Science.gov

Sample records for si crystals measured

  1. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  2. Improved measurement results for the Avogadro constant using a 28Si-enriched crystal

    NASA Astrophysics Data System (ADS)

    Azuma, Y.; Barat, P.; Bartl, G.; Bettin, H.; Borys, M.; Busch, I.; Cibik, L.; D'Agostino, G.; Fujii, K.; Fujimoto, H.; Hioki, A.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mana, G.; Massa, E.; Meeß, R.; Mizushima, S.; Narukawa, T.; Nicolaus, A.; Pramann, A.; Rabb, S. A.; Rienitz, O.; Sasso, C.; Stock, M.; Vocke, R. D., Jr.; Waseda, A.; Wundrack, S.; Zakel, S.

    2015-04-01

    New results are reported from an ongoing international research effort to accurately determine the Avogadro constant by counting the atoms in an isotopically enriched silicon crystal. The surfaces of two 28Si-enriched spheres were decontaminated and reworked in order to produce an outer surface without metal contamination and improved sphericity. New measurements were then made on these two reconditioned spheres using improved methods and apparatuses. When combined with other recently refined parameter measurements, the Avogadro constant derived from these new results has a value of NA = 6.022 140 76(12) × 1023 mol-1. The x-ray crystal density method has thus achieved the target relative standard uncertainty of 2.0  ×  10-8 necessary for the realization of the definition of the new kilogram.

  3. Molar-mass measurement of a 28Si-enriched silicon crystal for determination of the Avogadro constant

    NASA Astrophysics Data System (ADS)

    Narukawa, Tomohiro; Hioki, Akiharu; Kuramoto, Naoki; Fujii, Kenichi

    2014-06-01

    The molar mass of a 28Si-enriched crystal was measured at the National Metrology Institute of Japan to determine the Avogadro constant by the x-ray crystal density method as part of the International Avogadro Coordination project. The molar mass was determined by isotope ratio measurements using a multicollector inductively coupled plasma mass spectrometer combined with an isotope dilution technique. The 28Si-enriched crystal was dissolved in tetramethylammonium hydroxide and three different blended solutions were used to correct for mass bias in the measurement. The molar mass of the 28Si-enriched crystal was determined to be 27.976 970 09 g mol-1 with a standard uncertainty of 0.000 000 14 g mol-1. This corresponds to a relative standard uncertainty of 5.2 × 10-9. This result is consistent with measurements reported by the Physikalisch-Technische Bundesanstalt, Germany.

  4. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGESBeta

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  5. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction.

    PubMed

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-10-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  6. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  7. Lattice compression of Si crystals and crystallographic position of As impurities measured with x-ray standing wave spectroscopy

    SciTech Connect

    Herrera-Gomez, A. |; Rousseau, P.M.; Woicik, J.C.; Kendelewicz, T.; Plummer, J.; Spicer, W.E.

    1999-02-01

    In an earlier letter [Appl. Phys. Lett. {bold 68}, 3090 (1996)] we reported results about heavily arsenic doped silicon crystals, where we unambiguously showed, based on x-ray standing wave spectroscopy (XSW) and other techniques, that electrically deactivated As remains essentially substitutional. In this article we present the analysis methodology that led us to said conclusion, and show how from further analysis it is possible to extract the compression or expansion of thin epitaxial layers. We report the evolution of the compression of highly As doped Si epitaxial layers as deactivation takes place. The XSW measurements required a very small thickness of the doped layer and a perfect registry between the substrate and the surface layer. We found larger values for compression than previously reported, which may be explained by the absence of structural defects on our samples that relax the interface stress. Our results show a saturation on the compression as the electron concentration increases. We also report an estimation of the small displacement from perfect substitutional positions suffered by deactivated As. {copyright} {ital 1999 American Institute of Physics.}

  8. Evaluation of bulk β-FeSi2 crystal as a solar cell semiconductor through the photo-response measurements of Al/n-β-FeSi2 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Nakayama, Yasuhiko; Makita, Yunosuke

    2008-04-01

    β-FeSi2 has many attracting properties as a semiconductor not consisting of toxic chemical elements and is an ideal semiconductor as a thin film solar cell owing to its extremely high optical absorption coefficient. To evaluate β-FeSi2 as a solar cell, photo-response measurement is critically important and useful. Since β-FeSi2 thin films are normally deposited on Si substrates, intrinsic photo-response of β-FeSi2 is usually difficult to be collected due to the strong contribution from Si substrates. We here present the photo-response from bulk β-FeSi2 crystals, expecting that we can eliminate the contributions coming from the Si substrates and the crystallographic defects existing at the β-FeSi2/Si interfaces when we use β-FeSi2 thin films. We prepared bulk specimens by chemical vapor transport method (CVT) in which needle-like and plate-like β-FeSi2 crystals were obtained. We chose the former specimens for the formation of Al/n-β-FeSi2 Schottky contacts to measure their photo-responses. These contacts were found to form Schottky diodes even though there are large series resistances and leakage currents. Under laser light illumination of 1.31 μm through optical fiber, the positive voltage was observed between the Al contact and the In solder glued to the back-surface of β-FeSi2 bulk specimen. Two-dimensional distribution of photo-responses were measured by scanning the above optical fiber with the spot size of 50 μm. The highest photo-response was obtained in the vicinity of Al wire, and was 7.7 mA/W for the as-grown sample, and 31 mA/W for the annealing one, respectively. These observations state that β-FeSi2 holds appropriate optical features to be used as a solar cell.

  9. Influence of Containment on Defects in GeSi Crystals

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Croell, A.; Mazuruk, K.

    2009-01-01

    Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10(exp -5) m. A small meniscus bridges the gap between the top of the crystal and the wall. Key parameters involved in achieving detached growth are the contact angle between the melt and crucible and the pressure differential across the meniscus. Sessile drop measurements were used to determine the wetting angles of Ge(sub 1-x)Si(sub x) melts on a variety of substrates and found that the highest wetting angles were achieved with pyrolitic boron nitride (pBN). GeSi crystals have been repeatedly grown detached in pBN crucibles but only occasionally in crucibles with lower wetting angles. Experiments have been conducted to assess the effect of pressure differential across the meniscus in sealed crucibles. This was done by adjusting the temperature profile after partial melting of the starting material. In a separate set of experiments, the pressure was controlled by connecting the volume below the meniscus to a regulated gas supply. The experiments were in agreement with calculations which predicted that stable detachment will only occur in crucibles with a low wetting angle over a relatively narrow range of pressure differential. Detached-grown crystals exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  10. Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    NASA Astrophysics Data System (ADS)

    Abrams, K. J.; Hinks, J. A.; Pawley, C. J.; Greaves, G.; van den Berg, J. A.; Eyidi, D.; Ward, M. B.; Donnelly, S. E.

    2012-04-01

    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change.

  11. Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    SciTech Connect

    Abrams, K. J.; Greaves, G.; Berg, J. A. van den; Hinks, J. A.; Donnelly, S. E.; Pawley, C. J.; Eyidi, D.; Ward, M. B.

    2012-04-15

    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin ({approx_equal}55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change.

  12. Laser pulse crystallization and optical properties of Si/SiO2 and Si/Si3N4 multilayer nano-heterostructures

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Arzhannikova, S. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. Kh.; Cherkova, S. G.; Cherkov, A. G.; Kochubei, S. A.; Popov, A. A.; Robert, S.; Rinnert, H.; Vergnat, M.

    2013-01-01

    Furnace annealing, cw- and pulse laser treatments were applied for crystallization of amorphous Si nano-layers and Si nanoclusters in SiNx-Si3N4 and Si-SiO2 multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of hydrogen on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. This approach is applicable for the creation of dielectric films with semiconductor nanoclusters and silicon nanostructured films on non-refractory substrates for all-silicon tandem solar cells.

  13. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  14. Effect of Pt Doping on Nucleation and Crystallization in Li2O.2SiO2 Glass: Experimental Measurements and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Narayan, K. Lakshmi; Kelton, K. F.; Ray, C. S.

    1996-01-01

    Heterogeneous nucleation and its effects on the crystallization of lithium disilicate glass containing small amounts of Pt are investigated. Measurements of the nucleation frequencies and induction times with and without Pt are shown to be consistent with predictions based on the classical nucleation theory. A realistic computer model for the transformation is presented. Computed differential thermal analysis data (such as crystallization rates as a function of time and temperature) are shown to be in good agreement with experimental results. This modeling provides a new, more quantitative method for analyzing calorimetric data.

  15. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  16. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    PubMed

    Pramann, Axel; Rienitz, Olaf

    2016-06-01

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram. PMID:27173726

  17. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  18. 'Buffer-layer' technique for the growth of single crystal SiC on Si

    NASA Astrophysics Data System (ADS)

    Addamiano, A.; Sprague, J. A.

    1984-03-01

    The nature of the buffer layers needed for the single-crystal deposition of cubic SiC on Si substrates has been studied. The preparation of chemically formed surface layers of SiC on (100) Si wafers is described. The reaction-grown films of SiC were examined by reflection high-energy electron diffraction using an incident electron energy of 200 keV and by SEM using incident electron energies of 20 and 200 keV. It is concluded that the buffer layer obtained at about 1400 C is a stressed monocrystalline layer of cubic SiC whose crystals contain considerable imperfections. The stresses are due to quenching to room temperature because of the large difference between the thermal expansion coefficients of Si and SiC.

  19. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2010-01-01

    Majority of very large potential benefits of wide band gap semiconductor power electronics have NOT been realized due in large part to high cost and high defect density of commercial wafers. Despite 20 years of development, present SiC wafer growth approach is yet to deliver majority of SiC's inherent performance and cost benefits to power systems. Commercial SiC power devices are significantly de-rated in order to function reliably due to the adverse effects of SiC crystal dislocation defects (thousands per sq cm) in the SiC wafer.

  20. Solid state NMR of SiO 2 nanotube coated ammonium tartrate crystal

    NASA Astrophysics Data System (ADS)

    Lim, A. R.; Schueneman, G. T.; Novak, B. M.

    1999-04-01

    Ammonium tartrate crystal and SiO 2 nanotube coated ammonium tartrate crystal were studied by 13C CP/MAS NMR, and the structure of two samples were verified using the 13C NMR spectrum. The spin-lattice relaxation times for the carbons in the rotating frame, T1 ρ, have been measured as a function of temperature. All relaxation times of the carbons in the two materials undergo slow motions, i.e. motions on the slow side of the T1 ρ minimum. From these relaxation times, we determine the activation energy for the ammonium tartrate crystal and SiO 2 nanotube coated ammonium tartrate crystal, respectively. The activation energies for the SiO 2 nanotube coated ammonium tartrate crystal were found to be generally higher than those of ammonium tartrate crystal. We think that the higher activation energy for the hydrocarbon in the SiO 2 nanotube coated ammonium tartrate crystal is because of the bonding between the oxygen in the SiO 2 nanotube and the hydroxyl group of the ammonium tartrate crystal.

  1. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    PubMed Central

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  2. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer.

    PubMed

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm(2) above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  3. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    NASA Astrophysics Data System (ADS)

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-11-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.

  4. Synthesis and characterization of Mo 3Si single crystal

    NASA Astrophysics Data System (ADS)

    Rosales, I.

    2008-08-01

    Mo 3Si single crystals were successfully produced using an optical floating zone furnace. Reoriented specimens were obtained from the original crystal with <1 1 1>, <1 1 0> and <1 0 0> orientations. Cracking behavior of the crystals shows an interesting relation regarding their crystal orientation. Fracture toughness values show small orientation dependence. The hardness test shows that the hard plane is the (1 0 0), and the softest plane was the (1 1 0) and not the (1 1 1) as it was expected.

  5. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    NASA Astrophysics Data System (ADS)

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  6. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    SciTech Connect

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  7. Measurements, Standards, and the SI.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Highlights six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Topics addressed included history, status, and future of SI units, algebra of SI units, periodic table, new standard-state pressure unit, and suggested new names for mole concept ("numerity" and "chemical amount"). (JN)

  8. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    SciTech Connect

    Taboada, A. G. Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  9. Tin induced a-Si crystallization in thin films of Si-Sn alloys

    SciTech Connect

    Neimash, V. E-mail: oleks.goushcha@nuportsoft.com; Poroshin, V.; Goushcha, A. O. E-mail: oleks.goushcha@nuportsoft.com; Shepeliavyi, P.; Yukhymchuk, V.; Melnyk, V.; Kuzmich, A.; Makara, V.

    2013-12-07

    Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (2–4 nm in size) in the amorphous matrix of Si{sub 1−x}Sn{sub x}, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300 °C. The aggregate volume of nanocrystals in the deposited film of Si{sub 1−x}Sn{sub x} exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ∼80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.

  10. Shape-controlled crystal growth of Sr3NbGa3Si2O14 and Sr3TaGa3Si2O14 piezoelectric crystals by the micro-pulling-down method.

    PubMed

    Yokota, Yuui; Sato, Masato; Futami, Yoshisuke; Tota, Kazushige; Onodera, Ko; Yanagida, Takayuki; Yoshikawa, Akira

    2012-09-01

    We grew column-shaped Sr(3)NbGa(3)Si(2)O(14) (SNGS) and Sr(3)TaGa(3)Si(2)O(14) (STGS) langasite-type piezoelectric single crystals by the micro-pulling-down (μ-PD) method. 3-mm-diameter SNGS and STGS crystals were grown using a Pt-Rh crucible with a 3-mm-diameter columnar die. According to X-ray rocking curve measurements, the grown crystals had crystallinity equivalent to that of crystals grown by the Czochralski (Cz) method. The crystals were single-phase materials with langasite-type crystal structure. The lattice parameters of the grown crystals were almost consistent with those of crystals grown by the Cz method. PMID:23007751

  11. Studies of relativistic electron scattering at planar alignment in a thin Si crystal

    NASA Astrophysics Data System (ADS)

    Takabayashi, Y.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2014-04-01

    Experiments on 255-MeV electron scattering under (220) planar channeling conditions in a Si crystal were carried out at the linac of the SAGA Light Source. The spatial and angular distributions of electrons penetrating through a 20-μm thick Si crystal at different incident angles with respect to the (220) plane were measured, and features characteristic of the planar alignment were identified. The experimental results were compared with computer simulations, and showed a reasonable agreement. A comparison with doughnut scattering at axial channeling in the same crystal was also performed. It was confirmed that the planar alignment effect is weaker than the axial alignment effect. These studies are important for understanding the basic mechanism of electron scattering and radiation processes in a crystal.

  12. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  13. Investigation on cubic boron nitride crystals doped with Si by high temperature thermal diffusion

    NASA Astrophysics Data System (ADS)

    Li, Xinlu; Feng, Shuang; Liu, Xiuhuan; Hou, Lixin; Gao, Yanjun; Wang, Qi; Liu, Nian; Zhang, Hai; Chen, Zhanguo; Zheng, Jie; Jia, Gang

    2014-07-01

    The method of high temperature thermal diffusion was successfully applied for doping Si impurities into cubic boron nitride (cBN) crystals. X-ray photoelectron spectra (XPS) and the current-voltage (I-V) characteristics at different temperatures were respectively used for analyzing the chemical states and the activation energy of Si impurity in cBN. According to the XPS results, Si impurities mainly replace B atoms bonding with the adjacent N atoms and become donors in cBN. Without surface cleaning, there are a lot of C and O contaminations on the surface of cBN, so a small quantity of C-Si and Si-N-O bonds also exist at the surface of cBN. Most Si impurities distribute in the shallow layer underneath the surface of cBN. Based on the electric measurement, Si impurities in cBN usually have the activation energy beyond 0.4 eV, and they can only be slightly ionized at room temperature, therefore the resistivity of Si-doped cBN is still high, and the space charge limited current becomes the main conductive mechanism in cBN. However, the conductivity of Si-doped cBN can rapidly increase with the temperature. In addition, the activation energy and the concentration of Si impurity in cBN can be affected by the temperature and the time of thermal diffusion, which needs to be verified further.

  14. Structural characterization of Lu1.8Y0.2SiO5 crystals

    NASA Astrophysics Data System (ADS)

    Chiriu, Daniele; Faedda, Nicola; Lehmann, Alessandra Geddo; Ricci, Pier Carlo; Anedda, Alberto; Desgreniers, Serge; Fortin, Emery

    2007-08-01

    The structural and vibrational properties of Lu1.8Y0.2SiO5 (LYSO) single crystals were investigated by means of Raman spectroscopy and x-ray diffraction measurements. Unit cell parameters and bond lengths were determined by Rietveld refinement of the collected x-ray diffraction powder spectra. By comparison with the vibrational spectra of the parent compounds Lu2SiO5 and Y2SiO5 and by using polarized Raman measurements, we propose the assignment of the principal vibrational modes of LYSO crystals. The strict connection of Raman spectra of the LYSO solid solution and of the pure lutetium and yttrium crystals, as well as the analysis of the polarized measurements, confirms that LYSO structure adopts the C2/c space group symmetry. The structural analogies of LYSO with the pure compound Lu2SiO5 are further shown by means of high pressure Raman spectroscopy, and the possibility of considering the LYSO crystal analogous to the LSO structure with a tensile stress between 0.25 and 0.80GPa is discussed.

  15. Piezoelectric Ca3NbGa3Si2O14 crystal: crystal growth, piezoelectric and acoustic properties

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Erko, Alexei; Zizak, Ivo; Vadilonga, Simone; Irzhak, Dmitry; Emelin, Evgenii; Buzanov, Oleg; Leitenberger, Wolfram

    2016-08-01

    Ca3NbGa3Si2O14 (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{}_{11} and d_{14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/{+}36°-cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties.

  16. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  17. Crystal nucleation in Pd-Si alloys. [in containerless environment

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Turnbull, D.

    1982-01-01

    A study of the crystal phase nucleation in undercooled droplets of Pd-Si alloys with composition near the Pd(84.5)Si(15.5) eutectic composition is reported. Molten droplets are released at the top of a drop tube and solidify (to either a crystalline or glassy state) during descent. This provides a containerless (and nearly gravity free) environment so that nucleation due to container walls or vibrations is eliminated. It is found that crystallization, due to homogeneous nucleation, is bypassed in droplets of 1 mm diameter when cooled at 760 K/sec. From this an upper limit of the homogeneous nucleation rate is estimated. Results are compared with a previously published study of nucleation in 0.06 mm to 0.33 mm diameter droplets, which indicated that nucleation results from heterogeneous surface nucleation and that the number of these nuclei is dependent on the atmosphere in the drop tube.

  18. Growth and characterization of large CdSiP 2 single crystals

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Schunemann, Peter G.; Pollak, Thomas C.; Zelmon, David E.; Fernelius, Nils C.; Kenneth Hopkins, F.

    2010-04-01

    Large, optically transparent crystals of CdSiP 2 (CSP) have been grown for the first time from a stoichiometric melt. The material is a high temperature analog to ZnGeP 2 with promising characteristics for IR frequency conversion. Crystals are birefringent and are transparent from 0.5 to 9 μm. Polycrystalline charges were successfully synthesized from high purity elemental starting materials by two-temperature vapor transport despite the very high equilibrium vapor pressure (˜22 atm) at the melting point of CdSiP 2 (1133 °C). Single crystals were grown using the horizontal gradient freeze (HGF) technique in high-temperature transparent furnaces. Over the course of several growth runs, the material proved to be prone to cracking and to twinning along (1 1 2) planes. Twinning was eliminated by seeded growth along directions normal to the 112 planar boundaries. Further modifications to growth conditions resulted in high optical quality, crack- and twin-free single crystals 70×25×8 mm 3. The largest CdSiP 2 single crystals previously reported in the literature were grown through either halogen assisted vapor transport or from a molten Sn flux and measured 2×2×0.2 mm 3. The HGF growth of large CdSiP 2 crystals has allowed several bulk properties to be measured for the first time, including the thermal expansion coefficients, thermal conductivity, and wavelength dependent birefringence and dispersion. Measurements of the optical and thermal properties reveal this to be an extremely promising material for 1-, 1.5-, and 2 μm-pumped mid-IR lasers.

  19. Optical hyperpolarization and inductive readout of 31P donor nuclei in natural abundance single crystal 29Si

    NASA Astrophysics Data System (ADS)

    Alexander, Thomas; Haas, Holger; Deshpande, Rahul; Gumann, Patryk; Cory, David

    2016-05-01

    We optically polarize and inductively detect 31P donor nuclei in single crystal silicon at high magnetic fields (6 . 7T). Samples include both natural abundance 29Si and an isotopically purified 28Si sample. We observe dipolar order in the 29Si nuclear spins through a spin-locking measurement. This provides a means of characterizing spin transport in the vicinity of the 31P donors.

  20. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    NASA Astrophysics Data System (ADS)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μe, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  1. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.

    PubMed

    Pinion, Christopher W; Nenon, David P; Christesen, Joseph D; Cahoon, James F

    2014-06-24

    The vapor-liquid-solid (VLS) mechanism is widely used for the synthesis of semiconductor nanowires (NWs), yet several aspects of the mechanism are not fully understood. Here, we present comprehensive experimental measurements on the growth rate of Au-catalyzed Si NWs over a range of temperatures (365-480 °C), diameters (30-200 nm), and pressures (0.1-1.6 Torr SiH4). We develop a kinetic model of VLS growth that includes (1) Si incorporation into the liquid Au-Si catalyst, (2) Si evaporation from the catalyst surface, and (3) Si crystallization at the catalyst-NW interface. This simple model quantitatively explains growth rate data collected over more than 65 distinct synthetic conditions. Surprisingly, upon increasing the temperature and/or pressure, the analysis reveals an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. The identification of two distinct growth regimes provides insight into the synthetic conditions needed for specific NW-based technologies, and our kinetic model provides a straightforward framework for understanding VLS growth with a range of metal catalysts and semiconductor materials. PMID:24815744

  2. Si-O Bonded Interactions in Silicate Crystals and Molecules: A Comparison

    SciTech Connect

    Gibbs, Gerald V.; Jayatilaka, Dylan; Spackman, M. A.; Cox, David F.; Rosso, Kevin M.

    2006-11-16

    Bond critical point, local kinetic energy density, G(rc), and local potential energy density, V(rc), properties of the electron density distributions, ρ(r), calculated for silicates like quartz and molecules like disiloxane are similar, indicating that the forces that govern the Si-O bonded interactions in crystals are short-ranged and molecular-like. Using the G(rc)/ρ(rc) ratio as a measure of bond character, the ratio increases as the Si-O bond length, the local electronic energy density, H(rc) = G(rc) + V(rc), and the oordination number of the Si atom decrease, and as the value of the electron density at the bond critical point, ρ(rc) and the Laplacian, ∇2ρ(rc), increase. The G(rc)/ρ(rc) and H(rc)/ρ(rc) ratios categorize the bond as observed for other second row atom M-O bonds into nonequivalent classes with the covalent character of each of the M-O bonds increasing with the H(rc)/ρ(rc) ratio. Some workers consider the Si-O bond to be highly ionic and others considered it to be either intermediate or substantially covalent. The character of the bond is examined in terms of the large net atomic basin charges conferred on the Si atoms comprising disiloxane, stishovite, quartz and forsterite, the domains of localized electron density along the Si-O bond vectors and on the reflex side of the Si-O-Si angle together with the close similarity of the Si-O bonded interactions observed for a variety of hydroxyacid silicate molecules and a large number of silicate crystals. The bond critical point and local energy density properties of the electron density distribution indicate that the bond is intermediate in character between Al-O and P-O bonded interations rather than being ionic or covalent.

  3. Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si

    SciTech Connect

    Yao, Jinlei; Isnard, O.; Morozkin, A.V.; Ivanova, T.I.; Koshkid'ko, Yu.S.; Bogdanov, A.E.; Nikitin, S.A.; Suski, W.

    2015-02-15

    Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space

  4. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGESBeta

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  5. Crystal structure of SiB/sub 6/

    SciTech Connect

    Vlasse, M.; Slack, G.A.; Garbauskas, M.; Kasper, J.S.; Viala, J.C.

    1986-06-01

    The accurate and detailed structure of the compound SiB/sub 6/ has been determined by single-crystal X-ray diffraction. The final R value was 6.1% for 4225 reflections. The cell is orthorhombic with space group Pnnm and a = 14.397(7) A, b = 18.318(9) A, c = 9.911(7) A, and from the electron density appears to contain 43 silicon atoms and 238 boron atoms. The structure contains many features found in other structures of boron-rich phases, and obeys the crystal chemistry rules established for them. It contains interconnected icosahedra, icosihexahedra, as well as several isolated boron and silicon atoms. An unusual feature of this structure is the presence of icosihexahedra containing silicon atoms similar to those found previously in BeB/sub 3/.

  6. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  7. Single crystal growth and characterization of URu2Si2

    NASA Astrophysics Data System (ADS)

    Haga, Yoshinori; Matsuda, Tatsuma D.; Tateiwa, Naoyuki; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary

    2014-11-01

    We review recent progress in single crystal growth and study of electronic properties in ?. Czocharalski pulling, using purified uranium metal and subsequent annealing under ultra-high vacuum, is successfully applied to this compound, and it yields the highest residual resistivity ratio. These high-quality single crystals allow us to investigate Fermi surfaces using quantum oscillation and to make detailed transport measurements at low temperature.

  8. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    NASA Astrophysics Data System (ADS)

    Taboada, A. G.; MeduÅa, M.; Salvalaglio, M.; Isa, F.; Kreiliger, T.; Falub, C. V.; Barthazy Meier, E.; Müller, E.; Miglio, L.; Isella, G.; von Känel, H.

    2016-02-01

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of {111} planes and an apex formed by {137} and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.

  9. Orientational bonding of phases accompanying directed crystallization of the eutectic of the system Si-TiSi2

    NASA Astrophysics Data System (ADS)

    Derevyagina, L. S.; Butkevich, L. M.

    1987-09-01

    The characteristic features of structure formation in cast and direct crystallized alloys of the system Si-TiSi2 were studied. It is shown that the predominant orientation of the bonding of the phases in directionally crystallized eutectics (DE) of the system Si-TiSi2, observed at the stage of steady-state growth, already appears on the surface of nucleation, which apparently indicates that the nucleation of the phases in the alloys of this system is of an epitaxial character.

  10. Study of hydrogen states in a-Si:H films, dehydrogenization treatments and influence of hydrogen on nanosecond pulse laser crystallization of a-Si:H

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Galkov, M. S.; Safronova, N. A.; Kamaev, G. N.; Antonenko, A. H.; Kochubey, S. A.

    2014-12-01

    Structures based on hydrogenated amorphous silicon (a-Si:H) films deposited on various substrates (including not refractory ones) are widely applied in giant microelectronics devices, such as flat panel displays based on active matrix thin-film transistors and solar cells. The a-Si:H films produced by plasma enhanced chemical vapor deposition (PECVD) methods, contain up to 40% atoms of hydrogen. The influence of hydrogen on the optical and electrical properties of the films and their degradation is important. Therefore, the development of express and non-destructive methods for control of the hydrogen concentration in thin films continues to be an actual task to date. Previously, from a comparative analysis of infrared (IR) spectroscopy and Raman scattering spectroscopy, the ratios of the integral intensities of Raman peaks due to scattering by vibrations of the Si-H and Si-H2 bonds to the intensity of Raman peak of the Si-Si bonds were experimentally determined. Knowing these ratios, it is possible to measure the hydrogen concentration, moreover, separately in Si-H and Si-H2 states. Proposed quantitative method for determining of the hydrogen concentration from analysis of the Raman spectra is an express, non-destructive method and can be used for "in situ" monitoring of the hydrogen. The aim of this work was to determine the polarization dependence of Raman scattering by stretching vibrations of Si-H bonds and find the form of the corresponding Raman tensors. From analysis of Raman intensities in different polarizations the Raman tensors for Si-H and Si-H2 bonds were determined. The regimes for dehydrogenization of thick (up to 1 micron) a-Si:H films were found. The nanosecond pulse XeCl laser with wavelength of 308 nm and pulse duration of 10 ns was used for pulse crystallization of as-deposited and dehydrogenated films. As it was studied earlier, for a-Si:H films with high hydrogen concentration, the threshold for crystallization is very close to threshold of

  11. Charge transfer of single laser crystallized intrinsic and phosphorus-doped Si-nanocrystals visualized by Kelvin probe force microscopy

    SciTech Connect

    Xu, Jie; Xu, Jun Lu, Peng; Shan, Dan; Li, Wei; Chen, Kunji

    2014-10-07

    Isolated intrinsic and phosphorus doped (P-doped) Si-nanocrystals (Si-NCs) on n- and p-Si substrates are fabricated by excimer laser crystallization techniques. The formation of Si-NCs is confirmed by atomic force microscopy (AFM) and conductive AFM measurements. Kelvin probe force microscopy (KPFM) is then carried out to visualize the trapped charges in a single Si-NC dot which derives from the charge transfer between Si-NCs and Si substrates due to their different Fermi levels. The laser crystallized P-doped Si-NCs have a similar Fermi level around the mid-gap to the intrinsic counterparts, which might be caused by the inactivated impurity atoms or the surface states-related Fermi level pinning. A clear rise of the Fermi level in P-doped Si-NCs is observed after a short time thermal annealing treatment, indicating the activation of dopants in Si-NCs. Moreover, the surface charge quantity can be estimated using a simple parallel plate capacitor model for a quantitative understanding of the KPFM results at the nanoscale.

  12. Plastic anisotropy in MoSi{sub 2} single crystals

    SciTech Connect

    Mitchell, T.E.; Maloy, S.A.

    1993-05-01

    Single crystals Of MoSi{sub 2} are an order of magnitude stronger when compressed along [001] than along any other orientation. This is because the easy slip systems, <101><100> and <110><111>, have a zero Schmid factor acting on them so that harder slip systems are forced into operation. We find that [001] crystals compressed at 1OOO{degree}C yield by slip on <103><331>. TEM shows that the 1/2<331> dislocations tend to decompose into 1/2<111> and <110> dislocations. This decomposition process apparently inhibits the mobility of 1/2<331> dislocations at higher temperatures and another system, <101><1ll>, becomes operative at 1300{degree}C and above. [021] crystals have been tested for comparison and are found to yield at much lower stresses on the easy systems. In the design of advanced high temperature structural materials based on MOSi{sub 2}, the large plastic anisotropy should be used to advantage.

  13. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-06-01

    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  14. The closo-Si12C12 molecule from cluster to crystal: A theoretical prediction

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng F.; Burggraf, Larry W.

    2016-03-01

    The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m > 4) because of its high symmetry, π-π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si-Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortion of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C6 rings in monomer moiety.

  15. Investigation of single crystal zircon, (Zr,Pu)SiO4 doped with Pu

    NASA Astrophysics Data System (ADS)

    Hanchar, J. M.; Burakov, B. E.; Anderson, E. B.; Zamoryanskaya, M. V.

    2003-04-01

    Zircon-based ceramics are under consideration as durable waste forms for immobilization of weapons grade plutonium and other actinide elements. Samples of polycrystalline zircon doped with 238Pu and 239Pu have been obtained in previous studies. These materials, however, are difficult to use for precise measurement of the leach-rate of Pu, and to accurately determine the level of Pu doping that can be attained in zircon, (Zr,Pu)SiO_4. Single crystals of 238Pu doped zircon (ranging from 0.3 to 3.5 mm in size) were successfully grown for the first time ever using a Li-Mo flux synthesis method. The incorporation of Pu ranged from 1.9 to 4.7 wt. % el. (with approximately 81 wt.% of 238Pu isotope) based on electron microprobe analysis. The zircon crystals were pinkish-brown when they were crystallized, and then over a period of five months changed to a brown color. After fourteen months the crystals turned to a brown-gray color. The zircon crystals glow in the dark probably from alpha particle induced luminescence. The intensity of the cathodoluminescence (CL) emission in the Pu doped crystals is correlated with the Pu content, and the CL emission showed no change 141 days after the initial CL measurements were made. Single crystal X-ray diffraction results obtained 141 days after synthesis indicate unit cell parameters (in angstroms): a = 6.6267(15), c = 5.9992(10) and a cell volume of 263.41(10). When the zircon crystals were grown, they were free of cracks. Over the course of five months cracks appeared throughout the crystals, and after fourteen months the cracks became much more abundant. The zircon crystals were transparent upon crystallization, and even with numerous cracks throughout the crystals remain transparent. Radiation damage calculations indicate that after only a short period of time, six months, these zircon crystals had already accumulated significant alpha-induced radiation damage (˜2.5 x1014 alpha-decay events per milligram). After five years they

  16. Evaluation of Stress and Crystal Quality in Si During Shallow Trench Isolation by UV-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosemura, Daisuke; Hattori, Maki; Yoshida, Tetsuya; Mizukoshi, Toshikazu; Ogura, Atsushi

    2010-06-01

    Defects and stress gradually accumulate throughout various Si large-scale integration fabrication processes. It is essential to monitor defects and stress carefully to suppress their unintentional introduction. In this study, we measured the stress and crystal quality in shallow trench isolation (STI) samples by ultraviolet (UV)-Raman spectroscopy with an extremely high-resolution wavenumber to evaluate the effect of post-annealing on the recovery of Si crystals. The variations of crystal quality in 200-mm wafers with STI structures gradually decreased after post-annealing for 4 h, 6 h, and 8 h; however, there was no substantial difference in the values of full-width at half-maximum of the Raman spectra. Precise measurements of variations of stress and crystal quality were successfully performed by UV-Raman spectroscopy with a high-resolution wavenumber, which enabled us to evaluate the STI process accurately.

  17. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO·2SiO2·CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  18. SiPM optical crosstalk amplification due to scintillator crystal: effects on timing performance

    NASA Astrophysics Data System (ADS)

    Gola, Alberto; Ferri, Alessandro; Tarolli, Alessandro; Zorzi, Nicola; Piemonte, Claudio

    2014-07-01

    For a given photon detection efficiency (PDE), the primary, Poisson distributed, dark count rate of the detector (DCR0) is one of the most limiting factors affecting the timing resolution of a silicon photomultiplier (SiPM) in the scintillation light readout. If the effects of DCR0 are removed through a suitable baseline compensation algorithm or by cooling, it is possible to clearly observe another phenomenon that limits the PDE, and thus the timing resolution of the detector. It is caused by the optical crosstalk of the SiPM, which is significantly increased by the presence of the scintillator. In this paper, we describe this phenomenon, which is also easily observed from the reverse I-V curve of the device, and we relate it to the measured coincidence resolving time in 511 keV γ-ray measurements. We discuss its consequences on the SiPM design and, in particular, we observe that there is an optimal cell size, dependent on both SiPM and crystal parameters, that maximizes the PDE in presence of optical crosstalk. Finally, we report on a crosstalk simulator developed to study the phenomenon and we compare the simulation results obtained for different SiPM technologies, featuring different approaches to the reduction of the crosstalk.

  19. SiPM optical crosstalk amplification due to scintillator crystal: effects on timing performance.

    PubMed

    Gola, Alberto; Ferri, Alessandro; Tarolli, Alessandro; Zorzi, Nicola; Piemonte, Claudio

    2014-07-01

    For a given photon detection efficiency (PDE), the primary, Poisson distributed, dark count rate of the detector (DCR0) is one of the most limiting factors affecting the timing resolution of a silicon photomultiplier (SiPM) in the scintillation light readout. If the effects of DCR0 are removed through a suitable baseline compensation algorithm or by cooling, it is possible to clearly observe another phenomenon that limits the PDE, and thus the timing resolution of the detector. It is caused by the optical crosstalk of the SiPM, which is significantly increased by the presence of the scintillator. In this paper, we describe this phenomenon, which is also easily observed from the reverse I-V curve of the device, and we relate it to the measured coincidence resolving time in 511 keV γ-ray measurements. We discuss its consequences on the SiPM design and, in particular, we observe that there is an optimal cell size, dependent on both SiPM and crystal parameters, that maximizes the PDE in presence of optical crosstalk. Finally, we report on a crosstalk simulator developed to study the phenomenon and we compare the simulation results obtained for different SiPM technologies, featuring different approaches to the reduction of the crosstalk. PMID:24922188

  20. Effect of SiO2 on the Crystal Structure Stability of SFC at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Guo, Xing-Min; Ma, Chen-Yan; Tang, Kun; Zhao, Yi-Dong

    2015-03-01

    Silico-ferrite of calcium (SFC) is a key intermediate phase in the sintering process of fine iron ores, and SiO2 plays an important role in the formation of SFC. In this work, the crystal structure stability of SFC synthesized at 1473 K (1200 °C) has been determined by X-ray diffraction, field-emission scanning electron microscopy, and X-ray absorption spectra. Synthesis of SFC was carried out under air at 1473 K (1200 °C) by mixing different amounts of SiO2 with Fe2O3 and CaCO3. The results show that the maximum solid solubility of SiO2 in the crystal structure of SFC does not exceed 6.11 wt pct at 1473 K (1200 °C); under these conditions, Fe2O3 begins to appear. The process of Si solution is closely related to the presence of a Ca channel composed of Ca octahedron in the crystal structure of SFC based on the results from the measurements of Ca K-edge X-ray absorption spectra. Si mainly occupies the center positions of the upper and lower tetrahedron adjacent to Ca channel. The length of Ca-Ca bond in Ca channel increases with the increasing of Si content. The crystal structure stability of SFC may be related to the structure of the Ca channel.

  1. Electroactive complex in thermally treated Ge-Si crystals

    SciTech Connect

    Azhdarov, G. Kh.; Zeynalov, Z. M.; Zakhrabekova, Z. M.; Kyazimova, A. I.

    2010-05-15

    It is shown by Hall measurements that quenching complexly doped Ge{sub 1-x}Si{sub x} (0 {<=} x {<=} 0.20) crystals from 1050-1080 K leads to the formation of additional electroactive acceptor centers in them. The activation energy of these centers increases linearly with an increase in the silicon content in the crystal and is described by the relation E{sub k}{sup x} = (52 + 320x) meV. Annealing these crystals at 550-570 K removes the additional acceptor levels. It is established that the most likely model for the additional electroactive centers is a pair composed of substituent copper and aluminum atoms (Cu{sub s}Al{sub s}) or interstitial copper and substituent aluminum atoms (Cu{sub i}Al{sub s}). It is shown that the generation of additional deep acceptor levels must be taken into account when using the method of precise doping of Ge{sub 1-x}Si{sub x} crystals with copper.

  2. Dynamic crystallization during non-isothermal laser treatment of Fe-Si-B metallic glass

    NASA Astrophysics Data System (ADS)

    Joshi, Sameehan S.; Gkriniari, Anna V.; Katakam, Shravana; Dahotre, Narendra B.

    2015-12-01

    Fe-Si-B metallic glass foils were subjected to non-isothermal laser treatment to induce crystallization, and the effect of laser fluence on crystallite size was investigated. Temperature, and corresponding heating and cooling rates generated during laser processing of metallic glass were estimated using multiphysics computational models. Estimation of the onset and arrest temperatures of crystallization was based on the results obtained using the thermal model. Crystallite size was measured with the aid of x-ray diffraction and transmission electron microscopy. The fraction of crystallization was estimated with a differential scanning calorimetry. Crystallite size increased with laser fluence in the initial stages and saturated later within the laser fluence range (0.6-0.9 J mm-2) explored in the current efforts. The fraction of crystallization steadily increased with the increase in laser fluence. Unlike conventional processes, in the present situation the dynamic effects during laser processing dominated the crystallization and growth process. Rapid heating rates during laser processing led to a shift in the onset of crystallization temperature to a higher level. Faster cooling rates prematurely arrested the crystallite growth yielding much finer crystallite sizes.

  3. Morphology and kinetics of crystallization of amorphous V75Si25 thin-alloy films

    NASA Astrophysics Data System (ADS)

    Nava, F.; Weiss, B. Z.; Tu, K. N.; Smith, D. A.; Psaras, P. A.

    1986-10-01

    Electrical and microstructural changes of coevaporated V75Si25 alloy thin films have been studied as a function of temperature from room temperature to 830 °C. In situ resistivity measurements, hot-stage transmission electron microscopy, Rutherford backscattering spectroscopy and the Seeman-Bohlin glancing angle incidence x-ray diffraction technique were applied. Upon heat treatment at a heating rate of 8 °C/min, a sharp decrease in resistivity occurs at ˜670 °C which results from an amorphous to crystalline phase transformation. The crystallized phase was identified as V3Si. The mechanism of transformation is random nucleation at a rapidly decreasing rate and a fast quasi-isotropic growth. The kinetics of crystallization have been studied by utilizing electrical resistivity measurements during isothermal heat treatment. Six different temperatures between 570 °C and 630 °C were adopted. The apparent activation energy (˜3.6 eV) obtained from isothermal measurements was found to be in agreement with that obtained from nonisothermal treatments at varying rates of heating. The distinct change of the Avrami mode parameter from 4 to 2 at a constant value of t/τ during the process of crystallization is not immediately understood.

  4. Influence of a thin interfacial oxide layer on the ion beam assisted epitaxial crystallization of deposited Si

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Ferla, G.; Baroetto, F.; Licciardello, A.

    1988-12-01

    The epitaxial crystallization of chemical vapor deposited Si layers on <100> Si substrates with a thin interfacial oxide layer was induced by a 600 keV Kr beam in the temperature range 350-500 °C. During irradiation the single crystal-amorphous interface velocity was measured in situ by monitoring the reflectivity of He-Ne laser light. We show that a critical irradiation dose is needed before the interfacial oxide breaks down and epitaxial regrowth can take place. This critical dose depends exponentially on the reciprocal temperature with an activation energy of 0.44 eV.

  5. Effect of 6H-SiC crystal growth shapes on thermo-elastic stress in the growing crystal

    NASA Astrophysics Data System (ADS)

    Shi, Yong-gui; Dai, Pei-yun; Yang, Jian-feng; Jin, Zhi-hao; Liu, Hu-lin

    2012-07-01

    The effect of 6H-SiC crystal growth shapes on the thermo-elastic stress distribution in the growing crystal was systematically investigated by using a finite element method. The thermo-elastic stress distribution in the crystal with a flat growth shape was more homogeneous than that in the crystals with concave and convex growth shapes, and the value of thermo-elasticity in the crystal with a flat growth shape was also smaller than that in the two other types of crystals. The maximum values of thermo-elastic stress appeared at interfaces between the crystal and the graphite lid. If the lid was of the same properties as 6H-SiC, the thermo-elastic stress would decrease in two orders of magnitude. Thus, to grow 6H-SiC single crystals of high quality, a transition layer of SiC formed by deposition or reaction is suggested; meanwhile the thermal field in the growth chamber should be adjusted to maintain the crystals with flat growth shapes.

  6. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    SciTech Connect

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-02-17

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.

  7. Single crystal growth of type I Na-Si clathrate by using Na-Sn flux

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Shimoda, Masashi; Yamane, Hisanori

    2016-09-01

    Single crystals of type I Na-Si clathrate, Na8Si46, were synthesized by heating Na, Na4Si4, and Na15Sn4 at 723 K under an Ar gas pressure of 104 Pa for 12 h. The single crystals having {110} habit planes grew up to 1.5 mm in size due to Na evaporation from a Na-Si-Sn melt with a starting compositional molar ratio of Na/Si/Sn=5.75:2:1.

  8. Growth of cubic SiC single crystals by the physical vapor transport technique

    NASA Astrophysics Data System (ADS)

    Semmelroth, K.; Krieger, M.; Pensl, G.; Nagasawa, H.; Püsche, R.; Hundhausen, M.; Ley, L.; Nerding, M.; Strunk, H. P.

    2007-10-01

    Suitable process parameters for the growth of cubic 3C-SiC single crystals via the seeded physical vapor transport (PVT) technique, also known as the modified Lely method, have been determined. Free-standing, 200 μm thick 3C-SiC epilayers with (0 0 1)- or (0 0 1¯)-face grown on undulant Si (0 0 1) as well as 3C-SiC platelets with [1 1 1]- or [1¯ 1¯ 1¯]-orientation grown by thermal decomposition of methyl trichlorosilane in hydrogen were employed as seed crystals. The source material consisted of stoichiometric SiC; in addition, a separate Si source was deposited in the furnace at a temperature of about 1500 °C. The temperature of the seed crystals was kept at about 1900 °C. Stable growth of 3C-SiC bulk material of high crystalline quality was reached on 3C-SiC seed crystals with (0 0 1)-face providing a low density of planar defects and at near-thermal-equilibrium conditions resulting in a reduction of internal stress and as a consequence in avoiding the generation of new extended crystal defects. The growth rate achieved under these conditions was approximately 0.05 mm/h. The nitrogen donor concentration in the grown 3C-SiC crystals was determined to be equal to (2-6)×10 18 cm -3.

  9. Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method

    NASA Astrophysics Data System (ADS)

    Nakagawa, Reo; Katsumata, Hiroshi; Hashimoto, Satoshi; Sakuragi, Shiro

    2015-08-01

    The synthesis of Mg2Si bulk crystals was performed by the vertical gradient freezing method using a KCl-MgCl2 eutectic liquid encapsulant. Stoichiometric polycrystalline Mg2Si bulk crystals were successfully grown by changing the composition ratio of starting Mg and Si powders (Mg/Si) from 2.0 to 3.5. A chemical reaction between Mg2Si and the crucible materials was inhibited using encapsulant materials, and the contamination by K or Cl originating from the encapsulant materials was not detected in almost all the samples. However, Mg evaporation could not be prevented completely during the synthesis and crystal growth. The optical band-gap energy of Mg2Si bulk crystals became minimal (0.79 eV) at a Mg/Si ratio of 2.5, at which the maximum electron mobility of 202 cm2·V-1·s-1 was obtained. These results indicate that the composition ratio of Mg/Si = 2.5 for starting Mg and Si powders was optimal for synthesizing Mg2Si bulk crystals with high crystalline quality.

  10. Thermal expansion measurements on Fe substituted URu2Si2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Wolowiec, Christian; Jeon, Inho; Pouse, Naveen; Kanchanavatee, Noravee; Huang, Kevin; Maple, M. Brian; Dapron, Tyler; Williamsen, Mark; Snow, David; Martien, Dinesh; Spagna, Stefano

    The search for the order parameter of the hidden order (HO) phase in URu2Si2 has attracted an enormous amount of attention for the past three decades. The small antiferromagnetic moment of only ~0.03 μB/U found in the HO phase is too small to account for the entropy of ~0.2Rln(2) derived from the second order mean field BCS-like specific heat anomaly associated with the HO transition that occurs below To = 17.5 K. A first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phase occurs under pressure. We have recently demonstrated that tuning URu2Si2B>by substitution of Fe for Ru reproduces the temperature vs applied pressure phase diagram.and offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. Motivated by this observation, we performed thermal expansion measurements on URu2-xFexSi2 single crystals for various values of x in both the HO and LMAFM regions of the phase diagram. Interesting preliminary results have emerged from these studies that shed light on the LMAFM phase and its relationship with the elusive HO phase. Research in UCSD is supported by US DOE BES under Grant No. DE-FG02-04-ER46105 (materials synthesis and characterization) and US NSF under Grant No. DMR-1206553 (low temperature measurements).

  11. Analysis of Basal Plane Bending and Basal Plane Dislocations in 4H-SiC Single Crystals

    NASA Astrophysics Data System (ADS)

    Ohtani, Noboru; Katsuno, Masakazu; Fujimoto, Tatsuo; Nakabayashi, Masashi; Tsuge, Hiroshi; Yashiro, Hirokatsu; Aigo, Takashi; Hirano, Hosei; Hoshino, Taizo; Ohashi, Wataru

    2009-06-01

    4H-SiC single crystals were grown by the physical vapor transport (PVT) growth method under different thermoelastic stress conditions, and the degree of basal plane bending in the crystals was characterized by the peak shift measurement of X-ray rocking curves. The results indicate that the degree of basal plane bending largely depends on the magnitude of the thermoelastic stresses imposed on the crystals during PVT growth. Quantitative analysis of basal plane bending revealed that the density of basal plane dislocations (BPDs) estimated from basal plane bending is much smaller than that obtained from defect-selective etching. It was also found that the BPD density is correlated with the threading screw dislocation (TSD) density in PVT-grown SiC crystals. These aspects of BPDs were discussed in terms of the BPD multiplication process triggered by the intersection of BPDs with a forest of TSDs extending along the c-axis.

  12. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  13. Oxidation behavior of CVD and single crystal SiC at 1100 C

    SciTech Connect

    Ramberg, C.E.; Spear, K.E.; Tressler, R.E.; Chinone, Yoshiharu

    1995-11-01

    High purity chemical vapor deposition (CVD) silicon carbide fabricated by a commercial process was examined and oxidized at 1,100 C along with high purity single crystal silicon carbide. The freestanding CVD thick films had a highly textured polycrystalline microstructure, with the <111> directions of the crystals parallel to the growth direction. This texturing maintained the polarity of the 43m crystal structure, implying that either the [111] or the [1{und 1}1] direction grew significantly faster during the CVD process. The (111) face of the cubic, CVD-SiC oxidized at the same rate as the (0001) face of the single crystal SiC. The (111) face of the CVD-SiC oxidized at nominally the same rat as the (0001) face of the single crystal SiC.

  14. Low-temperature elastic properties of Sr3NbGa3Si2O14 single crystals

    NASA Astrophysics Data System (ADS)

    Sotnikov, A. V.; Smirnova, E. P.; Schmidt, H.; Weihnacht, M.

    2015-06-01

    The elastic properties of new piezoelectric Sr3NbGa3Si2O14 crystals of the langasite (lanthanum gallium silicate) family have been investigated. The temperature dependences of the elastic constants C 11, C 33, C 66, and C 44 have been measured in a wide temperature range from 300 to 4.2 K. The characteristic parameters of the crystal associated with the Einstein temperature and the Grüneisen parameter have been estimated at cryogenic temperatures. It has been shown that the piezoelectric activity of the crystal remains almost unchanged with a decrease in temperature from 300 to 4.2 K.

  15. Truncated tetrahedron seed crystals initiating stereoaligned growth of FeSi nanowires.

    PubMed

    Kim, Si-in; Yoon, Hana; Seo, Kwanyong; Yoo, Youngdong; Lee, Sungyul; Kim, Bongsoo

    2012-10-23

    We have synthesized epitaxially grown freestanding FeSi nanowires (NWs) on an m-Al(2)O(3) substrate by using a catalyst-free chemical vapor transport method. FeSi NW growth is initiated from FeSi nanocrystals, formed on a substrate in a characteristic shape with a specific orientation. Cross-section TEM analysis of seed crystals reveals the crystallographic structure and hidden geometry of the seeds. Close correlation of geometrical shapes and orientations of the observed nanocrystals with those of as-grown NWs indicates that directional growth of NWs is initiated from the epitaxially formed seed crystals. The diameter of NWs can be controlled by adjusting the composition of Si in a Si/C mixture. The epitaxial growth method for FeSi NWs via seed crystals could be employed to heteroepitaxial growth of other compound NWs. PMID:22966939

  16. Measuring Light Reflectance of BGO Crystal Surfaces

    SciTech Connect

    Janecek, Martin; Moses, William

    2008-07-28

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal?s light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air- coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2? of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 10^5:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  17. Devitrification and delayed crazing of SiO2 on single-crystal silicon and chemically vapor-deposited silicon nitride

    NASA Technical Reports Server (NTRS)

    Choi, Doo Jin; Scott, William D.

    1987-01-01

    The linear growth rate of cristobalite was measured in thin SiO2 films on silicon and chemically vapor-deposited silicon nitride. The presence of trace impurities from alumina furnace tubes greatly increased the crystal growth rate. Under clean conditions, the growth rate was still 1 order-of-magnitude greater than that for internally nucleated crystals in bulk silica. Crystallized films cracked and lifted from the surface after exposure to atmospheric water vapor. The crystallization and subsequent crazing and lifting of protective SiO2 films on silicon nitride should be considered in long-term applications.

  18. Improved techniques for growth of large-area single-crystal Si sheets over SiO2 using lateral epitaxy by seeded solidification

    NASA Astrophysics Data System (ADS)

    Tsaur, B.-Y.; Fan, J. C. C.; Geis, M. W.; Silversmith, D. J.; Mountain, R. W.

    1981-10-01

    Continuous single-crystal Si sheets over SiO2 with areas of several square centimeters have been produced from poly-Si films by the LESS technique (lateral epitaxy by seeded solidification). Seeding is achieved either with a narrow stripe opening in a recessed SiO2 layer on a single-crystal Si substrate or with an external single-crystal Si seed. N-channel metal-oxide-semiconductor field-effect transistors (MOSFET's) fabricated in these films exhibit surface electron mobilities as high as 700 sq cm/V s.

  19. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  20. Plastically deformed region around indentations on Si angle crystal

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.

    1994-12-01

    Expansion of a hemispherical shell by inner pressure has been widely applied for the model of the deformation by an indentation on a flat surface; however, the deformed region is not necessarily spherically symmetric, especially in anisotropic materials such as single crystals. Therefore, whether the spherical model is applicable in an indentation process for objective materials must always be kept in mind. Indentations have been made on the (111) surface of silicon crystal at various temperatures. The three-dimensional shape of the plastically deformed region was experimentally measured by means of an etching technique and its difference from the hemisphere was observed. It was never spherical but much more complicated, similar to a bottle gourd. The slip mechanism, which resulted in the observed shape of the plastic region, is discussed further. The plastic region was analytically obtained also on the assumption that the stress distribution was spherically symmetrical. The result is approximately in accordance with the observed shape. It is therefore concluded that the stress distribution is nearly spherical although the plastic region is far from it. The yield strength of silicon crystals and their temperature dependence were obtained based on the spherical model.

  1. Crystal Phase Effects in Si Nanowire Polytypes and Their Homojunctions.

    PubMed

    Amato, Michele; Kaewmaraya, Thanayut; Zobelli, Alberto; Palummo, Maurizia; Rurali, Riccardo

    2016-09-14

    Recent experimental investigations have confirmed the possibility to synthesize and exploit polytypism in group IV nanowires. Driven by this promising evidence, we use first-principles methods based on density functional theory and many-body perturbation theory to investigate the electronic and optical properties of hexagonal-diamond and cubic-diamond Si NWs as well as their homojunctions. We show that hexagonal-diamond NWs are characterized by a more pronounced quantum confinement effect than cubic-diamond NWs. Furthermore, they absorb more light in the visible region with respect to cubic-diamond ones and, for most of the studied diameters, they are direct band gap materials. The study of the homojunctions reveals that the diameter has a crucial effect on the band alignment at the interface. In particular, at small diameters the band-offset is type-I whereas at experimentally relevant sizes the offset turns up to be of type-II. These findings highlight intriguing possibilities to modulate electron and hole separations as well as electronic and optical properties by simply modifying the crystal phase and the size of the junction. PMID:27530077

  2. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  3. Measurement of environmental warmth in SI units

    PubMed Central

    Ellis, F. P.; Smith, F. E.; Walters, J. D.

    1972-01-01

    Ellis, F. P., Smith, F. E., and Walters, J. D. (1972).Brit. J. industr. Med.,29, 361-377. Measurement of environmental warmth in SI units. Although `Environmental Warmth and Its Measurement' (Medical Research Council War Memorandum No. 17), written over 25 years ago for the Royal Navy, is still widely used and has not been revised, the validation and amplification of the methods proposed by the late Dr. Thomas Bedford have in the meantime been in hand continuously in the laboratory and in the Fleet under the auspices of the Council's Royal Naval Personnel Research Committee. While it was not considered appropriate by Council to replace or to rewrite the Memorandum at the present time, in view of the recent adoption of the metric system and the units of the International System (SI Units) it was thought that it would be helpful to publish metricated charts corresponding to those which appear in the Supplement to War Memorandum No. 17, together with two additional charts which are the result of work in the post-war years, to provide investigators with simple aids for use in the laboratory or the field and to provide a basis for considering the requirements for further research. PMID:4636658

  4. Characterization of Surface Features in Detached Grown GeSi Crystals

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Carpenter, P. K.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The growth of detached crystals by the Bridgman technique, in which the growing crystal is not in contact with the crucible wall, has been observed both on earth and in microgravity conditions. At present, the mechanisms contributing to the detachment are not completely understood and until recently detachment has not been reproducibly obtained. It is commonly understood that the main factors that promote the occurrence of detached growth include: high contact angle between the melt and the crucible material, high growth angle, and a pressure difference between the annular gap around the solid below the melt and the volume above the melt along the meniscus. These parameters were varied in Bridgman growth experiments to determine the conditions required to achieve detached growth terrestrially in Ge and GeSi alloys. These experiments are in preparation for experiments on the International Space Station (ISS). The detailed objectives of the flight experiments and a description of the growth methods employed are the subject of another presentation at this Congress. Detached crystals were achieved repeatedly in pyrolytic boron nitride ampoules when a pressure difference was employed. All crystals, except for those grown in fused silica ampoules, were easily removed from their containers; however, this fact alone is not sufficient to infer detached growth. Detachment was verified by comparing profilometer measurements of the radius of the samples with observations of the sample surfaces using optical and electron microscopy. The surfaces of the attached areas of the crystals had the same shape and surface texture as the interior crucible wall. Regions of detached growth contained many unique features and crystal facets could usually be observed. Several of these surface features have been correlated with mechanisms of detachment or free surface growth in general and others to processing events or conditions. These results will be compared with observations of surface

  5. Determination of the Avogadro constant by counting the atoms in a 28Si crystal.

    PubMed

    Andreas, B; Azuma, Y; Bartl, G; Becker, P; Bettin, H; Borys, M; Busch, I; Gray, M; Fuchs, P; Fujii, K; Fujimoto, H; Kessler, E; Krumrey, M; Kuetgens, U; Kuramoto, N; Mana, G; Manson, P; Massa, E; Mizushima, S; Nicolaus, A; Picard, A; Pramann, A; Rienitz, O; Schiel, D; Valkiers, S; Waseda, A

    2011-01-21

    The Avogadro constant links the atomic and the macroscopic properties of matter. Since the molar Planck constant is well known via the measurement of the Rydberg constant, it is also closely related to the Planck constant. In addition, its accurate determination is of paramount importance for a definition of the kilogram in terms of a fundamental constant. We describe a new approach for its determination by counting the atoms in 1 kg single-crystal spheres, which are highly enriched with the 28Si isotope. It enabled isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, NA = 6.022,140,78(18) × 10(23) mol(-1), is the most accurate input datum for a new definition of the kilogram. PMID:21405263

  6. Measuring Curved Crystal Performance for a High Resolution, Imaging X-ray Spectrometer

    SciTech Connect

    Michael Haugh and Richard Stewart

    2010-06-07

    This paper describes the design, crystal selection, and crystal testing for a vertical Johann spectrometer operating in the 13 keV range to measure ion Doppler broadening in inertial confinement plasmas. The spectrometer is designed to use thin, curved, mica crystals to achieve a resolving power of E/ΔE>2000. A number of natural mica crystals were screened for flatness and X-ray diffraction width to find samples of sufficient perfection for use in the instrument. Procedures to select and mount high quality mica samples are discussed. A diode-type X-ray source coupled to a dual goniometer arrangement was used to measure the crystal reflectivity curve. A procedure was developed for evaluating the goniometer performance using a set of diffraction grade Si crystals. This goniometer system was invaluable for identifying the best original crystals for further use and developing the techniques to select satisfactory curved crystals for the spectrometer.

  7. Process facilitates photoresist mask alignment on SiC crystals

    NASA Technical Reports Server (NTRS)

    Formigoni, N. P.; Roberts, J. S.

    1967-01-01

    Growth of silicon dioxide on a silicon carbide crystal ensures proper orientation of photoresist masks on the crystals used for semiconductor devices. The crystal is heated in a water vapor-saturated gas to delineate p-n junctions that intersect the crystal surface.

  8. Glass formation and crystallization in high-temperature glass-ceramics and Si3N4

    NASA Astrophysics Data System (ADS)

    Drummond, Charles H., III

    1991-08-01

    The softening of glassy grain boundaries in ceramic matrix composites and Si3N4 at high temperatures reduces mechanical strength and the upper-use temperature. By crystallizing this glass to a more refractory crystalline phase, a material which performs at higher temperatures may result. Three systems were examined: a cordierite composition with ZrO2 as a nucleating agent; celsian compositions; and yttrium silicate glasses both in bulk and intergranular in Si3N4. For the cordierite compositions, a series of metastable phases was obtained. The crystallization of these compositions was summarized in terms of metastable ternary isothermal sections. Zircon formed at the expense of ZrO2 and spinel. In SiC composites, the transformations were slower. In celsian, two polymorphs were crystallized. One phase, hexacelsian, which always crystallized, even when metastable, had an undesirable volume change. The other phase, celsian, was very difficult to crystallize. In yttrium silicate bulk glasses, similar in composition to the intergranular glass in Si3N4, a number of polymorphs of Y2Si2O7 were crystallized. The conditions under which these polymorphs formed are compared with crystallization in Si3N4.

  9. Glass formation and crystallization in high-temperature glass-ceramics and Si3N4

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The softening of glassy grain boundaries in ceramic matrix composites and Si3N4 at high temperatures reduces mechanical strength and the upper-use temperature. By crystallizing this glass to a more refractory crystalline phase, a material which performs at higher temperatures may result. Three systems were examined: a cordierite composition with ZrO2 as a nucleating agent; celsian compositions; and yttrium silicate glasses both in bulk and intergranular in Si3N4. For the cordierite compositions, a series of metastable phases was obtained. The crystallization of these compositions was summarized in terms of metastable ternary isothermal sections. Zircon formed at the expense of ZrO2 and spinel. In SiC composites, the transformations were slower. In celsian, two polymorphs were crystallized. One phase, hexacelsian, which always crystallized, even when metastable, had an undesirable volume change. The other phase, celsian, was very difficult to crystallize. In yttrium silicate bulk glasses, similar in composition to the intergranular glass in Si3N4, a number of polymorphs of Y2Si2O7 were crystallized. The conditions under which these polymorphs formed are compared with crystallization in Si3N4.

  10. Precipitates of MnSi cubic phase in tetragonal Mn{sub 4}Si{sub 7} crystal

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.

    2013-11-15

    Higher manganese silicides (HMSs) exhibit interesting thermoelectric and optoelectronic properties. Development of HMS-based thermoelements and microthermopiles of different designs may meet a number of problems, which can be solved only when the real structure of crystals and thin layers on which they are based is established. We have applied scanning and transmission electron microscopy and electron diffraction to investigate HMS crystals of two types: single crystals grown from melt by the Bridgman method and microislands formed by reactive diffusion during manganese vapor deposition on silicon substrates. The exact phase composition of these materials is established: matrix HMS crystal belonging to tetragonal system (Mn{sub 4}Si{sub 7} composition) and precipitates of cubic manganese monosilicide MnSi. The shape and sizes of precipitates are determined, the crystallographic relationships between the tetragonal and cubic phases are found, and the interface is investigated.

  11. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    SciTech Connect

    Preidel, V. Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C.

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  12. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    NASA Astrophysics Data System (ADS)

    Preidel, V.; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C.

    2015-06-01

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  13. Process dependent morphology of the Si/SiO2 interface measured with scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, L. D.; Grunthaner, F. J.; Kaiser, W. J.

    1988-01-01

    A new experimental technique to determine Si/SiO2 interface morphology is described. Thermal oxides of silicon are chemically removed, and the resulting surface topography is measured with scanning tunneling microscopy. Interfaces prepared by oxidation of Si (100) and (111) surfaces, followed by postoxidation anneal (POA) at different temperatures, have been characterized. Correlations between interface structure, chemistry, and electrical characteristics are described.

  14. Fabrication and measurement of quantum dots in double gated, dopantless Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Ward, Daniel; Mohr, Robert; Prance, Jonathan; Gamble, John; Savage, Don; Lagally, Max; Coppersmith, Susan; Eriksson, Mark

    2012-02-01

    Significant progress has been made towards quantum dot spin qubits in Si/SiGe single and double quantum dots. In the past, these structures have been created by depleting a modulation-doped 2DEG that forms at the Si/SiGe interface. The modulation doping in such devices is believed to be a source of charge noise. Recently, undoped structures have been explored for the formation of both 2DEGs and quantum dots in Si/SiGe. Here we discuss measurements on double gated, dopantless quantum dots in Si/SiGe heterostructures. The devices are based on a new ``island mesa'' design incorporating micro-ohmic contacts. We present transport measurements on a double quantum dot showing a smooth transition from single dot to double dot behavior.

  15. A Semitransparent and Flexible Single Crystal Si Thin Film: Silicon on Nothing (SON) Revisited.

    PubMed

    Park, Sanghyun; Lee, Yong Hwan; Wi, Jung-Sub; Oh, Jihun

    2016-07-27

    Ultrathin single crystal Si films offer a versatile vehicle for high performance flexible and semitransparent electric devices due to their outstanding optoelectric and mechanical properties. Here, we demonstrate the formation of an ultrathin (100) single crystal Si film based on morphological evolution of nanoporous Si during high temperature annealing. Square arrays of cylindrical Si pores are formed by nanoimprint lithography and deep reactive etching and then subjected to annealing in hydrogen ambient. By controlling the aspect ratio of nanoporous Si, defect-free single crystal Si membranes with controlled thicknesses from 330 to 470 nm are formed on a platelike void after the annealing. In addition, we investigate the role of oxygen impurities in a hydrogen atmosphere on defect formation on a Si surface and eliminate the oxygen-related defects on Si by controlling gas phase diffusion of oxygen impurities during annealing in a conventional tube furnace. Finally, we demonstrate the transfer of a defect-free, flexible, and wafer scale Si membrane with thickness of 470 nm onto a PDMS substrate, utilizing the platelike void under the membrane as a releaser. The ultrathin flexible Si film on PDMS shows optical transmittance of about 30-70% in visible and near-infrared light. PMID:27352938

  16. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    SciTech Connect

    Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  17. 35-GHz Measurements of Carbon Dioxide Crystals

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Klein, A.

    1998-01-01

    In order to maximize our knowledge of the martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33-cm snowpack was measured with a 35-GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice) crystals. A 1 square meter plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. 35 GHz measurements of this plate were made through the 33-cm snowpack. Layers of the snow were removed and measurements were repeated for the diminishing snowpack until the bare plate was in view. Then, 9 cm of CO2 crystals were deposited onto the sheet-metal plate, and as was the case for the natural snow, hand-held measurements were made each time the thickness of the deposit was altered. These CO2 crystals were -0.65 cm in diameter and were cylindrical. The temperature of the dry ice was -76 C, whereas the temperature at the top of the snowpack was -1.9 C (the air temperature was -3 C). Two additional 9-cm increments were placed on top of the existing CO2 crystals, resulting in a total thickness of 27 cm of dry ice. After this series of measurements was made, the CO2 crystals were then placed on top of the snowpack, and as before, measurements were made using the 35-GHz radiometer. As a final part of this experiment, soil particles were spread on top of the dry ice, and once again, microwave measurements were made with the 35-GHz radiometer.

  18. Crystal structure of Si-doped HfO2

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Nelson, Matthew; Aldridge, Henry; Iamsasri, Thanakorn; Fancher, Chris M.; Forrester, Jennifer S.; Nishida, Toshikazu; Moghaddam, Saeed; Jones, Jacob L.

    2014-01-01

    Si-doped HfO2 was prepared by solid state synthesis of the starting oxides. Using Rietveld refinement of high resolution X-ray diffraction patterns, a substitutional limit of Si in HfO2 was determined as less than 9 at. %. A second phase was identified as Cristobalite (SiO2) rather than HfSiO4, the latter of which would be expected from existing SiO2-HfO2 phase diagrams. Crystallographic refinement with increased Si-dopant concentration in monoclinic HfO2 shows that c/b increases, while β decreases. The spontaneous strain, which characterizes the ferroelastic distortion of the unit cell, was calculated and shown to decrease with increasing Si substitution.

  19. Characterization of Surface Features in Detached Grown GeSi Crystals

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Carpenter, P. K.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The growth of detached crystals by the Bridgman technique, in which the growing crystal is not in contact with the crucible wall, has been observed both on earth and in microgravity conditions. At present, the mechanisms contributing to the detachment are not completely understood and until recently detachment has not been reproducibly obtained. It is commonly understood that the main factors that promote the occurrence of detached growth include: high contact angle between the melt and the crucible material, high growth angle, and a pressure difference between the annular gap around the solid below the melt and the volume above the melt along the meniscus. These parameters were varied in Bridgman growth experiments to determine the conditions required to achieve detached growth terrestrially in Ge and GeSi alloys. These experiments are in preparation for experiments on the International Space Station (ISS). The detailed objectives of the flight experiments and a description of the growth methods employed are the subject of another presentation at this Conference. Detached crystals were achieved repeatedly in pyrolytic boron nitride ampoules when a pressure difference was employed. All crystals, except for those grown in fused silica ampoules, were easily removed from their containers, however, this fact alone is not sufficient to infer detached growth. Detachment was verified by comparing profilometer measurements of the radius of the samples with observations of the sample surfaces using optical and electron microscopy. The surfaces of the attached areas of the crystals had the same shape and surface texture as the interior crucible wall. Regions of detached growth contained many unique features and crystal facets could usually be observed. Several of these surface features have been correlated with mechanisms of detachment or free-surface growth and others to processing events or conditions.

  20. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  1. Structural properties of a-Si films and their effect on aluminum induced crystallization

    SciTech Connect

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet; Turan, Rasit; Canli, Sedat

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size.

  2. Inhibition of metal induced crystallization in the system Ag/ZnO/a-Si:H

    SciTech Connect

    Edelman, F.; Brener, R.; Cytermann, C.; Weil, R.; Beneking, C.; Beyer, W.

    1996-12-31

    A systematic investigation has been made on the barrier properties of ZnO layer between n-doped a-Si:H and Ag metallization films in the structures (001)Si/SiO{sub 2}/Ag/ZnO/a-Si:H:P and (001)Si/SiO{sub 2}/a-Si:H:P/ZnO/Ag. Plasma assisted CVD deposition was used to produce a Si:H (2,500 {angstrom} thick) highly P-doped films over thermally oxidized Si-wafers at 190 and 270 C. Transparent conductive ZnO:Al layers, 1,000{angstrom} and 1 {micro}m thickness, and Ag films (1,000{angstrom} thick) were deposited by sputtering. The polycrystalline ZnO layers were textured along the <0001> axis in the as-deposited state. The structures were annealed in vacuum in the temperature range from 300 to 700 C for 1/4 to 16h. X-ray diffraction and transmission electron microscopy studies demonstrated the a-Si:H:P stability against crystallization under ZnO buffer protection up to 700 C (when free a-Si crystallizes itself). The (111) peak position of the Ag reflection was used to show that while the Ag was always strained, the strain was partially relaxed when in contact with the 0.1{micro}m ZnO film, it developed additional strain when in contact with the 1{micro}m ZnO film.

  3. Features of the uniaxial elastic deformation of X-ray-irradiated p-Si crystals

    SciTech Connect

    Pavlyk, B. V.; Lys, R. M. Didyk, R. I.; Shykorjak, J. A.

    2015-05-15

    Changes in the conductivity of p-Si single-crystals irradiated at room temperature during their mechanical compression and stress relief are studied. It is shown that irradiation is accompanied by the generation of point defects in silicon, which play the role of stoppers for dislocation motion. The effect of “radiation memory” in “electronic” silicon crystals is detected.

  4. Si-O Bonded Interactions in Silicate Crystals and Molecules:  A Comparison

    SciTech Connect

    Gibbs, G. V.; Jayatilaka, D.; Spackman, M. A.; Cox, D. F.; Rosso, K. M.

    2006-11-01

    Bond critical point, local kinetic energy density, G(rc), and local potential energy density, V(rc), properties of the electron density distributions, ρ(r), calculated for silicates such as quartz and gas-phase molecules such as disiloxane are similar, indicating that the forces that govern the Si-O bonded interactions in silica are short-ranged and molecular-like. Using the G(rc)/ρ(rc) ratio as a measure of bond character, the ratio increases as the Si-O bond length, the local electronic energy density, H(rc) = G(rc) + V(rc), and the coordination number of the Si atom decrease and as the accumulation of the electron density at the bond critical point, ρ(rc), and the Laplacian, ∇2ρ(rc), increase. The G(rc)/ρ(rc) and H(rc)/ρ(rc) ratios categorize the bonded interaction as observed for other second row atom M-O bonds into discrete categories with the covalent character of each of the M-O bonds increasing with the H(rc)/ρ(rc) ratio. The character of the bond is examined in terms of the large net atomic charges conferred on the Si atoms comprising disiloxane, stishovite, quartz, and forsterite and the domains of localized electron density along the Si-O bond vectors and on the reflex side of the Si-O-Si angle together with the close similarity of the Si-O bonded interactions observed for a variety of hydroxyacid silicate molecules and a large number of silicate crystals. Finally, the bond critical point and local energy density properties of the electron density distribution indicate that the bond is an intermediate interaction between Al-O and P-O bonded interactions rather than being a closed-shell or a shared interaction.

  5. Growth and optical properties of Bi{sub 12}SiO{sub 20} single crystals doped with first row transition metal and aluminum

    SciTech Connect

    Petrova, D.; Gospodinov, M.; Sveshtarov, P.

    1995-10-01

    Bi{sub 12}SiO{sub 20} single crystals co-doped with first row transition metals and aluminum were grown from the melt by the Czochralski technique. Optimal growth conditions for optically homogeneous crystals have been established. Dopant molar concentrations in the crystal were determined and segregation coefficients calculated. Transmission spectra were measured in the 0.38--0.85 {micro}m range. It was established that adding Al to the melt bleached the crystals and blue-shifted the entire transmission spectrum. Doping with Cu produced a strong photochromic effect after daylight exposure, changing the crystal color from yellow to red.

  6. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.

    PubMed

    Chen, Jian-Hua; Huang, Yang-Tung; Yang, Yu-Lin; Lu, Ming-Feng; Shieh, Jia-Min

    2012-08-20

    Silicon-based (Si-based) photonic crystal waveguide based on antiresonant reflecting optical waveguide (ARROW PCW) structures consisting of 60° bends and Y-branch power splitters were designed and first efficiently fabricated and characterized. The ARROW structure has a relatively large core size suitable for efficient coupling with a single-mode fiber. Simple capsule-shaped topography defects at 60° photonic crystal (PC) bend corners and Y-branch PC power splitters were used for increasing the broadband light transmission. In the preliminary measurements, the propagation losses of the ARROW PC straight waveguides lower than 2 dB/mm with a long length of 1500 μm were achieved. The average bend loss of 60° PC bend waveguides was lower than 3 dB/bend. For the Y-branch PC power splitters, the average power imbalance was lower than 0.6 dB. The results show that our fabricated Si-based ARROW PCWs with 60° bends and Y-branch structures can provide good light transmission and power-splitting ability. PMID:22907016

  7. Crystal structures and magnetic properties of CsAu4Si2 and CeAu2Si2

    SciTech Connect

    Sefat, A.; Palasyuk, A.; Bud'ko, S.; Corbett, J.; Canfield, P.

    2007-12-03

    Single crystals of CeAu{sub 4}Si{sub 2} and CeAu{sub 2}Si{sub 2} have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 C. The single-crystal X-ray refinement result for CeAu{sub 4}Si{sub 2} is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu{sub 2}Si{sub 2}, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu{sub 2}Si{sub 2} is a typical antiferromagnet with T{sub N} = 8.8(1) K and CeAu{sub 4}Si{sub 2} features a ferromagnetic component below T{sub c}=3.3(1) K. Both phases have effective moments close in value to that of free Ce{sup 3+}.

  8. Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    SciTech Connect

    Kalantar, D.H.; Chandler, E.A.; Colvin, J.D.; Lee, R.; Remington, B.A.; Weber, S.V.; Wiley, L.G.; Hauer, A.; Wark, J.S.; Loveridge, A.; Failor, B.H.; Meyers, M.A.; Ravichandran, G.

    1999-01-01

    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented. {copyright} {ital 1999 American Institute of Physics.}

  9. Scintillation response of Lu1.95Y0.05SiO5:Ce and Y2SiO5:Ce single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Wanarak, C.; Phunpueok, A.; Chewpraditkul, W.

    2012-09-01

    The scintillation response of the new cerium-doped rare-earth scintillator lutetium-yttrium oxyorthosilicate (Lu1.95Y0.05SiO5:Ce, LYSO:Ce) were investigated and compared to those of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce, YSO:Ce) crystal. The light yield and energy resolution were measured using photomultiplier tube (PMT) readout. The non-proportionality of the light yield and energy resolution versus γ-ray energy were measured and the intrinsic resolution of the crystals was calculated. For 662 keV γ-rays (137Cs source), LYSO:Ce showed a light yield of 37,400 ± 3700 ph/MeV, which is much higher than that of 26,300 ± 2600 ph/MeV obtained for YSO:Ce. The energy resolution of 6.8 ± 0.2% obtained with YSO:Ce is better than that of 7.7 ± 0.2% obtained with LYSO:Ce, due to its better intrinsic resolution and proportionality in light yield. The photofraction was determined for both crystals and compared with the cross-sections ratio calculated using WinXCom program. The experimental results of the total mass attenuation coefficients for both crystals are in good agreement with the theoretical values, within the experimental uncertainty.

  10. The mechanical properties of single crystal {alpha}-Si{sub 3}N{sub 4}

    SciTech Connect

    Reimanis, I.E.; Suematsu, H.; Petrovic, J.J.; Mitchell, T.E.

    1993-11-01

    The ambient and high temperature mechanical properties of single crystal {alpha}{minus}Si{sub 3}N{sub 4} synthesized by chemical vapor deposition are reported. Crack patterns in the as-grown crystals and around Vicker`s indentations reveal that significant residual stresses develop during growth. Indentation studies indicate that the cleavage is essentially isotropic in {alpha}{minus}Si{sub 3}N{sub 4} at 25 C as well as at 1400 C. Transmission electron microscopy on crystals deformed at high temperatures, confirmed previous observation that high-temperature slip occurs primarily on (1011)[1120] system.

  11. Floating zone crystal growth of selected R2PdSi3 ternary silicides

    SciTech Connect

    Xu, Yiku; Frontzek, Matthias D; Mazilu, Irina; Loeser, W; Behr, G; Buechner, Bernd; Liu, L

    2011-01-01

    Substitution of various rare earths R within the class of R2PdSi3 single crystals with hexagonal AlB2-type crystallographic structure reveals the systematic dependence of anisotropic magnetic properties governed by the interplay of crystal-electric field effects and magnetic two-ion interactions. Here we compare the floating zone (FZ) crystal growth with radiation heating of compounds with R = Tb, Tm, Pr, and Gd. The congruent melting behavior enabled moderate growth velocities of 3 to 5 mmh-1. The preferred growth directions are close to the basal plane of the hexagonal unit cell. The composition of the crystals, except of Tb2PdSi3, is slightly Pd-depleted with respect to the nominal composition 16.7 at.% Pd. Thin precipitates of RSi secondary phases were detected in the crystal matrix. Their phase fraction can be diminished by growth from Pd-rich melt compositions and annealing treatments. The compounds exhibit antiferromagnetic order below the N el temperatures TN: 23.6 K (Tb2PdSi3), 1.8 K (Tm2PdSi3), 2.17 K (Pr2PdSi3) and 22 K (Gd2PdSi3) with different grades of magnetic anisotropy.

  12. Crystal structure of the ternary silicide Gd2Re3Si5.

    PubMed

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å. PMID:25552967

  13. Crystal structure of the ternary silicide Gd2Re3Si5

    PubMed Central

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-01-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta­silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo­octa­hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å. PMID:25552967

  14. Infrared response from metallic particles embedded in a single-crystal Si matrix - The layered internal photoemission sensor

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Iannelli, J. M.; Nieh, C. W.; Hashimoto, Shin

    1990-01-01

    Infrared radiation at wavelengths of 1-2 microns has been detected in a new device labeled the layered internal photoemission sensor. The device structure, which is grown by molecular beam epitaxy, incorporates epitaxial CoSi2 particles with dimensions of 10-50 nm. Radiation absorbed by these particles photoexcites carriers into a surrounding single-crystal silicon matrix. A peak quantum efficiency of 1.3 percent is measured, which is approximately six times higher than in planar CoSi2 Schottky diodes with 5-nm silicide thickness.

  15. Measurement of Crystallization Temperature Using Thermography for Thin Film Amorphous Alloy Samples

    NASA Astrophysics Data System (ADS)

    Hata, Seiichi; Aono, Yuko; Sakurai, Junpei; Shimokohbe, Akira

    2009-03-01

    This report describes a new non-contact measurement method for the crystallization temperature (Tx) of a thin film amorphous alloy. The thermal emissivity of the amorphous alloy sample is predicted to be modified when it crystallizes. It was attempted to relate this modification to changes in the apparent temperature by thermography. Thin film amorphous alloys of Pt67Si33 and Pt73Si27 were sputtered onto an Al2O3 substrate and then heated at 20 K/min in vacuum, and the film temperature was monitored by thermography. The Tx indicated by the proposed method coincided with the temperature measured by conventional differential scanning calorimeter within 8 K.

  16. On the Effect of the Film Hydrogen Content and Deposition Type on the Grain Nucleation and Grain Growth During Crystallization of a-Si:H Films: Preprint

    SciTech Connect

    Mahan, A. H.; Ahrenkiel, S. P.; Roy, B.; Schropp, R.E.I.; Li, H.; Ginley, D. S.

    2006-05-01

    We report the effect of the initial film hydrogen content (CH) on the crystallization kinetics, crystallite nucleation rate and grain growth rate when HWCVD and PECVD a-Si:H films are crystallized by annealing at 600 C. For the HWCVD films, both the incubation time and crystallization time decrease, and the full width at half maximum (FWHM) of the XRD (111) peak decreases with decreasing film CH. However, other sources of XRD line broadening exist in such materials in addition to crystallite size, including the density of crystallite defects. To address these issues, TEM measurements have also been performed on a-Si:H films deposited directly onto TEM grids.

  17. Measurement of excited states of Sb impurity in Si by traveling–wave method

    SciTech Connect

    Sun, Yong; Takase, Tsuyoshi; Sakaino, Masamichi; Miyasato, Tatsuro

    2012-07-01

    The ground and excited states of Sb atom in Si, 1s (A{sub 1}), 1s (T{sub 2}), 1s (E), and 2p{sup 0}, were measured by using a traveling-wave method. The Sb-doped Si crystal with donor concentration of 2 × 10{sup 15} cm{sup −3} was placed the distance of 5 μm above a piezoelectric crystal in the fringe field of a surface acoustic wave. The free electrons excited from the bound states of the Sb atom are drifted by the traveling-wave, and thus lose their energy as the Joule heat through lattice and ion scattering processes. A strong temperature-dependent energy loss of the traveling-wave can be observed at temperatures below 200 K. The values of the bound states of the Sb atom can be characterized by using the Arrhenius plot for thermal activation process of the electrons in the bound states. The measurements were carried out at two frequencies of the traveling-wave, 50 MHz and 200 MHz. At the frequency of 50 MHz, the dielectric properties of the Si crystal are governed by dopant polarization but by electronic polarization at 200 MHz. We found that measurement accuracy of the bound states depends mainly on the electron mobility and the dielectric constant of the Si crystal, which are sensitive to the frequency and strength of the traveling-wave as well as electronic polarization properties of the Si crystal.

  18. A novel light trapping concept for liquid phase crystallized poly-Si thin-film solar cells on periodically nanoimprinted glass substrates

    NASA Astrophysics Data System (ADS)

    Preidel, V.; Amkreutz, D.; Sontheimer, T.; Back, F.; Rudigier-Voigt, E.; Rech, B.; Becker, C.

    2013-09-01

    Large grained polycrystalline silicon (poly-Si) absorbers were realized by electron beam induced liquid phase crystallization on 2 μm periodically patterned glass substrates and processed into a-Si:H/poly-Si heterojunction thin-film solar cells. The substrates were structured by nanoimprint lithography using a UV curable hybrid polymer sol-gel resist, resulting in a glassy high-temperature stable micro-structured surface. Structural analysis yielded high quality poly-Si material with grain sizes up to several hundred micrometers. An increase of absorption and an enhancement of the external quantum efficiency in the NIR as a consequence of light trapping due to the micro-structured poly-Si/substrate interface were observed. Up to now, only moderate solar cell parameters, a maximum open-circuit voltage of 413 mV and a short-circuit current density of 8 mA cm-2, were measured being significantly lower to what can be achieved with liquid phase crystallized poly-Si thin-film solar cells on planar glass substrates indicating that the substrate texture has impact on the electrical material quality. By reduction of the SiC interlayer thickness at the micro-structured poly- Si/substrate interface defect-related parasitic absorption was considerably minimized. This encourages the implementation of nanoimprinted tailored substrate textures for light trapping in liquid phase crystallized poly-Si thinfilm solar cells.

  19. Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. R.

    2012-10-01

    We present results of structural, electrical, and defect characterization of 4H-SiC epitaxial layers and bulk crystals and show performance of the radiation detectors fabricated from these materials. The crystal quality was evaluated by x-ray diffraction (XRD) rocking curve measurements, electron beam induced current (EBIC) imaging, and defect delineating etching in conjunction with optical microscopy and scanning electron microscopy (SEM). Studies of the electrically active intrinsic defects and impurities were conducted using thermally stimulated current (TSC) measurements in a wide temperature range of 94 - 750K. The results are correlated with the capability of bulk crystals and epitaxial layers for the detection of α-particles, low to high energy x-rays and gamma rays. High barrier rectifying Schottky diodes have been fabricated and tested. The epitaxial 4H-SiC radiation detectors exhibited low leakage current (< 1 nA) at ~ 200 V operating voltage up to 200 C. The soft x-ray responsivity measurements performed at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab (BNL) showed significantly improved characteristics compared to commercially-available SiC UV photodiode detectors.

  20. A metastable hard magnetic phase in the crystallization process of the Fe75Si11B10Nb3Sn1 alloy

    NASA Astrophysics Data System (ADS)

    Cremaschi, V.; Arcondo, B.; Vázquez, M.; Sirkin, H.

    1999-11-01

    A very interesting characteristic of FeSiB based amorphous alloys is its soft magnetic behavior. Most of these alloys remains soft along the crystallization process up to the nucleation of the iron borides. Examples of this are the widely studied Finemet and the FeSiBSn. In this work the crystallization of Fe76Si11B10Nb3 and Fe75Si11B10Nb3Sn1 is studied by means of X-ray diffraction, Mössbauer spectroscopy and coercive magnetic field measurements after one hour isothermal annealing at different temperatures. In the crystallization process of the latter alloy a hard magnetic phase appeared when the samples were annealed above 773 K. The soft magnetic behavior was recovered after annealing at 873 K. The hyperfine parameters as well as the X-ray diffraction patterns are reported.

  1. Crystallization from high temperature solutions of Si in copper

    DOEpatents

    Ciszek, Theodore F.

    1994-01-01

    A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 5X10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution melt of Si in Cu at about 16% to about 90% wt. Si at a temperature range of about 800.degree. C. to about 1400.degree. C. in an inert gas; immersing a substrate in the saturated solution melt; supersaturating the solution by lowering the temperature of the saturated solution melt and holding the substrate immersed in the solution melt for a period of time sufficient to cause growing Si to precipitate out of the solution to form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.

  2. Measurements of crystal growth kinetics at extreme deviations from equilibrium

    SciTech Connect

    Aziz, M.J.

    1992-07-14

    We have measured solute trapping of several solutes in Al and Ni during rapid solidification. We have also made preliminary measurements of solute trapping of As in Si, trapped 20 atomic percent As in Si, and made a preliminary measurement of the T{sub o} curve in Si-As. 5 figs.

  3. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments. PMID:24898034

  4. Potential for growth of Si-Ge bulk crystals by modified FZ technique

    NASA Astrophysics Data System (ADS)

    Gonik, M. A.

    2014-01-01

    The technique for crucibleless crystal growth of silicon and its alloy with germanium is developed on the basis of the floating zone (FZ) setup equipped with an additional so-called axial heating process (AHP) heater. The heater forms around itself the melt zone being suspended by forces of surface tension between its top surfaces and the growing crystal, as well as between the top surfaces of the AHP heater and the feeding rod. To investigate into the problem of the capillary stability of the pulling process, numerical computations of shaping of the free Si and Ge melt surface during the crystal pulling were performed. The dependences of the crystal radius and the thickness of the melt film on the parameters of the process are analyzed. It is demonstrated that, in the modified FZ method, the thickness of the melt layer between the crystal and the heater can be considerably larger than the capillary constant. A number of Si and Si-Ge crystals with a diameter up to 15 mm are grown. The range of a Si-Ge melt layer, which one could establish as high as possible, was found to be equal to 11-18 mm.

  5. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    SciTech Connect

    Lo Savio, R.; Galli, M.; Liscidini, M.; Andreani, L. C.; Franzò, G.; Iacona, F.; Miritello, M.; Irrera, A.; Sanfilippo, D.; Piana, A.; Priolo, F.

    2014-03-24

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54 μm, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission in a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.

  6. Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Maire, J.

    2015-06-01

    The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.

  7. Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Maire, J.

    2014-09-01

    The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.

  8. The effect of hydrogen/deuterium introduction on photoluminescence of 3C-SiC crystals

    SciTech Connect

    Lee, B.K.; Steckl, A.J.; Zavada, J.M.; Wilson, R.G.

    1998-12-31

    The effect of the incorporation and annealing of deuterium in 3C-SiC on its photoluminescence is reported. A 3C-SiC crystal has been implanted with 100 kev deuterium and subsequently annealed at temperatures between 1015 C and 1220 C for 1 to 5 minutes. SIMS depth profiles indicate hydrogen is strongly trapped by defects generated through ion bombardment, but a gradual damage repairing occurs during annealing. Photoluminescence was measured with 488 nm Ar laser excitation for sample temperatures from 89 K to 400 K. The PL peak wavelength of 540 nm at room temperature has shifted to 538 nm at 89 K. The peak PL intensity decreases with measurement temperature while its full width at half maximum (FWHM) exhibits an increasing trend. PL data were taken at five annealing stages. The post-implantation peak PL intensity and its integrated area increase initially with annealing temperature and time. After the final annealing at 1218 C for 2 minute, PL intensity and its integrated area exhibit a decrease in level.

  9. Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2

    NASA Astrophysics Data System (ADS)

    Sahel, S.; Amri, R.; Bouaziz, L.; Gamra, D.; Lejeune, M.; Benlahsen, M.; Zellama, K.; Bouchriha, H.

    2016-09-01

    Quasi-periodic one-dimensional Cantor photonic crystals are elaborated by depositing alternating silicon and silica Si/SiO2 layers by radiofrequency magnetron sputtering technique with cold plasma. Transmittance and reflectance spectra of these quasi crystals exhibit a large photonic band gap in the infrared range at normal incidence which is well reproduced by a theoretical model based on the transfer matrix method. The obtained wide photonic band gap reveals the existence of permitted modes depending on the nature and characteristics of the built in system which can constitute optical windows. This effect can be a good alternative for the design of flexible filters used in many areas of applications such as telecommunication and optoelectronic devices.

  10. The system Ta-V-Si: Crystal structure and phase equilibria

    SciTech Connect

    Khan, A.U.; Broz, P.; Bursik, J.; Grytsiv, A.; Chen, X.-Q.; Giester, G.; Rogl, P.

    2012-03-15

    Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Three ternary phases were found: {tau}{sub 1}-(Ta,V){sub 5}Si{sub 3} (Mn{sub 5}Si{sub 3}-type), {tau}{sub 2}-Ta(Ta,V,Si){sub 2} (MgZn{sub 2}-type) and {tau}{sub 3}-Ta(Ta,V,Si){sub 2} (MgCu{sub 2}-type). The crystal structure of {tau}{sub 2}-Ta(Ta,V,Si){sub 2} was solved by X-ray single crystal diffraction (space group P6{sub 3}/mmc). Atom order in the crystal structures of {tau}{sub 1}-(Ta,V){sub 5}Si{sub 3} (Mn{sub 5}Si{sub 3} type) and {tau}{sub 3}-Ta(Ta,V,Si){sub 2} was derived from X-ray powder diffraction data. A large homogeneity range was found for {tau}{sub 1}-(Ta{sub x}V{sub 1-x}){sub 5}Si{sub 3} revealing random exchange of Ta and V at a constant Si content. At 1500 Degree-Sign C, the end points of the {tau}{sub 1}-phase solution (0.082{<=}x{<=}0.624) are in equilibrium with the solutions (Ta{sub 1-x}V{sub x}){sub 5}Si{sub 3} (Cr{sub 5}B{sub 3} type, 0{<=}x{<=}0.128) and (Ta{sub x}V{sub 1-x}){sub 5}Si{sub 3} (W{sub 5}Si{sub 3} type, 0{<=}x{<=}0.048). - Graphical abstract: Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Black-Right-Pointing-Pointer Three ternary phases were found at 1500 Degree-Sign C. Black-Right-Pointing-Pointer At 1500 Degree-Sign C, {tau}{sub 1}-phase has large homogeneity region (0.064{<=}x{<=}0.624).

  11. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    NASA Astrophysics Data System (ADS)

    Fienberg, A. T.; Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Fatemi, R.; Ferrari, C.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Kaspar, J.; Kiburg, B.; Li, L.; Mastroianni, S.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Venanzoni, G.; Van Wechel, T. D.; Wall, K. B.; Winter, P.; Yai, K.

    2015-05-01

    The electromagnetic calorimeter for the new muon (g - 2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0-4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes vs. energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 10-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution σ/E of (3.4 ± 0.1) % /√{ E / GeV }, while those wrapped in a black, absorptive wrapping had (4.6 ± 0.3) % /√{ E / GeV }. The white-wrapped crystals-having nearly twice the total light collection-display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.

  12. Metal-induced crystallization of a-Si thin films by nonvacuum treatments

    SciTech Connect

    Kalkan, A.K.; Fonash, S.J.

    1997-11-01

    Thin film polycrystalline Si (poly-Si) is of considerable interest today for microelectronics, flat panel displays, and photovoltaics. Low thermal budget solid-phase crystallization (SPC) of a-Si precursor films was achieved using surface treatments with metal-containing solutions. Two different treatment procedures were demonstrated. With these treatments, one based on a Pd solution and the other on a Ni solution, the SPC time at 600 C was reduced from 18 h to 10 min or less. This approach renders the usual vacuum deposition step used in metal-induced crystallization unnecessary. The authors find that the ultraviolet reflectance and Raman shift signals for the crystallized films are independent of whether the SPC-enhancing metal is applied by vacuum or solution. These characterization results do differ, however, with the metal applied.

  13. Ferromagnetism in proton irradiated 4H-SiC single crystal

    SciTech Connect

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin; Li, Fei; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei

    2015-04-15

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  14. Instability of photoinduced optical absorption of Bi12SiO20: Al crystals

    NASA Astrophysics Data System (ADS)

    Panchenko, T. V.; Dyachenko, A. A.; Khmelenko, O. V.

    2015-04-01

    The results of the experimental investigation of the instability of the establishment and relaxation of a photochromic effect in aluminum-doped Bi12SiO20 crystals have been presented. The oscillating and nonmonotonic kinetic dependences of the photoinduced optical absorption have been observed. The absorption oscillations are associated with the competition of the formation and destruction of [AlSiO4]0 photochromic centers.

  15. Quasi-single-crystal (001) SrTiO{sub 3} templates on Si

    SciTech Connect

    Park, J. W.; Baek, S. H.; Bark, C. W.; Eom, C. B.; Biegalski, M. D.

    2009-08-10

    The integration of multifunctional oxides on semiconductor devices requires the formation of single-crystal-like oxide templates directly on silicon. We report the fabrication of quasi-single-crystal (001) SrTiO{sub 3} templates on (001) Si by annealing 100 nm thick molecular beam epitaxy-grown epitaxial SrTiO{sub 3} films at 900 deg. C. The full width at half maximum of the (002) rocking curve is 0.006 deg., which is much narrower than SrTiO{sub 3} bulk single crystals. An atomically smooth TiO{sub 2}-terminated surface is obtained by buffered-HF etching, which allows us to create functional oxide heterointerfaces on Si. Epitaxial SrRuO{sub 3} thin films grown on the quasi-single-crystal SrTiO{sub 3} template exhibit a superior crystalline quality and surface morphology.

  16. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. PMID:25262081

  17. Synthesis and crystal structure of cubic Ca16Si17N34.

    PubMed

    Hick, Sandra M; Miller, Mattheu I; Kaner, Richard B; Blair, Richard G

    2012-12-01

    Since the late 1960s, the exact structure of cubic calcium silicon nitride has been a source of debate. This paper offers evidence that the cubic phase CaSiN(2) described in the literature is actually Ca(16)Si(17)N(34). Presented here is a method for synthesizing single crystals of cubic-calcium silicon nitride from calcium nitride and elemental silicon under flowing nitrogen at 1500 °C. The colorless millimeter-sized crystals of Ca(16)Si(17)N(34) with a refractive index (n(25)) = 1.590 were found to be cubic (a = 14.8882 Å) and belong to the space group F43m (216). The synthesis of bulk, powdered cubic-Ca(16)Si(17)N(34) from calcium cyanamide and silicon is also discussed. Ca(16)Si(17)N(34) is a relatively air-stable refractory ceramic. In contrast to the orthorhombic phase of CaSiN(2), in which Ca(2+) sits in octahedral sites, this cubic phase has Ca(2+) in cubic sites that makes it an interesting host for new phosphors and gives rise to unique crystal field splitting. PMID:23157279

  18. Measurements of Local Strain Variation in Si(1-x)Ge(x)/Si Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Manion, S. J.; Milliken, S. J.; Pike, W. T.; Fathauer, R. W.

    1995-01-01

    The energy splitting of the conduction-band minimum of Si(1-x), Ge(x), due to strain has been directly measured by the application of ballistic-electron-emission microscope (BEEM) spectroscopy to Ag/Si(1-x), Ge(x) structures. Experimental values for this conduction-band splitting agree well with calculations. For Au/Si(1-x), Ge(x), however, heterogeneity in the strain of the Si(1-x), Ge(x) layer is introduced by deposition of the Au. This variation is attributed to species interdiffusion, which produces a rough Si(1-x)Ge(x) surface. Preliminary modeling indicates that the observed roughness is consistent with the strain variation measured by BEEM.

  19. Numerical simulations of SiGe crystal growth by the traveling liquidus-zone method in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Abe, K.; Sumioka, S.; Sugioka, K.-I.; Kubo, M.; Tsukada, T.; Kinoshita, K.; Arai, Y.; Inatomi, Y.

    2014-09-01

    Recently, a Si1-xGex (approximately x=0.5) crystal has been grown by the traveling liquidus-zone (TLZ) method under microgravity condition in the International Space Station (ISS). In this work, a mathematical model of the TLZ crystal growth has been developed to investigate details of the transport and solidification phenomena occurred during the TLZ growth of SiGe crystals performed in the ISS. Using this model, the experimental Ge concentration distributions in the grown SiGe crystal is explained, and the emissivity variation of the metal cartridge surface due to oxidation during the crystal growth is revealed to strongly affect the Ge concentration distribution in the grown crystal. In addition, a strategy for growing SiGe crystals, which are more homogeneous than those obtained in the current experiment, is proposed on the basis of the numerical results.

  20. 3D position determination in monolithic crystals coupled to SiPMs for PET.

    PubMed

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F; Solaz, Carles; Llosá, Gabriela

    2016-05-21

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a [Formula: see text] mm(3) LYSO crystal coupled to an [Formula: see text]-pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal. PMID:27119737

  1. 3D position determination in monolithic crystals coupled to SiPMs for PET

    NASA Astrophysics Data System (ADS)

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosá, Gabriela

    2016-05-01

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12× 12× 10 mm3 LYSO crystal coupled to an 8× 8 -pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal.

  2. Synthesis and crystal structure of MgB{sub 12}Si{sub 2}-The first ternary compound in the system B/Mg/Si

    SciTech Connect

    Ludwig, Thilo; Hillebrecht, Harald . E-mail: harald.hillebrecht@ac.uni-freiburg.de

    2006-06-15

    We report on the synthesis of MgB{sub 12}Si{sub 2} the first ternary compound in the system B/Mg/Si. Yellow transparent single crystals were yielded from the elements at 1600 deg. C in h-BN crucibles welded in Ta ampoules. MgB{sub 12}Si{sub 2} crystallizes orthorhombic in the space group Pnma with a=10.9797(11)A, b=6.1098(7)A, c=8.3646(12)A and Z=4. The crystal structure is characterized by layers of B{sub 12} icosahedra, connected by isolated Si atoms to a three-dimensional framework. Mg atoms are placed in voids of the framework. Each icosahedron forms 8 B-Si bonds and 4 exohedral B-B bonds. The Si atoms are tetrahedrally coordinated by B atoms of the B{sub 12} icosahedra.

  3. Differential cross sections measurement of 28Si(p,p/γ)28Si and 29Si(p,p/γ)29Si reactions for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-03-01

    Differential cross sections for gamma-ray emission from the 28Si(p,p/γ)28Si (Eγ = 1779 keV) and the 29Si(p,p/γ)29Si (Eγ = 1273 keV) nuclear reactions were measured in the energy range of 2.0-3.2 MeV and 2.0-3.0 MeV, respectively. The thin Si targets were prepared by evaporating natural SiO onto self-supporting Ag films. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. The great advantage of this work is that differential cross sections were obtained with a procedure irrespective of absolute value of the collected beam charge.

  4. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  5. Crystal structures of three intermetallic phases in the Mo-Pt-Si system

    SciTech Connect

    Joubert, J.-M.; Tokaychuk, Ya.; Cerny, R.

    2010-01-15

    The crystal structures of three ternary Mo-Pt-Si intermetallic compounds have been determined ab initio from powder X-ray diffraction data. All three structures are representative of new structure types. Both the X (MoPt{sub 2}Si{sub 3}, Pmc2{sub 1}, oP12, a=3.48438(6), b=9.1511(2), c=5.48253(8) A) and Y (MoPt{sub 3}Si{sub 4}, Pnma, oP32, a=5.51210(9), b=3.49474(7), c=24.3090(4) A) phases derive from PtSi (FeAs type) structure while the Z phase (ideal composition Mo{sub 32}Pt{sub 20}Si{sub 16}, refined composition Mo{sub 29.9(2)}Pt{sub 21.0(3)}Si{sub 17.1(1)}, Cc, mC68, a=13.8868(3), b=8.0769(2), c=9.6110(2) A, beta=100.898(1){sup o}) present similarities with the group of Frank-Kasper phases. - Graphical abstract: The crystal structures of three ternary Mo-Pt-Si intermetallic compounds have been determined ab initio from powder X-ray diffraction data. The three structures represent new structure types.

  6. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity. PMID:24559126

  7. Anisotropic physical properties of PrRhAl4Si2 single crystal: A non-magnetic singlet ground state compound

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.

    2016-08-01

    We have grown the single crystal of PrRhAl4Si2, which crystallizes in the tetragonal crystal structure. From the low temperature physical property measurements like, magnetic susceptibility, magnetization, heat capacity and electrical resistivity, we found that this compound does not show any magnetic ordering down to 70 mK. Our crystal field calculations on the magnetic susceptibility and specific heat measurements reveal that the 9-fold degenerate (2 J + 1) levels of Pr atom in PrRhAl4Si2 split into 7 levels, with a singlet ground state and a well-separated excited doublet state at 123 K, with a overall level splitting energy of 320 K.

  8. Preferential Crystal Growth of (100)-Oriented BiFeO3 Films on Si Substrate

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Yasui, S.; Funakubo, H.; Uchida, H.

    2011-10-01

    Bi-based perovskite-type oxide materials such as BiFeO3 (BFO) and the related compounds receive much attention and have been developed actively as important candidates for Pb-free ferroelectric / piezoelectric materials instead of toxic Pb-based perovskite oxide materials. Recently, many researches have been reported for thin films of BFO by various film-deposition techniques for actual application of semiconductive devices, microactuators, etc. In this report, we tried preferential crystal growth of BFO films on semiconductive silicon substrates using uniaxial-(100)-oriented LaNiO3 (LNO) buffer layer. BFO films were fabricated via chemical solution deposition (CSD) technique on platinized silicon wafer [(111)Pt/TiO2/(100)Si] and (100)LNO-coated platinized silicon [(100)LNO/(111)Pt/TiO2/(100)Si] substrates. XRD analysis indicated that the films fabricated on (111)Pt/TiO2/(100)Si substrate consisted of randomly-oriented BFO crystal with lower crystallinity and trace amount of the second Bi2Fe4O9 phase. On the other hand, the films on (100)LNO/(111)Pt/TiO2/(100)Si consisted of uniaxial-(100)-oriented BFO crystal with higher crystallinity. The crystallization temperature these films were 450 and 400°C, respectively. These results suggest that the BFO crystal was grown epitaxially on uniaxial oriented (100)LNO plane which also had perovskite-type crystal structure. Consequently, (100)-oriented BFO films were prepared on Si substrate successfully using (100)LNO buffer layer.

  9. Achieving omnidirectional photonic band gap in sputter deposited TiO2/SiO2 one dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Jena, S.; Tokas, R. B.; Sarkar, P.; Haque, S. Maidul; Misal, J. S.; Rao, K. D.; Thakur, S.; Sahoo, N. K.

    2015-06-01

    The multilayer structure of TiO2/SiO2 (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.

  10. Dopant activation during solid phase crystallization of poly-Si and influence of fluorine and hydrogen

    SciTech Connect

    Kalkan, A.K.; Kingi, R.M.; Fonash, S.J.

    1997-07-01

    Dopant activation for ion implanted solid phase crystallized (SPC) a-Si:H films, deposited by low temperature PECVD, was investigated. The impact of film thickness, the effect of subsequent hydrogenation, and a possible role for fluorine in this process have been studied.

  11. The Formation of Crystal Defects in a Fe-Mn-Si Alloy Under Cyclic Martensitic Transformations.

    PubMed

    Bondar, Vladimir I; Danilchenko, Vitaliy E; Iakovlev, Viktor E

    2016-12-01

    Formation of crystalline defects due to cyclic martensitic transformations (CMT) in the iron-manganese Fe-18 wt.% Mn-2 wt.% Si alloy was investigated using X-ray diffractometry. Conditions for accumulation of fragment sub-boundaries with low-angle misorientations and chaotic stacking faults in crystal lattice of austenite and ε-martensite were analyzed. PMID:26960743

  12. Forced diffusion via electrically induced crystallization for fabricating ZnO–Ti–Si structures

    SciTech Connect

    Chen, Yen-Ting; Hung, Fei-Yi

    2014-11-15

    Highlights: • ZnO–Ti–Si system is very important for the structural design. • The electrically induced crystallization method is useful to diffusion process. • Intermetallic compound characteristics have been presented using electrically induced crystallization. • Interface mechanism about diffusion of TZO–TiSi{sub x}–Si structure is presented. - Abstract: Electrically induced crystallization (EIC) is a recently developed process for material modification. This study is applied to EIC to fabricate ZnO–Ti–Si multi-layer structures of various thicknesses to dope Ti into ZnO thin film and to form TiSi{sub x} intermetallic compound (IMC) in a single step. The IMC layer was confirmed using transmission electron microscopy images. The Ti layer thickness was more than 40 nm, which enhanced electron transmission and decreased the total electrical resistance in the structure. Finally, the diffusion mechanisms of EIC and the annealing process were investigated. This study shows that the EIC process has potential for industrial applications.

  13. Local compositional analysis of magnetic crystal grain and boundary in CoCrPt-SiO2 granular perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Handa, Takahiro; Takahashi, Yoshio

    2010-01-01

    The compositions of magnetic crystal grains and boundaries of a CoCrPt-SiO2 granular perpendicular medium were investigated for plan-view and cross-sectional samples by using a transmission electron microscope equipped with an energy-dispersive X-ray spectrometer. The grain boundary composition, which is not easy to measure because of the small width around 1 nm, is estimated from the average composition of magnetic layer and that of crystal grains by considering the grain boundary volume ratio determined by structure observation. The grain boundary is shown to include Si as the major metallic element together with not small amounts of other metallic elements.

  14. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  15. Quasi-single-crystal (001) SrTiO3 templates on Si

    SciTech Connect

    Park, Jae Won; Baek, Seung Hyub; Bark, C; Biegalski, Michael D; Eom, Professor Chang-Beom

    2009-01-01

    The integration of high quality multifunctional oxides on semiconductor devices requires single-crystal-like templates directly on silicon that match with thin film heterostructures. We report the fabrication of quasi-single-crystal (001) SrTiO3 templates on (001) Si by annealing MBE-grown epitaxial SrTiO3 films at 900oC in oxygen. The FWHM of (002) SrTiO3 rocking curve is less than 0.006o which is much narrower than SrTiO3 bulk single crystals. Atomically smooth TiO2-terminated surface is obtained by buffered-HF etching, which presents the possibility of creating novel oxide heterointerfaces on Si platform. Epitaxial SrRuO3 films grown on the etched template exhibit a superior crystalline quality to those grown on a untreated template and an atomically smooth surface.

  16. Accidental formation of Gd₄(SiO₄)₂OTe: crystal structure and spectroscopic properties.

    PubMed

    Daszkiewicz, Marek; Gulay, Lubomir D

    2015-07-01

    Designing new functional materials with increasingly complex compositions is of current interest in science and technology. Complex rare-earth-based chalcogenides have specific thermal, electrical, magnetic and optical properties. Tetragadolinium bis[tetraoxidosilicate(IV)] oxide telluride, Gd4(SiO4)2OTe, was obtained accidentally while studying the Gd2Te3-Cu2Te system. The crystal structure was determined by means of single-crystal X-ray diffraction. The compound crystallizes in the space group Pnma. Three symmetry-independent gadolinium sites were determined. The excitation and emission spectra were collected at room temperature and at 10 K. Gd4(SiO4)2OTe appears to be a promising optical material when doped with rare-earth ions. PMID:26146399

  17. Evolution of the Shape of Detached GeSi Crystals in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    A series of GeSi crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. An objective of these experiments is to understand the mechanisms of detached Bridgman growth, a process in which a gap exists between the growing semiconductor crystal and the crucible wall. Crystals grown without wall contact have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus.

  18. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  19. Crystallization Behavior of Amorphous Si3N4 and Particle Size Control of the Crystallized α-Si3N4.

    PubMed

    Chung, Yong-Kwon; Kim, Shin-A; Koo, Jae-Hong; Oh, Hyeon-Cheol; Chi, Eun-Ok; Hahn, Jee-Hyun; Park, Chan

    2016-05-01

    Amorphous silicon nitride powder prepared by low-temperature vapor-phase reaction was heat treated at various temperatures for different periods of time to examine the crystallization behavior. The effects of the heat-treatment temperature and duration on the degree of crystallization were investigated along with the effect of the heat-up rate on the particle size, and its distribution, of the crystallized α-phase silicon nitride powder. A phase transition from amorphous to α-phase occurred at a temperature above 1400 degrees C. The crystallization. process was completed after heat treatment at 1500 degrees C for 3 h or at 1550 degrees C for 1 h. The crystallization process starts at the surface of the amorphous particle: while the outer regions of the particle become crystalline, the inner part remains amorphous. The re-arrangement of the Si and N atoms on the surface of the amorphous particle leads to the formation of hexagonal crystals that are separated from the host amorphous particle. The particle size and size distribution can be controlled by varying the heat-treatment profile (namely, the heat-treatment temperature, heating rate, and heating duration at the specified temperature), which can be used to control the relative extent of the nucleation and growth. The completion of most of the nucleation process by lowering the heat-up rate can be used to achieve a singlet particle size distribution. Bimodal particle size distribution can be achieved by fast heat-up during the crystallization process. PMID:27483939

  20. Preparation and stress evolution of sol-gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals

    NASA Astrophysics Data System (ADS)

    Tian, Bingtao; Wang, Xiaodong; Niu, Yanyan; Zhang, Jinlong; Zhang, Qinghua; Zhang, Zhihua; Wu, Guangming; Zhou, Bin; Shen, Jun

    2016-04-01

    Lithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a "point contact" dip-coating method is developed to prepare sol-gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol-gel SiO2 coatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young's modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO2 coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.

  1. MEV ion beam induced epitaxial crystallization of Si0.99C0.01 layers on silicon

    NASA Astrophysics Data System (ADS)

    Rey, S.; Muller, D.; Grob, J. J.; Grob, A.; Stoquert, J. P.

    1997-02-01

    Multiple energy carbon ion implantation was used to form a 150 nm thick uniformly 1 at. %-doped layers in preamorphized silicon. Unlike conventional furnace annealing, inefficient up to 700 °C, a 1.5 MeV 84Kr+ bombardment is shown to induce the crystallization of such layers at temperatures ranging between 400 and 500 °C. RBS-channeling measurements have been used to estimate the crystallization velocity which is in the order of 10 nm per 1015cm-2. After complete recrystallization, the films have been characterized by Fourier Transform Infra-Red spectroscopy showing that the carbon atoms are neither located in substitutional position nor precipitated in SiC clusters. However, the carbon profile, measured by Secondary Ion Mass Spectroscopy is not modified by the process and oblique incidence channeling angular scans demonstrate that the layers are strained.

  2. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.

    2014-10-06

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  3. Numerical design of SiC bulk crystal growth for electronic applications

    NASA Astrophysics Data System (ADS)

    Wejrzanowski, T.; Grybczuk, M.; Tymicki, E.; Kurzydlowski, K. J.

    2014-10-01

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  4. Thomson Scattering Measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, C. J.; Morgan, K. D.; Jarboe, T. R.

    2015-11-01

    A multi-point Thomson Scattering diagnostic has been implemented on HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) to measure electron temperature. The HIT-SI3 experiment is a modification of the original HIT-SI apparatus that uses three injectors instead of two. This modification alters the configuration of magnetic fields and thus the plasma behavior in the device. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and plasma performance in the spheromak. The Thomson Scattering system includes a 20 J (1 GW pulse) Ruby laser that provides the incident beam, and collection optics that are installed such that measurements can be taken at four spatial locations in HIT-SI3 plasmas. For each measurement point, a 3-channel polychromator is used to detect the relative level of scattering. These measurements allow for the presence of temperature gradients in the spheromak to be investigated. Preliminary HIT-SI3 temperature data are presented and can be compared to predictions from computational models. Work supported by the D.O.E.

  5. Interfacial push-out measurements of fully-bonded SiC/SiC composites

    SciTech Connect

    Snead, L.L.; Steiner, D. ); Zinkle, S.J. )

    1990-01-01

    The direct measurement of interfacial bond strength and frictional resistance to sliding in a fully-bonded SiC/SiC composite is measured. It is shown that a fiber push-out technique can be utilized for small diameter fibers and very thin composite sections. Results are presented for a 22 micron thick section for which 37 out of 44 Nicalon fibers tested were pushed-out within the maximum nanoindentor load of 120 mN. Fiber interfacial yielding, push-out and sliding resistance were measured for each fiber. The distribution of interfacial strengths is treated as being Weibull in form. 14 refs., 5 figs.

  6. Time of flight measurements based on FPGA and SiPMs for PET-MR

    NASA Astrophysics Data System (ADS)

    Aguilar, Albert; García-Olcina, Raimundo; Martínez, Pedro A.; Martos, Julio; Soret, Jesús; Torres, José; Benlloch, José M.; González, Antonio J.; Sánchez, Filomeno

    2014-01-01

    Coincidence time measurements with SiPMs have shown to be suitable for PET/MR systems. The present study is based on 3×3 mm2 SiPMs, LSO crystals and a conditioning signal electronic circuit. A Constant Fraction Discriminator (CFD) is used to digitalize the signals and a TDC FPGA-implemented is employed for fine time measurements. TDC capability allows processing the arrival of multiple events simultaneously, measuring times under 100 ps. The complete set-up for time measurements results on a resolution of 892±41 ps for a pair of detectors. The details of such implementation are exposed and the trade-offs of each configuration are discussed.

  7. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  8. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  9. Structural characterization of Lu{sub 1.8}Y{sub 0.2}SiO{sub 5} crystals

    SciTech Connect

    Chiriu, Daniele; Faedda, Nicola; Lehmann, Alessandra Geddo; Ricci, Pier Carlo; Anedda, Alberto; Desgreniers, Serge; Fortin, Emery

    2007-08-01

    The structural and vibrational properties of Lu{sub 1.8}Y{sub 0.2}SiO{sub 5} (LYSO) single crystals were investigated by means of Raman spectroscopy and x-ray diffraction measurements. Unit cell parameters and bond lengths were determined by Rietveld refinement of the collected x-ray diffraction powder spectra. By comparison with the vibrational spectra of the parent compounds Lu{sub 2}SiO{sub 5} and Y{sub 2}SiO{sub 5} and by using polarized Raman measurements, we propose the assignment of the principal vibrational modes of LYSO crystals. The strict connection of Raman spectra of the LYSO solid solution and of the pure lutetium and yttrium crystals, as well as the analysis of the polarized measurements, confirms that LYSO structure adopts the C2/c space group symmetry. The structural analogies of LYSO with the pure compound Lu{sub 2}SiO{sub 5} are further shown by means of high pressure Raman spectroscopy, and the possibility of considering the LYSO crystal analogous to the LSO structure with a tensile stress between 0.25 and 0.80 GPa is discussed.

  10. Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC.

    PubMed

    Bracher, David O; Hu, Evelyn L

    2015-09-01

    Silicon carbide (SiC) is an intriguing material due to the presence of spin-active point defects in several polytypes, including 4H-SiC. For many quantum information and sensing applications involving such point defects, it is important to couple their emission to high quality optical cavities. Here we present the fabrication of 1D nanobeam photonic crystal cavities (PCC) in 4H-SiC using a dopant-selective etch to undercut a homoepitaxially grown epilayer of p-type 4H-SiC. These are the first PCCs demonstrated in 4H-SiC and show high quality factors (Q) of up to ∼7000 as well as low modal volumes of <0.5 (λ/n)(3). We take advantage of the high device yield of this fabrication method to characterize hundreds of devices and determine which PCC geometries are optimal. Additionally, we demonstrate two methods to tune the resonant wavelengths of the PCCs over 5 nm without significant degradation of the Q. Lastly, we characterize nanobeam PCCs coupled to luminescence from silicon vacancy point defects (V1, V2) in 4H-SiC. The fundamental modes of two such PCCs are tuned into spectral overlap with the zero phonon line (ZPL) of the V2 center, resulting in an intensity increase of up to 3-fold. These results are important steps on the path to developing 4H-SiC as a platform for quantum information and sensing. PMID:26305122

  11. Thermal Diffusivity Measurement for p-Si and Ag/p-Si by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi

    2015-10-01

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon.

  12. Crystal nucleation in amorphous (Au/100-y/Cu/y/)77Si9Ge14 alloys

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Greer, A. L.; Spaepen, F.

    1983-01-01

    Because, unlike most metallic glasses, melt-spun alloys of the series (Au/100-y/Cu/y/)77Si9Ge14 exhibit well separated glass transition and kinetic crystallization temperatures, crystallization can be studied in the fully relaxed amorphous phase. An isothermal calorimetric analysis of the devitrification kinetics of the amorphous alloy indicates sporadic nucleation and a constant growth rate. It is found for the cases of alloys with y values lower than 25 that the classical theory of homogeneous nucleation is consistent with observations, including transient effects. An analysis of the crystallization kinetics shows that slow crystal growth rates play an important role in glass formation in these alloys. Although the reduced glass transition temperature increases with Cu content, glass formation is more difficult at high Cu contents, perhaps because of a difference in nucleus composition.

  13. Etching studies on lutetium yttrium orthosilicate LuxY2-xSiO5:Ce (LYSO) scintillator crystals

    NASA Astrophysics Data System (ADS)

    Péter, Á.; Berze, N.; Lengyel, K.; Lörincz, E.

    2010-11-01

    Surface dissolution has been investigated on {100}, {010}, {001}, {110} and {101} oriented Lu1.6Y0.4SiO5:Ce crystal samples by using orthophosphoric acid up to 180°C. Depending on the etching temperature and surface orientation smooth or bunched surfaces were produced. In order to study the effect of the etching process on the scintillation properties temperature dependent optical absorption measurements were carried out up to 236°C. It was found that depending on the post-growth history of the sample, etching may influence the scintillation mechanism by modifying the concentration of shallow traps.

  14. Stopped Light at High Storage Efficiency in a Pr3 + :Y2SiO5 Crystal

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Hain, Marcel; Lorenz, Nikolaus; Halfmann, Thomas

    2016-02-01

    We demonstrate efficient storage and retrieval of light pulses by electromagnetically induced transparency (EIT) in a Pr3 +:Y2SiO5 crystal. Using a ring-type multipass configuration, we increase the optical depth (OD) of the medium up to a factor of 16 towards OD ≈96 . Combining the large optical depth with optimized conditions for EIT, we reach a light storage efficiency of (76.3 ±3.5 )% . In addition, we perform extended systematic measurements of the storage efficiency versus optical depth, control Rabi frequency, and probe pulse duration. The data confirm the theoretically expected behavior of an EIT-driven solid-state memory.

  15. Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout

    NASA Astrophysics Data System (ADS)

    Benaglia, A.; Gundacker, S.; Lecoq, P.; Lucchini, M. T.; Para, A.; Pauwels, K.; Auffray, E.

    2016-09-01

    Precise timing capability will be a key aspect of particle detectors at future high energy colliders, as the time information can help in the reconstruction of physics events at the high collision rate expected there. Other than being used in detectors for PET, fast scintillating crystals coupled to compact Silicon Photomultipliers (SiPMs) constitute a versatile system that can be exploited to realize an ad-hoc timing device to be hosted in a larger high energy physics detector. In this paper, we present the timing performance of LYSO:Ce and LSO:Ce codoped 0.4% Ca crystals coupled to SiPMs, as measured with 150 GeV muons at the CERN SPS H2 extraction line. Small crystals, with lengths ranging from 5 mm up to 30 mm and transverse size of 2 × 2mm2 or 3 × 3mm2 , were exposed to a 150 GeV muon beam. SiPMs from two different companies (Hamamatsu and FBK) were used to detect the light produced in the crystals. The best coincidence time resolution value of (14.5 ± 0.5) ps , corresponding to a single-detector time resolution of about 10 ps, is demonstrated for 5 mm long LSO:Ce,Ca crystals coupled to FBK SiPMs, when time walk corrections are applied.

  16. High-resolution thermal expansion measurements of BaCuSi4O10 and BaCuSi2O6

    NASA Astrophysics Data System (ADS)

    Masunaga, Sueli; Rebello, Alwyn; Neumeier, J. J.

    2014-03-01

    BaCuSi4O10 and BaCuSi2O6 were used in many ancient Chinese artifacts as synthetic pigments, and recently named as Han Blue and Han Purple, respectively. Besides being important synthetic pigments of ancient and modern times, these compounds have attracted scientific and technological interest due to their luminescent properties. Moreover, Han Purple is a spin-dimer compound with an interesting phase diagram and a potential solid state device for exploring quantum effects in magnetic field induced Bose-Einstein condensation. In this work, we study BaCuSi2O6 and BaCuSi4O10 single crystals grown by floating zone method and flux growth technique, respectively. The results of thermal expansion, specific heat, and magnetization measurements of these compounds will be presented in detail. This work is supported by CNPq-Brazil under Grant No 237050/2012-9 and National Science Foundation DMR-0907036.

  17. Crystal structure, physical properties and HRTEM investigation of the new oxonitridosilicate EuSi2O2N2.

    PubMed

    Stadler, Florian; Oeckler, Oliver; Höppe, Henning A; Möller, Manfred H; Pöttgen, Rainer; Mosel, Bernd D; Schmidt, Peter; Duppel, Viola; Simon, Arndt; Schnick, Wolfgang

    2006-09-01

    The new layered oxonitridosilicate EuSi(2)O(2)N(2) has been synthesized in a radio-frequency furnace at temperatures of about 1400 degrees C starting from europium(III) oxide (Eu(2)O(3)) and silicon diimide (Si(NH)(2)). The structure of the yellow material has been determined by single-crystal X-ray diffraction analysis (space group P1 (no. 1), a=709.5(1), b=724.6(1), c=725.6(1) pm, alpha=88.69(2), beta=84.77(2), gamma=75.84(2) degrees ,V=360.19(9)x10(6) pm(3), Z=4, R1=0.0631, 4551 independent reflections, 175 parameters). Its anionic Si(2)O(2)N(2) (2-) layers consist of corner-sharing SiON(3) tetrahedra with threefold connecting nitrogen and terminal oxygen atoms. High-resolution transmission electron micrographs indicate both ordered and disordered crystallites as well as twinning. Magnetic susceptibility measurements of EuSi(2)O(2)N(2) exhibit Curie-Weiss behavior above 20 K with an effective magnetic moment of 7.80(5) mu(B) Eu(-1), indicating divalent europium. Antiferromagnetic ordering is detected at 4.5(2) K. EuSi(2)O(2)N(2) shows a field-induced transition with a critical field of 0.50(5) T. The four crystallographically different europium sites cannot be distinguished by (151)Eu Mössbauer spectroscopy. The room-temperature spectrum is fitted by one signal at an isomer shift of delta=-12.3(1) mm s(-1) subject to quadrupole splitting of DeltaE(Q)=-2.3(1) mm s(-1) and an asymmetry parameter of 0.46(3). Luminescence measurements show a narrow emission band with regard to the four crystallographic europium sites with an emission maximum at lambda=575 nm. PMID:16819723

  18. Proposed Route to Thin Film Crystal Si Using Biaxially Textured Foreign Template Layers

    SciTech Connect

    Teplin, C. W.; Ginley, D. S.; van Hest, M.F.A.M.; Perkins, J. D.; Young, D. L.; Stradins, P.; Wang, Q.; Al-Jassim, M.; Iwaniczko, E.; Leenheer, A.; Jones, K. M.; Branz, H. M.

    2005-11-01

    We have developed a new approach to growing photovoltaic-quality crystal silicon (c-Si) films on glass. Other approaches to film c-Si focus on increasing grain size in order to reduce the deleterious effects of grain boundaries. Instead, we have developed an approach to align the silicon grains biaxially (both in and out of plane) so that 1) grain boundaries are "low-angle" and have less effect on the electronic properties of the material and 2) subsequent epitaxial thickening is simplified. They key to our approach is the use of a foreign template layer that can be grown with biaxial texture directly on glass.

  19. Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal

    NASA Astrophysics Data System (ADS)

    Wang, Yue; An, Jun-ming; Wu, Yuan-da; Hu, Xiong-wei

    2016-01-01

    We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional (2D) hexagonal photonic crystal (PC) airbridge double-heterostructure microcavity with Er-doped silicon (Si) as light emitters on siliconon-insulator (SOI) wafer at room temperature. A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence (PL) spectrum with the pumping power of 12.5 mW. The obvious red shift and the degraded quality factor (Q-factor) of resonant peak appear with the pumping power increasing, and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 mW. The resonant peak is observed to shift depending on the structural parameters of PC, which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.

  20. Photonic crystals with SiO2-Ag ``post-cap'' nanostructure coatings for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Seok-min; Zhang, Wei; Cunningham, Brian T.

    2008-10-01

    We demonstrate that the resonant near fields of a large-area replica molded photonic crystal (PC) slab can efficiently couple light from a laser to SiO2-Ag "post-cap" nanostructures deposited on the PC surface by a glancing angle evaporation technique for achieving high surface enhanced Raman spectroscopy (SERS) enhancement factor. To examine the feasibility of the PC-SERS substrate, the simulated electric field around individual Ag particles and the measured Raman spectrum of trans-1,2-bis(4pyridyl)ethane on the PC-SERS substrate were compared with those from an ordinary glass substrate coated with the same SiO2-Ag nanostructures.

  1. A LEEM study of bamboo-like growth of Ag crystals on Si(0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Li, B. Q.; Swiech, W.; Venables, J. A.; Zuo, J. M.

    2004-10-01

    We report a low-energy electron microscopy study of novel bamboo-like (quasi-one-dimensional) growth during deposition of Ag on Si(0 0 1) surfaces at elevated temperatures. The bamboo crystals, with typical dimensions of 10 μm in length and varied height and width (tens to hundred of nanometers), align primarily along Si[1 1 0] or Si[1 -1 0] orientation. Low-energy electron microscopy imaging further demonstrates that the Ag bamboo crystals are initially stable against annealing, but break into segments upon prolonged annealing at 843 K. Possible growth mechanisms of the bamboo-like crystals are discussed.

  2. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  3. Measurement of Diffraction Properties of Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Selan, Nicholas; Blades, Michael; Joy, Midhun; Gilchrist, James; Rotkin, Slava

    Close-packed, self-assembled arrays of micrometer polystyrene or silica spheres are high quality artificial crystals that generate well-defined diffraction patterns in the visible range. Such crystals are explored as possible substrates for deposition of nanomaterials such as graphene. Quasi-monochromatic visible light diffraction microscopy is used to characterize effective refractive index and crystal structure, specifically grain size, orientation, and lattice parameters. These parameters can be used to monitor deformations of the colloidal crystal lattice during transfer of nanomaterials. NSF ECCS-1509786, N.S. acknowledges RET supplement to NSF ECCS-1202398.

  4. Crystal structure induced residue formation on 4H-SiC by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Liu, Yi-hong; Sun, Yu-jun; Zhao, Gao-jie; Liao, Li-ming; Wang, Tao; Chen, Zhi-zhan

    2016-06-01

    The (000 1 ¯) C face of 4H-SiC wafer was etched by reactive ion etching in SF6/O2 plasma. The effect of etching parameters, such as work pressure, SF6:O2 ratio and etching time, on the residue formation were systematically investigated. The residue morphologies were observed by scanning electron microscopy and atomic force microscopy, respectively. The residues have spike shape and their facets are defined as { 1 1 ¯ 0 2 ¯ } crystal planes. They are formed at beginning of the etching and no new spikes are generated as prolonging etching time. Both work pressure and SF6:O2 ratio play significant role in the spike formation. The residues can be eliminated completely by increasing the SF6:O2 ratio and work pressure. On the basis of experimental results and of 4H-SiC crystal structure, the spike formation model is proposed.

  5. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    SciTech Connect

    Liu, Ziheng Hao, Xiaojing; Ho-Baillie, Anita; Green, Martin A.

    2014-02-03

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  6. Smart dust: self-assembling, self-orienting photonic crystals of porous Si.

    PubMed

    Link, Jamie R; Sailor, Michael J

    2003-09-16

    Micrometer-sized one-dimensional photonic crystals of porous Si that spontaneously assemble, orient, and sense their local environment are prepared. The photonic crystals are generated by electrochemically etching two discrete porous multilayered dielectric mirrors into Si, one on top of the other. The first mirror is chemically modified by hydrosilylation with dodecene before the etching of the second mirror, which is prepared with an optical reflectivity spectrum that is distinct from the first. The entire film is removed from the substrate, and the second mirror is then selectively modified by mild thermal oxidation. The films are subsequently fractured into small particles by sonication. The chemically asymmetric particles spontaneously align at an organic liquid-water interface, with the hydrophobic side oriented toward the organic phase and the hydrophilic side toward the water. Sensing is accomplished when liquid at the interface infuses into the porous mirrors, inducing predictable shifts in the optical spectra of both mirrors. PMID:12947036

  7. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  8. Crystallization of ion-beam-synthesized SiC layer by thermal annealing

    NASA Astrophysics Data System (ADS)

    Wu, W.; Chen, D. H.; Cheung, W. Y.; Xu, J. B.; Wong, S. P.; Kwok, R. W. M.; Wilson, I. H.

    Synthesis of β-phase silicon carbide (SiC) layers has been achieved by high-dose carbon ion beam implantation into (100) silicon wafers with two different ion implantation energies, 40 keV and 65 keV. Subsequent furnace annealing was carried out in N2 at temperatures ranging from 600 to 1200 °C for 2 h. Rutherford backscattering spectrometry (RBS) analysis revealed carbon distribution and the formation of an SiC layer. Infrared spectroscopy (IR) exhibited a sharp absorption peak produced by the Si-C bond at 795 cm-1 with full width at half maximum (FWHM) of about 35 cm-1. A layer of crystalline SiC was formed after annealing the as-implanted sample at 1000 °C for 2 h. The influence of annealing temperature on the surface morphology and the dynamics of the crystallization procedure was studied by atomic force microscopy (AFM). A study of grain size and roughness revealed that the morphology of the SiC layer was largely dependent on annealing temperature, and the average grain size increased as the annealing temperature was raised. At about 900 °C, a layer of nanocrystalline SiC was formed on the sample surface, containing columnar grains with a FWHM of tens of nanometers and a height of less than ten nanometers.

  9. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  10. Shear-Induced Phase Transformation: From Single-Crystal Silicon to Si-IV

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Krick, Brandon; Tansu, Nelson

    2015-03-01

    Silicon has been recognized as one of the most important semiconductors in modern electronics industry. Investigations in the past decades have led to observation of more than 12 different polymorphs of silicon. Among these polymorphs, the wurtzite silicon (Si-IV) shows promising application potential. It has been widely accepted that Si-IV is a metastable phase of silicon forming from annealing Si-III at temperature range between 200 C and 600 C. Besides the annealing, the shear stress can also lead to the phase transition from Si-I into Si-IV. It has been confirmed that the mechanism of shear-induced phase transition is different from that observed from hydrostatic pressure-induced phase transition. However, this shear-induced phase transition has not been studied systematically, and further investigations are required to clarify this transition on silicon. In this work, we develop a new method to study the formation of Si-IV. Combining nanoscratching and micro-Raman spectroscopy, shear effect on Si-I to Si-IV phase transformation has been studied qualitatively and quantitatively. A clear evolution of phase transition of silicon has been recorded. The stability of Si-IV has been analyzed by applying an in-situ Raman measurement under various temperature.

  11. From polymer to monomer: cleavage and rearrangement of Si-O-Si bonds after oxidation yielded an ordered cyclic crystallized structure.

    PubMed

    Zuo, Yujing; Gou, Zhiming; Cao, Jinfeng; Yang, Zhou; Lu, Haifeng; Feng, Shengyu

    2015-07-27

    Polymerization reactions are very common in the chemical industry, however, the reaction in which monomers are obtained from polymers is rarely invesitgated. This work reveals for the first time that oxone can break the Si-O-Si bond and induce further rearrangement to yield an ordered cyclic structure. The oxidation of P1, which is obtained by reaction of 2,2'-1,2-ethanediylbis(oxy)bis(ethanethiol) (DBOET) with 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (MM(Vi)), with oxone yielded cyclic crystallized sulfone-siloxane dimer (P1-ox) after unexpected cleavage and rearrangement of the Si-O-Si bond. PMID:26186500

  12. Crystal structure and electronic properties of the new compounds, U 6Fe 16Si 7 and its interstitial carbide U 6Fe 16Si 7C

    NASA Astrophysics Data System (ADS)

    Berthebaud, D.; Tougait, O.; Potel, M.; Lopes, E. B.; Gonçalves, A. P.; Noël, H.

    2007-10-01

    The new compounds U6Fe16Si7 and U6Fe16Si7C were prepared by arc-melting and subsequent annealing at 1500 °C. Single-crystal X-ray diffraction showed that they crystallize in the cubic space group Fm3¯m (No. 225), with unit-cell parameters at room temperature a=11.7206(5) Å for U6Fe16Si7 and a=11.7814(2) Å for U6Fe16Si7C. Their crystal structures correspond to ordered variants of the Th6Mn23 type. U6Fe16Si7 adopts the Mg6Cu16Si7 structure type, whereas U6Fe16Si7C crystallizes with a novel "filled" quaternary variant. The inserted carbon is located in octahedral cages formed by six U atoms, with U-U interatomic distances of 3.509(1) Å. Insertion of carbon in the structure of U6Fe16Si7 has a direct influence on the U-Fe and Fe-Fe interatomic distances. The electronic properties of both compounds were investigated by means of DC susceptibility, electrical resistivity and thermopower. U6Fe16Si7 is a Pauli paramagnet. Its electrical resistivity and thermopower point out that it cannot be classified as a simple metal. The magnetic susceptibility of U 6Fe 16Si 7C is best described over the temperature range 100-300 K by using a modified Curie-Weiss law with an effective magnetic moment of 2.3(2) μB/U, a paramagnetic Weiss temperature, θp=57(2) K and a temperature-independent term χ0=0.057(1) emu/mol. Both the electrical resistivity and thermopower reveal metallic behavior.

  13. Diode laser crystallization processes of Si thin-film solar cells on glass

    NASA Astrophysics Data System (ADS)

    Yun, Jae Sung; Ahn, Cha Ho; Jung, Miga; Huang, Jialiang; Kim, Kyung Hun; Varlamov, Sergey; Green, Martin A.

    2014-07-01

    The crystallization of Si thin-film on glass using continuous-wave diode laser is performed. The effect of various processing parameters including laser power density and scanning speed is investigated in respect to microstructure and crystallographic orientation. Optimal laser power as per scanning speed is required in order to completely melt the entire Si film. When scan speed of 15-100 cm/min is used, large linear grains are formed along the laser scan direction. Laser scan speed over 100 cm/min forms relatively smaller grains that are titled away from the scan direction. Two diode model fitting of Suns-Voc results have shown that solar cells crystallized with scan speed over 100 cm/min are limited by grain boundary recombination (n = 2). EBSD micrograph shows that the most dominant misorientation angle is 60°. Also, there were regions containing high density of twin boundaries up to ~1.2 × 10-8/cm2. SiOx capping layer is found to be effective for reducing the required laser power density, as well as changing preferred orientation of the film from ⟨ 110 ⟩ to ⟨ 100 ⟩ in surface normal direction. Cracks are always formed during the crystallization process and found to be reducing solar cell performance significantly.

  14. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI

    PubMed Central

    Schmall, Jeffrey P; Surti, Suleman; Karp, Joel S

    2015-01-01

    A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4×4 mm2 silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15-mm long LaBr3(Ce:20%) crystal on top of a 15-mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12-mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12-mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution—timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The interface in the

  15. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI

    NASA Astrophysics Data System (ADS)

    Schmall, Jeffrey P.; Surti, Suleman; Karp, Joel S.

    2015-05-01

    A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4 × 4 mm2 silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15 mm long LaBr3(Ce:20%) crystal on top of a 15 mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12 mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12 mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution—timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The

  16. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI.

    PubMed

    Schmall, Jeffrey P; Surti, Suleman; Karp, Joel S

    2015-05-01

    A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4 × 4 mm(2) silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15 mm long LaBr3(Ce:20%) crystal on top of a 15 mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12 mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12 mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution-timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The

  17. Mechanism of interactions between CMC binder and Si single crystal facets.

    PubMed

    Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F

    2014-09-01

    Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes. PMID:25109709

  18. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.

    1988-01-01

    Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  19. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Lee, William E.; Sanders, W. A.; Kiser, J. D.

    1991-01-01

    Glasses in the yttria-silica system with 20 to 40 mol pct Y2O3 were subjected to recrystallization studies after melting at 1900 to 2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat treatment in air at 1100 to 1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristabalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  20. Comparison of the quantum and classical calculations of flux density of (220) channeled positrons in Si crystal

    NASA Astrophysics Data System (ADS)

    Korotchenko, K. B.; Tukhfatullin, TA; Pivovarov, Yu L.; Eikhorn, Yu L.

    2016-07-01

    Simulation of flux-peaking effect of the 255 MeV positrons channeled in (220) Si crystals is performed in the frame of classical and quantum mechanics. Comparison of the results obtained using both approaches shows relatively good agreement.

  1. Searching for the Best Protein Crystals: Synchrotron Based Measurements of Protein Crystal Quality

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria; Snell, Edward H.; Bellamy, Henry; Pangborn, Walter; Nelson, Chris; Arvai, Andy; Ohren, Jeff; Pokross, Matt

    1999-01-01

    We are developing X-ray diffraction methods to quantitatively evaluate the quality of protein crystals. The ultimate use for these crystal quality will be to optimize crystal growth and freezing conditions to obtain the best diffraction data. We have combined super fine-phi slicing with highly monochromatic, low divergence synchrotron radiation and the ADSC Quantum 4 CCD detector at the Stanford Synchrotron Radiation laboratory beamline 1.5 to accurately measure crystal mosaicity. Comparisons of microgravity versus earth-grown insulin crystals using these methods will be presented.

  2. Spectral broadening induced by intense ultra-short pulse in 4H–SiC crystals

    NASA Astrophysics Data System (ADS)

    Chun-hua, Xu; Teng-fei, Yan; Gang, Wang; Wen-jun, Wang; Jing-kui, Liang; Xiao-long, Chen

    2016-06-01

    We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals. It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density, reaching a maximum 870 cm‑1 on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm2. Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index. The nonlinear refractive index n 2 is estimated to be 1.88×10‑15 cm2/W. The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process. Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect. The results show that SiC crystals may find applications in spectral broadening of high power lasers. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA041402) and the National Natural Science Foundation of China (Grant Nos. 51272276 and 51322211).

  3. Temperature-controlled coalescence during the growth of Ge crystals on deeply patterned Si substrates

    NASA Astrophysics Data System (ADS)

    Bergamaschini, Roberto; Salvalaglio, Marco; Scaccabarozzi, Andrea; Isa, Fabio; Falub, Claudiu V.; Isella, Giovanni; von Känel, Hans; Montalenti, Francesco; Miglio, Leo

    2016-04-01

    A method for growing suspended Ge films on micron-sized Si pillars in Si(001) is discussed. In [C.V. Falub et al., Science 335 (2012) 1330] vertically aligned three-dimensional Ge crystals, separated by a few tens of nanometers, were obtained by depositing several micrometers of Ge using Low-Energy Plasma-Enhanced Chemical Vapor Deposition. Here a different regime of high growth temperature is exploited in order to induce the merging of the crystals into a connected structure eventually forming a continuous, two-dimensional film. The mechanisms leading to such a behavior are discussed with the aid of an effective model of crystal growth. Both the effects of deposition and curvature-driven surface diffusion are considered to reproduce the main features of coalescence. The key enabling role of high temperature is identified with the activation of the diffusion process on a time scale competitive with the deposition rate. We demonstrate the versatility of the deposition process, which allows to switch between the formation of individual crystals and a continuous suspended film simply by tuning the growth temperature.

  4. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite.

    PubMed

    Zhang, Li; Meng, Yue; Dera, Przemyslaw; Yang, Wenge; Mao, Wendy L; Mao, Ho-Kwang

    2013-04-16

    Knowledge of the structural properties of mantle phases is critical for understanding the enigmatic seismic features observed in the Earth's lower mantle down to the core-mantle boundary. However, our knowledge of lower mantle phase equilibria at high pressure (P) and temperature (T) conditions has been based on limited information provided by powder X-ray diffraction technique and theoretical calculations. Here, we report the in situ single-crystal structure determination of (Mg,Fe)SiO3 postperovskite (ppv) at high P and after temperature quenching in a diamond anvil cell. Using a newly developed multigrain single-crystal X-ray diffraction analysis technique in a diamond anvil cell, crystallographic orientations of over 100 crystallites were simultaneously determined at high P in a coarse-grained polycrystalline sample containing submicron ppv grains. Conventional single-crystal structural analysis and refinement methods were applied for a few selected ppv crystallites, which demonstrate the feasibility of the in situ study of crystal structures of submicron crystallites in a multiphase polycrystalline sample contained within a high P device. The similarity of structural models for single-crystal Fe-bearing ppv (~10 mol% Fe) and Fe-free ppv from previous theoretical calculations suggests that the Fe content in the mantle has a negligible effect on the crystal structure of the ppv phase. PMID:23576761

  5. Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Prance, Jonathan; Ward, Daniel; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark

    2013-03-01

    We present recent measurements on a double dot formed in an accumulation mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. By measuring the ground state and excited state spectrum of this double dot as a function of in-plane magnetic field we identify the (1,1) and (2,0) charge degeneracy point. Using single-shot readout we measure transitions between the (2,0) singlet and the (1,1) triplet states. This method enables the identification of the crossing as a function of detuning between the (1,1) triplet states (both the first and second excited states) and the (2,0) singlet state. We also present data showing that this undoped device has good charge stability and can be measured with high frequency (up to 500MHz) voltage pulses. Now work at Lancaster University

  6. Synthesis and crystal structure of Ba{sub 26}B{sub 12}Si{sub 5}N{sub 27} containing [Si{sub 2}] dumbbells

    SciTech Connect

    Takayuki, Hashimoto; Yamane, Hisanori; Becker, Nils; Dronskowski, Richard

    2015-10-15

    Black, metallic luster, platelet single crystals of Ba{sub 26}B{sub 12}Si{sub 5}N{sub 27} were grown on a BN crucible wall by slowly cooling from 900 °C to 27 °C. X-ray diffraction analysis revealed that Ba{sub 26}B{sub 12}Si{sub 5}N{sub 27} crystallizes in an orthorhombic cell (a=17.6942(4) Å, b=34.1437(6) Å, c=10.0410(2) Å; space group Fdd2). Isolated nitridoborate anionic groups [BN{sub 2}]{sup 3–}, dumbbell-type Zintl polyanions [Si{sub 2}]{sup 2.8–}, and nitride anions N{sup 3–} are included in the structure. The structural formula is represented as (Ba{sup 2+}){sub 26}([BN{sub 2}]{sup 3–}){sub 12}[([Si{sub 2}]{sup 2.8–}){sub 1.25}(N{sup 3–}){sub 2×0.75}]{sub 2}. The [Si{sub 2}]{sup 2.8–} dumbbell with a Si–Si length of 2.177(5) Å has a bond order of 2.6, which is close to the triple bond of Si. - Graphical abstract: Single crystals of Ba{sub 26}B{sub 12}Si{sub 5}N{sub 27} grown by slow cooling from 900 °C have an orthorhombic crystal structure with space group Fdd2, containing nitridoborate anionic groups [BN{sub 2}]{sup 3–}, dumbbell-type Zintl polyanions [Si{sub 2}]{sup 2.8–}, and nitride anions N{sup 3–}. - Highlights: • A novel compound, Ba{sub 26}B{sub 12}Si{sub 5}N{sub 27}, was synthesized by slow cooling from 900 °C. • Single crystal X-ray diffraction clarified a new crystal structure. • Anionic groups [BN{sub 2}]{sup 3–} and dumbbell-type Zintl polyanions [Si{sub 2}]{sup 2.8–} are contained. • The [Si{sub 2}]{sup 2.8–} dumbbell has a bond order of 2.6, which is close to the triple bond.

  7. Improvement and luminescent mechanism of Bi4Si3O12 scintillation crystals by Dy3+ doping

    NASA Astrophysics Data System (ADS)

    Yang, Bobo; Xu, Jiayue; Zhang, Yan; Zeng, Haibo; Tian, Tian; Chu, Yaoqing; Pan, Yubai; Cui, Qingzhi

    2016-01-01

    Bi4Si3O12:Dy (BSO:Dy) crystals have been grown by the modified vertical Bridgeman method and doping effects on light yield have been investigated. Doped with small amount of Dy2O3 (0.05-0.3 mol%), the light yield and energy resolution of BSO crystals were improved significantly. However, high concentrations of Dy2O3 doping resulted in the decrease of light yield. Pulse height measurement under γ-ray irradiation shows that 0.1 mol% Dy2O3 doping can make the relative light yield of BSO from 24.6% to 35.8% of BGO crystal, with fast decay time of ~90 ns. X-ray excited radioluminescence spectra showed Dy doping has an extra emission in the host emission band (Bi3+ emission) and acts as a sensitizer to the Bi luminescent center. These results indicate that BSO:Dy crystal could be one of promising candidates for replacing BGO in some application such as electromagnetic calorimeter and dual readout in nuclear or high energy physics.

  8. Dynamic range measurement and calibration of SiPMs

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Hebbeker, T.; Lauscher, M.; Middendorf, L.; Niggemann, T.; Schumacher, J.; Stephan, M.; Bueno, A.; Navas, S.; Ruiz, A. G.

    2016-03-01

    Photosensors have played and will continue to play an important role in high-energy and Astroparticle cutting-edge experiments. As of today, the most common photon detection device in use is the photomultiplier tube (PMT). However, we are witnessing rapid progress in the field and new devices now show very competitive features when compared to PMTs. Among those state-of-the-art photo detectors, silicon photomultipliers (SiPMs) are a relatively new kind of semiconductor whose potential is presently studied by many laboratories. Their characteristics make them a very attractive candidate for future Astroparticle physics experiments recording fluorescence and Cherenkov light, both in the atmosphere and on the ground. Such applications may require the measurement of the light flux on the sensor for the purpose of energy reconstruction. This is a complex task due to the limited dynamic range of SiPMs and the presence of thermal and correlated noise. In this work we study the response of three SiPM types in terms of delivered charge when exposed to light pulses in a broad range of intensities: from single photon to saturation. The influence of the pulse time duration and the SiPM over-voltage on the response are also quantified. Based on the observed behaviour, a method is presented to reconstruct the real number of photons impinging on the SiPM surface directly from the measured SiPM charge. A special emphasis is placed on the description of the methodology and experimental design used to perform the measurements.

  9. SU-C-201-01: Investigation of the Effects of Scintillator Surface Treatment On Light Output Measurements with SiPM Detectors

    SciTech Connect

    Valenciaga, Y; Prout, D; Chatziioannou, A

    2015-06-15

    Purpose: To examine the effect of different scintillator surface treatments (BGO crystals) on the fraction of scintillation photons that exit the crystal and reach the photodetector (SiPM). Methods: Positron Emission Tomography is based on the detection of light that exits scintillator crystals, after annihilation photons deposit energy inside these crystals. A considerable fraction of the scintillation light gets trapped or absorbed after going through multiple internal reflections on the interfaces surrounding the crystals. BGO scintillator crystals generate considerably less scintillation light than crystals made of LSO and its variants. Therefore, it is crucial that the small amount of light produced by BGO exits towards the light detector. The surface treatment of scintillator crystals is among the factors affecting the ability of scintillation light to reach the detectors. In this study, we analyze the effect of different crystal surface treatments on the fraction of scintillation light that is detected by the solid state photodetector (SiPM), once energy is deposited inside a BGO crystal. Simulations were performed by a Monte Carlo based software named GATE, and validated by measurements from individual BGO crystals coupled to Philips digital-SiPM sensor (DPC-3200). Results: The results showed an increment in light collection of about 4 percent when only the exit face of the BGO crystal, is unpolished; compared to when all the faces are polished. However, leaving several faces unpolished caused a reduction of at least 10 percent of light output when the interaction occurs as far from the exit face of the crystal as possible compared to when it occurs very close to the exit face. Conclusion: This work demonstrates the advantages on light collection from leaving unpolished the exit face of BGO crystals. The configuration with best light output will be used to obtain flood images from BGO crystal arrays coupled to SiPM sensors.

  10. Liquid crystals under the spotlight: light based measurements of electrical and flow properties of liquid crystals

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas P.; Proctor, Matthew B.; Kaczmarek, Malgosia; D'Alessandro, Giampaolo

    2015-09-01

    Optical light modulation in photorefractive liquid crystal cells depends strongly on the relative voltage drop across the photoconductive and liquid crystal layers. This quantity can be estimated using the Voltage Transfer Function, a generalization of the standard cross polarized intensity measurements. Another advantage of this new measurement technique is that we can use it to estimate dynamical parameters of the liquid crystal and of the device, either through simple black-box models or using a full Ericksen-Leslie theory. In this latter case we can obtain estimates of some of the viscosities of the liquid crystal.

  11. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.; Cong, Z. H.; Zhang, J.; Tang, D. Y.

    2011-01-01

    High quality Nd3+-doped Lu2SiO5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 2.59, 4.90, and 5.96×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10-20 cm2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material.

  12. Study of Electron, Phonon and Crystal Stability Versus Thermoelectric Properties in Mg2X(X = Si, Sn) Compounds and Their Alloys

    NASA Astrophysics Data System (ADS)

    Bourgeois, J.; Tobola, J.; Wiendlocha, B.; Chaput, L.; Zwolenski, P.; Berthebaud, D.; Gascoin, F.; Recour, Q.; Scherrer, H.

    2013-10-01

    We present results of extensive theoretical and experimental investigations of Mg2Si and Mg2Sn and their Mg2Si1-xSnx alloys. Electronic and phonon properties of binary compounds were studied by ab initio calculations. Then, both compounds were synthesized by the solid-state reaction and electrical resistivity and thermopower was measured at high temperature (300-900 K). In both the compounds, the theoretical bandgaps (0.56 eV in Mg2Si and 0.16 eV in Mg2Sn) agree very well with the experimental values (0.6 eV in Mg2Si and 0.17 eV from activation law in Mg2Sn) upon applying the modified Becke-Johnson semilocal exchange potential and including spin-orbit coupling in the calculations. Calculated phonon spectra support crystal stability of both compounds. For Mg2Si, the contributions from Si and Mg are spread over all the spectrum (0-10 THz), whereas in the case of Mg2Sn, a gap opens around 4 THz with Sn and Mg contributions dominating in lower and higher energy range, respectively. The calculated heat capacity at low temperature (0-300 K) fairly agrees with available experimental data. The crystal structure of Mg2Si1-xSnx with x = 0, 0.25, 0.4, 0.75, 1 was studied by X-ray diffraction measurements. The alloy compositions exist in the ranges 0 < x < 0.4 and 0.6 < x < 1 and the obtained samples are almost single phased. Detailed crystal stability study with temperature revealed that all powder samples started to decompose into MgO, Si and Sn at 630 K. For hot pressed bulk materials, the decomposition is much slower than in powder compounds but it still appears. Interestingly, thermoelectric properties measurements performed in Mg2Si1-xSnx show that both electrical resistivity and thermopower curves are repeatable during temperature cycles up to 770 K. On the other hand, temperature-dependent X-ray powder diffraction suggests that these compounds are not stable. Furthermore, electronic structure calculations of almost 40 impurities (s- and p-block, 3d and 4d transition

  13. A review on solar cells from Si-single crystals to porous materials and quantum dots

    PubMed Central

    Badawy, Waheed A.

    2013-01-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746

  14. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    PubMed

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed. PMID:25750746

  15. Synthesis, crystal structure and properties of Mg3B36Si9C and related rare earth compounds RE3-xB36Si9C (RE=Y, Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Ludwig, Thilo; Pediaditakis, Alexis; Sagawe, Vanessa; Hillebrecht, Harald

    2013-08-01

    We report on the synthesis and characterisation of Mg3B36Si9C. Black single crystals of hexagonal shape were yielded from the elements at 1600 °C in h-BN crucibles welded in Ta ampoules. The crystal structure (space group R3barm, a=10.0793(13) Å, c=16.372(3) Å, 660 refl., 51 param., R1(F)=0.019; wR2(F2)=0.051) is characterized by a Kagome-net of B12 icosahedra, ethane like Si8-units and disordered SiC-dumbbells. Vibrational spectra show typical features of boron-rich borides and Zintl phases. Mg3B36Si9C is stable against HF/HNO3 and conc. NaOH. The micro-hardness is 17.0 GPa (Vickers) and 14.5 GPa (Knoop), respectively. According to simple electron counting rules Mg3B36Si9C is an electron precise compound. Band structure calculations reveal a band gap of 1.0 eV in agreement to the black colour. Interatomic distances obtained from the refinement of X-ray data are biased and falsified by the disorder of the SiC-dumbbell. The most evident structural parameters were obtained by relaxation calculation. Composition and carbon content were confirmed by WDX measurements. The small but significant carbon content is necessary by structural reasons and frequently caused by contaminations. The rare earth compounds RE3-xB36Si9C (RE=Y, Dy-Lu) are isotypic. Single crystals were grown from a silicon melt and their structures refined. The partial occupation of the RE-sites fits to the requirements of an electron-precise composition. According to the displacement parameters a relaxation should be applied to obtain correct structural parameters.

  16. Syntheses, crystal structures, and electronic properties of Ba8Si2US14 and Ba8SiFeUS14

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Prakash, Jai; Lebègue, Sébastien; Stojko, Wojciech; Ibers, James A.

    2015-10-01

    Black single crystals of the new compounds Ba8Si2US14 and Ba8SiFeUS14 have been obtained by high-temperature solid-state methods at 1223 K. These isostructural compounds crystallize in a new structure type in space group C2h3 - C2/m of the monoclinic system. The salt-like structure comprises isolated US6 octahedra and MS4 tetrahedra separated by Ba cations. The US6 octahedra form pseudo-layers that are separated by two other pseudo-layers formed by isolated MS4 tetrahedra. These compounds do not show any short S-S interactions. Ba8Si2US14 charge balances with 8 Ba2+, 2 Si4+, 1 U4+, and 14 S2-; Ba8SiFeUS14 can be charge balanced with 8 Ba2+, 1 Si4+, 1 Fe3+, 1 U5+, and 14 S2-. DFT calculations using the HSE functional indicate that the compounds are semiconductors. The calculated band gaps are 1.2 eV and 1.8 eV for Ba8Si2US14 and Ba8SiFeUS14, respectively.

  17. Ternary rare earth silicides RE2M3Si4 (RE = Sc, Y, Lu; M = Mo, W): crystal structure, coloring and electronic properties.

    PubMed

    Nielsen, Morten B; Xie, Weiwei; Cava, Robert J

    2016-03-01

    The ternary compounds Sc2Mo3Si4, Y2Mo3Si4, Lu2Mo3Si4 and Sc2W3Si4 have been synthesized using arc melting and structurally characterized using single crystal X-ray diffraction. The compounds are isostructural with Gd5Si4 but with coloring (order of the rare earth and transition metals) on the Gd site. In contrast to group 4 and 5 ternaries of the same type, we observe no site mixing between the rare earth and transition metals. The Y compound displays a different, less common coloring from the others and through DFT calculations and investigation of the solid solution between Sc2Mo3Si4 and Y2Mo3Si4 it is shown that the different coloring of the latter is only marginally more stable. The electronic structures of the ternary compounds have been investigated using DFT calculations, yielding densities of states very similar to Gd5Si4. These predict metallic behavior and no magnetism, which is confirmed through resistivity and magnetization measurements. PMID:26817679

  18. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Guozhi; Zeng, Xiangbin; Wen, Xixin; Liao, Wugang

    2014-04-01

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  19. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    SciTech Connect

    Wen, Guozhi; Zeng, Xiangbin Wen, Xixin; Liao, Wugang

    2014-04-28

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  20. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  1. Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO{sub 2} substrates

    SciTech Connect

    Kurosawa, Masashi; Sadoh, Taizoh; Miyao, Masanobu

    2014-11-07

    Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO{sub 2}-substrates, as a function of the air-exposure time of Al surfaces (t{sub air}: 0–24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (d{sub Al,} d{sub Si}: 50–200 nm), the annealing temperature (450–500 °C), and the annealing time (0–50 h). It has been clarified that longer t{sub air} (>60 min) and/or thinner d{sub Al} and d{sub Si} (<50 nm) lead to the (111) oriented growth; in contrast, shorter t{sub air} (<60 min) and/or thicker d{sub Al} and d{sub Si} (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by “supply-limited” processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO{sub 2} interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.

  2. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  3. Surface characterization and growth mechanism of laminated Ti 3SiC 2 crystals fabricated by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Changsheng; Tang, Hua

    2010-09-01

    Laminated Ti 3SiC 2 crystals were prepared by hot isostatic pressing from Ti, Si, C and Al powders with NaCl additive in argon at 1350 °C. The morphology and microstructure of Ti 3SiC 2 crystals were investigated by means of XRD, SEM, and TEM. The high symmetry and crystalline was revealed by high resolution transmission electronic microscope (HRTEM) and selected area electron diffraction (SAED). The growth mechanism of Ti 3SiC 2 crystals controlled by two-dimensional nucleation was put forward. The growth pattern of layered steps implies that the growth of the (0 0 2) face should undergo two steps, the intermittent two-dimensional nucleation and the continuous lateral spreading of layers on growth faces.

  4. CRYSTALLIZATION EXPERIMENTS OF SiO{sub 2}-RICH AMORPHOUS SILICATE: APPLICATION TO SiO{sub 2}-RICH CIRCUMSTELLAR DUST AND GEMS

    SciTech Connect

    Matsuno, Junya; Tsuchiyama, Akira; Koike, Chiyoe; Chihara, Hiroki; Imai, Yuta; Noguchi, Ryo; Ohi, Shugo

    2012-07-10

    Crystallization experiments of relatively SiO{sub 2}-rich amorphous silicates using the mean chemical composition of the silicate portions in GEMS (glass with embedded metal and sulfide), which is a major component in anhydrous interplanetary dust particles and a primitive material of the early solar system, were performed to understand the presence of crystalline silica around young stars and crystallization in GEMS. Olivine crystallized at {approx}900-1400 K, probably prior to pyroxene. Three different polymorphs of pyroxene, protopyroxene, orthopyroxene, and clinopyroxene, were identified at {>=}1000 K. Cristobalite, which is one of the silica polymorphs, crystallized only at high temperatures ({>=}1500 K). We obtained time-temperature-transformation (TTT) crystallization diagrams. These results suggest that crystallization of a silica polymorph is kinetically difficult in a day or so at {approx}900-1400 K even for the SiO{sub 2}-saturated composition, while the crystallization might be possible after metastable olivine crystallization if duration is long enough. The TTT diagram also indicates that the GEMS cooling timescale was {approx}10{sup 5} s if they condensed at 1000 K as amorphous silicates and annealed during cooling after the condensation.

  5. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2016-06-01

    Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe2, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 104% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (˜1.4 × 104%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.

  6. Hydrogen reduction of wustite single crystals doped with Mg, Mn, Ca, Al, and Si

    NASA Astrophysics Data System (ADS)

    Moukassi, M.; Gougeon, M.; Steinmetz, P.; Dupre, B.; Gleitzer, C.

    1984-06-01

    In order to investigate the reduction mechanism of wustite in the presence of impurities usually met in the ironmaking industry, single crystals have been prepared with Mg, Mn, Ca, Al, and Si as dopants. The amounts of dopant in the lattice is around 4,4,2.5,0.5, and 0.01 mol pct, respectively, at 800 ‡C. For reduction with pure hydrogen, from 600 to 950 ‡C, Ca is the most efficient for accelerating the process at high degrees of reduction (75 pct) Mg and Mn are also active in this respect. Al has only a slowing down effect. Si also slows down the reaction at temperatures between 600 < T < 850 ‡C, but it becomes accelerating at T > 850 ‡C. In the presence of 20 torrs of water vapor in the gas, Mg and Mn are less efficient and unable to prevent the same slowing down of reaction observed with pure wustite at around 850 ‡C and classically called the ‡rate minimum‡. Our interpretation of these results is mainly based upon the observations of microstructures of partly reduced crystals which show a change in the texture of the iron produced which can be correlated with the reduction rate. These observations lead to a possible explanation in terms of the role of inclusions of impurity oxides on the sintering process of the metal, correlated with their ability to dissolve into the wustite lattice. However, this suggestion cannot apply in the case of Si at low temperatures, and this element is therefore supposed to play a role in the stages of reaction associated with the surface of the crystals.

  7. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  8. Growth and Characterization of Ca2Al2SiO7 Piezoelectric Single Crystals for High-Temperature Sensor Applications

    NASA Astrophysics Data System (ADS)

    Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takeda, Hiroaki; Fujihara, Shinobu; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-09-01

    The electrical properties of a piezoelectric single crystal of calcium aluminate silicate Ca2Al2SiO7 (CAS) were studied at elevated temperatures and its applicability to high-temperature pressure sensors was investigated. The CAS bulk single crystal was grown by the Czochralski method. The piezoelectric d14 and d36 constants were respectively evaluated as 6.04 and 4.04 pC/N by the resonance and antiresonance method. The temperature dependence of the piezoelectric constant was investigated at temperatures up to 500 °C. The electrical resistivity at 800 °C was on the order of 108 Ω.cm along both the crystallographic a- and c-axes. The measurement of direct piezoelectric response at 700 °C demonstrated that the CAS crystal could detect a pseudo-combustion pressure change of an automobile engine. Our observations suggest that CAS crystals are superior candidates for sensing pressure at high temperatures.

  9. Preparation and properties of a novel piezoelectric single-crystal material: Sr{sub 3}TaGa{sub 3}Si{sub 2}O{sub 14}

    SciTech Connect

    Wang Zengmei; Yuan Duorong; Xu Dong; Lue Mengkai; Cheng Xiufeng; Pan Lihu

    2004-06-08

    We have grown a new langasite-type piezoelectric single crystal Sr{sub 3}TaGa{sub 3}Si{sub 2}O{sub 14} (STGS) with dimensions of 15 mm in diameter and 30 mm in length by using the Czochralski technique. The X-ray powder diffraction (XRPD) of single crystal was performed at room temperature. The thermal expansion coefficient perpendicular to Z direction has been measured as 3.2x10{sup -6} K{sup -1} between 343.15 and 493.15 K, and along Z-axis, 9.7x10{sup -6} K{sup -1} between 318.15 and 503.15 K. The specific heat of the crystal has been measured as 0.68 J g{sup -1} K{sup -1} at 468.15 K. The transmittance spectra from 200 to 3200 nm annealed in different atmospheres were measured.

  10. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  11. Basics of luminescent diagnostics of the dislocation structure of SiC crystals

    NASA Astrophysics Data System (ADS)

    Gorban, Ivan S.; Mishinova, Galina N.

    1998-04-01

    The result of the studies of dislocation luminescence in SiC crystals are presented in the report. This semiconductor forms great number of polytypes which differs by periodical alternation of cubic and hexagonal layers in basic planes. High probability of periodic pack infringement caused by very little energy of stacking fault leads to variation of dislocation structures in different glide planes of this crystals. Shockly and Frank partial dislocations are sufficiently important. The dislocation luminescence as growth origin so as dislocations included in result of plastic deformation or high temperature annealing. In this case the spectra of dislocation luminescence are the indicators of processes of phase transitions. The influence of impurities on the dislocation luminescence centers is investigated. The models of structure of dislocation centers and the mechanism of radiative transitions are proposed.

  12. Plastic deformation of Mo(Si,Al){sub 2} single crystals with C40 structure

    SciTech Connect

    Moriwaki, M.; Ito, K.; Inui, H.; Yamaguchi, M.

    1997-12-31

    The deformation behavior of single crystals of Mo(Si,Al){sub 2} with the C40 structure has been studied as a function of crystal orientation and Al content in the temperature range from room temperature to 1,500 C in compression. Plastic flow is possible only above 1,100 C for orientations where slip along <11{bar 2}0> on (0001) is operative and no other slip systems are observed over whole temperature range investigated. The critical resolved shear stress for basal slip decreases rapidly with increasing temperature and the Schmid law is valid. Basal slip appears to occur through a synchroshear mechanism, in which a-dislocations (b = 1/3 <11{bar 2}0>) dissociate into two synchro-partial dislocations with the identical Burgers vector (b = 1/6 <11{bar 2}0>) and each synchro-partial further dissociates into two partials on two adjacent planes.

  13. Effect of SiO2 nanoparticle doping on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses

    NASA Astrophysics Data System (ADS)

    Kim, Eunju; Liu, Yang; Hong, Sung-Jei; Han, Jeong In

    2015-03-01

    In this paper, SiO2 nanoparticle doped polymer dispersed liquid crystal (PDLC) lenses were made from a mixture of prepolymer, E7 liquid crystal and SiO2 nanoparticles by the polymerization induced phase separation (PIPS) process for smart electronic glasses with auto-shading and auto-focusing functions. Electro-optical properties of doped and undoped samples including transmittance, driving voltage, contrast ratio and slope of the linear region of the transmittance-voltage were measured, compared and analyzed. Driving voltage of SiO2 nanoparticle doped PDLC lenses moderately improved. But the slope of linear region, response time and contrast ratio deteriorated, especially the latter two. It can be assumed that these doping effects were due to the mechanistic change from liquid-gel separation to liquid-liquid separation by the fast heterogeneous nucleation rate caused by the increased nucleation at the surface of SiO2 nanoparticles. The marked deteriorations of falling response time and contrast ratio were due to well defined liquid crystal molecules in LC droplets, which induced slow and imperfect random rearrangement of LC molecules at the off state.

  14. Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Ward, Daniel; Prance, Jonathan; Kim, Dohun; Shi, Zhan; Mohr, Robert; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark

    2014-03-01

    We present measurements on a double dot formed in an accumulation-mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. The gate design incorporates two layers of gates, and the upper layer of gates is split into five different sections to decrease crosstalk between different gates. A novel pattern of the lower layer gates enhances the tunability of tunnel rates. We will describe our attempts to create a singlet-triplet qubit in this device. This work was supported in part by ARO(W911NF-12-0607), NSF(DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. Now works at Lancaster University, UK.

  15. Heat capacity and latent heat measurements of CoMnSi using a microcalorimeter.

    PubMed

    Miyoshi, Y; Morrison, K; Moore, J D; Caplin, A D; Cohen, L F

    2008-07-01

    A new method of utilizing a commercial silicon nitride membrane calorimeter to measure the latent heat at a first order phase transition is presented. The method is a direct measurement of the thermoelectric voltage jump induced by the latent heat, in a thermally isolated system ideally suited for single crystal and small microgram samples. We show that when combined with the ac calorimetry technique previously developed, the resultant thermal measurement capabilities are extremely powerful. We demonstrate the applicability of the combined method with measurements on a 100 microm size fragment of CoMnSi exhibiting a sizable magnetocaloric effect near room temperature, and obtain good agreement with previously reported values on bulk samples. PMID:18681727

  16. A direct measurement of the electronic structure of Si nanocrystals and its effect on optoelectronic properties

    SciTech Connect

    Mustafeez, Waqas; Salleo, Alberto; Majumdar, Arka; Vučković, Jelena

    2014-03-14

    Since reports that silicon nanocrystals (Si-NCs) can exhibit direct transition emission, the silicon laser field is at a juncture where the importance of this discovery needs to be evaluated. Most theoretical models predicted a monotonic increase in the bandgap and experimental information currently available on the electronic structure at the Γ valley of these promising materials is circumstantial as it is obtained from emission measurements where competing non-radiative relaxation and recombination processes only provide an incomplete picture of the electronic structure of Si-NCs. Optical absorption, the most immediate probe of the electronic structure beyond the band-edges, showing the evolution of the Γ valley states with nanocrystal size has not been measured. Here, we show such measurements, performed with high dynamic range, allowing us to observe directly the effect of crystal size on the Γ valley splitting far above the band-edges. We show that the splitting is 100 s of meV more pronounced than predicted by pseudo potential calculations and Luttinger-Kohn model. We also show that ultrafast red-shifting emission can be observed in plasma enhanced chemical vapor deposition prepared Si-NCs.

  17. Viscous Fingering and Dendritic Growth of Surface Crystallized Sr2TiSi2O8 Fresnoite

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Rüssel, Christian

    2013-01-01

    During the quenching of a melt with the composition 2SrO·TiO2·2.75SiO2, cubic SrTiO3- and tetragonal Sr2TiSi2O8-crystals are formed at the surface. Subsequent crystal growth leads to dendritic fresnoite structures which become increasingly finer until the mechanism changes to viscous fingering during further cooling. In the final stages of this initial growth step, the crystal orientations of these dendrites systematically change. Due to a complete absence of bulk nucleation in this system, crystal growth is resumed upon reheating to 970°C and fractal growth with the c-axis tilted by about 45° from the main growth direction is observed. The results are interpreted to confirm the link between viscous fingering and dendritic growth in the case of a true crystallization process. PMID:24356207

  18. Timing performance measurements of Si-PM-based LGSO phoswich detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Okumura, Satoshi; Yeom, Jung Yeol

    2016-06-01

    Since the timing resolution was significantly improved using silicon photomultipliers (Si-PMs) combined with fast scintillators, we expect that phoswich detectors will be used in future TOF-PET systems. However, no practical phoswich detector has been proposed for TOF-PET detectors. We conducted timing performance measurements of phoswich detectors comprised of two types of Ce-doped LGSO scintillators with different decay times coupled to Si-PMs and digitized the output signals using a high bandwidth digital oscilloscope. We prepared three types of LGSOs (LGSO-fast, LGSO-standard, and LGSO-slow) with different Ce concentrations. After measuring the decay time, the energy performance, and the timing performance of each LGSO, we conducted pulse shape analysis and timing resolution measurements for two versions of phoswich LGSOs: LGSO-standard/LGSO-fast and LGSO-slow/LGSO-fast combinations. The pulse shape spectra for a 10-mm-long crystal LGSO-slow/LGSO-fast combination showed good separation of the front and back crystals with a peak-to-valley ratio of 2.0. The timing resolutions for the 20-mm-long crystal LGSO-slow/LGSO-fast combination were ~300 ps FWHM. The timing resolutions for the phoswich LGSOs were slightly inferior than that measured with the individual LGSO fast, but the acquired timing resolution for the phoswich configuration, ~300 ps with a LGSO-slow/LGSO-fast combination, is adequate for TOF-PET systems. We conclude that LGSO phoswich detectors are promising for TOF-DOI-PET systems.

  19. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2 -SiO2 coating on aramid fabric (HTiSiAF) for UV protection.

    PubMed

    Deng, Hui; Zhang, Hongda

    2015-10-01

    TiO2 -SiO2 thin film was prepared by sol-gel method and coated on the aramid fabric to prepare functional textiles. The aramid fabric was dipped and withdrawn in TiO2 -SiO2 gel and hydrothermal crystallization at 80(°) C, then its UV protection functionality was evaluated. The crystalline phase and the surface morphology of TiO2 -SiO2 thin film were characterized using SEM, XRD, and AFM respectively. SEM showed hydrothermal crystallization led to a homogeneous dispersion of anatase nonocrystal in TiO2 -SiO2 film, and XRD suggested the mean particle size of the formed anatase TiO2 was less than 30 nm. AFM indicated that hydrothermal treatment enhanced the crystallization of TiO2 . UV protection analysis suggested that the hydrothermally treated coated textile had a better screening property in comparison with TiO2 -SiO2 gel and native aramid fabric. PMID:26303384

  20. Growth of Si spherical crystals and the surface oxidation (M-9)

    NASA Technical Reports Server (NTRS)

    Nishinaga, Tatau

    1993-01-01

    Nearly 90 percent of semiconductor devices are produced with Si single crystals as the starting materials. For instance, the integrated circuits (IC), which are used in almost all electronic equipments such as TV, tape recorders, audio amplifiers, etc., are made after various processings of Si single crystal wafers. In these wafers, the same controlled amounts of impurities are added and the uniformities in their distributions are extremely important. Growth under microgravity makes it possible to eliminate the buoyancy-driven convection in the melt, which is one of the main origins of convections which results in non-uniformity of the impurity. Another source of convection is known as Marangoni convection which is driven on the free surface when a temperature gradient occurs. One of the merits of microgravity experimentation is that the detailed study of this convection becomes possible. Another important advantage of microgravity is that growth of crystals without a crucible is possible. This makes it possible to study melt growth without the strain which is usually introduced on the ground. Nevertheless, we should repeat and analyze many growth experiments in space to get reliable results. However, since in the FMPT, the time for the experiment is limited, we plan to carry out two kinds of very simple and basic experiments as the first step for the semiconductor growth experiment. In the first experiment, we use single crystal Si sphere as the starting material and as shown, this sphere is heated in the furnace at a slightly higher temperature than the melting point. After the melting front moves nearly half way to its center, the temperature is decreased to stop the melting and to start the growth from the seed for which we use the unmelted solid party of the sphere. The sphere is centered by quartz protuberances inside of the quartz crucible. There exists the possibility of temperature fluctuations being introduced when the molten sphere occasionally touches

  1. Simultaneous presence of (Si{sub 3}O{sub 10}){sup 8−} and (Si{sub 2}O{sub 7}){sup 6−} groups in new synthetic mixed sorosilicates: BaY{sub 4}(Si{sub 2}O{sub 7})(Si{sub 3}O{sub 10}) and isotypic compounds, studied by single-crystal X-ray diffraction, Raman spectroscopy and DFT calculations

    SciTech Connect

    Wierzbicka-Wieczorek, Maria; Többens, Daniel M.; Kolitsch, Uwe; Tillmanns, Ekkehart

    2013-11-15

    Three new, isotypic silicate compounds, BaY{sub 4}(Si{sub 2}O{sub 7})(Si{sub 3}O{sub 10}), SrYb{sub 4}(Si{sub 2}O{sub 7})(Si{sub 3}O{sub 10}) and SrSc{sub 4}(Si{sub 2}O{sub 7})(Si{sub 3}O{sub 10}), were synthesized using high-temperature flux growth techniques, and their crystal structures were solved from single-crystal X-ray intensity data: monoclinic, P2{sub 1}/m, with a=5.532(1)/5.469(1)/5.278(1), b=19.734(4)/19.447(4)/19.221(4), c=6.868(1)/6.785(1)/6.562(1) Å, β=106.53(3)/106.20(3)/106.50(3)°, V=718.8(2)/693.0(2)/638.3(2) Å{sup 3}, R(F)=0.0225/0.0204/0.0270, respectively. The topology of the novel structure type contains isolated horseshoe-shaped Si{sub 3}O{sub 10} groups (Si–Si–Si=93.15–95.98°), Si{sub 2}O{sub 7} groups (Si–O{sub bridge}–Si=180°, symmetry-restricted) and edge-sharing M(1)O{sub 6} and M(2)O{sub 6} octahedra. Single-crystal Raman spectra of the title compounds were measured and compared with Raman spectroscopic data of chemically and topologically related disilicates and trisilicates, including BaY{sub 2}(Si{sub 3}O{sub 10}) and SrY{sub 2}(Si{sub 3}O{sub 10}). The band assignments are supported by additional theoretical calculation of Raman vibrations by DFT methods. - Graphical abstract: View of BaY{sub 4}(Si{sub 2}O{sub 7})(Si{sub 3}O{sub 10}) along [100], showing zigzag chains and the tri- and disilicate groups. The unit cell is outlined. Display Omitted - Highlights: • We report a novel interesting crystal structure type for mixed sorosilicates containing Y, Yb, and Sc. • Synthesis of such mixed sorosilicates is possible by a high-temperature flux-growth technique. • Calculation of Raman vibrations by advanced DFT methods allows a considerably improved interpretation of measured Raman spectra.

  2. A high-field magnetization study of a Nd(2)Fe(14)Si(3) single crystal.

    PubMed

    Andreev, A V; Yoshii, S; Kuz'min, M D; de Boer, F R; Kindo, K; Hagiwara, M

    2009-04-01

    Magnetization study of a single crystal of Nd(2)Fe(14)Si(3) (with the rhombohedral Th(2)Zn(17)-type structure) reveals that the compound is a ferromagnet with a spontaneous magnetic moment of 32.3μ(B) per formula unit (at T = 2 K) and a Curie temperature equal to 495 K. The easy-magnetization direction lies close to the b-axis, tilting slightly towards the c-axis. (The b-axis [120] is not a high-symmetry direction in the crystallographic class D(3d).) The observed strong magnetic anisotropy is attributed almost entirely to the Nd sublattice, as concluded from comparison with a Y(2)Fe(14)Si(3) single crystal. A magnetic field applied along the c-axis induces a first-order spin reorientation transition at B(FOMP) = 20 T. In the process of magnetization the Nd and Fe sublattices behave as essentially non-collinear. This is manifest particularly in the downward curvature of the first (pre-FOMP) stage of the magnetization curve. It is proposed to regard this curvature as a validity criterion for the single-sublattice approximation. PMID:21825352

  3. Crystal structure of coesite, a high-pressure form of SiO/sub 2/, at 15 and 298 K from single-crystal neutron and x-ray diffraction data: test of bonding models

    SciTech Connect

    Smyth, J.R.; Smith, J.V.; Artioli, G.; Kvick, A.

    1987-02-12

    The crystal structure of a natural coesite from an eclogite rock fragment in the Roberts Victor kimberlite, South Africa, was determined at 15 K by neutron diffraction (a = 7.1357 (13) A, b = 12.3835 (26) A, c = 7.1859 (11) A, ..beta.. = 120.375 (16)/sup 0/, C2/c), and at approx.298 K by X-ray diffraction. Cell dimensions measured by neutron diffraction at 292 K (7.1464 (9), 12.3796 (19), and 7.1829 (8) A, 120.283 (9)/sup 0/) differed from those determined by X-ray diffraction, probably because of a systematic absorption error for the latter. The strongly anisotropic nature of the thermal expansion is explained qualitatively by the relatively large changes (approx.1%) in the distances between the nonbonded oxygen neighbors and the relatively small changes of Si-O-Si and O-Si-O angles in the compact three-dimensional framework. There is a good, but not perfect, negative correlation between the eight independent Si-O distances and the five independent values for sec theta(Si-O-Si) at 15 K. It is weaker than that for 298 K, and the scatter from a straight-line prediction from molecular-orbital models for small clusters (e.g., H/sub 6/Si/sub 2/O/sub 7/) implies that it is desirably to consider additional forces, including repulsive forces between nonbonded oxygen neighbors. The combined at a for Si-O and Si-O-Si in coesite, quartz, and cristobalite at 10-15 K show less scatter than those for approx.298 K, in accordance with the greater thermal response of framework geometry in the more open structures.

  4. Multiple-layer SOI based on Single-Crystal Si Nanomembrane Transfer

    NASA Astrophysics Data System (ADS)

    Peng, Weina; Roberts, Michelle; Nordberg, Eric; Flack, Frank; Colavita, Paula; Hamers, Robert; Savage, Donald; Lagally, Max; Eriksson, Mark

    2007-03-01

    Silicon-on-insulator (SOI) has many advantages over bulk Si including the reduction of parasitic resistance and increased device speed. Multiple-layer SOI, having more device layers per unit area, enables 3D process integration as well as applications in optics. However, it is impossible to achieve such a system by growth techniques (one can grow only non-crystalline Si on SiO2), and multiple Smart Cut transfers used to create single layer SOI may be prohibitively expensive. We present here a novel method to fabricate such a multiple SOI system using transferred Si nanomembranes^ and subsequent oxidation. The surface roughness and interface quality are examined respectively by AFM and cross-sectional SEM. Low surface roughness (0.176nm) and smooth interfaces are achieved. As an example optical application, we apply the multilayer system to fabricate a Si-based Bragg reflector. The specular reflectivity of one, two, and three-membrane mirrors is measured using FTIR. High specular reflectivity, above 99%, is achieved for three stacked membranes. Comparison of the measured reflectivity with theoretical calculations shows good agreement.

  5. Structural characterization of nanostructures grown by Ni metal induced lateral crystallization of amorphous-Si

    NASA Astrophysics Data System (ADS)

    Radnóczi, G. Z.; Dodony, E.; Battistig, G.; Vouroutzis, N.; Kavouras, P.; Stoemenos, J.; Frangis, N.; Kovács, A.; Pécz, B.

    2016-02-01

    The nickel metal induced lateral crystallization of amorphous silicon is studied by transmission electron microscopy in the range of temperatures from 413 to 521 °C. The structural characteristics of the whiskers grown at 413 °C are compared to the grains grown at 600 °C, where both Metal Induced Lateral Crystallization (MILC) and Solid Phase Crystallization (SPC) are involved. At 413 °C, long whiskers are formed at any crystallographic direction almost free of defects. In contrary, whiskers grown by MILC around 600 °C are crystallized along the ⟨111⟩ directions. These differences are attributed to the low crystallization rate and suppression of the SPC process. The activation energy of the pure MILC was measured in the order of 2 eV. The effect of Ni on the crystallization rate is studied by in-situ heating experiments inside the microscope. The role of contamination that can inhibit MILC is discussed. The cases of MILC process under limited Ni and unlimited Ni source were studied and compared to in-situ annealing experiments. The crystallization rate is strongly influenced by the neighbouring Ni sources; this long-range interaction is attributed to the requirement of a critical Ni concentration in amorphous silicon before the initiation of the MILC process. The long-range interaction can enhance crystallization along a certain direction. The transition from MILC to SPC and the change of the crystallization mode due to the lack of Ni are discussed. The beneficial effect of long annealing at 413 °C is also discussed.

  6. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars.

    PubMed

    Walavalkar, Sameer S; Hofmann, Carrie E; Homyk, Andrew P; Henry, M David; Atwater, Harry A; Scherer, Axel

    2010-11-10

    Visible and near-IR photoluminescence (PL) is reported from sub-10 nm silicon nanopillars. Pillars were plasma etched from single crystal Si wafers and thinned by utilizing strain-induced, self-terminating oxidation of cylindrical structures. PL, lifetime, and transmission electron microscopy were performed to measure the dimensions and emission characteristics of the pillars. The peak PL energy was found to blue shift with narrowing pillar diameter in accordance with a quantum confinement effect. The blue shift was quantified using a tight binding method simulation that incorporated the strain induced by the thermal oxidation process. These pillars show promise as possible complementary metal oxide semiconductor compatible silicon devices in the form of light-emitting diode or laser structures. PMID:20919695

  7. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    NASA Astrophysics Data System (ADS)

    Parno, D. S.; Friend, M.; Mamyan, V.; Benmokhtar, F.; Camsonne, A.; Franklin, G. B.; Paschke, K.; Quinn, B.

    2013-11-01

    We have modeled, tested, and installed a large, cerium-activated Gd2SiO5 crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  8. Design and fabrication of Si-based photonic crystal stamps with electron beam lithography (EBL)

    NASA Astrophysics Data System (ADS)

    Jannesary, Reyhaneh; Bergmair, Iris; Zamiri, Saeid; Hingerl, Kurt; Hubbard, Graham; Abbott, Steven; Chen, Qin; Allsopp, Duncan

    2009-05-01

    The quest for mass replication has established technologies like nanoimprinting via hard stamps or PDMS stamps, where the stamps are usually produced via Electron Beam Lithography (EBL) for applications in the microelectronic industry. On the other hand, nanopatterning with self ordered structures1 or via holographic patterns provide the basis for large area imprints for applications for example, antireflection coatings based on biomimetic motheyes2. In this work we report on a technology for enabling the mass replication of custom-designed and e-beam lithographically prepared structures via establishing novel roll to roll nanoimprint processes for pattern transfer into UV curable pre-polymers. The new nano-fabrication technology is based on the concept of Disposal Master Technology (DMT) capable of patterning areas up to 1 x 1 m2 and is suitable for mass volume manufacturing of large area arrays of sub-wavelength photonic elements. As an example to show the potential of the application of the new nanoimprint technologies, we choose the fabrication of a photonic crystal (PhC) structure with integrated light coupling devices for low loss interconnection between PhC lightwave circuits and optical fibre systems. We present two methods for fabrication of nanoimprint lithography stamps in Si substrate. In the first method optimized electron beam lithography (EBL) and lift-off patterning of a 15-nm thick Cr mask, and then the pattern transfer into Si using reacting ion etching (RIE) with SF6 as etch gas. In the first method, we use 200nm of positive resist PMMA 950K for EBL exposure. In this method, resist thickness, exposure dose, development time and parameter for etching have been optimized and a photonic crystal of Si-rods in air was fabricated. In the second method lift-off has not been performed and metal mask has been used as master. The subsequent steps for fabricating the master will be presented in detail.

  9. History dependence of the magnetic properties of single-crystal Fe1 -xCoxSi

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Garst, M.; Pfleiderer, C.

    2016-06-01

    We report the magnetization, ac susceptibility, and specific heat of optically float-zoned single crystals of Fe1 -xCoxSi , 0.20 ≤x ≤0.50 . We determine the magnetic phase diagrams for all major crystallographic directions and cooling histories. After zero-field cooling, the phase diagrams resemble that of the archetypal stoichiometric cubic chiral magnet MnSi. Besides the helical and conical state, we observe a pocket of skyrmion lattice phase just below the helimagnetic ordering temperature. At the phase boundaries between these states evidence for slow dynamics is observed. When the sample is cooled in small magnetic fields, the phase pocket of skyrmion lattice may persist metastably down to the lowest temperatures. Taken together with the large variation in the transition temperatures, transition fields, and helix wavelength as a function of the composition, this hysteresis identifies Fe1 -xCoxSi as an ideal material for future experiments exploring, for instance, the topological unwinding of the skyrmion lattice.

  10. Critical behavior of the single-crystal helimagnet MnSi

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Menzel, Dirk; Jin, Chiming; Du, Haifeng; Ge, Min; Zhang, Changjin; Pi, Li; Tian, Mingliang; Zhang, Yuheng

    2015-01-01

    The critical behavior of the single-crystal helimagnet MnSi is investigated by means of bulk dc magnetization at the boundary between the conical state and paramagnetic phase. We obtain the critical exponents (β =0.242 ±0.006 ,γ =0.915 ±0.003 , and δ =4.734 ±0.006 ), where the self-consistency and reliability are verified by the Widom scaling law and the scaling equation. The critical exponents of MnSi belong to the universality class of tricritical mean-field theory, which unambiguously indicates a tricritical phenomenon at the boundary between the first-order phase transition and the second-order one induced by the external magnetic field. The tricritical point (TCP) is determined as HTCP≈3200 Oe at the critical temperature, consistent with the previous report [A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110, 177207 (2013), 10.1103/PhysRevLett.110.177207]. The critical behavior suggests a long-range magnetic coupling with the exchange distance decaying as J (r ) ≈r-4.3 in MnSi.