. PMID:24259548
Kochanska, Grazyna; Brock, Rebecca L; Chen, Kuan-Hua; Aksan, Nazan; Anderson, Steven W
2015-05-01
Electrodermal hyporeactivity (or low skin conductance level, SCL) has been long established as a correlate of and diathesis for antisocial behavior, aggression, disregard for rules of conduct and feelings of others, and generally, externalizing behavior problems in children and adults. Much less is known, however, about how individual differences in children's SCL and qualities of their early experiences in relationships with parents interact to produce antisocial outcomes. In a community sample of 102 families (51 girls), we examined children's SCL, assessed in standard laboratory tasks at age 8 (N = 81), as a moderator of the links between parent-child socialization history and children's externalizing behavior problems at ages 8 and 10, reported by mothers and fathers in well-established instruments and by children in clinical interviews. Mother- and father-child socialization history was assessed in frequent, intensive observations. Parent-child mutually responsive orientation (MRO) was observed from infancy to age 10, parental power assertion was observed from 15 months to age 6 ½, and children reported their attachment security in interviews at age 8 and 10. For children with lower SCL, variations in mothers' power assertion and father-child MRO were associated with parent-rated externalizing problems. The former interaction was consistent with diathesis-stress, and the latter with differential susceptibility. For children with higher SCL, there were no links between socialization history and externalizing problems. PMID:25218772
Kochanska, Grazyna; Brock, Rebecca L.; Chen, Kuan-Hua; Aksan, Nazan; Anderson, Steven W.
2014-01-01
Electrodermal hyporeactivity (or low skin conductance level, SCL) has been long established as a correlate of and diathesis for antisocial behavior, aggression, disregard for rules of conduct and feelings of others, and generally, externalizing behavior problems in children and adults. Much less is known, however, about how individual differences in children’s SCL and qualities of their early experiences in relationships with parents interact to produce antisocial outcomes. In a community sample of 102 families (51 girls), we examined children’s SCL, assessed in standard laboratory tasks at age 8 (N=81), as a moderator of the links between parent–child socialization history and children’s externalizing behavior problems at ages 8 and 10, reported by mothers and fathers in well-established instruments and by children in clinical interviews. Mother- and father-child socialization history was assessed in frequent, intensive observations. Parent–child mutually responsive orientation (MRO) was observed from infancy to age 10, parental power assertion was observed from 15 months to age 6 ½, and children reported their attachment security in interviews at age 8 and 10. For children with lower SCL, variations in mothers’ power assertion and father-child MRO were associated with parent-rated externalizing problems. The former interaction was consistent with diathesis-stress, and the latter with differential susceptibility. For children with higher SCL, there were no links between socialization history and externalizing problems. PMID:25218772
NASA Technical Reports Server (NTRS)
Smedes, H. W.; Hulstrom, R. L.; Ranson, K. J.
1975-01-01
The results of LANDSAT and Skylab research programs on the effects of the atmosphere on computer mapping of terrain include: (1) the concept of a ground truth map needs to be drastically revised; (2) the concept of training areas and test areas is not as simple as generally thought because of the problem of pixels that represent a mixture of terrain classes; (3) this mixture problem needs to be more widely recognized and dealt with by techniques of calculating spectral signatures of mixed classes, or by other methods; (4) atmospheric effects should be considered in computer mapping of terrain and in monitoring changes; and (5) terrain features may be used as calibration panels on the ground, from which atmospheric conditions can be determined and monitored. Results are presented of a test area in mountainous terrain of south-central Colorado for which an initial classification was made using simulated mixture-class spectral signatures and actual LANDSAT-1-MSS data.
Analyzing the applicability of the least risk path algorithm in indoor space
NASA Astrophysics Data System (ADS)
Vanclooster, A.; Viaene, P.; Van de Weghe, N.; Fack, V.; De Maeyer, Ph.
2013-11-01
Over the last couple of years, applications that support navigation and wayfinding in indoor environments have become one of the booming industries. However, the algorithmic support for indoor navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. In outdoor space, several alternative algorithms have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behavior (e.g. simplest paths, least risk paths). The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas). Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-story building. Several analyses compare shortest and least risk paths in indoor and in outdoor space. The results of these analyses indicate that the current outdoor least risk path algorithm does not calculate less risky paths compared to its shortest paths. In some cases, worse routes have been suggested. Adjustments to the original algorithm are proposed to be more aligned to the specific structure of indoor environments. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2014-03-01
The sign-problem in PIMC simulations of non-relativistic fermions increases in serverity with the number of fermions and the number of beads (or time-slices) of the simulation. A large of number of beads is usually needed, because the conventional primitive propagator is only second-order and the usual thermodynamic energy-estimator converges very slowly from below with the total imaginary time. The Hamiltonian energy-estimator, while more complicated to evaluate, is a variational upper-bound and converges much faster with the total imaginary time, thereby requiring fewer beads. This work shows that when the Hamiltonian estimator is used in conjunction with fourth-order propagators with optimizable parameters, the ground state energies of 2D parabolic quantum-dots with approximately 10 completely polarized electrons can be obtain with ONLY 3-5 beads, before the onset of severe sign problems. This work was made possible by NPRP GRANT #5-674-1-114 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author.
Hemann, M T; Strong, M A; Hao, L Y; Greider, C W
2001-10-01
Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase. PMID:11595186
Egocentric path integration models and their application to desert arthropods.
Merkle, Tobias; Rost, Martin; Alt, Wolfgang
2006-06-01
Path integration enables desert arthropods to find back to their nest on the shortest track from any position. To perform path integration successfully, speeds and turning angles along the preceding outbound path have to be measured continuously and combined to determine an internal global vector leading back home at any time. A number of experiments have given an idea how arthropods might use allothetic or idiothetic signals to perceive their orientation and moving speed. We systematically review the four possible model descriptions of mathematically precise path integration, whereby we favour and elaborate the hitherto not used variant of egocentric cartesian coordinates. Its simple and intuitive structure is demonstrated in comparison to the other models. Measuring two speeds, the forward moving speed and the angular turning rate, and implementing them into a linear system of differential equations provides the necessary information during outbound route, reorientation process and return path. In addition, we propose several possible types of systematic errors that can cause deviations from the correct homeward course. Deviations have been observed for several species of desert arthropods in different experiments, but their origin is still under debate. Using our egocentric path integration model we propose simple error indices depending on path geometry that will allow future experiments to rule out or corroborate certain error types. PMID:16300795
Analog and digital FPGA implementation of BRIN for optimization problems.
Ng, H S; Lam, K P
2003-01-01
The binary relation inference network (BRIN) shows promise in obtaining the global optimal solution for optimization problem, which is time independent of the problem size. However, the realization of this method is dependent on the implementation platforms. We studied analog and digital FPGA implementation platforms. Analog implementation of BRIN for two different directed graph problems is studied. As transitive closure problems can transform to a special case of shortest path problems or a special case of maximum spanning tree problems, two different forms of BRIN are discussed. Their circuits using common analog integrated circuits are investigated. The BRIN solution for critical path problems is expressed and is implemented using the separated building block circuit and the combined building block circuit. As these circuits are different, the response time of these networks will be different. The advancement of field programmable gate arrays (FPGAs) in recent years, allowing millions of gates on a single chip and accompanying with high-level design tools, has allowed the implementation of very complex networks. With this exemption on manual circuit construction and availability of efficient design platform, the BRIN architecture could be built in a much more efficient way. Problems on bandwidth are removed by taking all previous external connections to the inside of the chip. By transforming BRIN to FPGA (Xilinx XC4010XL and XCV800 Virtex), we implement a synchronous network with computations in a finite number of steps. Two case studies are presented, with correct results verified from simulation implementation. Resource consumption on FPGAs is studied showing that Virtex devices are more suitable for the expansion of network in future developments. PMID:18244587
Energy Science and Technology Software Center (ESTSC)
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Research on Taxiway Path Optimization Based on Conflict Detection.
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Research on Taxiway Path Optimization Based on Conflict Detection
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Resonating-Valence-Bond Physics Is Not Always Governed by the Shortest Tunneling Loops
NASA Astrophysics Data System (ADS)
Ralko, Arnaud; Rousochatzakis, Ioannis
2015-10-01
It is well known that the low-energy sector of quantum spin liquids and other magnetically disordered systems is governed by short-ranged resonating-valence bonds. Here we show that the standard minimal truncation to the nearest-neighbor valence-bond basis fails completely even for systems where it should work the most, according to received wisdom. This paradigm shift is demonstrated for the quantum spin-1 /2 square kagome, where strong geometric frustration, similar to the kagome, prevents magnetic ordering down to zero temperature. The shortest tunneling events bear the strongest longer-range singlet fluctuations, leading to amplitudes that do not drop exponentially with the length of the loop L , and to an unexpected loop-six valence-bond crystal, which is otherwise very high in energy at the minimal truncation level. The low-energy effective description gives in addition a clear example of correlated loop processes that depend not only on the type of the loop but also on its lattice embedding, a direct manifestation of the long-range nature of the virtual singlets.
Resonating-Valence-Bond Physics Is Not Always Governed by the Shortest Tunneling Loops.
Ralko, Arnaud; Rousochatzakis, Ioannis
2015-10-16
It is well known that the low-energy sector of quantum spin liquids and other magnetically disordered systems is governed by short-ranged resonating-valence bonds. Here we show that the standard minimal truncation to the nearest-neighbor valence-bond basis fails completely even for systems where it should work the most, according to received wisdom. This paradigm shift is demonstrated for the quantum spin-1/2 square kagome, where strong geometric frustration, similar to the kagome, prevents magnetic ordering down to zero temperature. The shortest tunneling events bear the strongest longer-range singlet fluctuations, leading to amplitudes that do not drop exponentially with the length of the loop L, and to an unexpected loop-six valence-bond crystal, which is otherwise very high in energy at the minimal truncation level. The low-energy effective description gives in addition a clear example of correlated loop processes that depend not only on the type of the loop but also on its lattice embedding, a direct manifestation of the long-range nature of the virtual singlets. PMID:26550898
AH Cam: A metal-rich RR Lyrae star with the shortest known Blazhko period
NASA Technical Reports Server (NTRS)
Smith, Horace A.; Matthews, Jaymie M.; Lee, Kevin M.; Williams, Jeffrey; Silbermann, N. A.; Bolte, Michael
1994-01-01
Analysis of 746 new V-band observations of the RR Lyrae star AH Cam obtained during 1989 - 1992 clearly show that its light curve cannot be described by a single period. In fact, at first glance, the Fourier spectrum of the photometry resembles that of a double-mode pulsator, with peaks at a fundamental period of 0.3686 d and an apparent secondary period of 0.2628 d. Nevertheless, the dual-mode solution is a poor fit to the data. Rather, we believe that AH Cam is a single-mode RR Lyrae star undergoing the Blazhko effect: periodic modulation of the amplitude and shape of its light curve. What was originally taken to be the period of the second mode is instead the 1-cycle/d alias of a modulation sidelobe in the Fourier spectrum. The data are well described by a modulation period of just under 11 d, which is the shortest Blazhko period reported to date in the literature and confirms the earlier suggestion by Goranskii. A low-resolution spectrum of AH Cam indicates that it is relatively metal rich, with delta-S less than or = 2. Its high metallicity and short modulation period may provide a critical test of at least one theory for the Blazhko effect. Moskalik's internal resonance model makes specific predictions of the growth rate of the fundamental model vs fundamental period. AH Cam falls outside the regime of other known Blazhko variables and resonance model predictions, but these are appropriate for metal-poor RR Lyrae stars. If the theory matches the behavior of AH Cam for a metal-rich stellar model, this would bolster the resonance hypothesis.
Shortest Loops are Pacemakers in Random Networks of Electrically Coupled Axons
Vladimirov, Nikita; Tu, Yuhai; Traub, Roger D.
2012-01-01
High-frequency oscillations (HFOs) are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bi-directional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100–200 Hz) are predicted to be caused by spontaneously spiking axons in a network with strong (high conductance) gap junctions. Type II oscillations (200–300 Hz) require no spontaneous spiking and relatively weak (low-conductance) gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network’s loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate. The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples. PMID:22514532
Shortest Loops are Pacemakers in Random Networks of Electrically Coupled Axons.
Vladimirov, Nikita; Tu, Yuhai; Traub, Roger D
2012-01-01
High-frequency oscillations (HFOs) are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bi-directional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz) are predicted to be caused by spontaneously spiking axons in a network with strong (high conductance) gap junctions. Type II oscillations (200-300 Hz) require no spontaneous spiking and relatively weak (low-conductance) gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate. The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples. PMID:22514532
A global path planning approach for redundant manipulators
NASA Technical Reports Server (NTRS)
Seereeram, Sanjeev; Wen, J.
1993-01-01
A new approach for global path planning of redundant manipulators is proposed. It poses the path planning problem as a finite time nonlinear control problem. The solution is found by a Newton-Raphson type algorithm. This technique is capable of handling various goal task descriptions as well as incorporating both joint and task space constraints. The algorithm has shown promising preliminary results in planning joint path sequences for 3R and 4R planar robots to meet Cartesian tip tracking and goal endpoint planning. It is robust with respect to local path planning problems such as singularity considerations and local minimum problems. Repetitive joint path solutions for cyclic end-effector tasks are also generated. Eventual goals of this work include implementation on full spatial robots, as well as provision of an interface for supervisory input to aid in path planning for more complex problems.
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Dreyer, Olaf
2016-02-01
Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.
Adaptable Path Planning in Regionalized Environments
NASA Astrophysics Data System (ADS)
Richter, Kai-Florian
Human path planning relies on several more aspects than only geometric distance between two locations. These additional aspects mostly relate to the complexity of the traveled path. Accordingly, in recent years several cognitively motivated path search algorithms have been developed that try to minimize wayfinding complexity. However, the calculated paths may result in large detours as geometric properties of the network wayfinding occurs in are ignored. Simply adding distance as an additional factor to the cost function is a possible, but insufficient way of dealing with this problem. Instead, taking a global view on an environment by accounting for the heterogeneity of its structure allows for adapting the path search strategy. This heterogeneity can be used to regionalize the environment; each emerging region may require a different strategy for path planning. This paper presents such an approach to regionalized path planning. It argues for the advantages of the chosen approach, develops a measure for calculating wayfinding complexity that accounts for structural and functional aspects of wayfinding, and states a generic algorithm for regionalization. Finally, regionalized path planning is demonstrated in a sample scenario.
NASA Technical Reports Server (NTRS)
Janich, Karl W.
2005-01-01
The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.
Hybrid Genetic Algorithm with Fuzzy Logic Controller for Obstacle Location-Allocation Problem
NASA Astrophysics Data System (ADS)
Taniguchi, Jyunichi; Wang, Xiaodong; Gen, Mitsuo; Yokota, Takao
Location-allocation problem is known as one of the important problems faced in Industrial Engineering/Operations Research fields. One of important logistic tasks is transfer of manufactured products from plants to customers. If there is a need to supply products to large number of customers in a wide area, it is disadvantageous to deliver products from the only central distribution center or direct from plants. It is suitable to build up local distribution centers. In literature, different location models have been used according to characteristics of a distribution area. However, most of them related the location problem without obstacle. In this paper, an extended location-allocation problem with obstacles is considered. Since this problem is very complex and with many infeasible solutions, no direct method is effective to solve it, we propose a hybrid Genetic Algorithm (hGA) for effectively solving this problem. The proposed hGA combines two efficient methods based on Lagrangian relaxation and Dijkstra’s shortest path algorithm. To improve the performance of the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.
Automatic tracking of neuro vascular tree paths
NASA Astrophysics Data System (ADS)
Suryanarayanan, S.; Gopinath, A.; Mallya, Y.; Shriram, K. S.; Joshi, M.
2006-03-01
3-D analysis of blood vessels from volumetric CT and MR datasets has many applications ranging from examination of pathologies such as aneurysm and calcification to measurement of cross-sections for therapy planning. Segmentation of the vascular structures followed by tracking is an important processing step towards automating the 3-D vessel analysis workflow. This paper demonstrates a fast and automated algorithm for tracking the major arterial structures that have been previously segmented. Our algorithm uses anatomical knowledge to identify the start and end points in the vessel structure that allows automation. Voxel coding scheme is used to code every voxel in the vessel based on its geodesic distance from the start point. A shortest path based iterative region growing is used to extract the vessel tracks that are subsequently smoothed using an active contour method. The algorithm also has the ability to automatically detect bifurcation points of major arteries. Results are shown for tracking the major arteries such as the common carotid, internal carotid, vertebrals, and arteries coming off the Circle of Willis across multiple cases with various data related and pathological challenges from 7 CTA cases and 2 MR Time of Flight (TOF) cases.
NASA Technical Reports Server (NTRS)
Barker, L. Keith
1998-01-01
The primary purpose of this publication is to develop a mathematical model to describe smooth paths along any combination of circles and tangent lines. Two consecutive circles in a path are either tangent (externally or internally) or they appear on the same (lateral) or opposite (transverse) sides of a connecting tangent line. A path may start or end on either a segment or circle. The approach is to use mathematics common to robotics to design the path as a multilink manipulator. This approach allows a hierarchical view of the problem and keeps the notation manageable. A user simply specifies a few parameters to configure a path. Necessary and sufficient conditions automatically ensure the consistency of the inputs for a smooth path. Two example runway exit paths are given, and an angle to go assists in knowing when to switch from one path element to the next.
ERIC Educational Resources Information Center
Stegemoller, William; Stegemoller, Rebecca
2004-01-01
The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
ERIC Educational Resources Information Center
Guven, Bulent
2008-01-01
As any ordinary person knows, the shortest distance between two points is a straight line. What, then, is the shortest distance between three points? Four points? The study reported in this article deals with the observed actions of Turkish student mathematics teachers as they were working with minimal network problems. Having analysed the…
NASA Astrophysics Data System (ADS)
Rogal, Jutta; Lechner, Wolfgang; Juraszek, Jarek; Ensing, Bernd; Bolhuis, Peter G.
2010-11-01
We introduce a reweighting scheme for the path ensembles in the transition interface sampling framework. The reweighting allows for the analysis of free energy landscapes and committor projections in any collective variable space. We illustrate the reweighting scheme on a two dimensional potential with a nonlinear reaction coordinate and on a more realistic simulation of the Trp-cage folding process. We suggest that the reweighted path ensemble can be used to optimize possible nonlinear reaction coordinates.
An analogue approach to the travelling salesman problem using an elastic net method
NASA Astrophysics Data System (ADS)
Durbin, Richard; Willshaw, David
1987-04-01
The travelling salesman problem1 is a classical problem in the field of combinatorial optimization, concerned with efficient methods for maximizing or minimizing a function of many independent variables. Given the positions of N cities, which in the simplest case lie in the plane, what is the shortest closed tour in which each city can be visited once? We describe how a parallel analogue algorithm, derived from a formal model2-3 for the establishment of topographically ordered projections in the brain4-10, can be applied to the travelling salesman problem1,11,12. Using an iterative procedure, a circular closed path is gradually elongated non-uniformly until it eventually passes sufficiently near to all the cities to define a tour. This produces shorter tour lengths than another recent parallel analogue algorithm13, scales well with the size of the problem, and is naturally extendable to a large class of optimization problems involving topographic mappings between geometrical structures14.
NASA Astrophysics Data System (ADS)
vanden-Eijnden, E.
The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to introduce the reader to the probabilistic framework one can use to characterize the mechanism of a reaction and obtain the probability density, current, rate, etc. of the reactive trajectories.
Integrated assignment and path planning
NASA Astrophysics Data System (ADS)
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact mathematical model and solution techniques. The approach adopted is based upon the very flexible New Product Development model but also blends many features from other approaches. Solution methods using branch and bound and construction heuristics are developed and tested on several example problems, including a military scenario featuring unmanned air vehicles.
Parallel dynamic programming for on-line flight path optimization
NASA Technical Reports Server (NTRS)
Slater, G. L.; Hu, K.
1989-01-01
Parallel systolic algorithms for dynamic programming(DP) and their respective hardware implementations are presented for a problem in on-line trajectory optimization. The method is applied to a model for helicopter flight path optimization through a complex constraint region. This problem has application to an air traffic control problem and also to a terrain following/threat avoidance problem.
NASA Astrophysics Data System (ADS)
Ohya, Satoshi
2012-06-01
We propose path integral description for quantum mechanical systems on compact graphs consisting of N segments of the same length. Provided the bulk Hamiltonian is segment-independent, scale-invariant boundary conditions given by the self-adjoint extension of a Hamiltonian operator turn out to be in one-to-one correspondence with N × N matrix-valued weight factors on the path integral side. We show that these weight factors are given by N-dimensional unitary representations of the infinite dihedral group.
A Critical Path Analysis of Scientific Productivity.
ERIC Educational Resources Information Center
Loehle, Craig
1994-01-01
This article presents a queuing model simulation of scientific productivity utilizing critical path analysis. Creativity is found to have a large positive effect, a negative effect, or no effect on productivity, depending on the stage of the problem-solving process to which it is applied and the nature of the bottlenecks inherent to the specific…
A modified reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Ganesh, G.; Whitaker, S.; Maki, G.
1991-01-01
High throughput is an overriding factor dictating system performance. A configurable data processor is presented which can be modified to optimize performance for a wide class of problems. The new processor is specifically designed for arbitrary data path operations and can be dynamically reconfigured.
Multi-Level Indoor Path Planning Method
NASA Astrophysics Data System (ADS)
Xiong, Q.; Zhu, Q.; Zlatanova, S.; Du, Z.; Zhang, Y.; Zeng, L.
2015-05-01
Indoor navigation is increasingly widespread in complex indoor environments, and indoor path planning is the most important part of indoor navigation. Path planning generally refers to finding the most suitable path connecting two locations, while avoiding collision with obstacles. However, it is a fundamental problem, especially for 3D complex building model. A common way to solve the issue in some applications has been approached in a number of relevant literature, which primarily operates on 2D drawings or building layouts, possibly with few attached attributes for obstacles. Although several digital building models in the format of 3D CAD have been used for path planning, they usually contain only geometric information while losing abundant semantic information of building components (e.g. types and attributes of building components and their simple relationships). Therefore, it becomes important to develop a reliable method that can enhance application of path planning by combining both geometric and semantic information of building components. This paper introduces a method that support 3D indoor path planning with semantic information.
Computing Diffeomorphic Paths for Large Motion Interpolation.
Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C
2013-06-01
In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff(Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff(Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff(Ω) to the quotient space Diff(M)/Diff(M) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff(M) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM). PMID:25364222
Flux Control in Networks of Diffusion Paths
A. I. Zhmoginov and N. J. Fisch
2009-07-08
A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.
The Improved Evolution Paths to Speedup Quantum Evolution
NASA Astrophysics Data System (ADS)
He, Yong; Deng, Yun; Luo, Ming-Xing
2016-04-01
The quantum adiabatic evolution is very important for quantum mechanics and applied in quantum information processing to solve the difficult problem. The traditional quantum adiabatic algorithms use the linear interpolating to construct quantum evolution paths. We construct special evolution paths to speedup quantum evolutions. By choosing state-dependent correlations some constant time evolution paths may be generated. This result is very useful quantum adiabatic simulations.
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562
ERIC Educational Resources Information Center
Lee, John B.; Clery, Suzanne B.; Presley, Jennifer B.
This report uses the national Baccalaureate and Beyond longitudinal database to look at the early career paths of 1993 college graduates. The results provide information on which college graduates became teachers, where they taught, and whether they left teaching within 3 years. Overall, it is not easy to predict who may be potential teachers when…
NASA Technical Reports Server (NTRS)
Bill, R. C.; Johnson, R. D. (Inventor)
1979-01-01
A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…
Path planning for everday robotics with SANDROS
Watterberg, P.; Xavier, P.; Hwang, Y.
1997-02-01
We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Approximate path seeking for statistical iterative reconstruction
NASA Astrophysics Data System (ADS)
Wu, Meng; Yang, Qiao; Maier, Andreas; Fahrig, Rebecca
2015-03-01
Statistical iterative reconstruction (IR) techniques have demonstrated many advantages in X-ray CT reconstruction. The statistical iterative reconstruction approach is often modeled as an optimization problem including a data fitting function and a penalty function. The tuning parameter values that regulate the strength of the penalty function are critical for achieving good reconstruction results. However, appropriate tuning parameter values that are suitable for the scan protocols and imaging tasks are often difficult to choose. In this work, we propose a path seeking algorithm that is capable of generating a series of IR images with different strengths of the penalty function. The path seeking algorithm uses the ratio of the gradients of the data fitting function and the penalty function to select pixels for small fixed size updates. We describe the path seeking algorithm for penalized weighted least squares (PWLS) with a Huber penalty function in both the directions of increasing and decreasing tuning parameter value. Simulations using the XCAT phantom show the proposed method produces path images that are very similar to the IR images that are computed via direct optimization. The root-mean- squared-error of one path image generated by the proposed method relative to full iterative reconstruction is about 6 HU for the entire image and 10 HU for a small region. Different path seeking directions, increment sizes and updating percentages of the path seeking algorithm are compared in simulations. The proposed method may reduce the dependence on selection of good tuning parameter values by instead generating multiple IR images, without significantly increasing the computational load.
Path analysis in genetic epidemiology: a critique.
Karlin, S; Cameron, E C; Chakraborty, R
1983-01-01
Path analysis, a form of general linear structural equation models, is used in studies of human genetics data to discern genetic, environmental, and cultural factors contributing to familial resemblance. It postulates a set of linear and additive parametric relationships between phenotypes and genetic and cultural variables and then essentially uses the assumption of multivariate normality to estimate and perform tests of hypothesis on parameters. Such an approach has been advocated for the analysis of genetic epidemiological data by D. C. Rao, N. Morton, C. R. Cloninger, L. J. Eaves, and W. E. Nance, among others. This paper reviews and evaluates the formulations, assumptions, methodological procedures, interpretations, and applications of path analysis. To give perspective, we begin with a discussion of path analysis as it occurs in the form of general linear causal models in several disciplines of the social sciences. Several specific path analysis models applied to lipoprotein concentrations, IQ, and twin data are then reviewed to keep the presentation self-contained. The bulk of the critical discussion that follows is directed toward the following four facets of path analysis: (1) coherence of model specification and applicability to data; (2) plausibility of modeling assumptions; (3) interpretability and utility of the model; and (4) validity of statistical and computational procedures. In the concluding section, a brief discussion of the problem of appropriate model selection is presented, followed by a number of suggestions of essentially model-free alternative methods of use in the treatment of complex structured data such as occurs in genetic epidemiology. PMID:6349335
Perfect discretization of reparametrization invariant path integrals
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Interpretation of pressure-temperature-time paths
England, P.C.
1985-01-01
Pressure-temperature-time (PTt) paths inferred from mineral assemblages or compositions in metamorphic rocks are used to place constraints on metamorphic processes on several different scales. The purpose of this paper is to indicate the kind of questions that may be answered, and those that cannot, by interpretation of PTt data. The intensity of regional metamorphism depends both on the intensity of available heat sources and the length of time available for thermal relaxation; consequently the addition of reliable dates to a PT path is a crucial element in containing thermal history. For example, the question as to whether or not Archaean continental thermal regimes were similar to today's cannot be answered without PTt paths dated to a precision of better than 30 Myr. As there is always local perturbation due to tectonic, igneous or other fluid activity it is essential to obtain widespread PTt data before making estimates of thermal budgets for regional metamorphism. However, on the smaller scale, PTt paths may be used to infer tectonic style where structural data are ambiguous or lacking. Particular attention is paid to the problems of inferring extensional events from the PTt paths recorded by rocks from regional metamorphic belts.
Tikhonov regularization-based operational transfer path analysis
NASA Astrophysics Data System (ADS)
Cheng, Wei; Lu, Yingying; Zhang, Zhousuo
2016-06-01
To overcome ill-posed problems in operational transfer path analysis (OTPA), and improve the stability of solutions, this paper proposes a novel OTPA based on Tikhonov regularization, which considers both fitting degrees and stability of solutions. Firstly, fundamental theory of Tikhonov regularization-based OTPA is presented, and comparative studies are provided to validate the effectiveness on ill-posed problems. Secondly, transfer path analysis and source contribution evaluations for numerical cases studies on spherical radiating acoustical sources are comparatively studied. Finally, transfer path analysis and source contribution evaluations for experimental case studies on a test bed with thin shell structures are provided. This study provides more accurate transfer path analysis for mechanical systems, which can benefit for vibration reduction by structural path optimization. Furthermore, with accurate evaluation of source contributions, vibration monitoring and control by active controlling vibration sources can be effectively carried out.
Collision avoidance of two moving objects using the anticipated path
NASA Astrophysics Data System (ADS)
Rhee, Seung Hak; Ahmad, Muhammad Bilal; Park, Seung-Jin; Beak, Kyoung-Ju; Park, Jong An
2004-03-01
Collision avoidance is one of the most important problems in autonomous vehicles, ship navigation, and robot manipulators, etc. Image processing technique could be applied for solving the collision avoidance of moving objects. The collision could be avoided if the direction of the moving object could be accurately anticipated. The problem is how to anticipate the expected path of the moving object, so that the other moving objects in the expected path should be detected and avoided for collision avoidance. Collisions could be avoided by searching the obstacles and moving objects in the expected path, but the moving objects, which would come inside the expected path, should also be detected for fully collision avoidance. In this paper, the expected path of the moving object is determined from the previous history of the moving object using the statistical measurements.
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
NASA Technical Reports Server (NTRS)
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
Path Integrals and Supersolids
NASA Astrophysics Data System (ADS)
Ceperley, D. M.
2008-11-01
Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.
Bleakley, Hoyt; Lin, Jeffrey
2012-05-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
Bleakley, Hoyt; Lin, Jeffrey
2012-01-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
Hardwick, R D
1989-01-01
The design and implementation of an Intrusion Path Analysis (IPA) function came about as a result of the upgrades to the security systems at the Savannah River Site (SRS), near Aiken, South Carolina. The stated requirements for IPA were broad, leaving opportunity for creative freedom during design and development. The essential elements were that it: be based on alarm and sensor state data; consider insider as well as outsider threats; be flexible and easily enabled or disabled; not be processor intensive; and provide information to the operator in the event the analysis reveals possible path openings. The final design resulted from many and varied conceptual inputs, and will be implemented in selected test areas at SRS. It fulfils the requirements and: allows selective inclusion of sensors in the analysis; permits the formation of concentric rings of protection around assets; permits the defining of the number of rings which must be breached before issuing an alert; evaluates current sensor states as well as a recent, configurable history of sensor states; considers the sensors' physical location, with respect to the concentric rings; and enables changes for maintenance without software recompilation. 3 figs.
ERIC Educational Resources Information Center
Conway, Robert, Ed.; Izard, John, Ed.
Twelve papers produced at an annual convention were selected for inclusion in this work on behavior management and behavior change in Australian children and youth with emotional and/or behavior problems. The papers are: (1) Developing Personal Strengths, Choosing More Effective Behaviours: Control Theory, Reality Therapy and Quality Management…
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
NASA Astrophysics Data System (ADS)
Namdari, Mohammad Hasan; Hejazi, Seyed Reza; Palhang, Maziar
2016-06-01
In this paper, modified versions of quadtree/octree, as structures used in path planning, are proposed which we call them cornered quadtree/octree. Also a new method of creating paths in quadtrees/octrees, once quadrants/octants to be passed are determined, is proposed both to improve traveled distance and path smoothness. In proposed modified versions of quadtree/octree, four corner cells of quadrants and eight corner voxels of octants are also considered as nodes of the graph to be searched for finding the shortest path. This causes better quadrant/octant selection during graph search relative to simple quadtrees and octrees. On the other hand, after that all quadrants/octants are determined, multiple gateways are nominated between each two selected nodes and path is constructed by passing through the gateway which its selection leads in shorter and smoother path. Proposed structures in this paper alongside the utilized path construction approach, creates better paths in terms of path length than those created if simple trees are used, somehow equal to the quality of the achieved paths by framed trees, meanwhile interestingly, consumed time and memory in our proposed method are closer to the used time and memory if simple trees are used.
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Star-Paths, Stones and Horizon Astronomy
NASA Astrophysics Data System (ADS)
Brady, Bernadette
2015-05-01
Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Handbook of Feynman Path Integrals
NASA Astrophysics Data System (ADS)
Grosche, Christian, Steiner, Frank
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
Traveling Salesman Problem with Clustering
NASA Astrophysics Data System (ADS)
Schneider, Johannes J.; Bukur, Thomas; Krause, Antje
2010-12-01
In the original traveling salesman problem, the traveling salesman has the task to find the shortest closed tour through a proposed set of nodes, touching each node exactly once and returning to the initial node at the end. For the sake of the tour length to be minimized, nodes close to each other might not be visited one after the other but separated in the tour. However, for some practical applications, it is useful to group nodes to clusters, such that all nodes of a cluster are visited contiguously. Here we present an approach which leads to an automatic clustering with a clustering parameter governing the sizes of the clusters.
Decision paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Computational path planner for product assembly in complex environments
NASA Astrophysics Data System (ADS)
Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi
2013-03-01
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
Evolution-based path planning and management for autonomous vehicles
NASA Astrophysics Data System (ADS)
Capozzi, Brian Joseph
2001-07-01
This dissertation describes an approach to adaptive path planning based on the problem solving capabilities witnessed in nature---namely the influence of natural selection in uncovering solutions to the characteristics of the environment. The competition for survival forces organisms to either respond to changes or risk being evolved out of the population. We demonstrate the applicability of this process to the problem of finding paths for an autonomous vehicle through a number of different static and dynamic environments. In doing so, we develop a number of different ways in which these paths can be modeled for the purposes of evolution. Through analysis and experimentation, we develop and reinforce a set of principles and conditions which must hold for the search process to be successful. Having demonstrated the viability of evolution as a guide for path planning, we discuss implications for on-line, real-time planning for autonomous vehicles.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials
Brokaw, Jason B.; Haas, Kevin R.; Chu, Jhih-wei
2009-08-11
Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C₇eq-to-Cax isomerization of an alanine dipeptide, the ⁴C₁- to-¹C₄ transition of an α-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.
Collabortive Authoring of Walden's Paths
Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major
2012-01-01
This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
NASA Astrophysics Data System (ADS)
Li, Qingshan; Ni, Wenda; Li, Yanhe; Zhang, Hanyi; Zheng, Xiaoping
2010-12-01
An incremental capacity allocation with topology augmentation problem is investigated in this paper to maximize the backup path provisioned services in WDM mesh networks. To tackle the optimal design problem, an integer linear programming (ILP) formulation is presented. Numerical results show that all the services can be provisioned a backup path with little number of new links added to the existing topology.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.
2015-01-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S
2015-07-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
Two arm robot path planning in a static environment using polytopes and string stretching. Thesis
NASA Technical Reports Server (NTRS)
Schima, Francis J., III
1990-01-01
The two arm robot path planning problem has been analyzed and reduced into components to be simplified. This thesis examines one component in which two Puma-560 robot arms are simultaneously holding a single object. The problem is to find a path between two points around obstacles which is relatively fast and minimizes the distance. The thesis involves creating a structure on which to form an advanced path planning algorithm which could ideally find the optimum path. An actual path planning method is implemented which is simple though effective in most common situations. Given the limits of computer technology, a 'good' path is currently found. Objects in the workspace are modeled with polytopes. These are used because they can be used for rapid collision detection and still provide a representation which is adequate for path planning.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
NASA Technical Reports Server (NTRS)
Chandler, J. A.
1983-01-01
Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.
Improving path planning with learning
Chen, P.C.
1991-12-16
We present a learning algorithm designed to improve robot path planning. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, it learns a sparse network of useful robot subgoals which guide and support fast planning. We analyze the algorithm theoretically by developing some general techniques useful in characterizing behaviors of probabilistic learning. We also demonstrate the effectiveness of the algorithm empirically with an existing path planner in practical environments. The learning algorithm not only reduces the time cost of existing planners, but also increases their capability in solving difficult tasks. 7 refs.
Harmonic Functions for Robot Path Construction
NASA Astrophysics Data System (ADS)
Connolly, C. I.; Burns, John B.; Weiss, Richard S.
1990-02-01
A frequent problem in the use of potential functions for robot path planning is that local minima often occur. These local minima may be eliminated by judicious selection of potential functions for goals and obstacles. Specifically, harmonic functions may be used without introducing such minima. While there are analytic, easily superposed solutions for impenetrable point obstacles, this is not the case for impenetrable obstacles with finite, nonzero extent (e.g., walls). Instead, numerical methods that are well suited to massively parallel computation can be used.
Optimal Path to a Laser Fusion Energy Power Plant
NASA Astrophysics Data System (ADS)
Bodner, Stephen
2013-10-01
There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.
Path planning for complex terrain navigation via dynamic programming
Kwok, K.S.; Driessen, B.J.
1998-12-31
This work considers the problem of planning optimal paths for a mobile robot traversing complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep for the mobile robot to navigate safely without tipping over become mathematically equivalent to extra obstacles. To solve the optimal path problem, the authors use a dynamic programming approach. The dynamic programming approach utilized herein does not suffer the difficulties associated with spurious local minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed to be found if a feasible solution exists. The method is demonstrated on several complex examples including very complex terrains.
Kaku, R
1997-01-01
Many global companies believe they have a moral duty to respond to the world's problems but are unsure how to do that and still pursue a reasonable profit for their shareholders. Ryuzaburo Kaku, honorary chairman of Canon, the Japanese technology company, suggests that companies consider kyosei, a business credo that he defines as a "spirit of cooperation" in which individuals and organizations work together for the common good. Kyosei, Kaku claims, has helped Canon make a significant and positive impact on many world problems as the company has grown to become one of the world's preeminent innovators and manufacturers of technology. The implementation of kyosei can be divided into five stages, with each stage building on the preceding one. In the first stage, companies must work to secure a predictable stream of profits and to establish strong market positions. From this foundation, they move on to the second stage, in which managers and workers resolve to cooperate with each other, recognizing that both groups are vital to the company's success. In the third stage, this sense of cooperation is extended beyond the company to encompass customers, suppliers, community groups, and even competitors. At the fourth stage, a company takes the cooperative spirit beyond national boundaries and addresses some of the global imbalances that plague the world. In the fifth stage, which companies rarely achieve, a company urges its national government to work toward rectifying global imbalances. For each stage, Kaku provides detailed examples from Cannon's own experience in putting the ideas of kyosei into practice. PMID:10168336
Path diversity improves the identification of influential spreaders
NASA Astrophysics Data System (ADS)
Chen, Duan-Bing; Xiao, Rui; Zeng, An; Zhang, Yi-Cheng
2013-12-01
Identifying influential spreaders in complex networks is a crucial problem which relates to wide applications. Many methods based on the global information such as K-shell and PageRank have been applied to rank spreaders. However, most of the related previous works overwhelmingly focus on the number of paths for propagation, while whether the paths are diverse enough is usually overlooked. Generally, the spreading ability of a node might not be strong if its propagation depends on one or two paths while the other paths are dead ends. In this letter, we introduced the concept of path diversity and find that it can largely improve the ranking accuracy. We further propose a local method combining the information of path number and path diversity to identify influential nodes in complex networks. This method is shown to outperform many well-known methods in both undirected and directed networks. Moreover, the efficiency of our method makes it possible to apply it to very large systems.
Covariant path integrals on hyperbolic surfaces
Schaefer, J.
1997-11-01
DeWitt{close_quote}s covariant formulation of path integration [B. De Witt, {open_quotes}Dynamical theory in curved spaces. I. A review of the classical and quantum action principles,{close_quotes} Rev. Mod. Phys. {bold 29}, 377{endash}397 (1957)] has two practical advantages over the traditional methods of {open_quotes}lattice approximations;{close_quotes} there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature {minus}1. The Pauli{endash}DeWitt curvature correction term arises, as in DeWitt{close_quote}s work. Introducing a Fuchsian group {Gamma} of the first kind, and a continuous, bounded, {Gamma}-automorphic potential V, we obtain a Feynman{endash}Kac formula for the automorphic Schr{umlt o}dinger equation on the Riemann surface {Gamma}{backslash}H. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, {ital Path Integration on Manifolds, Mathematical Aspects of Superspace}, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47{endash}90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, {open_quotes}The path integral on the Poincare upper half plane and for Liouville quantum mechanics,{close_quotes} Phys. Lett. A {bold 123}, 319{endash}328 (1987). {copyright} {ital 1997 American Institute of Physics.}
Practical and conceptual path sampling issues
NASA Astrophysics Data System (ADS)
Bolhuis, P. G.; Dellago, C.
2015-09-01
In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method's apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
Mobile transporter path planning using a genetic algorithm approach
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1988-01-01
The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.
Mobile Transporter Path Planning Using A Genetic Algorithm Approach
NASA Astrophysics Data System (ADS)
Baffes, Paul; Wang, Lui
1988-10-01
The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.
Schiefer, H. Peters, S.; Plasswilm, L.; Ingulfsen, N.; Kluckert, J.
2015-03-15
Purpose: For stereotactic radiosurgery, the AAPM Report No. 54 [AAPM Task Group 42 (AAPM, 1995)] requires the overall stability of the isocenter (couch, gantry, and collimator) to be within a 1 mm radius. In reality, a rotating system has no rigid axis and thus no isocenter point which is fixed in space. As a consequence, the isocenter concept is reviewed here. It is the aim to develop a measurement method following the revised definitions. Methods: The mechanical isocenter is defined here by the point which rotates on the shortest path in the room coordinate system. The path is labeled as “isocenter path.” Its center of gravity is assumed to be the mechanical isocenter. Following this definition, an image-based and radiation-free measurement method was developed. Multiple marker pairs in a plane perpendicular to the assumed gantry rotation axis of a linear accelerator are imaged with a smartphone application from several rotation angles. Each marker pair represents an independent measuring system. The room coordinates of the isocenter path and the mechanical isocenter are calculated based on the marker coordinates. The presented measurement method is by this means strictly focused on the mechanical isocenter. Results: The measurement result is available virtually immediately following completion of measurement. When 12 independent measurement systems are evaluated, the standard deviations of the isocenter path points and mechanical isocenter coordinates are 0.02 and 0.002 mm, respectively. Conclusions: The measurement is highly accurate, time efficient, and simple to adapt. It is therefore suitable for regular checks of the mechanical isocenter characteristics of the gantry and collimator rotation axis. When the isocenter path is reproducible and its extent is in the range of the needed geometrical accuracy, it should be taken into account in the planning process. This is especially true for stereotactic treatments and radiosurgery.
A Bat Algorithm with Mutation for UCAV Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
Deriving multiple near-optimal solutions to deterministic reservoir operation problems
NASA Astrophysics Data System (ADS)
Liu, Pan; Cai, Ximing; Guo, Shenglian
2011-08-01
Even deterministic reservoir operation problems with a single objective function may have multiple near-optimal solutions (MNOS) whose objective values are equal or sufficiently close to the optimum. MNOS is valuable for practical reservoir operation decisions because having a set of alternatives from which to choose allows reservoir operators to explore multiple options whereas the traditional algorithm that produces a single optimum does not offer them this flexibility. This paper presents three methods: the near-shortest paths (NSP) method, the genetic algorithm (GA) method, and the Markov chain Monte Carlo (MCMC) method, to explore the MNOS. These methods, all of which require a long computation time, find MNOS using different approaches. To reduce the computation time, a narrower subspace, namely a near-optimal space (NOSP, described by the maximum and minimum bounds of MNOS) is derived. By confining the MNOS search within the NOSP, the computation time of the three methods is reduced. The proposed methods are validated with a test function before they are examined with case studies of both a single reservoir (the Three Gorges Reservoir in China) and a multireservoir system (the Qing River Cascade Reservoirs in China). It is found that MNOS exists for the deterministic reservoir operation problems. When comparing the three methods, the NSP method is unsuitable for large-scale problems but provides a benchmark to which solutions of small- and medium-scale problems can be compared. The GA method can produce some MNOS but is not very efficient in terms of the computation time. Finally, the MCMC method performs best in terms of goodness-of-fit to the benchmark and computation time, since it yields a wide variety of MNOS based on all retained intermediate results as potential MNOS. Two case studies demonstrate that the MNOS identified in this study are useful for real-world reservoir operation, such as the identification of important operation time periods and tradeoffs among objectives in multipurpose reservoirs.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1993-03-01
Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.
Robotic Online Path Planning on Point Cloud.
Liu, Ming
2016-05-01
This paper deals with the path-planning problem for mobile wheeled- or tracked-robot which drive in 2.5-D environments, where the traversable surface is usually considered as a 2-D-manifold embedded in a 3-D ambient space. Specially, we aim at solving the 2.5-D navigation problem using raw point cloud as input. The proposed method is independent of traditional surface parametrization or reconstruction methods, such as a meshing process, which generally has high-computational complexity. Instead, we utilize the output of 3-D tensor voting framework on the raw point clouds. The computation of tensor voting is accelerated by optimized implementation on graphics computation unit. Based on the tensor voting results, a novel local Riemannian metric is defined using the saliency components, which helps the modeling of the latent traversable surface. Using the proposed metric, we prove that the geodesic in the 3-D tensor space leads to rational path-planning results by experiments. Compared to traditional methods, the results reveal the advantages of the proposed method in terms of smoothing the robot maneuver while considering the minimum travel distance. PMID:26011876
On d-Regular Schematization of Embedded Paths
NASA Astrophysics Data System (ADS)
Gemsa, Andreas; Nöllenburg, Martin; Pajor, Thomas; Rutter, Ignaz
In the d-regular path schematization problem we are given an embedded path P (e.g., a route in a road network) and an integer d. The goal is to find a d-schematized embedding of P in which the orthogonal order of all vertices in the input is preserved and in which every edge has a slope that is an integer multiple of 90°/d. We show that deciding whether a path can be d-schematized is NP-hard for any integer d. We further model the problem as a mixed-integer linear program. An experimental evaluation indicates that this approach generates reasonable route sketches for real-world data.
An optimization approach for mapping and measuring the divergence and correspondence between paths.
Mueller, Shane T; Perelman, Brandon S; Veinott, Elizabeth S
2016-03-01
Many domains of empirical research produce or analyze spatial paths as a measure of behavior. Previously, approaches for measuring the similarity or deviation between two paths have either required timing information or have used ad hoc or manual coding schemes. In this paper, we describe an optimization approach for robustly measuring the area-based deviation between two paths we call ALCAMP (Algorithm for finding the Least-Cost Areal Mapping between Paths). ALCAMP measures the deviation between two paths and produces a mapping between corresponding points on the two paths. The method is robust to a number of aspects in real path data, such as crossovers, self-intersections, differences in path segmentation, and partial or incomplete paths. Unlike similar algorithms that produce distance metrics between trajectories (i.e., paths that include timing information), this algorithm uses only the order of observed path segments to determine the mapping. We describe the algorithm and show its results on a number of sample problems and data sets, and demonstrate its effectiveness for assessing human memory for paths. We also describe available software code written in the R statistical computing language that implements the algorithm to enable data analysis. PMID:25737420
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Optical Path, Phase, and Interference
NASA Astrophysics Data System (ADS)
Newburgh, Ronald
2005-11-01
A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1-3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.
Speckle imaging over horizontal paths
NASA Astrophysics Data System (ADS)
Carrano, Carmen J.
2002-09-01
Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant-path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.
Speckle Imaging Over Horizontal Paths
Carrano, C J
2002-05-21
Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.
Tracks of a Non-Main Path Traveler
Hallenbeck, John M.
2012-01-01
After an unconventional beginning in stroke research, I veered off the main path repeatedly to view problems from a different perspective. In this lecture summary, I would like to return to several points along the byways that led to research with some continuity. PMID:22246691
Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris
NASA Technical Reports Server (NTRS)
Wiegman, Bruce M.
2009-01-01
This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.
Light transport on path-space manifolds
NASA Astrophysics Data System (ADS)
Jakob, Wenzel Alban
The pervasive use of computer-generated graphics in our society has led to strict demands on their visual realism. Generally, users of rendering software want their images to look, in various ways, "real", which has been a key driving force towards methods that are based on the physics of light transport. Until recently, industrial practice has relied on a different set of methods that had comparatively little rigorous grounding in physics---but within the last decade, advances in rendering methods and computing power have come together to create a sudden and dramatic shift, in which physics-based methods that were formerly thought impractical have become the standard tool. As a consequence, considerable attention is now devoted towards making these methods as robust as possible. In this context, robustness refers to an algorithm's ability to process arbitrary input without large increases of the rendering time or degradation of the output image. One particularly challenging aspect of robustness entails simulating the precise interaction of light with all the materials that comprise the input scene. This dissertation focuses on one specific group of materials that has fundamentally been the most important source of difficulties in this process. Specular materials, such as glass windows, mirrors or smooth coatings (e.g. on finished wood), account for a significant percentage of the objects that surround us every day. It is perhaps surprising, then, that it is not well-understood how they can be accommodated within the theoretical framework that underlies some of the most sophisticated rendering methods available today. Many of these methods operate using a theoretical framework known as path space integration. But this framework makes no provisions for specular materials: to date, it is not clear how to write down a path space integral involving something as simple as a piece of glass. Although implementations can in practice still render these materials by side-stepping limitations of the theory, they often suffer from unusably slow convergence; improvements to this situation have been hampered by the lack of a thorough theoretical understanding. We address these problems by developing a new theory of path-space light transport which, for the first time, cleanly incorporates specular scattering into the standard framework. Most of the results obtained in the analysis of the ideally smooth case can also be generalized to rendering of glossy materials and volumetric scattering so that this dissertation also provides a powerful new set of tools for dealing with them. The basis of our approach is that each specular material interaction locally collapses the dimension of the space of light paths so that all relevant paths lie on a submanifold of path space. We analyze the high-dimensional differential geometry of this submanifold and use the resulting information to construct an algorithm that is able to "walk" around on it using a simple and efficient equation-solving iteration. This manifold walking algorithm then constitutes the key operation of a new type of Markov Chain Monte Carlo (MCMC) rendering method that computes lighting through very general families of paths that can involve arbitrary combinations of specular, near-specular, glossy, and diffuse surface interactions as well as isotropic or highly anisotropic volume scattering. We demonstrate our implementation on a range of challenging scenes and evaluate it against previous methods.
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
ERIC Educational Resources Information Center
Arredondo, Michael
2002-01-01
The author describes the difficulties of achieving his life-long dream of going to an Ivy League college, and how his Shawnee grandfather advised him to acquire the white man's skills and bring them back to his people. He advises young Native Americans to choose the more difficult, yet honorable path of serving their own people. (TD)
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Relationship between total quality management, critical paths, and outcomes management.
Lynn, P A
1996-09-01
Total quality management (TQM), clinical paths, and outcomes management are high-profile strategies in today's health care environment. Each strategy is distinct, yet there are interrelationships among them. TQM supports a customer-focused organizational culture, providing tools and techniques to identify and solve problems. Clinical paths are tools for enhancing patient care coordination and for identifying system-wide and patient population specific issues. Outcomes management is an integrated system for measuring the results in patient populations over time. There is a recent shift in outcomes measurement towards expanding both the nature of the outcomes examined and the timeframes in which they are studied. PMID:8920370
Paths in the Conformational Space of Biopolymers
NASA Astrophysics Data System (ADS)
Durup, J.; Ech-Cherif El-Kettani, M. A.
1991-10-01
This lecture starts with a survey of the present state of knowledge on the topology of potential hypersurfaces of proteins, on transitions in conformational space, and on harmonic and quasi-harmonic methods of analysis of sub-state properties. The concepts of deterministic vs ergodic behaviour of the paths actually followed in conformational space are discussed. The possible connection between selectivity (or ``accuracy'') in enzyme catalysis and the time structure of conformational transitions is shown. In a second part, two different methods used by the authors for theoretical computation of conformational paths linking known crystallographic structures in citrate synthase are commented: an implementation of Elber and Karplus' chain algorithm, and a new method which we named directed dynamics. In connection with the ``multiple minima problem'', the occurrence of lower and upper bounds in the temperatures used in molecular dynamics searches of conformational minima is discussed with emphasis on their dependence with respect to the effective number of degrees of freedom in the conformational space investigated. Finally, a hint on the total transition time is given.
The Persistent Problems of Education.
ERIC Educational Resources Information Center
Woodring, Paul
Because discussions of educational problems seem to be retracing the same paths and problems, there is need to identify and define the enduring controversies in education and explore reasons for their currency. These issues are discussed in a historical context. The questions of what sort of education is of most worth and what subjects should be…
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)
2013-01-01
Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.
Constrained Path Monte Carlo with Matrix Product State trial wavefunctions
NASA Astrophysics Data System (ADS)
Chung, Chia-Min; Fishman, Matthew; White, Steven; Zhang, Shiwei
Constrained path Monte Carlo (CPMC) is a powerful method for simulating strongly correlated systems. By constraining the path with a trial wavefunction, CPMC circumvents the minus sign problem, but at the cost of introducing a bias. The Density Matrix Renormalization Group (DMRG) is an alternative simulation technique, which is immune to the minus sign problem, but which has an analogous ''dimensionality problem'' for two and three dimensions. Here we present a combination of these techniques, where we use a DMRG matrix product state as a trial wavefunction for CPMC. We demonstrate our method in two-dimensional Hubbard model, and show the comparison to DMRG alone and to CPMC with single-determinant trial functions.
Benchmarking Gas Path Diagnostic Methods: A Public Approach
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene
2008-01-01
Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
How to (path-) integrate by differentiating
NASA Astrophysics Data System (ADS)
Kempf, Achim; Jackson, David M.; Morales, Alejandro H.
2015-07-01
Path integrals are at the heart of quantum field theory. In spite of their covariance and seeming simplicity, they are hard to define and evaluate. In contrast, functional differentiation, as it is used, for example, in variational problems, is relatively straightforward. This has motivated the development of new techniques that allow one to express functional integration in terms of functional differentiation. In fact, the new techniques allow one to express integrals in general through differentiation. These techniques therefore add to the general toolbox for integration and for integral transforms such as the Fourier and Laplace transforms. Here, we review some of these results, we give simpler proofs and we add new results, for example, on expressing the Laplace transform and its inverse in terms of derivatives, results that may be of use in quantum field theory, e.g., in the context of heat traces.
Squeezed states and path integrals
NASA Technical Reports Server (NTRS)
Daubechies, Ingrid; Klauder, John R.
1992-01-01
The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.
Conditions for transmission path analysis in energy distribution models
NASA Astrophysics Data System (ADS)
Aragonès, Àngels; Guasch, Oriol
2016-02-01
In this work, we explore under which conditions transmission path analysis (TPA) developed for statistical energy analysis (SEA) can be applied to the less restrictive energy distribution (ED) models. It is shown that TPA can be extended without problems to proper-SEA systems whereas the situation is not so clear for quasi-SEA systems. In the general case, it has been found that a TPA can always be performed on an ED model if its inverse influence energy coefficient (EIC) matrix turns to have negative off-diagonal entries. If this condition is satisfied, it can be shown that the inverse EIC matrix automatically becomes an M-matrix. An ED graph can then be defined for it and use can be made of graph theory ranking path algorithms, previously developed for SEA systems, to classify dominant paths in ED models. A small mechanical system consisting of connected plates has been used to illustrate some of the exposed theoretical results.
Daylighting design overlays for equidistant sun-path projections
Selkowitz, S.
1981-08-01
Projections of the Sun's daily and seasonal paths frequently are used to solve building design problems involving site obstructions and shading of fenestration. In the United States, equidistant projections are perhaps the most widely used (compared to other sunpath projections) because of the commercial availability of a complete set of sun-path diagrams for a range of useful latitudes. This paper describes the development of a set of overlays designed for use with sun-path projections to predict illumination on any building surface throughout the year for standard climatological conditions. Illumination is calculated for clear and overcast skies and for direct sunlight using algorithms recommended by the Commission Internationale de l'Eclairage (CIE). Values for illumination incident upon the surface, as well as transmitted through single and double glazing, can be calculated. Similar overlays for solar radiation are being developed.
Transport path optimization algorithm based on fuzzy integrated weights
NASA Astrophysics Data System (ADS)
Hou, Yuan-Da; Xu, Xiao-Hao
2014-11-01
Natural disasters cause significant damage to roads, making route selection a complicated logistical problem. To overcome this complexity, we present a method of using a trapezoidal fuzzy number to select the optimal transport path. Using the given trapezoidal fuzzy edge coefficients, we calculate a fuzzy integrated matrix, and incorporate the fuzzy multi-weights into fuzzy integrated weights. The optimal path is determined by taking two sets of vertices and transforming undiscovered vertices into discoverable ones. Our experimental results show that the model is highly accurate, and requires only a few measurement data to confirm the optimal path. The model provides an effective, feasible, and convenient method to obtain weights for different road sections, and can be applied to road planning in intelligent transportation systems.
Accelerating cleanup: Paths to closure
Edwards, C.
1998-06-30
This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.
Path optimization for oil probe
NASA Astrophysics Data System (ADS)
Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian
2014-05-01
We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.
Electron Inelastic-Mean-Free-Path Database
National Institute of Standards and Technology Data Gateway
SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge) This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.
Path planning for mobile robots based on visibility graphs and A* algorithm
NASA Astrophysics Data System (ADS)
Contreras, Juan D.; Martínez S., Fernando; Martínez S., Fredy H.
2015-07-01
One of most worked issues in the last years in robotics has been the study of strategies to path planning for mobile robots in static and observable conditions. This is an open problem without pre-defined rules (non-heuristic), which needs to measure the state of the environment, finds useful information, and uses an algorithm to select the best path. This paper proposes a simple and efficient geometric path planning strategy supported in digital image processing. The image of the environment is processed in order to identify obstacles, and thus the free space for navigation. Then, using visibility graphs, the possible navigation paths guided by the vertices of obstacles are produced. Finally the A* algorithm is used to find a best possible path. The alternative proposed is evaluated by simulation on a large set of test environments, showing in all cases its ability to find a free collision plausible path.
Hierarchical path planning and control of a small fixed-wing UAV: Theory and experimental validation
NASA Astrophysics Data System (ADS)
Jung, Dongwon
2007-12-01
Recently there has been a tremendous growth of research emphasizing control of unmanned aerial vehicles (UAVs) either in isolation or in teams. As a matter of fact, UAVs increasingly find their way into military and law enforcement applications (e.g., reconnaissance, remote delivery of urgent equipment/material, resource assessment, environmental monitoring, battlefield monitoring, ordnance delivery, etc.). This trend will continue in the future, as UAVs are poised to replace the human-in-the-loop during dangerous missions. Civilian applications of UAVs are also envisioned such as crop dusting, geological surveying, search and rescue operations, etc. In this thesis we propose a new online multiresolution path planning algorithm for a small UAV with limited on-board computational resources. The proposed approach assumes that the UAV has detailed information of the environment and the obstacles only in its vicinity. Information about far-away obstacles is also available, albeit less accurately. The proposed algorithm uses the fast lifting wavelet transform (FLWT) to get a multiresolution cell decomposition of the environment, whose dimension is commensurate to the on-board computational resources. A topological graph representation of the multiresolution cell decomposition is constructed efficiently, directly from the approximation and detail wavelet coefficients. Dynamic path planning is sequentially executed for an optimal path using the A* algorithm over the resulting graph. The proposed path planning algorithm is implemented on-line on a small autopilot. Comparisons with the standard D*-lite algorithm are also presented. We also investigate the problem of generating a smooth, planar reference path from a discrete optimal path. Upon the optimal path being represented as a sequence of cells in square geometry, we derive a smooth B-spline path that is constrained inside a channel that is induced by the geometry of the cells. To this end, a constrained optimization problem is formulated by setting up geometric linear constraints as well as boundary conditions. Subsequently, we construct B-spline path templates by solving a set of distinct optimization problems. For application in UAV motion planning, the path templates are incorporated to replace parts of the entire path by the smooth B-spline paths. Each path segment is stitched together while preserving continuity to obtain a final smooth reference path to be used for path following control. The path following control for a small fixed-wing UAV to track the prescribed smooth reference path is also addressed. Assuming the UAV is equipped with an autopilot for low level control, we adopt a kinematic error model with respect to the moving Serret-Frenet frame attached to a path for tracking controller design. A kinematic path following control law that commands heading rate is presented. Backstepping is applied to derive the roll angle command by taking into account the approximate closed-loop roll dynamics. A parameter adaptation technique is employed to account for the inaccurate time constant of the closed-loop roll dynamics during actual implementation. Finally, we implement the proposed hierarchical path control of a small UAV on the actual hardware platform, which is based on an 1/5 scale R/C model airframe (Decathlon) and the autopilot hardware and software. Based on the hardware-in-the-loop (HIL) simulation environment, the proposed hierarchical path control algorithm has been validated through on-line, real-time implementation on a small micro-controller. By a seamless integration of the control algorithms for path planning, path smoothing, and path following, it has been demonstrated that the UAV equipped with a small autopilot having limited computational resources manages to accomplish the path control objective to reach the goal while avoiding obstacles with minimal human intervention.
Multiple paths to encephalization and technical civilizations.
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels. PMID:22139517
Multiple Paths to Encephalization and Technical Civilizations
NASA Astrophysics Data System (ADS)
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.
Solving the Curriculum Sequencing Problem with DNA Computing Approach
ERIC Educational Resources Information Center
Debbah, Amina; Ben Ali, Yamina Mohamed
2014-01-01
In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…
Solving the Curriculum Sequencing Problem with DNA Computing Approach
ERIC Educational Resources Information Center
Debbah, Amina; Ben Ali, Yamina Mohamed
2014-01-01
In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,
Performance Analysis of Path Planning Modeling
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling
Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Characterizing the Evolutionary Path(s) to Early Homo
Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.
2014-01-01
Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780
Attention trees and semantic paths
NASA Astrophysics Data System (ADS)
Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura
2007-02-01
In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.
Evaluation of guidewire path reproducibility.
Schafer, Sebastian; Hoffmann, Kenneth R; Nol, Peter B; Ionita, Ciprian N; Dmochowski, Jacek
2008-05-01
The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters approximately 4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (512(3), 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17 +/- 0.02 mm (plastic-coated guidewire), 0.73 +/- 0.55 mm (steel guidewire) and 1.15 +/- 0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position. PMID:18561663
Working on interesting problems
NASA Astrophysics Data System (ADS)
Smith, Arfon M.
2015-01-01
BSc Chemistry, The University of Sheffield 2001... PhD Astrochemistry, The University of Nottingham 2006... Scientist at GitHub Inc. 2013.From the outside, the path an individual has taken from academia to industry is not an obvious one. In this session I'll (try and) explain how an interest in software, engineering and chasing interesting problems makes internet startup in San Francisco a great home.
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Multiple order common path spectrometer
NASA Technical Reports Server (NTRS)
Newbury, Amy B. (Inventor)
2010-01-01
The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.
Relations between Coherence and Path Information.
Bagan, Emilio; Bergou, János A; Cottrell, Seth S; Hillery, Mark
2016-04-22
We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l_{1} measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy. PMID:27152780
Relations between Coherence and Path Information
NASA Astrophysics Data System (ADS)
Bagan, Emilio; Bergou, János A.; Cottrell, Seth S.; Hillery, Mark
2016-04-01
We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l1 measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy.
DTI-based maximum density path analysis and classification of Alzheimer’s disease
Nir, Talia M.; Villalon-Reina, Julio E.; Prasad, Gautam; Jahanshad, Neda; Joshi, Shantanu H.; Toga, Arthur W.; Bernstein, Matt A.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.
2014-01-01
Characterizing brain changes in Alzheimer’s disease (AD) is important for patient prognosis, and for assessing brain deterioration in clinical trials. In this diffusion tensor imaging study, we used a new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 113 people with mild cognitive impairment (MCI), and 37 AD patients. After clustering tractography using an ROI atlas, we used a shortest path graph search through each bundle’s fiber density map to derive maximum density paths (MDPs), which we registered across subjects. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found significant MD and FA differences between AD patients and CTL subjects as well as MD differences between CTL and late MCI subjects. MD and FA were also associated with widely used clinical scores (MMSE). As an MDP is a compact, low-dimensional representation of white matter organization, we tested the utility of DTI measures along these MDPs as features for support vector machine (SVM) based classification of AD. PMID:25444597
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Paths to adolescent parenthood: implications for prevention.
Flick, L H
1986-01-01
Adolescent pregnancy and parenthood are increasingly common today and pose many problems for both the individual persons involved and society as a whole. For programs to address these issues successfully, factors associated with unintended pregnancy and resulting parenthood must first be identified and understood. This paper is a review of current research on the factors associated with the four steps leading to an adolescent becoming a parent. Being an adolescent parent requires taking a particular path at four crossroads: becoming sexually active, not using or incorrectly using contraceptives, carrying rather than aborting a pregnancy, and parenting rather than placing a child for adoption. Much research in the last 15 years has explored adolescent childbearing, but many studies only compared adolescent parents to nonparents to reach conclusions about differences in these groups. This review focuses on recent studies that explore the four processes, or crossroads, separately and it excludes studies that generalize and overlap these processes. Factors that influence adolescent behavior at multiple points on the path to parenthood indicate areas particularly relevant for preventive intervention. For instance, boyfriends exert influence at all four crossroads. Sexual activity and contraceptive use increase with longevity of relationships, yet closer relationships are less often associated with raising a child. Better general communication skills, and particularly an increased ability to discuss sexuality, increases use of contraceptives, and low educational and occupational aspirations appear to influence each successive turn toward parenthood. This summary of current research serves to highlight those individual, family, dyadic, and social factors that exert great impact on adolescent parenthood by influencing young people at each of the four crossroads. These factors suggest potentially effective points for intervention to reduce the incidence of adolescent parenthood. However, poverty, unemployment, and racism also play central roles in early intercourse and childbearing, and any attempt at fundamental change must take these forces into account. PMID:3083468
NASA Astrophysics Data System (ADS)
Rukolaine, Sergey A.
2016-05-01
In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.
Challenge in Flow Path Delineation and Modification: SECUREarth Initiative
NASA Astrophysics Data System (ADS)
Bodvarsson, G. S.; Majer, E. L.; Wang, J. S.; Colwell, F.; Redden, G.
2005-12-01
After decades of studies, our knowledge about subsurface flow paths has large uncertainty and our capability to enhance or reduce formation permeability is inefficient and rudimentary. This is the case for fossil energy production, in environment remediation, in greenhouse gas sequestration, in nuclear waste disposal, in geothermal heat extraction, and in groundwater management. Fluid imaging, in addition to rock structure imaging, is needed to enhance petroleum extraction, to isolate contaminant plumes, and to prevent leakage from storage reservoirs. Flow focusing from surface to depth must be quantified to determine the flow path magnitude and spacing in order to determine the degrees of dissolution and transport of emplaced wastes. These diverse problems have common goals: either to isolate or to enhance subsurface fluid movement. It is crucial to identify the common features from different problems and refocus our efforts to delineate and then to manipulate flow paths. Geochemical engineering and geomicrobiological engineering need to combine laboratory studies, field experiments, and modeling approaches to verify and validate our understanding and to design solutions. An initiative SECUREarth is being developed to rally the scientists and engineers from national laboratories, universities, and industry to address key critical bottlenecks that prevent significant progress in solving common subsurface issues. SECUREarth is aimed to develop cross-cutting, multi-disciplinary approaches for solving urgent energy and environment problems in the earth, in order to achieve quantum leaps and breakthroughs in earth science and technology.
Path perception during rotation: influence of instructions, depth range, and dot density
NASA Technical Reports Server (NTRS)
Li, Li; Warren, William H Jr
2004-01-01
How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.
Path integral simulations for nanoelectronics
NASA Astrophysics Data System (ADS)
Shumway, John
2007-10-01
As computer circuits shrink, devices are entering the nanoscale regime and quantum physics is becoming important. The biggest barrier to further decreases in size and increases in clock speed is excessive heat generation. Some physicists are proposing that many-body correlated quantum states of electrons may be exploited to make more energy efficient switches. In our research we are developing new simulation techniques to study highly correlated electron states in realistic device geometries and finite temperatures. The simulations are based on Feynman path integrals, which cast quantum statistical mechanics as a sum over worldlines, a mathematically equivalent alternative Schroedinger's differetial equation. Using Monte Carlo sampling on dozens to hundreds of electrons, we can simulate properties of an interacting electron fluid in a nanowire. Linear response theory relates fluctuations about equilibrium to conductivity. This gives us a new perspective on quantum phenomena, including quantized conductance steps and spin-charge separation.
The path to adaptive microsystems
NASA Astrophysics Data System (ADS)
Zolper, John C.; Biercuk, Michael J.
2006-05-01
Scaling trends in microsystems are discussed frequently in the technical community, providing a short-term perspective on the future of integrated microsystems. This paper looks beyond the leading edge of technological development, focusing on new microsystem design paradigms that move far beyond today's systems based on static components. We introduce the concept of Adaptive Microsystems and outline a path to realizing these systems-on-a-chip. The role of DARPA in advancing future components and systems research is discussed, and specific DARPA efforts enabling and producing adaptive microsystems are presented. In particular, we discuss efforts underway in the DARPA Microsystems Technology Office (MTO) including programs in novel circuit architectures (3DIC), adaptive imaging and sensing (AFPA, VISA, MONTAGE, A-to-I) and reconfigurable RF/Microwave devices (SMART, TFAST, IRFFE).
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1978-01-01
Yearly, monthly, and time of day fade statistics are presented and characterized. A 19.04 GHz yearly fade distribution, corresponding to a second COMSTAR beacon frequency, is predicted using the concept of effective path length, disdrometer, and rain rate results. The yearly attenuation and rain rate distributions follow with good approximation log normal variations for most fade and rain rate levels. Attenuations were exceeded for the longest and shortest periods of times for all fades in August and February, respectively. The eight hour time period showing the maximum and minimum number of minutes over the year for which fades exceeded 12 db were approximately between 1600 to 2400, and 0400 to 1200 hours, respectively. In employing the predictive method for obtaining the 19.04 GHz fade distribution, it is demonstrated theoretically that the ratio of attenuations at two frequencies is minimally dependent of raindrop size distribution providing these frequencies are not widely separated.
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Sequential Path Entanglement for Quantum Metrology
Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.
2013-01-01
Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.
Elastic geodesic paths in shape space of parameterized surfaces.
Kurtek, Sebastian; Klassen, Eric; Gore, John C; Ding, Zhaohua; Srivastava, Anuj
2012-09-01
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of surfaces. The basic idea is to formulate a space of embedded surfaces (surfaces seen as embeddings of a unit sphere in IR3) and impose a Riemannian metric on it in such a way that the reparameterization group acts on this space by isometries. Under this framework, we solve two optimization problems. One, given any two surfaces at arbitrary rotations and parameterizations, we use a path-straightening approach to find a geodesic path between them under the chosen metric. Second, by modifying a technique presented in [25], we solve for the optimal rotation and parameterization (registration) between surfaces. Their combined solution provides an efficient mechanism for computing geodesic paths in shape spaces of parameterized surfaces. We illustrate these ideas using examples from shape analysis of anatomical structures and other general surfaces. PMID:22144521
Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
Banerjee, Rahul; Cukier, Robert I
2014-03-20
Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis. PMID:24571787
Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582
Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582
Patterns and singular features of extreme fluctuational paths of a periodically driven system
NASA Astrophysics Data System (ADS)
Chen, Zhen; Liu, Xianbin
2016-05-01
Large fluctuations of an overdamped periodically driven oscillating system are investigated theoretically and numerically in the limit of weak noise. Optimal paths fluctuating to certain point are given by statistical analysis using the concept of prehistory probability distribution. The validity of statistical results is verified by solutions of boundary value problem. Optimal paths are found to change topologically when terminating points lie at opposite side of a switching line. Patterns of extreme paths are plotted through a proper parameterization of Lagrangian manifold having complicated structures. Several extreme paths to the same point are obtained by multiple solutions of boundary value solutions. Actions along various extreme paths are calculated and associated analysis is performed in relation to the singular features of the patterns.
A note on the path interval distance.
Coons, Jane Ivy; Rusinko, Joseph
2016-06-01
The path interval distance accounts for global congruence between locally incongruent trees. We show that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In contrast to the Robinson-Foulds distance, random pairs of trees are unlikely to be maximally distant from one another under the path interval distance. These features indicate that the path interval distance should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming increasingly important. PMID:27040521
... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...
Path planning for robotic truss assembly
NASA Technical Reports Server (NTRS)
Sanderson, Arthur C.
1993-01-01
A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.
Magnetohydrodynamics Using Path or Stream Functions
NASA Astrophysics Data System (ADS)
Naor, Yossi; Keshet, Uri
2015-09-01
Magnetization in highly conductive plasmas is ubiquitous to astronomical systems. Flows in such media can be described by three path functions {{{Λ }}}α , or, for a steady flow, by two stream functions {λ }κ and an additional field such as mass density ρ, velocity v, or travel time {{Δ }}t. While typical analyses of a frozen magnetic field {\\boldsymbol{B}} are problem-specific and involve nonlocal gradients of the fluid element position {\\boldsymbol{x}}(t), we derive the general, local (in Λ or λ space) solution {\\boldsymbol{B}}={(\\partial {\\boldsymbol{x}}/\\partial {{{Λ }}}α )}t{\\tilde{B}}α ρ /\\tilde{ρ }, where Lagrangian constants denoted by a tilde are directly fixed at a boundary hypersurface \\tilde{H} on which {\\boldsymbol{B}} is known. For a steady flow, \\tilde{ρ }{\\boldsymbol{B}}/ρ ={(\\partial {\\boldsymbol{x}}/\\partial {λ }κ )}{{Δ }t}{\\tilde{B}}κ +{\\boldsymbol{v}}{\\tilde{B}}3/\\tilde{v}; here the electric field {\\boldsymbol{E}}∼ ({\\tilde{B}}2{\\boldsymbol{\
Aluminum production paths in the new millennium
NASA Astrophysics Data System (ADS)
Welch, Barry J.
1999-05-01
In the last two decades, the aluminum industry has seen the demise of the ASP chloride process as an alternative production path and a reduction of papers on carbothermal production options. At the same time, there has been a steady stream of articles proposing the use of drained-cathode technology (by a wettable titanium-diboride coating) and others extolling the virtues and potential materials for inert-anode technology. There was also a rush of smelter technology papers in the early 1980s claiming an achievable energy consumption of less than 12.5 kWh/kg. However, the recent emphasis has been a shift to high amperage technologies that are less energy efficient but more cost efficient. Current efficiencies in excess of 96 percent can be routinely obtained by new technologies, and even aged technologies can be retrofitted to perform at 95 percent. The challenge is to lower cell voltages, but one of the key limitations is the need to maintain adequate superheat to avoid sludge formation and electrolyte-concentration gradients. Electrochemical technologies face the same problems and challenges as present technology; the requirements are even more acute and demanding. These challenges can probably be met, however, and the industry is undoubtedly faced with interesting times as it continues to strive to be competitive.
Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-01
In this paper we are going to discuss a variation on the problem of finding the shortest path between two points in optimal ship routing problems consisting of obstacles that are not allowed to be crossed by the path. Our main goal are going to be the construction of an appropriate algorithm, based in an earlier work [16] by computing the shortest path between two points in the plane that avoids a set of polygonal obstacles.
Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-06
In this paper we are going to discuss a variation on the problem of finding the shortest path between two points in optimal ship routing problems consisting of obstacles that are not allowed to be crossed by the path. Our main goal are going to be the construction of an appropriate algorithm, based in an earlier work by computing the shortest path between two points in the plane that avoids a set of polygonal obstacles.
NASA Astrophysics Data System (ADS)
Schellhorn, Henry
2007-09-01
We develop a new algorithm to solve optimal stopping problems. This algorithm is particularly interesting for path-dependent problems. The originality of our method is that it does not transform the model into a Markov model. Rather, we use tools from Malliavin calculus to develop a pathwise approximation of the continuation value. We then regress the latter on a set of basis functions like in the Longstaff-Schwartz (2001) algorithm. The advantage of our scheme is that the number of basis functions required to approximate the continuation value is reduced. As a result, the overall computation time is reduced in path-dependent problems.
Seeking the Path to Metadata Nirvana
NASA Astrophysics Data System (ADS)
Graybeal, J.
2008-12-01
Scientists have always found reusing other scientists' data challenging. Computers did not fundamentally change the problem, but enabled more and larger instances of it. In fact, by removing human mediation and time delays from the data sharing process, computers emphasize the contextual information that must be exchanged in order to exchange and reuse data. This requirement for contextual information has two faces: "interoperability" when talking about systems, and "the metadata problem" when talking about data. As much as any single organization, the Marine Metadata Interoperability (MMI) project has been tagged with the mission "Solve the metadata problem." Of course, if that goal is achieved, then sustained, interoperable data systems for interdisciplinary observing networks can be easily built -- pesky metadata differences, like which protocol to use for data exchange, or what the data actually measures, will be a thing of the past. Alas, as you might imagine, there will always be complexities and incompatibilities that are not addressed, and data systems that are not interoperable, even within a science discipline. So should we throw up our hands and surrender to the inevitable? Not at all. Rather, we try to minimize metadata problems as much as we can. In this we increasingly progress, despite natural forces that pull in the other direction. Computer systems let us work with more complexity, build community knowledge and collaborations, and preserve and publish our progress and (dis-)agreements. Funding organizations, science communities, and technologists see the importance interoperable systems and metadata, and direct resources toward them. With the new approaches and resources, projects like IPY and MMI can simultaneously define, display, and promote effective strategies for sustainable, interoperable data systems. This presentation will outline the role metadata plays in durable interoperable data systems, for better or worse. It will describe times when "just choosing a standard" can work, and when it probably won't work. And it will point out signs that suggest a metadata storm is coming to your community project, and how you might avoid it. From these lessons we will seek a path to producing interoperable, interdisciplinary, metadata-enlightened environment observing systems.
Modeling growth paths of interacting crack pairs in elastic media.
Ghelichi, Ramin; Kamrin, Ken
2015-10-28
The problem of predicting the growth of a system of cracks, each crack influencing the growth of the others, arises in multiple fields. We develop an analytical framework toward this aim, which we apply to the 'En-Passant' family of crack growth problems, in which a pair of initially parallel, offset cracks propagate nontrivially toward each other under far-field opening stress. We utilize boundary integral and perturbation methods of linear elasticity, linear elastic fracture mechanics, and common crack opening criteria to calculate the first analytical model for curved En-Passant crack paths. The integral system is reduced under a hierarchy of approximations, producing three methods of increasing simplicity for computing crack paths. The last such method is a major highlight of this work, using an asymptotic matching argument to predict crack paths based on superposition of simple, single-crack fields. Within the corresponding limits of the three methods, all three are shown to agree with each other. We provide comparisons to exact results and existing experimental data to verify certain approximation steps. PMID:26330342
[Population problem, comprehension problem].
Tallon, F
1993-08-01
Overpopulation of developing countries in general, and Rwanda in particular, is not just their problem but a problem for developed countries as well. Rapid population growth is a key factor in the increase of poverty in sub-Saharan Africa. Population growth outstrips food production. Africa receives more and more foreign food, economic, and family planning aid each year. The Government of Rwanda encourages reduced population growth. Some people criticize it, but this criticism results in mortality and suffering. One must combat this ignorance, but attitudes change slowly. Some of these same people find the government's acceptance of family planning an invasion of their privacy. Others complain that rich countries do not have campaigns to reduce births, so why should Rwanda do so? The rate of schooling does not increase in Africa, even though the number of children in school increases, because of rapid population growth. Education is key to improvements in Africa's socioeconomic growth. Thus, Africa, is underpopulated in terms of potentiality but overpopulated in terms of reality, current conditions, and possibilities of overexploitation. Africa needs to invest in human resources. Families need to save, and to so, they must refrain from having many children. Africa should resist the temptation to waste, as rich countries do, and denounce it. Africa needs to become more independent of these countries, but structural adjustment plans, growing debt, and rapid population growth limit national independence. Food aid is a means for developed countries to dominate developing countries. Modernization through foreign aid has had some positive effects on developing countries (e.g., improved hygiene, mortality reduction), but these also sparked rapid population growth. Rwandan society is no longer traditional, but it is also not yet modern. A change in mentality to fewer births, better quality of life for living infants, better education, and less burden for women must occur rapidly because the problems are urgent. PMID:12287360
The Path-of-Probability Algorithm for Steering and Feedback Control of Flexible Needles
Park, Wooram; Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
In this paper we develop a new framework for path planning of flexible needles with bevel tips. Based on a stochastic model of needle steering, the probability density function for the needle tip pose is approximated as a Gaussian. The means and covariances are estimated using an error propagation algorithm which has second order accuracy. Then we adapt the path-of-probability (POP) algorithm to path planning of flexible needles with bevel tips. We demonstrate how our planning algorithm can be used for feedback control of flexible needles. We also derive a closed-form solution for the port placement problem for finding good insertion locations for flexible needles in the case when there are no obstacles. Furthermore, we propose a new method using reference splines with the POP algorithm to solve the path planning problem for flexible needles in more general cases that include obstacles. PMID:21151708
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
Gerbertian paths for the Jubilee
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2015-04-01
Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383
Ensuring critical event sequences in high integrity software by applying path expressions
Kidd, M.E.C.
1996-07-01
The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.
Kidd, M.E.C.
1997-02-01
The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.
NASA Astrophysics Data System (ADS)
Jinno, Masahiko; Takara, Hidehiko; Sone, Yoshiaki; Yonenaga, Kazushige; Hirano, Akira
This paper presents an elastic optical path network architecture as a novel networking framework to address the looming capacity crunch problem in internet protocol (IP) and optical networks. The basic idea is to introduce elasticity and adaptation into the optical domain to yield spectrally-efficient optical path accommodation, heightened network scalability through IP traffic offloading to the elastic optical layer, and enhanced survivability for serious disasters.
Path integral Liouville dynamics for thermal equilibrium systems.
Liu, Jian
2014-06-14
We show a new imaginary time path integral based method--path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. PMID:24929374
Path integral Liouville dynamics for thermal equilibrium systems
Liu, Jian
2014-06-14
We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.
Path-based rules in object-oriented programming
Crawford, J.M.; Dvorak, D.; Litman, D.; Mishra, A.; Patel-Schneider, P.F.
1996-12-31
Object-oriented programming has recently emerged as one of the most important programming paradigms. While object-oriented programming clearly owes an intellectual debt to AI, it appears to be displacing some AI techniques, such as rule-based programming, from the marketplace. This need not be so as path-based rules-forward-chaining production rules that are restricted to follow pointers between objects-fit into the object-oriented paradigm in a clean and elegant way. The combination of path-based rules and object-oriented programming should be useful in AI applications, and in the more general problem of transferring AI techniques to the larger computer science community.
Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths.
Sommer, Stefan
2015-01-01
We use anisotropic diffusion processes to generalize normal distributions to manifolds and to construct a framework for likelihood estimation of template and covariance structure from manifold valued data. The procedure avoids the linearization that arise when first estimating a mean or template before performing PCA in the tangent space of the mean. We derive flow equations for the most probable paths reaching sampled data points, and we use the paths that are generally not geodesics for estimating the likelihood of the model. In contrast to existing template estimation approaches, accounting for anisotropy thus results in an algorithm that is not based on geodesic distances. To illustrate the effect of anisotropy and to point to further applications, we present experiments with anisotropic distributions on both the sphere and finite dimensional LDDMM manifolds arising in the landmark matching problem. PMID:26221674
Path integral Liouville dynamics for thermal equilibrium systems
NASA Astrophysics Data System (ADS)
Liu, Jian
2014-06-01
We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.
Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning
NASA Astrophysics Data System (ADS)
Kawewong, Aram; Honda, Yutaro; Tsuboyama, Manabu; Hasegawa, Osamu
Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Career Path Guide for Adult Career Choices.
ERIC Educational Resources Information Center
Case, Clydia
Intended for adults who are considering career choices or changes, this booklet provides opportunities for self-study and reflection in six career paths. The booklet begins with tips for long-term career survival and myths and realities of career planning. After a brief career survey, readers are introduced to six career paths: arts and…
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff path. For each commuter category airplane,...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
The Path of Carbon in Photosynthesis VI.
DOE R&D Accomplishments Database
Calvin, M.
1949-06-30
This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.
Alborzi, H.; Torng, E.; Uthaisombut, P.; Wagner, S.
1997-06-01
To model on-line systems which deal with multi-threaded inputs, we define and analyze the {kappa}-client problem, a dual of the {kappa}-server problem. In the {kappa}-client problem, there is a single server and {kappa} clients, each of which generates a sequence of requests for service in a metric space. At any time, each client has at most one outstanding request; that is, the i + 1{sup st} request of a client will not arrive until the i{sup th} request has been serviced. The crux of the problem is deciding which client`s request the single server should service rather than which server should be used to service the current request. We evaluate the performance of algorithms using the makespan, total completion time, and maximum response time cost functions. When restricted to the line metric space, the {kappa}-client problem models the disk scheduling problem in a multi-threaded environment. We derive tight results for several commonly studied disk scheduling algorithms such as the shortest seek time first and the elevator algorithms which help explain why elevator type algorithms perform well in practice when the disk is heavily loaded. In general, we show that several algorithms axe (2k - 1)-competitive and that no on-line algorithm is better than 1gk/2-competitive for the makespan and total completion time cost functions. When k = 2, the lower bounds improve to 25/9 and 3 for the makespan and total completion time cost functions, respectively. For the maximum response time cost function, we show that no on-line algorithm is better than {Omega}({sup 3}{radical}{Delta})-competitive where {Delta} is the maximum distance between any two requests. Surprisingly, our results axe essentially identical for both the line and general metric spaces.
Orenstein, Yaron; Shamir, Ron
2013-01-01
Motivation: Novel technologies can generate large sets of short double-stranded DNA sequences that can be used to measure their regulatory effects. Microarrays can measure in vitro the binding intensity of a protein to thousands of probes. Synthetic enhancer sequences inserted into an organism’s genome allow us to measure in vivo the effect of such sequences on the phenotype. In both applications, by using sequence probes that cover all k-mers, a comprehensive picture of the effect of all possible short sequences on gene regulation is obtained. The value of k that can be used in practice is, however, severely limited by cost and space considerations. A key challenge is, therefore, to cover all k-mers with a minimal number of probes. The standard way to do this uses the de Bruijn sequence of length . However, as probes are double stranded, when a k-mer is included in a probe, its reverse complement k-mer is accounted for as well. Results: Here, we show how to efficiently create a shortest possible sequence with the property that it contains each k-mer or its reverse complement, but not necessarily both. The length of the resulting sequence approaches half that of the de Bruijn sequence as k increases resulting in a more efficient array, which allows covering more longer sequences; alternatively, additional sequences with redundant k-mers of interest can be added. Availability: The software is freely available from our website http://acgt.cs.tau.ac.il/shortcake/. Contact: rshamir@tau.ac.il PMID:23813011
NASA Astrophysics Data System (ADS)
Raghavan, Deepak; McAlister, H. A.
2007-12-01
We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.
Seismic ray Paths in Anisotropic Medium Based on Higher-Order Geometry
NASA Astrophysics Data System (ADS)
Yajima, T.; Nagahama, H.
2006-12-01
In this study, a seismic ray path in an anisotropic medium is studied by differential geometric view point. In seismological studies, the seismic ray theory for high frequency wave is based on Fermat's principle that renders the traveltime minimum. Generally, a shortest ray path connected to two different points becomes a straight line. In other words, the ray propagates in Euclidean space. However, a real seismic ray path is not straight but curve in nature. This geometrically means that the ray path propagates through a crust as non- Euclidean space. Especially, when the seismic ray propagates through anisotropic medium, the ray velocity depends on both position and direction. Geometrically, this ray velocity in the non-Euclidean anisotropic medium is regarded as a Lagrangian in Finsler space. Hence, the seismic ray theory in the anisotropic medium can be studied based on Finsler space. The ray velocity in the anisotropic medium can be expressed by a special Finslerian metric function called mth root metric. Mathematically, this seismic Finsler space belongs to a higher-order space called Kawaguchi space. This implies that the Finslerian ray velocity can be expressed by a metric in Kawaguchi space. However, the relation between the Finslerian ray velocity and the metric in higher-order space has not been cleared yet. Therefore, it is shown that the Finslerian ray velocity can be derived from a metric in higher-order space. Next, specifically a wavefront of Finslerian ray velocity is investigated in two-dimensional horizontally uniform medium. The seismic ray paths are defined as the normal to the wavefronts, which are loci of points that undergo the same motion at a given instant. Geometrically, the seismic wavefront in anisotropic media can be viewed as the indicatrix of the Finsler geometry. For example, when the ray propagates the isotropic material, the indicatrices are spheres whose radii are velocities at any point. On the other hand, when the ray propagates the anisotropic material, the indicatrices are no longer spheres. Therefore, we can know anisotropy of material in crust from the shape of wavefront. Using a parameter m of Finsler metric, we classify the anisotropic envelopes of seismic wavefront. Finally, we estimate the m-value from the seismic observational data.
Evolution paths for advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1990-01-01
As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.
NASA Astrophysics Data System (ADS)
Feibel, C. S.
2004-12-01
A complex series of evolutionary steps, contingent upon a dynamic environmental context and a long biological heritage, have led to the ascent of Homo sapiens as a dominant component of the modern biosphere. In a field where missing links still abound and new discoveries regularly overturn theoretical paradigms, our understanding of the path of human evolution has made tremendous advances in recent years. Two major trends characterize the development of the hominin clade subsequent to its origins with the advent of upright bipedalism in the Late Miocene of Africa. One is a diversification into two prominent morphological branches, each with a series of 'twigs' representing evolutionary experimentation at the species or subspecies level. The second important trend, which in its earliest manifestations cannot clearly be ascribed to one or the other branch, is the behavioral complexity of an increasing reliance on technology to expand upon limited inherent morphological specializations and to buffer the organism from its environment. This technological dependence is directly associated with the expansion of hominin range outside Africa by the genus Homo, and is accelerated in the sole extant form Homo sapiens through the last 100 Ka. There are interesting correlates between the evolutionary and behavioral patterns seen in the hominin clade and environmental dynamics of the Neogene. In particular, the tempo of morphological and behavioral innovation may be tracking major events in Neogene climatic development as well as reflecting intervals of variability or stability. Major improvements in analytical techniques, coupled with important new collections and a growing body of contextual data are now making possible the integration of global, regional and local environmental archives with an improved biological understanding of the hominin clade to address questions of coincidence and causality.
... dryness Skin (pressure) sores Sleep problems Stomas (or ostomies) Swallowing problems Sweating Swelling Treatment at home Tubes ... To learn more References Previous Topic Stomas (or ostomies) Next Topic Sweating Swallowing problems A person may ...
... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...
... labor starts before 37 completed weeks of pregnancy Problems with the umbilical cord Problems with the position of the baby, such as ... feet first Birth injuries For some of these problems, the baby may need to be delivered surgically ...
Nonholonomic catheter path reconstruction using electromagnetic tracking
NASA Astrophysics Data System (ADS)
Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor
2015-03-01
Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Steering Chiral Swimmers along Noisy Helical Paths
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.; Jülicher, Frank
2009-08-01
Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical paths with a concentration gradient which is related to the alignment of a dipole in an external field and discuss the chemotaxis index.
Thermodynamic Metrics and Optimal Paths
Sivak, David; Crooks, Gavin
2012-05-08
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
A note on the path integral representation for Majorana fermions
NASA Astrophysics Data System (ADS)
Greco, Andrés
2016-04-01
Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Problems pilots face involving wind shear
NASA Technical Reports Server (NTRS)
Melvin, W. W.
1977-01-01
Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.
A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints
NASA Technical Reports Server (NTRS)
Divelbiss, Adam; Seereeram, Sanjeev; Wen, John T.
1993-01-01
Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima.
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
NASA Astrophysics Data System (ADS)
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-03-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
A chemist building paths to cell biology.
Weibel, Douglas B
2013-11-01
Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path. PMID:24174456
Duality of quantum coherence and path distinguishability
NASA Astrophysics Data System (ADS)
Bera, Manabendra Nath; Qureshi, Tabish; Siddiqui, Mohd Asad; Pati, Arun Kumar
2015-07-01
We derive a generalized wave-particle duality relation for arbitrary multipath quantum interference phenomena. Beyond the conventional notion of the wave nature of a quantum system, i.e., the interference fringe visibility, we introduce a quantifier as the normalized quantum coherence, recently defined in the framework of quantum information theory. To witness the particle nature, we quantify the path distinguishability or the which-path information based on unambiguous quantum state discrimination. Then, the Bohr complementarity principle for multipath quantum interference can be stated as a duality relation between the quantum coherence and the path distinguishability. For two-path interference, the quantum coherence is identical to the interference fringe visibility, and the relation reduces to the well-known complementarity relation. The duality relation continues to hold in the case where mixedness is introduced due to possible decoherence effects.
Path Analysis in Genetic Epidemiology and Alternatives.
ERIC Educational Resources Information Center
Karlin, Samuel
1987-01-01
Discusses the application of path analysis in the context of genetic epidemiology. Examines the coherence of model specification, plausibility of modeling assumptions, the interpretability and usefulness of the model, and the validity of statistical procedures. (RB)
Nonclassical paths in quantum interference experiments.
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-19
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. PMID:25279612
Nonclassical Paths in Quantum Interference Experiments
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Riemann Curvature Tensor and Closed Geodesic Paths
ERIC Educational Resources Information Center
Morganstern, Ralph E.
1977-01-01
Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)
Identifying decohering paths in closed quantum systems
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1990-01-01
A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.
Two Paths Diverged: Exploring Trajectories, Protocols, and Dynamic Phases
NASA Astrophysics Data System (ADS)
Gingrich, Todd Robert
Using tools of statistical mechanics, it is routine to average over the distribution of microscopic configurations to obtain equilibrium free energies. These free energies teach us about the most likely molecular arrangements and the probability of observing deviations from the norm. Frequently, it is necessary to interrogate the probability not just of static arrangements, but of dynamical events, in which case analogous statistical mechanical tools may be applied to study the distribution of molecular trajectories. Numerical study of these trajectory spaces requires algorithms which efficiently sample the possible trajectories. We study in detail one such Monte Carlo algorithm, transition path sampling, and use a non- equilibrium statistical mechanical perspective to illuminate why the algorithm cannot easily be adapted to study some problems involving long-timescale dynamics. Algorithmically generating highly-correlated trajectories, a necessity for transition path sampling, grows exponentially more challenging for longer trajectories unless the dynamics is strongly-guided by the "noise history", the sequence of random numbers representing the noise terms in the stochastic dynamics. Langevin dynamics of Weeks-Chandler-Andersen (WCA) particles in two dimensions lacks this strong noise guidance, so it is challenging to use transition path sampling to study rare dynamical events in long trajectories of WCA particles. The spin flip dynamics of a two-dimensional Ising model, on the other hand, can be guided by the noise history to achieve efficient path sampling. For systems that can be efficiently sampled with path sampling, we show that it is possible to simultaneously sample both the paths and the (potentially vast) space of non-equilibrium protocols to efficiently learn how rate constants vary with protocols and to identify low-dissipation protocols. When high-dimensional molecular dynamics can be coarse-grained and represented by a simplified dynamics on a low-dimensional state space, the trajectory space may also be analytically studied using methods of large deviation theory. We review these methods and introduce a simple class of dynamical models whose dynamical fluctuations we compute exactly. The simplest such model is an asymmetric random walker on a one-dimensional ring with a single heterogeneous link connecting two sites of the ring. We derive conditions for the existence of a dynamic phase transition, which separates two dynamical phases---one localized and the other delocalized. The presence of distinct classes trajectories results in profoundly non-Gaussian fluctuations in dynamical quantities. We discuss the implications of such large dynamical fluctuations in the context of simple stochastic models for biological growth.
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
NASA Astrophysics Data System (ADS)
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.
UCAV path planning in the presence of radar-guided surface-to-air missile threats
NASA Astrophysics Data System (ADS)
Zeitz, Frederick H., III
This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.
Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant
Metaxas, Dimitrios
2009-12-15
For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite bound on the graviton mass.
Create three distinct career paths for innovators.
O'Connor, Gina Colarelli; Corbett, Andrew; Pierantozzi, Ron
2009-12-01
Large companies say they Create Three Distinct want to be Career Paths for Innovators innovative, but they fundamentally mismanage their talent. Expecting innovators to grow along with their projects-from discovery to incubation to acceleration--sets them up to fail. Most people excel at one of the phases, not all three. By allowing innovation employees to develop career paths suited to their strengths, companies will create a sustainable innovation function. PMID:19968059
Path discrepancies between great circle and rhumb line
NASA Technical Reports Server (NTRS)
Kaul, Rajan
1987-01-01
A simulation of a mathematical model to compute path discrepancies between great circle and rhumb line flight paths is presented. The model illustrates that the path errors depend on the latitude, the bearing, and the trip length of the flight.
NASA Technical Reports Server (NTRS)
Crane, R. K.; Blood, D. W.
1979-01-01
A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions.
QoS routing via multiple paths using bandwidth reservation
Rao, N.S.V.; Batsell, S.G.
1997-11-01
The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate. They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete and propose a polynomial-time approximate solution.
QoS routing via multiple paths using bandwidth reservation
Rao, N.S.V.; Batsell, S.G.
1998-01-01
The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate.They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete, and propose a polynomial-time approximately solution.
The reaction path intrinsic reaction coordinate method and the Hamilton-Jacobi theory.
Crehuet, Ramon; Bofill, Josep Maria
2005-06-15
The definition and location of an intrinsic reaction coordinate path is of crucial importance in many areas of theoretical chemistry. Differential equations used to define the path hitherto are complemented in this study with a variational principle of Fermat type, as Fukui [Int. J. Quantum Chem., Quantum Chem. Symp. 15, 633 (1981)] reported in a more general form some time ago. This definition is more suitable for problems where initial and final points are given. The variational definition can naturally be recast into a Hamilton-Jacobi equation. The character of the variational solution is studied via the Weierstrass necessary and sufficient conditions. The characterization of the local minima character of the intrinsic reaction coordinate is proved. Such result leads to a numerical algorithm to find intrinsic reaction coordinate paths based on the successive minimizations of the Weierstrass E-function evaluated on a guess curve connecting the initial and final points of the desired path. PMID:16008428
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Bioinspired Coordinated Path Following for Vessels with Speed Saturation Based on Virtual Leader
Fu, Mingyu
2016-01-01
This paper investigates the coordinated path following of multiple marine vessels with speed saturation. Based on virtual leader strategy, the authors show how the neural dynamic model and passivity-based techniques are brought together to yield a distributed control strategy. The desired path following is achieved by means of a virtual dynamic leader, whose controller is designed based on the biological neural shunting model. Utilizing the characteristic of bounded and smooth output of neural dynamic model, the tracking error jump is avoided and speed saturation problem is solved in straight path. Meanwhile, the coordinated path following of multiple vessels with a desired spatial formation is achieved through defining the formation reference point. The consensus of formation reference point is realized by using the synchronization controller based on passivity. Finally, simulation results validate the effectiveness of the proposed coordinated algorithm. PMID:27034652
ERIC Educational Resources Information Center
Sockalingam, Nachamma; Rotgans, Jerome I.; Schmidt, Henk G.
2011-01-01
This study investigated the influence of five problem characteristics on students' achievement-related classroom behaviors and academic achievement. Data from 5,949 polytechnic students in PBL curricula across 170 courses were analyzed by means of path analysis. The five problem characteristics were: (1) problem clarity, (2) problem familiarity,…
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied. PMID:25126607
Graphs and Matroids Weighted in a Bounded Incline Algebra
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied. PMID:25126607
Automatic mapping of off-road vehicle trails and paths at Fort Riley Installation, Kansas
NASA Astrophysics Data System (ADS)
Oller, Adam
The U.S. Army manages thousands of sites that cover millions of acres of land for various military training purposes and activities and often faces a great challenge on how to optimize the use of resources. A typical example is that the training activities often lead to off-road vehicle trails and paths and how to use the trails and paths in terms of minimizing maintenance cost becomes a problem. Being able to accurately extract and map the trails and paths is critical in advancing the U.S. Army's sustainability practices. The primary objective of this study is to develop a method geared specifically toward the military's needs of identifying and updating the off-road vehicle trails and paths for both environmental and economic purposes. The approach was developed using a well-known template matching program, called Feature Analyst, to analyze and extract the relevant trails and paths from Fort Riley's designated training areas. A 0.5 meter resolution false color infrared orthophoto with various spectral transformations/enhancements were used to extract the trails and paths. The optimal feature parameters for the highest accuracy of detecting the trails and paths were also investigated. A modified Heidke skill score was used for accuracy assessment of the outputs in comparison to the observed. The results showed the method was very promising, compared to traditional visual interpretation and hand digitizing. Moreover, suggested methods for extracting the trails and paths using remotely sensed images, including image spatial and spectral resolution, image transformations and enhancements, and kernel size, was obtained. In addition, the complexity of the trails and paths and the discussion on how to improve their extraction in the future were given.
Tsauo, Jiaywei Luo, Xuefeng; Ye, Linchao; Li, Xiao
2015-06-15
PurposeThis study was designed to report our results with a modified technique of three-dimensional (3D) path planning software assisted transjugular intrahepatic portosystemic shunt (TIPS).Methods3D path planning software was recently developed to facilitate TIPS creation by using two carbon dioxide portograms acquired at least 20° apart to generate a 3D path for overlay needle guidance. However, one shortcoming is that puncturing along the overlay would be technically impossible if the angle of the liver access set and the angle of the 3D path are not the same. To solve this problem, a prototype 3D path planning software was fitted with a utility to calculate the angle of the 3D path. Using this, we modified the angle of the liver access set accordingly during the procedure in ten patients.ResultsFailure for technical reasons occurred in three patients (unsuccessful wedged hepatic venography in two cases, software technical failure in one case). The procedure was successful in the remaining seven patients, and only one needle pass was required to obtain portal vein access in each case. The course of puncture was comparable to the 3D path in all patients. No procedure-related complication occurred following the procedures.ConclusionsAdjusting the angle of the liver access set to match the angle of the 3D path determined by the software appears to be a favorable modification to the technique of 3D path planning software assisted TIPS.
... you're not getting enough air. Sometimes mild breathing problems are from a stuffy nose or hard ... conditions such as asthma, emphysema or pneumonia cause breathing difficulties. So can problems with your trachea or ...
... may include: Taking your blood pressure Examining your penis and rectum to check for problems Your provider ... check for normal nighttime erections Ultrasound of your penis to check for blood flow problems Rigidity monitoring ...
Perturbation guidance for minimum time flight paths of spacecraft.
NASA Technical Reports Server (NTRS)
Wood, L. J.
1972-01-01
The problem of transferring a rocket vehicle from a given circular orbit to a larger coplanar circular orbit in minimum time, using a constant low-thrust rocket engine, is considered. Parameters are chosen to correspond to a transfer from the earth's orbit in heliocentric space to the orbit of Mars. A path satisfying the first order necessary conditions of variational calculus is shown to be locally minimizing by application of a set of second order conditions. A physical explanation is offered to justify the retrothrust period occurring during the flight. A neighboring optimum feedback control law, based on estimated time-to-go, is applied to this problem. State variable and terminal constraint feedback gains are calculated while one of the second order conditions, involving the backward integration of a matrix Riccati equation, is being tested.
Multiple Damage Progression Paths in Model-Based Prognostics
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai Frank
2011-01-01
Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active
ERIC Educational Resources Information Center
Spitz, Herman H.; Semchuk, Maria T.
1979-01-01
Results suggested that, when encountering difficulties in the problem-solving situations on the test, the retarded Ss tended to take the easiest or shortest path to a response by scanning a minimum amount of material. (Author/DLS)
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
A Path-Independent Forming Limit Criterion for Stamping Simulations
Zhu Xinhai; Chappuis, Laurent; Xia, Z. Cedric
2005-08-05
Forming Limit Diagram (FLD) has been proved to be a powerful tool for assessing necking failures in sheet metal forming analysis for majority of stamping operations over the last three decades. However, experimental evidence and theoretical analysis suggest that its applications are limited to linear or almost linear strain paths during its deformation history. Abrupt changes or even gradual deviations from linear strain-paths will shift forming limit curves from their original values, a situation that occurs in vast majority of sequential stamping operations such as where the drawing process is followed by flanging and re-strike processes. Various forming limit models have been put forward recently to provide remedies for the problem, noticeably stress-based and strain gradient-based forming limit criteria. This study presents an alternative path-independent forming limit criterion. Instead of traditional Forming Limit Diagrams (FLD) which are constructed in terms of major - minor principal strains throughout deformation history, the new criterion defines a critical effective strain {epsilon}-bar* as the limit strain for necking, and it is shown that {epsilon}-bar* can be expressed as a function of current strain rate state and material work hardening properties, without the need of explicitly considering strain-path effects. It is given by {epsilon}-bar* = f({beta}, k, n) where {beta} = (d{epsilon}{sub 2}/d{epsilon}{sub 1}) at current deformation state, and k and n are material strain hardening parameters if a power law is assumed. The analysis is built upon previous work by Storen and Rice [1975] and Zhu et al [2002] with the incorporation of anisotropic yield models such as Hill'48 for quadratic orthotropic yield and Hill'79 for non-quadratic orthotropic yield. Effects of anisotropic parameters such as R-values and exponent n-values on necking are investigated in detail for a variety of strain paths. Results predicted according to current analysis are compared against experimental data gathered from literature and good agreements are achieved. This provides a powerful validation for this approach.The new criterion retains all the advantages of the traditional FLDs since it's still constructed in the strain space. Its relationship with stress-based forming limit criteria is discussed. It is believed that the approach is especially suitable for production stamping CAE analysis since the strain rate state at any material point during forming deformation is readily available from FEA simulations. It can be easily embedded in forming simulation software or alternatively deployed as a post-processing function for forming simulations.
Switching-path distribution in multidimensional systems.
Chan, H B; Dykman, M I; Stambaugh, C
2008-11-01
We explore the distribution of paths followed in fluctuation-induced switching between coexisting stable states. We introduce a quantitative characteristic of the path distribution in phase space that does not require a priori knowledge of system dynamics. The theory of the distribution is developed and its direct measurement is performed in a micromechanical oscillator driven into parametric resonance. The experimental and theoretical results on the shape and position of the distribution are in excellent agreement, with no adjustable parameters. In addition, the experiment provides the first demonstration of the lack of time-reversal symmetry in switching of systems far from thermal equilibrium. The results open the possibility of efficient control of the switching probability based on the measured narrow path distribution. PMID:19113097
Molecular path control in zeolite membranes
Dubbeldam, D.; Beerdsen, E.; Calero, S.; Smit, B.
2005-01-01
We report molecular simulations of diffusion in confinement showing a phenomenon that we denote as molecular path control (MPC); depending on loading, molecules follow a preferred pathway. MPC raises the important question to which extent the loading may affect the molecular trajectories in nanoporous materials. Through MPC one is able to manually adjust the ratio of the diffusivities through different types of pores, and as an application one can direct the flow of diffusing particles in membranes forward or sideward by simply adjusting the pressure, without the need for mechanical parts like valves. We show that the key ingredient of MPC is the anisotropic nature of the nanoporous material that results in a complex interplay between different diffusion paths as a function of loading. These paths may be controlled by changing the loading, either through a change in pressure or temperature. PMID:16109769
Fermionic path integrals and local anomalies
NASA Astrophysics Data System (ADS)
Roepstorff, G.
2003-05-01
No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.
Differentiable-path integrals in quantum mechanics
NASA Astrophysics Data System (ADS)
Koch, Benjamin; Reyes, Ignacio
2015-06-01
A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of Cα, by only allowing paths which possess at least α derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ɛD such that for time intervals longer than ɛD the model behaves as usual quantum mechanics. However, for time scales smaller than ɛD, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ɛ → 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity
Quantum state of wormholes and path integral
Garay, L.J. )
1991-08-15
The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.
A taxonomy of integral reaction path analysis
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.
Circular common-path point diffraction interferometer.
Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan
2012-10-01
A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes. PMID:23027234
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Mars PathFinder Rover Traverse Image
NASA Technical Reports Server (NTRS)
1998-01-01
This figure contains an azimuth-elevation projection of the 'Gallery Panorama.' The original Simple Cylindrical mosaic has been reprojected to the inside of a sphere so that lines of constant azimuth radiate from the center and lines of constant elevation are concentric circles. This projection preserves the resolution of the original panorama. Overlaid onto the projected Martian surface is a delineation of the Sojourner rover traverse path during the 83 Sols (Martian days) of Pathfinder surface operations. The rover path was reproduced using IMP camera 'end of day' and 'Rover movie' image sequences and rover vehicle telemetry data as references.
Gas Path Sealing in Turbine Engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.
Clearing the Path tor All of Us Where Trains Once Ran.
ERIC Educational Resources Information Center
Mills, Judy
1990-01-01
Describes the concept behind the rail-to-trails movement; the history, process and problems of converting abandoned railroad beds to bike and walking paths. Introduces the concept and trend of ergo, or linear parks, corridors, and greenways to meet the increasing need for public access to land for recreational purposes. (MCO)
Combination of multiple light paths in pulse oximetry: the finger ring example.
Sola, Josep; Chetelat, Olivier
2007-01-01
When pulse oximetry is required at other body locations than the finger tip new strategies for optical setups and signal handling are required. In this paper we present a combination of short and long light paths that succeeded in resolving the problems associated to the development of a finger ring SpO2 sensor. PMID:18003563
An Evaluation of the Preschool PATHS Curriculum on the Development of Preschool Children
ERIC Educational Resources Information Center
Hughes, Cerian; Cline, Tony
2015-01-01
This study evaluated the efficacy of preschool Promoting Alternative Thinking Strategies (PATHS), an early years curriculum designed to improve children's social and emotional competence, and reduce problem behaviour. Fifty-seven children aged three to four years took part in the study over one academic year. The control group (Group 1)…
Path Analysis on Educational Fiscal Decision-Making Mechanism in China
ERIC Educational Resources Information Center
Zhao, Hongbin; Sun, Baicai
2007-01-01
In China's current educational fiscal decision making, problems are as follows: no law to trust or not abiding by available laws, absence of equity and efficiency, as well as the standardization of decision-making procedures. It is necessary to set up effective fiscal decision-making mechanism in education and rationally devise reliable paths.
Garden Path Sentences and Error Data in Second Language Sentence Processing.
ERIC Educational Resources Information Center
Juffs, Alan; Harrington, Michael
1996-01-01
Expands on the authors' (1995) investigation of the parsing performance on "wh"-movement sentences by Chinese-speaking learners of English. The article compares the difficulty second-language learners have in parsing subject "wh"-traces in embedded finite and nonfinite clauses with the problems they have in parsing Garden Path sentences. Results…
Analysis of the contact graph routing algorithm: Bounding interplanetary paths
NASA Astrophysics Data System (ADS)
Birrane, Edward; Burleigh, Scott; Kasch, Niels
2012-06-01
Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop-by-hop forwarding is presented as the CGR-EB algorithm. Future work is proposed to handle the presence of dynamic changes to the network, as produced by congestion, link disruption, and errors in the contact graph. We conclude that pre-computation, and thus CGR style algorithms, is the only efficient method of routing in a multi-node, multi-path interplanetary network and that algorithmic analysis is the key to its implementation in operational systems.
Diagnosis for Covariance Structure Models by Analyzing the Path
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Kouros, Chrystyna D.; Kelley, Ken
2008-01-01
When a covariance structure model is misspecified, parameter estimates will be affected. It is important to know which estimates are systematically affected and which are not. The approach of analyzing the path is both intuitive and informative for such a purpose. Different from path analysis, analyzing the path uses path tracing and elementary…
Exploring Career Paths. A Guide for Students and Their Families.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This five-section guide is designed to help students and their parents explore career paths. The first part of the guide is an introduction to the concept of career paths and an explanation of the steps students follow in exploring career paths. The second section, which makes up most of the booklet, covers five steps for exploring career paths:…
Path Analysis: A Link between Family Theory and Reseach.
ERIC Educational Resources Information Center
Rank, Mark R.; Sabatelli, Ronald M.
This paper discusses path analysis and the applicability of this methodology to the field of family studies. The statistical assumptions made in path analysis are presented along with a description of the two types of models within path analysis, i.e., recursive and non-recursive. Methods of calculating in the path model and the advantages of…
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
A Comparison of Two Path Planners for Planetary Rovers
NASA Technical Reports Server (NTRS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
Evolvable neuronal paths: a novel basis for information and search in the brain.
Fernando, Chrisantha; Vasas, Vera; Szathmry, Ers; Husbands, Phil
2011-01-01
We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard 'genetic' informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266
A path planning algorithm for lane-following-based autonomous mobile robot navigation
NASA Astrophysics Data System (ADS)
Aljeroudi, Yazan; Paulik, Mark; Krishnan, Mohan; Luo, Chaomin
2010-01-01
In this paper we address the problem of autonomous robot navigation in a "roadway" type environment, where the robot has to drive forward on a defined path that could be impeded by the presence of obstacles. The specific context is the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The task of the path planner is to ensure that the robot follows the path without turning back, as can happen in switchbacks, and/or leaving the course, as can happen in dashed or single lane line situations. A multi-behavior path planning algorithm is proposed. The first behavior determines a goal using a center of gravity (CoG) computation from the results of image processing techniques designed to extract lane lines. The second behavior is based on developing a sense of the current "general direction" of the contours of the course. This is gauged based on the immediate path history of the robot. An adaptive-weight-based fusion of the two behaviors is used to generate the best overall direction. This multi-behavior path planning strategy has been evaluated successfully in a Player/Stage simulation environment and subsequently implemented in the 2009 IGVC. The details of our experience will be presented at the conference.
The use of 3-D sensing techniques for on-line collision-free path planning
NASA Technical Reports Server (NTRS)
Hayward, V.; Aubry, S.; Jasiukajc, Z.
1987-01-01
The state of the art in collision prevention for manipulators with revolute joints, showing that it is a particularly computationally hard problem, is discussed. Based on the analogy with other hard or undecidable problems such as theorem proving, an extensible multi-resolution architecture for path planning, based on a collection of weak methods is proposed. Finally, the role that sensors can play for an on-line use of sensor data is examined.
When Does Changing Representation Improve Problem-Solving Performance?
NASA Technical Reports Server (NTRS)
Holte, Robert; Zimmer, Robert; MacDonald, Alan
1992-01-01
The aim of changing representation is the improvement of problem-solving efficiency. For the most widely studied family of methods of change of representation it is shown that the value of a single parameter, called the expulsion factor, is critical in determining (1) whether the change of representation will improve or degrade problem-solving efficiency and (2) whether the solutions produced using the change of representation will or will not be exponentially longer than the shortest solution. A method of computing the expansion factor for a given change of representation is sketched in general and described in detail for homomorphic changes of representation. The results are illustrated with homomorphic decompositions of the Towers of Hanoi problem.
... Information Causes & Symptoms Diagnosis & Tests Care & Treatment Lifestyle & ... Facts & Information What are Joint Problems? Your musculoskeletal system is constructed of bones, muscles, and joints. The ...
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
On the orthogonalised reverse path method for nonlinear system identification
NASA Astrophysics Data System (ADS)
Muhamad, P.; Sims, N. D.; Worden, K.
2012-09-01
The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.
Learning to improve path planning performance
Chen, Pang C.
1995-04-01
In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful.
Folded-path optical analysis gas cell
Carangelo, R.M.; Wright, D.D.
1995-08-08
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.
Photographic time studies of airplane paths
NASA Technical Reports Server (NTRS)
Von Baumhaur, A G
1926-01-01
The object of this report is the description of a method which seems to be practicable for determining the path of an airplane, especially in taking off and landing. This report tells how, by means of a camera, preferably a kinetograph, which simultaneously photographs a stop watch the distance of an airplane from the camera and its height above the ground can be determined.
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the
Current SPE Hydrodynamic Modeling and Path Forward
Knight, Earl E.; Rougier, Esteban
2012-08-14
Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.
Administrator Career Paths and Decision Processes
ERIC Educational Resources Information Center
Farley-Ripple, Elizabeth N.; Raffel, Jeffrey A.; Welch, Jennie Christine
2012-01-01
Purpose: The purpose of this paper is to present qualitative evidence on the processes and forces that shape school administrator career paths. Design/methodology/approach: An embedded case study approach is used to understand more than 100 administrator career transitions within the Delaware education system. Semi-structured interview data were…
Explore the Many Paths to Leadership
ERIC Educational Resources Information Center
Crow, Tracy
2015-01-01
The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…
LONG PATH LASER OZONE MONITOR EVALUATION
The purpose of the study reported here was to evaluate a long path laser air pollution monitor developed for the U.S. Environmental Protection Agency (EPA) by the General Electric (GE) Company. The monitor was known as ILAMS (Infrared Laser Atmospheric Monitoring System) and desi...
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. PMID:25151621
A Complex Path to Haudenosaunee Degree Completion
ERIC Educational Resources Information Center
Waterman, Stephanie J.
2007-01-01
This qualitative study describes how 12 Haudenosaunee (Six Nations Iroquois Confederacy) college graduates constructed pathways to degree completion. The participants related their experiences on this path through open-ended interviews. The pathways were found to be complex owing to their unique cultural grounding and dedication to family. The…
Feynman path integral and the photon
Pugh, R.E.
1986-02-15
The construction of an overcomplete set of states for both the physical and artificial modes of the photon is examined in a representation with an indefinite metric. The Feynman path integral is then easily derived and the usual Green's functions, kernels, propagators, and Feynman rules follow immediately.
Modeling DNA Dynamics by Path Integrals
NASA Astrophysics Data System (ADS)
Zoli, Marco
2013-02-01
Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (bps). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The bps displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal geometry peculiar of B-DNA. I discuss the interplay between twisting of the double helix and anharmonic stacking along the molecule backbone suggesting an interesting relation between intrinsic nonlinear character of the microscopic interactions and molecular topology.
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Judgments of Path, Not Heading, Guide Locomotion
ERIC Educational Resources Information Center
Wilkie, Richard M.; Wann, John P.
2006-01-01
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient…
Building a path in cell biology
Voeltz, Gia; Cheeseman, Iain
2012-01-01
Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way. PMID:23112222
An Introduction to Career Path Employability Profiles.
ERIC Educational Resources Information Center
Alvir, Howard P.
An employability profile specifies employment opportunities for which an individual is qualified. A career path is the term applied to an employability profile that combines both the career ladder aspect of advancement and the career lattice element of wide selection. After a descriptive analysis of typical employability profiles, this document…
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff..., landing gear retraction must not be initiated until the airplane is airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...
Explore the Many Paths to Leadership
ERIC Educational Resources Information Center
Crow, Tracy
2015-01-01
The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and
Thermo fields from Euclidean path integrals
NASA Astrophysics Data System (ADS)
Laflamme, R.
1989-05-01
The motive for the introduction of a fictitious field and the vacuum in thermo field dynamics is derived from Euclidean path integrals. We show that the occurrence of a fictitious system, both in the theory of Umezawa and Takahashi at finite temperature and the one of Israel for black hole backgrounds, can be related to the geometry of the Euclidean section of their spacetime.
The Erratic Path of Hungarian Higher Education
ERIC Educational Resources Information Center
Marcus, Jon
2014-01-01
This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier
The Erratic Path of Hungarian Higher Education
ERIC Educational Resources Information Center
Marcus, Jon
2014-01-01
This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…
Path integral and noncommutative Poisson brackets
NASA Astrophysics Data System (ADS)
Valtancoli, P.
2015-06-01
We find that in presence of noncommutative Poisson brackets, the relation between Lagrangian and Hamiltonian is modified. We discuss this property by using the path integral formalism for non-relativistic systems. We apply this procedure to the harmonic oscillator with a minimal length.
ERIC Educational Resources Information Center
Fetrow, Jessica
2009-01-01
This study focused on how to help students translate word problems so that they understand how to solve them, and so they are successful with word problems. I have created three research questions to focus on during this research project. First, how will direct instruction of word meaning help clarify the operation needed, affect the achievement…
... body fat to be very low, which can cause your periods to stop. This can happen if you are training hard for sports or if you ... problems with hormones. One common hormone condition that causes period problems is ... will often stop having periods. When to see a doctor top ...
NASA Technical Reports Server (NTRS)
Riedel, J. K.
1972-01-01
It is pointed out that too frequently during the design and development of mechanisms, problems occur that could have been avoided if the right question had been asked before, rather than after, the fact. Several typical problems, drawn from actual experience, are discussed and analyzed. The lessons learned are used to generate various suggestions for minimizing mistakes in mechanism design.
Photon path length retrieval from GOSAT observations
NASA Astrophysics Data System (ADS)
Kremmling, Beke; Penning de Vries, Marloes; Deutschmann, Tim; Wagner, Thomas
2013-04-01
The influence of clouds on the atmospheric radiation budget is investigated, focussing on the photon path length distributions of the scattered sunlight. Apart from the reflection of incoming solar radiation at the cloud top, clouds can also introduce a large number of additional scattering events causing an enhancement of the photon paths. In certain cloud formations, these scattering events also result in a ``ping-pong`` behaviour between different cloud patches and cloud layers. It has been shown from ground based measurements that it is possible to retrieve photon path lengths by analysis of high resolution oxygen A-band spectra (O. Funk et al.). This study uses similar space based measurements of the oxygen A-band for the path length retrieval. The oxygen A-band spectra are retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT) which was successfully launched in 2009. The high spectral resolution of the GOSAT TANSO-FTS instrument allows to almost completely resolve the individual absorption lines. The considered spectral range is particularly suitable for this study because it shows clear absorption structures of different strength. From the analysis of the spectral signatures, cloud properties and the underlying path length distributions can be derived. The retrieval is done by analysis and comparison of the extracted TANSO-FTS spectra with simulations from the Monte Carlo radiative transfer Model McArtim. The model permits modelling of altitude dependent oxygen absorption cross sections and three-dimensional cloud patterns. Case studies of clear and cloudy sky scenarios will be presented. Future studies will focus on more complicated cloud structures, especially considering three-dimensional geometries and heterogeneities.
Potential theory, path integrals and the Laplacian of the indicator
NASA Astrophysics Data System (ADS)
Lange, Rutger-Jan
2012-11-01
This paper links the field of potential theory i.e. the Dirichlet and Neumann problems for the heat and Laplace equation to that of the Feynman path integral, by postulating the following seemingly ill-defined potential: V(x):=? {{?^2}}/2nabla_x^2{1_{{xin D}}} where the volatility is the reciprocal of the mass (i.e. m = 1/ ? 2) and ? = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac ?'-function, which can formally be defined as partial_x^2{1_{x>0 }} . We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:
Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations
Weinstein, Marvin; /SLAC
2009-02-12
It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will turn to tunneling problems and show that the instanton can also be though of in the same way. I will do this for the classic problem of a double well potential in the extreme limit when the splitting between the two lowest levels is extremely small and the tunneling rate from one well to another is also very small.
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Afghan-Toloee, A.; Abbaspour, R. A.
2013-09-01
This paper addresses an innovative evolutionary computation approach to 3D path planning of autonomous UAVs in real environment. To solve this Np-hard problem, Newtonian imperialist competitive algorithm (NICA) was developed and extended for path planning problem. This paper is related to optimal trajectory-designing before UAV missions. NICA planner provides 3D optimal paths for UAV planning in real topography of north Tehran environment. To simulate UAV path planning, a real DTM is used to algorithm. For real-world applications, final generated paths should be smooth and also physical flyable that made the path planning problems complex and more constrained. The planner progressively presents a smooth 3D path from first position to mission target location. The objective function contains distinctive measures of the problem. Our main goal is minimization of the total mission time. For evaluating of NICA efficiency, it is compared with other three well-known methods, i.e. ICA, GA, and PSO. Then path planning of UAV will done. Finally simulations proved the high capabilities of proposed methodology.
Path integration of the time-dependent forced oscillator with a two-time quadratic action
NASA Astrophysics Data System (ADS)
Zhang, Tian Rong; Cheng, Bin Kang
1986-03-01
Using the prodistribution theory proposed by DeWitt-Morette [C. DeWitt-Morette, Commun. Math. Phys. 28, 47 (1972); C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep. 50, 257 (1979)], the path integration of a time-dependent forced harmonic oscillator with a two-time quadratic action has been given in terms of the solutions of some integrodifferential equations. We then evaluate explicitly both the classical path and the propagator for the specific kernel introduced by Feynman in the polaron problem. Our results include the previous known results as special cases.
Preserving correlations between trajectories for efficient path sampling
NASA Astrophysics Data System (ADS)
Gingrich, Todd R.; Geissler, Phillip L.
2015-06-01
Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this "noise guidance" synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.
Preserving correlations between trajectories for efficient path sampling
Gingrich, Todd R.; Geissler, Phillip L.
2015-06-21
Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.
Kinematics, controls, and path planning results for a redundant manipulator
NASA Technical Reports Server (NTRS)
Gretz, Bruce; Tilley, Scott W.
1989-01-01
The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.
Drosophila learn efficient paths to a food source.
Navawongse, Rapeechai; Choudhury, Deepak; Raczkowska, Marlena; Stewart, James Charles; Lim, Terrence; Rahman, Mashiur; Toh, Alicia Guek Geok; Wang, Zhiping; Claridge-Chang, Adam
2016-05-01
Elucidating the genetic, and neuronal bases for learned behavior is a central problem in neuroscience. A leading system for neurogenetic discovery is the vinegar fly Drosophila melanogaster; fly memory research has identified genes and circuits that mediate aversive and appetitive learning. However, methods to study adaptive food-seeking behavior in this animal have lagged decades behind rodent feeding analysis, largely due to the challenges presented by their small scale. There is currently no method to dynamically control flies' access to food. In rodents, protocols that use dynamic food delivery are a central element of experimental paradigms that date back to the influential work of Skinner. This method is still commonly used in the analysis of learning, memory, addiction, feeding, and many other subjects in experimental psychology. The difficulty of microscale food delivery means this is not a technique used in fly behavior. In the present manuscript we describe a microfluidic chip integrated with machine vision and automation to dynamically control defined liquid food presentations and sensory stimuli. Strikingly, repeated presentations of food at a fixed location produced improvements in path efficiency during food approach. This shows that improved path choice is a learned behavior. Active control of food availability using this microfluidic system is a valuable addition to the methods currently available for the analysis of learned feeding behavior in flies. PMID:27063671
Density shrinking algorithm for community detection with path based similarity
NASA Astrophysics Data System (ADS)
Wu, Jianshe; Hou, Yunting; Jiao, Yang; Li, Yong; Li, Xiaoxiao; Jiao, Licheng
2015-09-01
Community structure is ubiquitous in real world complex networks. Finding the communities is the key to understand the functions of those networks. A lot of works have been done in designing algorithms for community detection, but it remains a challenge in the field. Traditional modularity optimization suffers from the resolution limit problem. Recent researches show that combining the density based technique with the modularity optimization can overcome the resolution limit and an efficient algorithm named DenShrink was provided. The main procedure of DenShrink is repeatedly finding and merging micro-communities (broad sense) into super nodes until they cannot merge. Analyses in this paper show that if the procedure is replaced by finding and merging only dense pairs, both of the detection accuracy and runtime can be obviously improved. Thus an improved density-based algorithm: ImDS is provided. Since the time complexity, path based similarity indexes are difficult to be applied in community detection for high performance. In this paper, the path based Katz index is simplified and used in the ImDS algorithm.
On the complexity of Minimum Path Cover with Subpath Constraints for multi-assembly
2014-01-01
Background Multi-assembly problems have gathered much attention in the last years, as Next-Generation Sequencing technologies have started being applied to mixed settings, such as reads from the transcriptome (RNA-Seq), or from viral quasi-species. One classical model that has resurfaced in many multi-assembly methods (e.g. in Cufflinks, ShoRAH, BRANCH, CLASS) is the Minimum Path Cover (MPC) Problem, which asks for the minimum number of directed paths that cover all the nodes of a directed acyclic graph. The MPC Problem is highly popular because the acyclicity of the graph ensures its polynomial-time solvability. Results In this paper, we consider two generalizations of it dealing with integrating constraints arising from long reads or paired-end reads; these extensions have also been considered by two recent methods, but not fully solved. More specifically, we study the two problems where also a set of subpaths, or pairs of subpaths, of the graph have to be entirely covered by some path in the MPC. We show that in the case of long reads (subpaths), the generalized problem can be solved in polynomial-time by a reduction to the classical MPC Problem. We also consider the weighted case, and show that it can be solved in polynomial-time by a reduction to a min-cost circulation problem. As a side result, we also improve the time complexity of the classical minimum weight MPC Problem. In the case of paired-end reads (pairs of subpaths), the generalized problem becomes NP-hard, but we show that it is fixed-parameter tractable (FPT) in the total number of constraints. This computational dichotomy between long reads and paired-end reads is also a general insight into multi-assembly problems. PMID:25252805
Computing LS factor by runoff paths on TIN
NASA Astrophysics Data System (ADS)
Kavka, Petr; Krasa, Josef; Bek, Stanislav
2013-04-01
The article shows results of topographic factor (the LS factor in USLE) derivation enhancement focused on detailed Airborne Laser Scanning (ALS) based DEMs. It describes a flow paths generation technique using triangulated irregular network (TIN) for terrain morphology description, which is not yet established in soil loss computations. This technique was compared with other procedures of flow direction and flow paths generation based on commonly used raster model (DEM). These overland flow characteristics together with therefrom derived flow accumulation are significant inputs for many scientific models. Particularly they are used in all USLE-based soil erosion models, from which USLE2D, RUSLE3D, Watem/Sedem or USPED can be named as the most acknowledged. Flow routing characteristics are also essential parameters in physically based hydrological and soil erosion models like HEC-HMS, Wepp, Erosion3D, LISEM, SMODERP, etc. Mentioned models are based on regular raster grids, where the identification of runoff direction is problematic. The most common method is Steepest descent (one directional flow), which corresponds well with the concentration of surface runoff into concentrated flow. The Steepest descent algorithm for the flow routing doesn't provide satisfying results, it often creates parallel and narrow flow lines while not respecting real morphological conditions. To overcome this problem, other methods (such as Flux Decomposition, Multiple flow, Deterministic Infinity algorithm etc.) separate the outflow into several components. This approach leads to unrealistic diffusion propagation of the runoff and makes it impossible to be used for simulation of dominant morphological features, such as artificial rills, hedges, sediment traps etc. The modern methods of mapping ground elevations, especially ALS, provide very detailed models even for large river basins, including morphological details. New algorithms for derivation a runoff direction have been developed as a part of the Atlas DMT software package. Starting points for the flow direction generation remain in regular grid (allowing easy contributing area assessment) while realistic direction paths are generated directly at TIN. It turns out that this procedure allows predicting actual runoff paths while ensuring the continuity of the potential runoff by sophisticated filling of sinks and flats. The algorithm is being implemented in a new USLE based erosion model ATLAS EROSION aiming to enhance designing of technical (morphological) soil erosion measures using detailed DEMs. The research has been supported by the research project No. TA02020647 " Atlas EROZE - a modern tool for soil erosion assessment".
Fluctuation-induced switching and the switching path distribution.
NASA Astrophysics Data System (ADS)
Dykman, Mark
2009-03-01
Fluctuation-induced switching is at the root of diverse phenomena currently studied in Josephson junctions, nano-mechanical systems, nano-magnets, and optically trapped atoms. In a fluctuation leading to switching the system must overcome an effective barrier, making switching events rare, for low fluctuation intensity. We will provide an overview of the methods of finding the switching barrier for systems away from thermal equilibrium. Generic features of the barrier, such as scaling with the system parameters, will be discussed. We will also discuss the motion of the system in switching and the ways of controlling it. Two major classes of systems will be considered: dynamical systems, where fluctuations are induced by noise, and birth-death systems. Even though the motion during switching is random, the paths followed in switching form a narrow tube in phase space of the system centered at the most probable path. The paths distribution is generally Gaussian and has specific features, which have been seen in the experiment [1]. Finding the most probable path itself can be reduced to solving a problem of Hamiltonian dynamics of an auxiliary noise-free system. The solution also gives the switching barrier. The barrier can be found explicitly close to parameter values where the number of stable states of the system changes and the dynamics is controlled by a slow variable. The scaling of the barrier height depends on the type of the corresponding bifurcation. We show that, both for birth-death and for Gaussian noise driven systems, the presence of even weak non-Gaussian noise can strongly modify the switching rate. The effect is described in a simple explicit form [2,3]. Weak deviations of the noise statistics from Gaussian can be sensitively detected using balanced dynamical bridge, where this deviation makes the populations of coexisting stable states different from each other; a realization of such a bridge will be discussed. We will also discuss the sharp anisotropy of fluctuations induced by Poisson noise in overdamped systems and how it is changed with decreasing damping. [4pt] [1] H. B. Chan, M. I. Dykman, and C. Stambaugh , Phys. Rev. Lett. 100, 130602 (2008). [0pt] [2] M. I. Dykman, I. B. Schwartz, A. S. Landsman, Phys. Rev. Letts. 101, 078101 (2008). [0pt] [3] L. Billings, M. I. Dykman, and I. B. Schwartz, Phys. Rev. E 78 (2008).
... surgery. • Other treatments . Sometimes radio waves, microwaves, or lasers are used to treat urinary problems caused by BPH. These methods use different kinds of heat to reduce extra prostate tissue. F Acute bacterial ...
... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...
... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...
... back or groin? Yes You may have a KIDNEY STONE or another serious problem. EMERGENCY See your doctor ... the bladder, called INTERSTITIAL CYSTITIS, or from a KIDNEY STONE stuck in the bladder, or a chemical in ...
... This flow chart will help direct you if hearing loss is a problem for you or a family ... may damage the inner ear. This kind of hearing loss is called OCCUPATIONAL. Prevent occupational hearing loss by ...
... nerve signals from your inner ear. These sensory systems supply information about your position in space and the pull of gravity. Errors in any of these systems can produce balance problems. Even when all these ...
... treated differently. Common thyroid disorders and problems include: Hypothyroidism Hypothyroidism is a disorder in which your thyroid doesn’ ... normal after you get better. If you have hypothyroidism, however, the levels of T4 in your blood ...
... Help Related Topics Arthritis Diabetes Falls Prevention Pain Management Join our e-newsletter! Aging & Health A to Z Foot Problems Basic Facts & Information Foot pain and foot disorders are common complaints among older people. Foot pain makes it harder ...
Arena geometry and path shape: when rats travel in straight or in circuitous paths?
Yaski, Osnat; Portugali, Juval; Eilam, David
2011-12-01
We show here that the global geometry of the environment affects the shape of the paths of travel in rats. To examine this, individual rats were introduced into an unfamiliar arena. One group of rats (n=8) was tested in a square arena (2 m × 2 m), and the other group (n=8) in a round arena (2 m diameter). Testing was in a total darkness, since in the absence of visual information the geometry is not perceived immediately and the extraction of environment shape is slower. We found that while the level of the rats' activity did not seem to differ between both arenas, path shape differed significantly. When traveling along the perimeter, path shape basically followed the arena walls, with perimeter paths curving along the walls of the round arena, while being straight along the walls of the square arena. A similar impact of arena geometry was observed for travel away from the arena walls. Indeed, when the rats abandoned the arena walls to crosscut through the center of the arena, their center paths were circuitous in the round arena and relatively straight in the square arena. We suggest that the shapes of these paths are exploited for the same spatial task: returning back to a familiar location in the unsighted environment. PMID:21840341
Energy-Aware Path Planning for UAS Persistent Sampling and Surveillance
NASA Astrophysics Data System (ADS)
Shaw-Cortez, Wenceslao
The focus of this work is to develop an energy-aware path planning algorithm that maximizes UAS endurance, while performing sampling and surveillance missions in a known, stationary wind environment. The energy-aware aspect is specifically tailored to extract energy from the wind to reduce thrust use, thereby increasing aircraft endurance. Wind energy extraction is performed by static soaring and dynamic soaring. Static soaring involves using upward wind currents to increase altitude and potential energy. Dynamic soaring involves taking advantage of wind gradients to exchange potential and kinetic energy. The path planning algorithm developed in this work uses optimization to combine these soaring trajectories with the overarching sampling and surveillance mission. The path planning algorithm uses a simplified aircraft model to tractably optimize soaring trajectories. This aircraft model is presented and along with the derivation of the equations of motion. A nonlinear program is used to create the soaring trajectories based on a given optimization problem. This optimization problem is defined using a heuristic decision tree, which defines appropriate problems given a sampling and surveillance mission and a wind model. Simulations are performed to assess the path planning algorithm. The results are used to identify properties of soaring trajectories as well as to determine what wind conditions support minimal thrust soaring. Additional results show how the path planning algorithm can be tuned between maximizing aircraft endurance and performing the sampling and surveillance mission. A means of trajectory stitching is demonstrated to show how the periodic soaring segments can be combined together to provide a full solution to an infinite/long horizon problem.
Direct path integral estimators for isotope fractionation ratios
Cheng, Bingqing; Ceriotti, Michele
2014-12-28
Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Adaptive path planning for flexible manufacturing
Chen, Pang C.
1994-08-01
Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for automating flexible manufacturing in incrementally-changing environments. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.
Hamiltonian formalism and path entropy maximization
NASA Astrophysics Data System (ADS)
Davis, Sergio; González, Diego
2015-10-01
Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.
Degenerate optimal paths in thermally isolated systems
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.
2015-04-01
We present an analysis of the work performed on a system of interest that is kept thermally isolated during the switching of a control parameter. We show that there exists, for a certain class of systems, a finite-time family of switching protocols for which the work is equal to the quasistatic value. These optimal paths are obtained within linear response for systems initially prepared in a canonical distribution. According to our approach, such protocols are composed of a linear part plus a function which is odd with respect to time reversal. For systems with one degree of freedom, we claim that these optimal paths may also lead to the conservation of the corresponding adiabatic invariant. This points to an interesting connection between work and the conservation of the volume enclosed by the energy shell. To illustrate our findings, we solve analytically the harmonic oscillator and present numerical results for certain anharmonic examples.
Mining Preferred Traversal Paths with HITS
NASA Astrophysics Data System (ADS)
Yeh, Jieh-Shan; Lin, Ying-Lin; Chen, Yu-Cheng
Web usage mining can discover useful information hidden in web logs data. However, many previous algorithms do not consider the structure of web pages, but regard all web pages with the same importance. This paper utilizes HITS values and PNT preferences as measures to mine users' preferred traversal paths. Wë structure mining uses HITS (hypertext induced topic selection) to rank web pages. PNT (preferred navigation tree) is an algorithm that finds users' preferred navigation paths. This paper introduces the Preferred Navigation Tree with HITS (PNTH) algorithm, which is an extension of PNT. This algorithm uses the concept of PNT and takes into account the relationships among web pages using HITS algorithm. This algorithm is suitable for E-commerce applications such as improving web site design and web server performance.
Degenerate optimal paths in thermally isolated systems.
Acconcia, Thiago V; Bonana, Marcus V S
2015-04-01
We present an analysis of the work performed on a system of interest that is kept thermally isolated during the switching of a control parameter. We show that there exists, for a certain class of systems, a finite-time family of switching protocols for which the work is equal to the quasistatic value. These optimal paths are obtained within linear response for systems initially prepared in a canonical distribution. According to our approach, such protocols are composed of a linear part plus a function which is odd with respect to time reversal. For systems with one degree of freedom, we claim that these optimal paths may also lead to the conservation of the corresponding adiabatic invariant. This points to an interesting connection between work and the conservation of the volume enclosed by the energy shell. To illustrate our findings, we solve analytically the harmonic oscillator and present numerical results for certain anharmonic examples. PMID:25974472
A path model of aircraft noise annoyance
NASA Astrophysics Data System (ADS)
Taylor, S. M.
1984-09-01
This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.
Broadband Phase Spectroscopy over Turbulent Air Paths
NASA Astrophysics Data System (ADS)
Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Truhlar, Donald G.
2016-01-01
Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.
Mielke, Steven L; Truhlar, Donald G
2016-01-21
Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023
On the path integral of constrained systems
Muslih, Sami I.
2004-10-04
Constrained Hamiltonian systems are investigated by using Gueler's method. Integration of a set of equations of motion and the action function is discussed. It is shown that the canonical path integral quantization is obtained directly as an integration over the canonical phase-space coordinates without any need to enlarge the initial phase-space by introducing extra- unphysical variables as in the Batalin-Fradkin-Tyutin (BFT) method. The abelian Proca model is analyzed by the two methods.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Quantitative Molecular Thermochemistry Based on Path Integrals
Glaesemann, K R; Fried, L E
2005-03-14
The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group.
NASA Astrophysics Data System (ADS)
Curiac, Daniel-Ioan; Volosencu, Constantin
2014-10-01
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.
Fast parallel algorithms for finding Hamiltonian paths and cycles in a tournament
Soroker, D.
1987-01-01
A tournament is a digraph T = (V,E) in which, for every pair of vertices, ..mu.. an ..nu.., exactly one of (..mu..,..nu..), (..nu..,..mu..) is in E. Two classical theorems about tournaments are that every tournament has a Hamiltonian path and that every strongly connected tournament has a Hamiltonian cycle. Furthermore, it is known how to find these in polynomial time. In this paper the authors discuss the parallel complexity of these problems. Their main result is that constructing a Hamiltonian path in a general tournament and a Hamiltonian cycle in a strongly connected tournament are both in NC. In addition, they give an NC algorithm for finding a Hamiltonain path with one fixed endpoint.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1995-03-01
To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.
Path integrals for dimerized quantum spin systems
NASA Astrophysics Data System (ADS)
Foussats, Adriana; Greco, Andrés; Muramatsu, Alejandro
2011-01-01
Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Néel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.
Automatic tool path generation for finish machining
Kwok, Kwan S.; Loucks, C.S.; Driessen, B.J.
1997-03-01
A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch diameter CBN grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm.
Path Models of Vocal Emotion Communication.
Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R
2015-01-01
We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076
Path Models of Vocal Emotion Communication
Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R.
2015-01-01
We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076
Color updating on the apparent motion path.
Chong, Edmund; Hong, Sang Wook; Shim, Won Mok
2014-01-01
When a static stimulus appears successively at two distant locations, we perceive illusory motion of the stimulus across them-long-range apparent motion (AM). Previous studies have shown that when the apparent motion stimuli differ in shape, interpolation between the two shapes is perceived across the AM path. In contrast, the perceived color during AM has been shown to abruptly change from the color of the first stimulus into that of the second, suggesting interpolation does not occur for color during AM. Here, we report the first evidence to our knowledge, that an interpolated color, distinct from the colors of either apparent motion stimulus, is represented as the intermediate percept on the path of apparent motion. Using carefully chosen target colors-cyan, pink, and lime-that are perceptually and neurally intermediate between blue and green, orange and magenta, and green and orange respectively, we show that detection of a target presented on the apparent motion path was impaired when the color of the target was "in-between" the initial and terminal stimulus colors. Furthermore, we show that this feature-specific masking effect for the intermediate color cannot be accounted for by color similarity between the intermediate color and the color of the terminal inducer. Our findings demonstrate that intermediate colors can be interpolated over the apparent motion trajectory as in the case of shape, possibly involving similar interpolation processes for shape and color during apparent motion. PMID:25527146
Optimum flight paths of turbojet aircraft
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.