Science.gov

Sample records for si rezultatele imediate

  1. Topoisomerase I-mediated DNA damage.

    PubMed

    Pourquier, P; Pommier, Y

    2001-01-01

    Topoisomerase I is a ubiquitous and essential enzyme in multicellular organisms. It is involved in multiple DNA transactions including DNA replication, transcription, chromosome condensation and decondensation, and probably DNA recombination. Besides its activity of DNA relaxation necessary to eliminate torsional stresses associated with these processes, topoisomerase I may have other functions related to its interaction with other cellular proteins. Topoisomerase I is the target of the novel anticancer drugs, the camptothecins. Recently a broad range of physiological and environmentally-induced DNA modifications have also been shown to poison topoisomerases. This review summarizes the various factors that enhance or suppress top1 cleavage complexes and discusses the significance of such effects. We also review the different mechanisms that have been proposed for the repair of topoisomerase I-mediated DNA lesions. PMID:11034544

  2. Topoisomerase I-Mediated DNA Cleavage Induced by the Minor Groove-Directed Binding of Bibenzimidazoles to a Distal Site

    PubMed Central

    Khan, Qasim A.; Pilch, Daniel S.

    2007-01-01

    Summary Many agents (e.g., camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the −1 and +1 base pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage. PMID:17095016

  3. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  4. An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination.

    PubMed

    Udo, Hiroshi

    2015-01-01

    One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter). Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I-mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15) resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75%) and directional cloning (99%) by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells. PMID:26422141

  5. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly.

    PubMed

    Escudero-Esparza, Astrid; Kalchishkova, Nikolina; Kurbasic, Emila; Jiang, Wen G; Blom, Anna M

    2013-12-01

    CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways. PMID:23964079

  6. SI Notes.

    ERIC Educational Resources Information Center

    Nelson, Robert A.

    1983-01-01

    Discusses legislation related to SI (International Systems of Units) in the United States. Indicates that although SI metric units have been officially recognized by law in the United States, U.S. Customary Units have never received a statutory basis. (JN)

  7. The Basic SI Model

    ERIC Educational Resources Information Center

    Hurley, Maureen; Jacobs, Glen; Gilbert, Melinda

    2006-01-01

    A general overview of the SI model is provided, including the SI philosophy, essential components of the program, program structures, key roles, outcomes, and evaluation. A review of what we have learned about the importance of planning SI sessions, providing ongoing training for leaders, conducting regular SI program assessments, and implementing…

  8. Characterization of Si/CoSi2/Si(111) heterostructures using Auger plasmon losses

    NASA Technical Reports Server (NTRS)

    Schowengerdt, F. D.; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    The Si/CoSi2/Si heterostructures prepared by codeposition and solid-phase epitaxy on Si(111) substrates were characterized using Auger plasmon data as a measure of Si overlayer thickness. The method of calibration is described, and the results of two studies, including a study of islanding in Si/CoSi2/Si and a study of diffusion in CoSi2/Si are presented, illustrating the utility of the Auger plasmon loss technique. It is shown that, most likely, the diffusion proceeds through residual defects in the CoSi2.

  9. Thin-film formation of Si clathrates on Si wafers

    NASA Astrophysics Data System (ADS)

    Ohashi, Fumitaka; Iwai, Yoshiki; Noguchi, Akihiro; Sugiyama, Tomoya; Hattori, Masashi; Ogura, Takuya; Himeno, Roto; Kume, Tetsuji; Ban, Takayuki; Nonomura, Shuichi

    2014-04-01

    In this study, we prepared Si clathrate films (Na8Si46 and NaxSi136) using a single-crystalline Si substrate. Highly oriented film growth of Zintl-phase sodium silicide, which is a precursor of Si clathrate, was achieved by exposing Na vapour to Si substrates under an Ar atmosphere. Subsequent heat treatment of the NaSi film at 400 °C (3 h) under vacuum (<10-2 Pa) resulted in a film of Si clathrates having a thickness of several micrometres. Furthermore, this technique enabled the selective growth of Na8Si46 and NaxSi136 using the appropriate crystalline orientation of Si substrates.

  10. Si surface preparation with Si beam irradiation on the growth on III-V on Si

    SciTech Connect

    Kawanami, H.; Baskar, K.; Sakata, I.; Sekigawa, T.

    1998-12-31

    The preliminary results of the effects of the Si beam irradiation for the Si surface preparation on the growth of GaAs on Si by MBE are reported. The effects are combined with thermal cyclic anneal (TCA). A slight improvement in the crystalline quality is observed on the photoluminescence spectra of the films grown with Si irradiation, In experimental conditions, Si irradiation during the Si surface preparation has not indicated large effects on the FWHM of XRD. It is also indicated that initial substrate surface treatment affects the quality of thicker film through TCA treatment. Higher substrate temperature during Si beam irradiation is expected to indicate positive Si beam irradiation effects.

  11. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  12. Mechanical instabilities and piezoresistivity of SiGe/Si microtubes

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Dong, Lixin; Nelson, Bradley J.

    2007-10-01

    Mechanical instabilities and piezoresistivity of individual rolled-up SiGe/Si microtubes are investigated using nanorobotic manipulation. By applying this technique, as-fabricated one-end-fixed SiGe/Si microtubes can be cut and picked up from the substrate to examine their mechanical and electromechanical properties in a free space. Individual SiGe/Si microtubes show typical Euler buckling when the uniaxial compressive load is larger than a critical value. Moreover, experiments show that 1.6-turn rolled-up SiGe/Si microtubes have similar mechanical stability to ideal seamless tubes though the former ones have a spiral-like cross sectional area instead of an ideal ring. According to the measured I-V properties, SiGe/Si microtubes show positive piezoresistivity under compressive loads.

  13. -SiC Composites

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shirshendu; Debnath, Debashish; Mallick, Azizur Rahaman; Das, Probal Kumar

    2014-12-01

    ZrB2-SiC composites were hot pressed at 2473 K (2200 °C) with graded amounts (5 to 20 wt pct) of SiC and the effect of the SiC addition on mechanical properties like hardness, fracture toughness, scratch and wear resistances, and thermal conductivity were studied. Addition of submicron-sized SiC particles in ZrB2 matrices enhanced mechanical properties like hardness (15.6 to 19.1 GPa at 1 kgf), fracture toughness (2 to 3.6 MPa(m)1/2) by second phase dispersion toughening mechanism, and also improved scratch and wear resistances. Thermal conductivity of ZrB2-SiC (5 wt pct) composite was higher [121 to 93 W/m K from 373 K to 1273 K (100 °C to 1000 °C)] and decreased slowly upto 1273 K (1000 °C) in comparison to monolithic ZrB2 providing better resistance to thermal fluctuation of the composite and improved service life in UHTC applications. At higher loading of SiC (15 wt pct and above), increased thermal barrier at the grain boundaries probably reduced the thermal conductivity of the composite.

  14. Mo/Si and MoSi2/Si nanostructures for multilayer Laue lens

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Ichimaru, S.; Ohchi, T.; Koyama, T.; Tsuji, T.; Takano, H.; Kagoshima, Y.

    2009-09-01

    To develop a multilayer Laue lens (MLL), we fabricated depth-graded Mo/Si and MoSi2/Si multilayers with each boundary according to the Fresnel zone configuration. The multilayers were deposited by magnetron sputtering. From the result of SEM image analysis of the multilayer cross sections, MoSi2/Si multilayer had smaller layer-thickness errors than Mo/Si multilayer. In addition, from the result of the focusing test by using 20-keV X-rays, the measured beam size of MoSi2/Si MLL had a small blurring from the diffraction limited beam size. These results suggest that MoSi2/Si multilayer is better suited than Mo/Si multilayer for use as an MLL in hard x-ray nanofocusing.

  15. X-Ray And Polarized Neutron Reflectometry: Characterization Of Si/Co/Si And Si/Ni/Si Systems

    SciTech Connect

    Bhattacharya, Debarati; Basu, Saibal; Poswal, A. K.; Roy, S.; Dev, B. N.

    2010-12-01

    Technologically important metal silicides formed through interdiffusion in metal/Si systems has been probed using two complementary techniques viz. x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Both structural and magnetic characterization with good depth resolution has been achieved in these systems. We have studied two systems Si/Co/Si and Si/Ni/Si which relate to important applications in ferromagnetic/ non-magnetic semiconductor layered structures for memory devices.

  16. Kapitza resistance of Si/SiO2 interface

    SciTech Connect

    Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov; David Hurley; Simon Phillpot

    2014-02-01

    A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

  17. Plastic relaxation in GeSi layers on Si (001) and Si (115) substrates

    SciTech Connect

    Drozdov, Yu. N. Drozdov, M. N.; Yunin, P. A.; Yurasov, D. V.; Shaleev, M. A.; Novikov, A. V.

    2015-01-15

    It is demonstrated using X-ray diffraction and atomic force microscopy that elastic stresses in GeSi layers on Si (115) substrates relax more effectively than in the same layers on Si (001) substrates. This fact is attributed to the predominant contribution of one of the (111) slip planes on the (115) cut. The atomicforce-microscopy image of the GeSi/Si(115) surface reveals unidirectional slip planes, while the GeSi/Si(001) image contains a grid of orthogonal lines and defects at the points of their intersection. As a result, thick GeSi layers on Si (115) have a reduced surface roughness. A technique for calculating the parameters of relaxation of the layer on the Si (115) substrate using X-ray diffraction data is discussed.

  18. SI (Metric) handbook

    NASA Technical Reports Server (NTRS)

    Artusa, Elisa A.

    1994-01-01

    This guide provides information for an understanding of SI units, symbols, and prefixes; style and usage in documentation in both the US and in the international business community; conversion techniques; limits, fits, and tolerance data; and drawing and technical writing guidelines. Also provided is information of SI usage for specialized applications like data processing and computer programming, science, engineering, and construction. Related information in the appendixes include legislative documents, historical and biographical data, a list of metric documentation, rules for determining significant digits and rounding, conversion factors, shorthand notation, and a unit index.

  19. Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Jivanescu, M.; Stesmans, A.; Zacharias, M.

    2008-11-01

    An extensive electron spin resonance (ESR) analysis has been carried out on structures comprised of Si nanoparticles (˜2 nm across) embedded in a regular pattern in an amorphous SiO2 matrix, fabricated by the SiO/SiO2 superlattice approach, with the intent to reveal and quantify occurring paramagnetic defects. The as-grown state is found to exhibit only a Si dangling bond (DB) signal, which through combination of first and second harmonic X-, K-, and Q-band observations in combination with computer spectra simulation, could be conclusively disentangled as solely comprised of overlapping powder pattern spectra of Pb(0) and Pb1 defects, the archetypal intrinsic defects of the Si/SiO2 interface, with no evidence for a D line (Si DBs in disordered Si). This indicates a full crystalline system of randomly oriented Si nanocrystals (NCs). The Pb(0)/Pb1 defect system, pertaining to the NC-Si/SiO2 interfaces, is found to be both qualitatively and quantitatively much alike that of standard (high-quality) thermal Si/SiO2. The system is inherent, remaining unaffected by subsequent UV/vacuum UV irradiations. Relying on the known properties of Pb-type defects in standard microscopic Si/SiO2, the data would comply with Si nanocrystallites, in average, predominantly bordered by (111) and (100) facets, perhaps with morphology, schematically, of [100] truncated (111) octahedrons. Based on independent NC particles counting, there appears a Pb-type center at ˜71% of the Si NCs indicating the latter to be comprised of two subsystems-with or without an incorporated strain relaxing interface defect-which in that case will exhibit drastically different defect-sensitive properties, such as, e.g., photoluminescence (PL). Upon additional optical irradiation, two more defects appear, i.e., the SiO2-associated Eγ' and EX centers, where the observed density of the former, taken as criterion, indicates the SiO2 matrix to be of standard thermal oxide quality. Thus, the properties of the

  20. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  1. Highly Mismatched, Dislocation-Free SiGe/Si Heterostructures.

    PubMed

    Isa, Fabio; Salvalaglio, Marco; Dasilva, Yadira Arroyo Rojas; Meduňa, Mojmír; Barget, Michael; Jung, Arik; Kreiliger, Thomas; Isella, Giovanni; Erni, Rolf; Pezzoli, Fabio; Bonera, Emiliano; Niedermann, Philippe; Gröning, Pierangelo; Montalenti, Francesco; von Känel, Hans

    2016-02-01

    Defect-free mismatched heterostructures on Si substrates are produced by an innovative strategy. The strain relaxation is engineered to occur elastically rather than plastically by combining suitable substrate patterning and vertical crystal growth with compositional grading. Its validity is proven both experimentally and theoretically for the pivotal case of SiGe/Si(001). PMID:26829168

  2. Processing and Properties of SiC/MoSi2-SiC Composites Fabricated by Melt Infiltration

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hebsur, Mohan G.

    2000-01-01

    Hi-Nicalon SiC fiber reinforced MoSi2-SiC matrix composites (SiC/MoSi2-SiC) have been fabricated by the melt infiltration approach. The composite consists of approximately 60 vol%, 2-D woven BN/SiC coated Hi-Nicalon SiC fibers and approximately 40 vol% MoSi2-SiC matrix. The room temperature tensile properties and thermal conductivity of the SiC/MoSi2-SiC composites were measured and compared with those of the melt infiltrated SiC/SiC composites. The influence oi fiber architecture on tensile properties was also evaluated. Results indicate that the primary modulus, stress corresponding to deviation from linearity, and transverse thermal conductivity values for the SiC/MoSi2-SiC composites are significantly lower than those for the SiC/SiC composites. Microcracking of the matrix due to the large difference in thermal expansion between MoSi2 and SiC appears to be the reason for the lower matrix dominated properties of SiC/MoSi2-SiC composites.

  3. Reliability implications of defects in high temperature annealed Si/SiO{sub 2}/Si structures

    SciTech Connect

    Warren, W.L.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.; Mathiot, D.

    1994-08-01

    High-temperature post-oxidation annealing of poly-Si/SiO{sub 2}/Si structures such as metal-oxide-semiconductor capacitors and metal-oxide-semiconductor field effect transistors is known to result in enhanced radiation sensitivity, increased 1/f noise, and low field breakdown. The authors have studied the origins of these effects from a spectroscopic standpoint using electron paramagnetic resonance (EPR) and atomic force microscopy. One result of high temperature annealing is the generation of three types of paramagnetic defect centers, two of which are associated with the oxide close to the Si/SiO{sub 2} interface (oxygen-vacancy centers) and the third with the bulk Si substrate (oxygen-related donors). In all three cases, the origin of the defects may be attributed to out-diffusion of O from the SiO{sub 2} network into the Si substrate with associated reduction of the oxide. The authors present a straightforward model for the interfacial region which assumes the driving force for O out-diffusion is the chemical potential difference of the O in the two phases (SiO{sub 2} and the Si substrate). Experimental evidence is provided to show that enhanced hole trapping and interface-trap and border-trap generation in irradiated high-temperature annealed Si/SiO{sub 2}/Si systems are all related either directly, or indirectly, to the presence of oxygen vacancies.

  4. Long-Wavelength Stacked SiGe/Si Heterojunction Internal Photoemission Infrared Detectors Using Multiple SiGe/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; Gunapala, S. D.

    1994-01-01

    Utilizing low temperature silicon molecular beam epitaxy (MBE) growth, long-wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Si layers have been fabricated and demonstrated. Using an elemental boron source, high doping concentrations (approximately equal to 4 x 10(sup 20) cm(sup -3)) has been achieved and high crystalline quality multiple Si(sub 0.7)Ge(sub 0.3)/Si layers have been obtained. The detector structure consists of several periods of degenerately boron doped (approximately equal to 4 x 10(sup 20) cm(sup -3)) thin (less than or equal to 50 u Si(sub 0.7)Ge(sub 0.3) layers and undoped thick (approximately equal to 300u Si layers. The multiple p(sup +) - Si(sub 0.7)Ge(sub 0.3)/undoped-Si layers show strong infrared absorption in the long-wavelength regime mainly through free carrier absorption. The stacked Si(sub 0.7)Ge(sub 0.3)/Si HIP detectors with p = 4 x 10(sup 20) cm(sup -3) exhibit strong photoresponse at wavelengths ranging from 2 to 20 (micro)m with quantum efficiencies of about 4% and 1.5% at 10 and 15 (micro)m wavelengths, respectively. The detectors show near ideal thermionic-emission limited dark current characteristics.

  5. Band offsets in c-Si/Si-XII heterojunctions

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Malone, Brad D.; Cohen, Marvin L.; Louie, Steven G.

    2014-08-01

    Silicon has a rich phase diagram with a multitude of phases existing over a wide range of pressures and temperatures, in addition to the common cubic silicon (c-Si) phase. One such phase, Si-XII, was first observed less than 2 decades ago in diamond anvil experiments, and more recently as a product of nanoindentation. In some of these latter experiments, I-V measurements were performed to characterize the c-Si/Si-XII interface that results when Si-XII is formed in cubic silicon substrates. In this paper we describe calculations of the band offsets in c-Si/Si-XII heterojunctions. We find that the heterojunction is of Type I and that the band offsets are estimated to be ΔEv=0.3 eV and ΔEc=0.5 eV for the valence bands and conduction bands, respectively.

  6. Near interface oxide degradation in high temperature annealed Si/SiO{sub 2}/Si structures

    SciTech Connect

    Devine, R.A.B.; Mathiot, D.; Warren, W.L.; Fleetwood, D.M.

    1993-12-31

    Degradation of 430 nm thick SiO{sub 2} layers in Si/SiO{sub 2}/Si structures which results from high temperature annealing (1320 C) has been studied using electron spin resonance, infra-red and refractive index measurements. Large numbers of oxygen vacancies are found in a region {le}100 nm from each Si/SiO{sub 2} interface. Two types of paramagnetic defects are observed following {gamma} or x-irradiation or hole injection. The 1106 cm{sup {minus}1} infra-red absorption associated with O interstitials in the Si substrate is found to increase with annealing time. The infra-red and spin resonance observations can be explained qualitatively and quantitatively in terms of a model in which oxygen atoms are gettered from the oxide into the under or overlying Si, the driving force being the increased O solubility limit associated with the anneal temperature.

  7. SiC-Si interfacial thermal and mechanical properties of reaction bonded SiC/Si ceramic composites

    NASA Astrophysics Data System (ADS)

    Hsu, Chun-Yen; Deng, Fei; Karandikar, Prashant; Ni, Chaoying

    Reaction bonded SiC/Si (RBSC) ceramic composites are broadly utilized in military, semiconductor and aerospace industries. RBSC affords advanced specific stiffness, hardness and thermal. Interface is a key region that has to be considered when working with any composites. Both thermal and mechanical behaviors of the RBSC are highly dependent on the SiC-Si interface. The SiC-Si interface had been found to act as a thermal barrier in restricting heat transferring at room temperature and to govern the energy absorption ability of the RBSC. However, up to present, the role of the SiC-Si interface to transport heat at higher temperatures and the interfacial properties in the nanoscale have not been established. This study focuses on these critically important subjects to explore scientific phenomena and underlying mechanisms. The RBSC thermal conductivity with volume percentages of SiC at 80 and 90 vol% was measured up to 1,200 °C, and was found to decrease for both samples with increasing environmental temperature. The RBSC with 90 vol% SiC has a higher thermal conductivity than that of the 80 vol%; however, is still significantly lower than that of the SiC. The interfacial thermal barrier effect was found to decrease at higher temperatures close 1200 °C. A custom-made in-situ tensile testing device which can be accommodated inside a ZEISS Auriga 60 FIB/SEM has been setup successfully. The SiC-Si interfacial bonding strength was measured at 98 MPa. The observation and analysis of crack propagation along the SiC-Si interface was achieved with in-situ TEM.

  8. Brazing SiC/SiC Composites to Metals

    NASA Technical Reports Server (NTRS)

    Steffier, Wayne S.

    2004-01-01

    Experiments have shown that active brazing alloys (ABAs) can be used to join SiC/SiC composite materials to metals, with bond strengths sufficient for some structural applications. The SiC/SiC composite coupons used in the experiments were made from polymerbased SiC fiber preforms that were chemical-vapor-infiltrated with SiC to form SiC matrices. Some of the metal coupons used in the experiments were made from 304 stainless steel; others were made from oxygen-free, high-conductivity copper. Three ABAs were chosen for the experiments: two were chosen randomly from among a number of ABAs that were on hand at the time; the third ABA was chosen because its titanium content (1.25 percent) is less than those of the other two ABAs (1.75 and 4.5 percent, respectively) and it was desired to evaluate the effect of reducing the titanium content, as described below. The characteristics of ABAs that are considered to be beneficial for the purpose of joining SiC/SiC to metal include wettability, reactivity, and adhesion to SiC-based ceramics. Prior to further development, it was verified that the three chosen ABAs have these characteristics. For each ABA, suitable vacuum brazing process conditions were established empirically by producing a series of (SiC/SiC)/ABA wetting samples. These samples were then sectioned and subjected to scanning electron microscopy (SEM) and energy-dispersive x-ray spectrometry (EDS) for analysis of their microstructures and compositions. Specimens for destructive mechanical tests were fabricated by brazing of lap joints between SiC/SiC coupons 1/8-in. (.3.2- mm) thick and, variously, stainless steel or copper tabs. The results of destructive mechanical tests and the SEM/EDS analysis were used to guide the development of a viable method of brazing the affected materials.

  9. Line broadening in the Si I, Si II, Si III, and Si IV spectra in the helium plasma

    NASA Astrophysics Data System (ADS)

    Bukvić, S.; Djeniže, S.; Srećković, A.

    2009-12-01

    Context: The neutral and ionized silicon spectral line shapes have been investigated in the laboratory helium plasma at electron densities ranging between 3.7× 1022 m-3 and 1.1× 1023 m-3 and electron temperatures between 12 500 K and 19 000 K, both interesting for astrophysics. Aims: The aim of this work is to present experimental Stark FWHM (full-width at half of the maximum line intensity, W) for number of spectral lines from neutral (Si I), singly (Si II), doubly (Si III), and triply (Si IV) ionized silicon spectra emitted by the pulsed helium discharge, which is optically thin at the wavelengths of the investigated ionic silicon lines. A specific method for estimating self-absorbtion is presented in detail. For investigated Si I spectral lines, applying the proposed method, an optical depth of less than 0.38 is found. Appropriate corrections of the Si I Stark widths were made. The Stark widths of different ionic species, presented in this paper, are measured for the first time in the essentially same laboratory plasma. Methods: The silicon atoms were evaporated from the walls of the specially designed pyrex discharge tube in the pulsed helium discharge at a pressure of 665 Pa in a flowing regime. The Si I, Si II, Si III, and Si IV spectral line profiles were recorded using the McPherson model 209 spectrograph and the Andor ICCD camera as the detection system. Results: The Stark FWHMs of 13 Si I, 15 Si II, 28 Si III, and 9 Si IV spectral lines were measured in the wavelength interval between 206 nm and 640 nm. Five Si I, four Si II, eleven Si III, and one Si IV W values from the above set not had measured or calculated. Our W values are compared with the existing theoretical and experimental data. Conclusions: At the mentioned plasma parameters tolerable agreement was found (within the accuracy of the experiment and uncertainties of the theoretical approaches used) between measured and calculated Stark FWHM values. We recommend the Stark FWHMs of the intense

  10. Synthesis of Si nanopyramids at SiO{sub x}/Si interface for enhancing electroluminescence of Si-rich SiO{sub x}

    SciTech Connect

    Lin, G.-R.; Lin, C.-K.; Chou, L.-J.; Chueh, Y.-L.

    2006-08-28

    Enhanced electroluminescence (EL) of ITO/SiO{sub x}/Si-nanopyramid/p-Si/Al diode is investigated. By using low-power plasma enhanced chemical vapor deposition at high substrate temperature, anomalous (100)-oriented Si nanopyramids with a surface density of 1.6x10{sup 10} cm{sup -2} are synthesized at SiO{sub x}/Si interface prior to grow Si-rich SiO{sub x} film. Si nanopyramids greatly improve Fowler-Nordheim tunneling based carrier transport and benefit from less damaged oxide structure at lower biases. The turn-on voltage and threshold current density of the diode are reduced to 50 V and 0.2 mA/cm{sup 2}, respectively. Defect-related blue-green EL are suppressed to enhance stable near-infrared EL at 30 nW with a lifetime >10 h.

  11. Epitaxial Si encapsulation of highly misfitting SiC quantum dot arrays formed on Si (001)

    SciTech Connect

    Petz, C. W.; Floro, J. A.; Yang, D.; Levy, J.; Myers, A. F.

    2014-01-06

    This work examines Si overgrowth to encapsulate 3C-SiC quantum dot arrays epitaxially grown on Si substrates. Using transmission electron microscopy, we show how the crystalline quality of the Si cap depends on the growth conditions. Overgrowth at 300 °C leads to a planar, epitaxial Si cap, but with small crystallographic rotations in the cap above each quantum dot. At 400 °C growth temperature, Si exhibits reduced sticking to the SiC, leading to a non-planar cap. However, a two-step process, with thin layer grown at 250 °C followed by growth at 500 °C, leads to a planar cap with a much-reduced density of defects.

  12. Theoretical Study of Excess Si Emitted from Si-oxide/Si Interfaces

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Uematsu, Masahi; Akagi, Kazuto; Tsuneyuki, Shinji; Akiyama, Toru; Shiraishi, Kenji

    2004-12-01

    The excess Si emitted from the Si-oxide/Si interface is studied using the first-principles calculations. It is shown that the excess Si can have many (meta-) stable positions around the interface. In addition, some positions in the oxide do not have any dangling bonds or floating bonds in contrast to those in the bulk crystalline Si. The results indicate that the emitted Si can be located in the oxide layer but they do not necessarily cause charge traps in the oxide. The emitted Si atoms are thought to just be oxidized and absorbed into the oxide while a portion of them cause the E' centers, the Pb centers or charge traps.

  13. Synthesis and characterization of laminated Si/SiC composites

    PubMed Central

    Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.

    2012-01-01

    Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404

  14. Interface-structure of the Si/SiC heterojunction grown on 6H-SiC

    SciTech Connect

    Li, L. B.; Chen, Z. M.; Zang, Y.

    2015-01-07

    The Si/SiC heterojunctions were prepared on 6H-SiC (0001) C-face by low-pressure chemical vapour deposition at 850 ∼ 1050 °C. Transmission electron microscopy and selected area electron diffraction were employed to investigate the interface-structure of Si/SiC heterojunctions. The Si/6H-SiC heterostructure of large lattice-mismatch follows domain matching epitaxy mode, which releases most of the lattice-mismatch strain, and the coherent Si epilayers can be grown on 6H-SiC. Si(1-11)/6H-SiC(0001) heterostructure is obtained at 900 °C, and the in-plane orientation relationship of Si/6H-SiC heterostructure is (1–11)[1-1-2]{sub Si}//(0001)[-2110]{sub 6H-SiC}. The Si(1-11)/6H-SiC(0001) interface has the same 4:5 Si-to-SiC matching mode with a residual lattice-mismatch of 0.26% along both the Si[1-1-2] and Si[110] orientations. When the growth temperature increases up to 1000 °C, the 〈220〉 preferential orientation of the Si film appears. SAED patterns at the Si/6H-SiC interface show that the in-plane orientation relationship is (-220)[001]{sub Si}//(0001)[2-1-10]{sub 6H-SiC}. Along Si[110] orientation, the Si-to-SiC matching mode is still 4:5; along the vertical orientation Si[001], the Si-to-SiC mode change to approximate 1:2 and the residual mismatch is 1.84% correspondingly. The number of the atoms in one matching-period decreases with increasing residual lattice-mismatch in domain matching epitaxy and vice versa. The Si film grows epitaxially but with misfit dislocations at the interface between the Si film and the 6H-SiC substrate. And the misfit dislocation density of the Si(1-11)/6H-SiC(0001) and Si(-220)/6H-SiC(0001) obtained by experimental observations is as low as 0.487 × 10{sup 14 }cm{sup −2} and 1.217 × 10{sup 14 }cm{sup −2}, respectively, which is much smaller than the theoretical calculation results.

  15. Fabrication of lightweight Si/SiC LIDAR mirrors

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S.; Taylor, Raymond L.

    1991-01-01

    A new, chemical vapor deposition (CVD) process was developed for fabricating lightweight, polycrystalline silicon/silicon-carbide (Si/SiC) mirrors. The process involves three CVD steps: (1) to produce the mirror faceplate; (2) to form the lightweight backstructure, which is deposited integral to the faceplate; and (3) to deposit a layer of optical-grade material, e.g., Si, onto the front surface of the faceplate. The mirror figure and finish are fabricated into the faceplate.

  16. Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer

    NASA Astrophysics Data System (ADS)

    Linder, K. K.; Zhang, F. C.; Rieh, J.-S.; Bhattacharya, P.; Houghton, D.

    1997-06-01

    The reduction of the dislocation density in relaxed SiGe/Si heterostructures using a low-temperature Si(LT-Si) buffer has been investigated. We have shown that a 0.1 μm LT-Si buffer reduces the threading dislocation density in mismatched Si0.85Ge0.15/Si epitaxial layers as low as ˜104cm-2. Samples were grown by both gas-source molecular beam epitaxy and ultrahigh vacuum chemical vapor deposition.

  17. Spin splitting in SiGe/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Nestoklon, M. O.; Golub, L. E.; Ivchenko, E. L.

    2007-04-01

    Spin and valley-orbit splittings are calculated in symmetric SiGe/Si/SiGe quantum wells (QWs) by using the tight-binding approach. In accordance with the symmetry considerations an existence of spin splitting of electronic states in perfect QWs with an odd number of Si atomic planes is demonstrated. The spin splitting oscillates with QW width and these oscillations are related to the inter-valley reflection of an electron wave from the interfaces. It is shown that the splittings under study can efficiently be described by an extended envelope-function approach taking into account the spin- and valley-dependent interface mixing.

  18. SiGe/Si Monolithically Integrated Amplifier Circuits

    NASA Technical Reports Server (NTRS)

    Katehi, Linda P. B.; Bhattacharya, Pallab

    1998-01-01

    With recent advance in the epitaxial growth of silicon-germanium heterojunction, Si/SiGe HBTs with high f(sub max) and f(sub T) have received great attention in MMIC applications. In the past year, technologies for mesa-type Si/SiGe HBTs and other lumped passive components with high resonant frequencies have been developed and well characterized for circuit applications. By integrating the micromachined lumped passive elements into HBT fabrication, multi-stage amplifiers operating at 20 GHz have been designed and fabricated.

  19. Inherent paramagnetic defects in layered Si/SiO{sub 2} superstructures with Si nanocrystals

    SciTech Connect

    Jivanescu, M.; Stesmans, A.; Zacharias, M.

    2008-11-15

    An extensive electron spin resonance (ESR) analysis has been carried out on structures comprised of Si nanoparticles ({approx}2 nm across) embedded in a regular pattern in an amorphous SiO{sub 2} matrix, fabricated by the SiO/SiO{sub 2} superlattice approach, with the intent to reveal and quantify occurring paramagnetic defects. The as-grown state is found to exhibit only a Si dangling bond (DB) signal, which through combination of first and second harmonic X-, K-, and Q-band observations in combination with computer spectra simulation, could be conclusively disentangled as solely comprised of overlapping powder pattern spectra of P{sub b(0)} and P{sub b1} defects, the archetypal intrinsic defects of the Si/SiO{sub 2} interface, with no evidence for a D line (Si DBs in disordered Si). This indicates a full crystalline system of randomly oriented Si nanocrystals (NCs). The P{sub b(0)}/P{sub b1} defect system, pertaining to the NC-Si/SiO{sub 2} interfaces, is found to be both qualitatively and quantitatively much alike that of standard (high-quality) thermal Si/SiO{sub 2}. The system is inherent, remaining unaffected by subsequent UV/vacuum UV irradiations. Relying on the known properties of P{sub b}-type defects in standard microscopic Si/SiO{sub 2}, the data would comply with Si nanocrystallites, in average, predominantly bordered by (111) and (100) facets, perhaps with morphology, schematically, of [100] truncated (111) octahedrons. Based on independent NC particles counting, there appears a P{sub b}-type center at {approx}71% of the Si NCs indicating the latter to be comprised of two subsystems-with or without an incorporated strain relaxing interface defect-which in that case will exhibit drastically different defect-sensitive properties, such as, e.g., photoluminescence (PL). Upon additional optical irradiation, two more defects appear, i.e., the SiO{sub 2}-associated E{sub {gamma}}{sup '} and EX centers, where the observed density of the former, taken as

  20. Methods of radiation effects evaluation of SiC/SiC composite and SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. Several methods for radiation effects evaluation of SiC fibers and fiber-reinforced SiC/SiC composite are presented.

  1. Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters

    PubMed Central

    2013-01-01

    Si heterojunction solar cells were fabricated on p-type single-crystal Si (sc-Si) substrates using phosphorus-doped Si nanocrystals (Si-NCs) embedded in SiNx (Si-NCs/SiNx) films as emitters. The Si-NCs were formed by post-annealing of silicon-rich silicon nitride films deposited by electron cyclotron resonance chemical vapor deposition. We investigate the influence of the N/Si ratio in the Si-NCs/SiNx films on their electrical and optical properties, as well as the photovoltaic properties of the fabricated heterojunction devices. Increasing the nitrogen content enhances the optical gap E04 while deteriorating the electrical conductivity of the Si-NCs/SiNx film, leading to an increased short-circuit current density and a decreased fill factor of the heterojunction device. These trends could be interpreted by a bi-phase model which describes the Si-NCs/SiNx film as a mixture of a high-transparency SiNx phase and a low-resistivity Si-NC phase. A preliminary efficiency of 8.6% is achieved for the Si-NCs/sc-Si heterojunction solar cell. PMID:24188725

  2. Joining of SiC ceramics and SiC/SiC composites

    SciTech Connect

    Rabin, B.H.

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  3. Joining of SiC ceramics and SiC/SiC composites

    SciTech Connect

    Rabin, B.H.

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  4. SI and Non-SI Units of Concentration: A Truce?

    ERIC Educational Resources Information Center

    Rich, Ronald L.

    1986-01-01

    Questions the current usage of the International System of Units (called SI units) in representing chemical notation and terminology. Suggests several additions to the system that relate to concentrations. Outlines new symbols for distinguishing between "concentration" and "molality." Includes tables to illustrate the proposed SI units. (TW)

  5. XPS Study of SiO2 and the Si/SiO2 Interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    X-ray photoelectron spectroscopy (XPS) is analytical technique for understanding electronic structure of atoms close to surface in solids, in preference to bulk structure of material. Study found evidence for core-level chemical shifts arising from changes in local structural environment in amorphous SiO2 and at Si/SiO2 interface. Observed XPS spectra may be understood as sequential convolution of several functions, each with well-defined physical interpretation.

  6. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4)

    NASA Astrophysics Data System (ADS)

    Rana, Tawhid; Chandrashekhar, M. V. S.; Daniels, Kevin; Sudarshan, Tangali

    2016-04-01

    Tetrafluorosilane (SiF4 or TFS), a novel precursor gas, has been demonstrated to perform three primary operations of silicon carbide-related processing: SiC etching, SiC epitaxial growth and graphene epitaxial growth. TFS etches SiC substrate vigorously in a H2 ambient by efficient Si removal from the surface, where SiC etch rate is a function of TFS gas concentration. In this SiC etching process, Si is removed by TFS and C is removed by H2. When propane is added to a H2 and TFS gas mixture, etching is halted and high-quality SiC epitaxy takes place in a Si droplet-free condition. TFS's ability to remove Si can also be exploited to grow epitaxial graphene in a controllable manner in an inert (Ar) ambient. Here, TFS enhances graphene growth by selective etching of Si from the SiC surface.

  7. MoSi2-Base Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2003-01-01

    Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.

  8. The localization and crystallographic dependence of Si suboxide species at the SiO2/Si interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Hecht, M. H.; Grunthaner, F. J.; Johnson, N. M.

    1987-01-01

    X-ray photoemission spectroscopy has been used to examine the localization and crystallographic dependence of Si(+), Si(2+), and Si(3+) suboxide states at the SiO2/Si interface for (100)and (111)-oriented substrates with gate oxide quality thermal oxides. The Si(+) and Si(2+) states are localized within 6-10 A of the interface while the Si(3+) state extends about 30 A into the bulk SiO2. The distribution of Si(+) and Si(2+) states shows a strong crystallographic dependence with Si(2+) dominating on (100) substrates and Si(+) dominating on (111) substrates. This crystallographic dependence is anticipated from consideration of ideal unreconstructed (100) and (111) Si surfaces, suggesting that (1) the Si(+) and Si(2+) states are localized immediately within the first monolayer at the interface and (2) the first few monolayers of substrate Si atoms are not significantly displaced from the bulk. The total number of suboxide states observed at the SiO2/Si interface corresponds to 94 and 83 percent of a monolayer for these (100) and (111) substrates, respectively.

  9. Measurements, Standards, and the SI.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Highlights six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Topics addressed included history, status, and future of SI units, algebra of SI units, periodic table, new standard-state pressure unit, and suggested new names for mole concept ("numerity" and "chemical amount"). (JN)

  10. SI: Prognosis for the Future.

    ERIC Educational Resources Information Center

    Goldman, David T.

    1981-01-01

    Presents a survey of the International System of Units, usually denoted by its French abbreviation, SI (Systeme International), how it came about, and how it is likely to develop in the future. Describes SI units (base, derived, and supplementary) and new definitions for base units. (Author/SK)

  11. Using SI Units in Mechanics.

    ERIC Educational Resources Information Center

    Meriam, J. L.

    This paper provides an historical account of the development of the International System of Units (SI), a complete listing of these units, and rules concerning their use and proper abbreviation. Ambiguities concerning the use of the system are explained. Appendices contain conversion factors for U.S. - British to SI units along with several…

  12. Properties of SiC-SiC composites produced using CVR converted graphite cloth to SiC cloth

    SciTech Connect

    Kowbel, W.; Kyriacou, C.; Gao, F.; Bruce, C.A.; Withers, J.C.

    1995-10-01

    Nicalon fiber is the primary reinforcement in SiC-SiC composites currently produced by a variety of techniques including CVI and polymer infiltration. Low strength retention at high temperatures of the Nicalon fibers limits the choice of manufacturing processes which can be employed to produce low cost SiC-SiC composites. MER has developed a new SiC reinforcement based upon a conversion of low cost carbon fabric to SiC via a Chemical Vapor Reaction (CVR) process. This new SiC filaments exhibit an excellent creep resistance at temperatures up to 1,600 C. Several SiC-SiC composites were fabricated using graphite fabric converted to SiC fabric utilizing the CVR process combined with a slurry infiltration and CVI densification. A correlation between processing conditions, microstructure and properties of the SiC-SiC composites are discussed in detail.

  13. Hermetic SiC-SiC composite tubes

    SciTech Connect

    Kowbel, W.; Liu, Y.; Bruce, C.; Withers, J.C.; Kolaya, L.E.; Lewis, N.

    1998-12-31

    SiC-SiC composites have good potential for structural applications but are limited by expensive forming techniques. A high purity {beta}-SiC fiber produced by MER, and a polymer derived SiC matrix were used to fabricate small diameter hermetic SiC-SiC tubes. The process was optimized to prevent the formation of a brittle structure while rapidly forming a dense matrix. This tube was made hermetic by first coating the surface of the tube with a silicon carbide particle filled polymer slurry, followed by a Chemical Vapor Infiltration/Deposition (CVI/CVD) SiC deposition which was performed to close any residual porosity on the composite tube surface. X-ray diffraction and Transmission Electron Microscopy (TEM) examination was performed to determine the fiber and matrix structures. These tubes were found to be impermeable to helium with leak rates below 10{sup {minus}9} cc/sec as determined by testing similar to MIL-STD-883D, method 1014.10. This high level of impermeability was sustained following thermal cycling between room temperature and 1,520 C.

  14. Low loss Si(3)N(4)-SiO(2) optical waveguides on Si.

    PubMed

    Henry, C H; Kazarinov, R F; Lee, H J; Orlowsky, K J; Katz, L E

    1987-07-01

    We have developed an optical integrated circuit waveguide technology based on conventional Si processing. We demonstrate waveguide losses of <0.3 dB/cm in the 1.3-1.6-microm wavelength range. We use a high refractive-index core of Si(3)N(4) surrounded by SiO(2) cladding layers, which provides a highly confined optical mode adequate for butt coupling to channel substrate buried heterostructure lasers. We report the first IR transmission experiments in these waveguides and find two absorption peaks associated with H in SiO(2) and Si(3)N(4) layers at 1.40 and 1.52 microm, respectively. The peak absorptions are 2.2 and 1.2 dB/cm, respectively, and these peaks can be largely removed by annealing at 1100-1200 degrees C. PMID:20489931

  15. Low dose irradiation performance of SiC interphase SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Osborne, M. C.; Lowden, R. A.; Strizak, J.; Shinavski, R. J.; More, K. L.; Eatherly, W. S.; Bailey, J.; Williams, A. M.

    1998-03-01

    Reduced oxygen Hi-Nicalon™ fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either `porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1×10 25 n m -2 ( E>0.1 MeV) in the temperature range of 260 to 1060°C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber.

  16. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    NASA Astrophysics Data System (ADS)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  17. Laser pulse crystallization and optical properties of Si/SiO2 and Si/Si3N4 multilayer nano-heterostructures

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Arzhannikova, S. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. Kh.; Cherkova, S. G.; Cherkov, A. G.; Kochubei, S. A.; Popov, A. A.; Robert, S.; Rinnert, H.; Vergnat, M.

    2013-01-01

    Furnace annealing, cw- and pulse laser treatments were applied for crystallization of amorphous Si nano-layers and Si nanoclusters in SiNx-Si3N4 and Si-SiO2 multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of hydrogen on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. This approach is applicable for the creation of dielectric films with semiconductor nanoclusters and silicon nanostructured films on non-refractory substrates for all-silicon tandem solar cells.

  18. Boron diffusion mechanism and effect of interface Ge atoms in Si/SiO2 and SiGe/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Myeong; Oh, Young Jun; Lee, Chang Hwi; Chang, K. J.

    2014-03-01

    In metal-oxide-semiconductor field effect transistors (MOSFETs) it is known that implanted B dopants easily segregate to the oxide during thermal annealing after ion implantation, causing threshold voltage shift and sheet resistance increase. On the other hand, SiGe alloys have been considered as a promising material for p-type MOSFETs due to reduced B diffusion and high hole mobility. However, there is a lack of studies for B diffusion in Si/SiO2 and SiGe/SiO2 interfaces. In this work, we perform first-principles density functional calculations to study the mechanism for the B diffusion in Si/SiO2 and SiGe/SiO2 interfaces. We investigate the diffusion pathways and migration barriers by using the climbing nudged elastic band and dimer methods. For Si/SiO2 interface, B in Si turns into an interstitial B and tends to intervene between the Si and bridge O atoms at the interface. The overall migration barrier is calculated to be about 2 eV, comparable to that in bulk SiO2. In SiGe/SiO2, interface Ge atoms enhance the stability of B-related defects in the interface region, resulting in the higher migration barrier of about 3.7 eV. Our results indicate that Si/SiO2 interface does not hinder the B diffusion, however, the B diffusion is suppressed in the presence of interface Ge atoms.

  19. Epitaxial growth of Si deposited on (100) Si

    NASA Astrophysics Data System (ADS)

    Hung, L. S.; Lau, S. S.; von Allmen, M.; Mayer, J. W.; Ullrich, B. M.; Baker, J. E.; Williams, P.; Tseng, W. F.

    1980-11-01

    Epitaxial growth of deposited amorphous Si on chemically cleaned (100) Si has been found and layer-by-layer growth occurred at rates comparable to those in self-ion-implanted-amorphous Si. There is no evidence for appreciable oxygen penetration into the deposited layer during storage in air. The critical factors in achieving epitaxial growth are fast (˜50 Å/sec) deposition of Si onto a surface cleaned with a HF dip as a last rinse before loading into the vacuum system. Channeling and transmission electron microscopy measurements indicated that the epitaxial layers are essentially defect free. Secondary-ion mass spectroscopic analysis showed about 1014 oxygen/cm2 at the amorphous/crystal interface. With either higher interfacial oxygen coverage or slow (˜2 Å/sec) deposition, epitaxial growth rates are significantly slower.

  20. Inherent Si dangling bond defects at the thermal (110)Si/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Keunen, K.; Stesmans, A.; Afanas'Ev, V. V.

    2011-08-01

    Stimulated by the growing manifestation in advanced semiconductor device development, an extensive multifrequency electron spin resonance (ESR) study has been carried out on the thermal (110)Si/SiO2 interface in terms of occurring paramagnetic point defects as a function of oxidation temperature Tox (200-1125 °C), with seclusion of the H-passivation factor. The main type of defect observed is a Pb-type interface center closely related to the Pb(111) and Pb0(100) variants (Si3 ≡ Si•) characteristic for the (111) and (100)Si faces, respectively. The inferred principal g matrix values (g// = 2.0018 and g⊥ = 2.0082 for Tox = 800 °C), splitting parameters of the resolved 29Si hyperfine doublet, and line width behavior closely resemble those of Pb0(100), from which the defect is typified as Pb0(110). For low Tox, an unexpectedly high density of Pb0(110) defects (˜7 × 1012 cm-2) is observed, which gradually dwindles for Tox increasing above ˜700 °C to approach ˜4 × 1012 cm-2 for Tox → 1125 °C. The behavior is related to interfacial stress release as a result of global structural relaxation of the top SiO2 layer, an effect also signaled by attendant alterations in ESR parameters, including a drop in ESR line width and a change in line shape symmetry and g⊥. Comparison with previous ESR data on (111)Si/SiO2 and (100)Si/SiO2 interfaces indicates that, in terms of Pb type, the (110) face is the worst of all three low-index Si interfaces, i.e., [Pb0(100)] < [Pb(111)] < [Pb0(110)], in contrast with the common electrically inferred interface trap density order; only for Tox ⩾ 900 °C does the (110) face slightly improve on the (111)Si one, raising caution with the application of (110)Si/SiO2 in terms of vulnerability during device operation. The comparison further shows that, unlike a textbook quote, the density of occurring Pb(0) centers is not found to be proportional to Si surface areal atom density or available Si bond density. Instead, an empirically

  1. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  2. Fabrication and characterization of CuxSi1-x films on Si (111) and Si (100) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Wu, Jun; He, Zhiqiang; Xie, Jun; Lu, Jingqi; Tu, Rong; Zhang, Lianmeng; Shi, Ji

    2016-05-01

    The CuxSi1-x thin films have been successfully fabricated by pulsed laser deposition (PLD). The influences of laser energy fluency (I0) and deposition temperature (Td) on the phase structure were investigated. The results show that Cu deposited on Si (001) at I0 = 0.5-2.0 J/cm2, and η"-Cu3Si formed on Si (111) at I0 = 1.0-2.0 J/cm2. The films were consisted of Cu, η'-Cu3Si, ɛ-Cu15Si4 and δ-Cu0.83Si0.17 at Td = 100-500 °C on Si (001). The films were the single phase of η-Cu3Si at Td = 700 °C. In the case of Si (111), the phase structures transformed from Cu to Cu + η'-Cu3Si to η'-Cu3Si to η'-Cu3Si + η-Cu3Si with the increasing of Td. Rectangular grains were formed on Si (001), whereas triangular grains on Si (111). Cu (001) film was epitaxially grown on Si (001) at I0 = 1.5 J/cm2 and Td = 20 °C. η-Cu3Si (001) epitaxial layer was formed on Si (111) at I0 = 1.5 J/cm2 and Td = 700 °C. The epitaxial relationships of Cu (001)[100]//Si (001)[110] and η-Cu3Si (001)[-110]//Si (111)[11-2] were identified.

  3. Carrier recombination in tailored multilayer Si/Si1-xGex nanostructures

    NASA Astrophysics Data System (ADS)

    Mala, S. A.; Tsybeskov, L.; Lockwood, D. J.; Wu, X.; Baribeau, J.-M.

    2014-11-01

    Photoluminescence (PL) measurements were performed in Si/Si1-xGex nanostructures with a single Si0.92Ge0.08 nanometer-thick layer incorporated into Si/Si0.6Ge0.4 cluster multilayers. Under pulsed laser excitation, the PL decay associated with the Si0.92Ge0.08 nano-layer is found to be nearly a 1000 times faster compared to that in Si/Si0.6Ge0.4 cluster multilayers. A model considering Si/SiGe hetero-interface composition and explaining the fast and slow time-dependent recombination rates is proposed.

  4. Electron Spin Qubits in Si/SiGe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eriksson, Mark

    2010-10-01

    It is intriguing that silicon, the central material of modern classical electronics, also has properties well suited to quantum electronics. Recent advances in Si/SiGe quantum devices have enabled the creation of high-quality silicon quantum dots, also known as artificial atoms. Motivated in part by the potential for very long spin coherence times in this material, we are pursuing the development of individual electron spin qubits in silicon quantum dots. I will discuss recent demonstrations of single-shot spin measurement in a Si/SiGe quantum dot spin qubit, and the demonstration of spin-relaxation times longer than one second in such a system. These and similar measurements depend on a knowledge of tunnel rates between quantum dots and nearby reservoirs or between pairs of quantum dots. Measurements of such rates provide an opportunity to revisit classic experiments in quantum mechanics. At the same time, the unique features of the silicon conduction band lead to novel and unexpected effects, demonstrating that Si/SiGe quantum dots provide a highly controlled experimental system in which to study ideas at the heart of quantum physics.

  5. Luminescence of Degraded Si-SiO2 Structures

    NASA Astrophysics Data System (ADS)

    Baraban, A. P.; Dmitriev, V. A.; Gadzhala, A. A.

    2014-09-01

    Possibilities of using electroluminescence (EL) and cathodoluminescence (CL) in the spectral range 250-800 nm to investigate physical-chemical processes taking place in Si-SiO2 structures as a result of extreme external actions (strong electric fields or γ-radiation) are considered. It is found that degradation processes along with changes in the electrophysical characteristics of Si-SiO2 structures are revealed in changes in the luminescence spectra, especially in the red region. The similarity of the changes in the CL and EL spectra of Si-SiO2 structures exposed to field and radiation points to a similarity in the processes taking place during degradation, which is confirmed by the qualitative similarity of the changes in the charge characteristics. The near-invariance of the spectral composition of the luminescence is an indication that the processes taking place during degradation do not lead to the formation of new luminescence centers, but modify the concentration of already existing biographical defects. This is evidence of the existence of a direct link between resistance to degradation and the technology of formation of the oxide layer on the silicon surface.

  6. Nitriding kinetics of Si-SiC powder mixtures as simulations of reaction bonded Si3N4-SiC composites

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Sheldon, B. W.; Flint, J. H.; Haggerty, J. S.

    1989-01-01

    The nitriding kinetics of Si and Si plus SiC powder mixtures were studied to simulate the fabrication of RBSN-SiC ceramic matrix composites. Very clean, assynthesized, and solvent-exposed powders were studied; C-rich and Si-rich SiC 0.04-0.05 micron diameter powders were mixed in varying concentrations with SiH4-derived 0.2-0.3 micron diameter Si powder. Complete nitridation is achieved with C-rich SiC powders in 140 min at 1250 C, and in the centers of Si-rich SiC powders in 15 min. The effects on the incubation periods, fast reaction periods, and slow reaction periods that characterize these nitriding processes were studied to explain unusual reverse reaction gradients and other effects of contamination.

  7. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    NASA Astrophysics Data System (ADS)

    Djeniže, S.; Srećković, A.; Bukvić, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3 s3 p22D-3 s24 p2Po, 3 s23 d2D-3 s24 f2Fo, and 3 s24 p2Po-3 s24 d2D transitions, the Si III line intensity ratios in the 3 s3 d3D-3 s4 p3Po, 3 s4 p3Po-3 s4 d3D, 3 s4 p3Po-3 s5 s3S, 3 s4 s3S-3 s4 p3Po, and 3 s4 f3Fo-3 s5 g3G transitions, and the Si IV line intensity ratios in the 4 p2Po-4 d2D and 4 p2Po-5 s2S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  8. High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.

  9. Ab initio chemical kinetics for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the related unimolecular decomposition of Si3H8 under a-Si/H CVD conditions.

    PubMed

    Raghunath, P; Lin, M C

    2013-10-24

    The kinetics and mechanisms for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the related unimolecular decomposition of Si3H8 have been investigated by ab initio molecular orbital theory based on the QCISD(T)/CBS//QCISD/6-311++G(d,p) method in conjunction with quantum statistical variational Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. For the barrierless radical association processes, their variational transition states have been characterized by the CASPT2//CASSCF method. The species involved in the study are known to coexist under CVD conditions. The results show that the association reaction of SiH2 and Si2H6 producing Si3H8 occurs by insertion via its lowest-energy path forming a loose hydrogen-bonding molecular complex with 8.3 kcal/mol binding energy; the reaction is exothermic by 55.0 kcal/mol. The chemically activated Si3H8 adduct can fragment by several paths, producing SiH4 + SiH3SiH (-0.7 kcal/mol), Si(SiH3)2 + H2 (-1.4 kcal/mol), and SiH3SiH2SiH + H2 (-1.4 kcal/mol). The predicted enthalpy changes as given agree well with available thermochemical data. Three other decomposition channels of Si3H8 occurring by Si-H or Si-Si breaking were found to be highly endothermic, and the reactions take place without a well-defined barrier. The heats of formation of Si3H8, SiH2SiH, Si2H4, i-Si3H7, n-Si3H7, Si(SiH3)2, and SiH3SiH2SiH have been predicted and found to be in close agreement with those available data in the literature. The product branching rate constants for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the thermal unimolecular decomposition of Si3H8 for all low-energy paths have been calculated with multichannel variational RRKM theory covering varying P,T conditions typically employed in PECVD and Cat-CVD processes for hydrogenated amorphous silicon (a-Si/H) film growth. The results were also found to be in good agreement with available kinetic data. Our kinetic results may be employed to model and control very large-area a-Si/H film growth for a

  10. Graphene-Si heterogeneous nanotechnology

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Tao, Li

    2013-05-01

    It is widely envisioned that graphene, an atomic sheet of carbon that has generated very broad interest has the largest prospects for flexible smart systems and for integrated graphene-silicon (G-Si) heterogeneous very large-scale integrated (VLSI) nanoelectronics. In this work, we focus on the latter and elucidate the research progress that has been achieved for integration of graphene with Si-CMOS including: wafer-scale graphene growth by chemical vapor deposition on Cu/SiO2/Si substrates, wafer-scale graphene transfer that afforded the fabrication of over 10,000 devices, wafer-scalable mitigation strategies to restore graphene's device characteristics via fluoropolymer interaction, and demonstrations of graphene integrated with commercial Si- CMOS chips for hybrid nanoelectronics and sensors. Metrology at the wafer-scale has led to the development of custom Raman processing software (GRISP) now available on the nanohub portal. The metrology reveals that graphene grown on 4-in substrates have monolayer quality comparable to exfoliated flakes. At room temperature, the high-performance passivated graphene devices on SiO2/Si can afford average mobilities 3000cm2/V-s and gate modulation that exceeds an order of magnitude. The latest growth research has yielded graphene with high mobilities greater than 10,000cm2/V-s on oxidized silicon. Further progress requires track compatible graphene-Si integration via wafer bonding in order to translate graphene research from basic to applied research in commercial R and D laboratories to ultimately yield a viable nanotechnology.

  11. Preparation and photoluminescence of nc-Si/SiO2 MQW

    NASA Astrophysics Data System (ADS)

    Cheng, Buwen; Yu, Jinzhong; Yu, Zhuo; Lei, Zhenlin; Li, Daizong; Wang, Qiming

    1998-08-01

    The deposition rate and refractive index for a-Si(amorphous silicon) and SiO2 grown by PECVD were studied under different pressure, power and proportion of reactant source gases. a-Si/SiO2 MQW(multi-quantum well) with high quality was deposited under suitable conditions, in which the thickness of the a-Si layers is several nanometers. The sample of a-Si/SiO2 MQW was crystallized by laser annealing. Because of the confinement of the SiO2 layers, crystalline grains were formed during the a-Si layers were being crystallized. The size of the crystalline grains were not more than the thickness of the a-Si layers. The a-Si layers were crystallized to be nanometer crystalline silicon (nc-Si), therefore, nc-Si/SiO2 MQW was formed. For the a-Si/SiO2 MQW with 4.0 nm a-Si wells separated by 5 nm SiO2 barriers, most of the a-Si were crystallized to silicon grains after laser annealing, and the size of the grains is 3.8 nm. Strong photoluminescence with three peaks from the nc-Si/SiO2 MQW was detected at 10 K. The wavelength of the peaks were 810 nm, 825 nm and 845 nm, respectively.

  12. SEMICONDUCTOR MATERIALS Photoelectric conversion characteristics of ZnO/SiC/Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Xiaopeng, Wu; Xiaoqing, Chen; Lijie, Sun; Shun, Mao; Zhuxi, Fu

    2010-10-01

    A series of n-ZnO/n-SiC/p-Si and n-ZnO/p-Si heterojunctions were prepared by DC sputtering. Their structural properties, I—V curves, photovoltaic effects and photo-response spectra were studied. The photoelectric conversion characteristics of n-ZnO/n-SiC/p-Si and n-ZnO/p-Si heterojunctions were investigated. It is found that the photoelectric conversion efficiency of the n-ZnO/n-SiC/p-Si heterojunction is about four times higher than that of the n-ZnO/p-Si heterojunction. The photovoltaic response spectrum indicated that the photoresponse curve of n-ZnO/n-SiC/p-Si increased more strongly than that of n-ZnO/p-Si with the wavelength increasing. It shows that the photoresponse of n-ZnO/p-Si can be enhanced when inserting a 3C-SiC layer between ZnO and Si. There is one inflexion in the photocurrent response curve of the n-ZnO/p-Si heterojunction and two inflexions in that of the n-ZnO/n-SiC/p-Si heterojunction. It is clear that the 3C-SiC plays an important role in the photoelectric conversion of the n-ZnO/n-SiC/p-Si heterojunction.

  13. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    SciTech Connect

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi; Liu, Jianwen; Ni, Lei

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  14. n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation.

    PubMed

    Wang, Xiaofeng; Ma, David W L; Kang, Jing X; Kulka, Marianna

    2015-12-01

    In vivo models show that n-3 polyunsaturated fatty acids (PUFA) inhibit some of the processes associated with allergic inflammation but the direct effect of n-3 PUFA on mast cells, the major effector cells in allergy, is poorly understood. We sought to determine the effect and mechanism of n-3 PUFA on Fc ε receptor I (FcεRI)-mediated signal transduction and mast cell activation. Bone marrow-derived mast cells (BMMC) were differentiated from bone marrow obtained from C57BL/6 wild-type (WT) and fat-1 transgenic mice. The fat-1 mice express fatty acid n-3 desaturase and produce endogenous n-3 PUFA. For comparison, exogenous n-3 PUFA were supplemented to WT BMMC and human mast cell (LAD2) cultures. Fat-1 BMMC released less β-hexosaminidase (β-hex) and cysteinyl leukotrienes and produced less tumor necrosis factor and chemokine (C-C motif) ligand 2. n-3 PUFA supplementation reduced LAD2 and BMMC degranulation (β-hex release) following FcεRI activation. Fat-1 BMMC expressed less constitutive Lyn and linker of activated T cells (LAT), and FcεRI-mediated phosphorylation of Lyn, spleen tyrosine kinase and LAT were reduced in fat-1 BMMC. Although the expression of surface and whole cell FcεRI was similar in WT and fat-1 BMMC, unstimulated fat-1 BMMC showed reduced FcεRI localization to lipid rafts, and stimulation with antigen resulted in aberrant FcεRI shuttling to the rafts. Our results show that n-3 PUFA suppress FcεRI-mediated activation of mast cells, which results in reduced mediator release. This effect is associated with a decrease in LAT and Lyn expression as well as abnormal shuttling of FcεRI to lipid rafts. PMID:26363927

  15. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  16. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  17. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  18. Improving Thermomechanical Properties of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.

    2006-01-01

    Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the

  19. Molecular dynamics study of Si(100)-oxidation: SiO and Si emissions from Si/SiO{sub 2} interfaces and their incorporation into SiO{sub 2}

    SciTech Connect

    Takahashi, Norihiko; Yamasaki, Takahiro; Kaneta, Chioko

    2014-06-14

    Dynamics of Si(100)-oxidation processes at the Si/SiO{sub 2} interface and in the SiO{sub 2} region are investigated focusing on SiO and Si emissions from the interface and the following incorporation into the SiO{sub 2} and/or substrate. Classical molecular dynamics (MD) simulations with variable charge interatomic potentials are performed to clarify these atomic processes. By incorporating oxygen atoms, two-folded Si atoms are formed after structural relaxation at the interface and are emitted as SiO molecules into SiO{sub 2}. The energy barrier of the SiO emission is estimated to be 1.20 eV on the basis of the enthalpy change in an MD simulation. The emitted SiO molecule is incorporated into the SiO{sub 2} network through a Si-O rebonding process with generating an oxygen vacancy. The energy barrier of the SiO incorporation is estimated to be 0.79–0.81 eV. The elementary process of oxygen vacancy diffusion leading to the complete SiO incorporation is also simulated, and the energy barriers are found to be relatively small, 0.71–0.79 eV. The energy changes of Si emissions into the substrate and SiO{sub 2} are estimated to be 2.97–7.81 eV, which are larger than the energy barrier of the SiO emission. This result suggests that, at the ideally flat Si/SiO{sub 2} interface, the SiO emission into the SiO{sub 2} region occurs prior to the Si emission, which is consistent with previous theoretical and experimental studies. The above mentioned typical atomic processes are successfully extracted from some (or one) of MD simulations among many trials in which a statistical procedure is partly employed. Our results give a unified understanding of Si oxidation processes from an atomistic point of view.

  20. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  1. Synthesis and properties of Si and SiGe/Si nanowires

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Lew, Kok-Keong; Bogart, Timothy E.; Pan, Ling; Dickey, Elizabeth C.; Carim, A. H.; Wang, Yanfeng; Cabassi, Marco A.; Mayer, Theresa S.

    2004-06-01

    The fabrication of semiconductor nanowires, in which composition, size and conductivity can be controlled in both the radial and axial direction of the wire is of interest for fundamental studies of carrier confinement as well as nanoscale device development. In this study, group IV semiconductor nanowires, including Si, Ge and SixGe1-x alloy nanowires were fabricated by vapor-liquid-solid (VLS) growth using gaseous precursors. In the VLS process, gold is used to form a liquid alloy with Si and Ge which, upon supersaturation, precipitates a semiconductor nanowire. Nanoporous alumina membranes were used as templates for the VLS growth process, in order to control the diameter of the nanowires over the range from 45 nm to 200 nm. Intentional p-type and n-type doping was achieved through the addition of either trimethylboron, diborane or phosphine gas during nanowire growth. The electrical properties of undoped and intentionally doped silicon nanowires were characterized using field-assisted assembly to align and position the wires onto pre-patterned test bed structures. The depletion characteristics of back-gated nanowire structures were used to determine conductivity type and qualitatively compare dopant concentration. SiGe and SiGe/Si axial heterostructure nanowires were also prepared through the addition of germane gas during VLS growth. The Ge concentration in the wires was controllable over the range from 12 % to 25% by varying the inlet GeH4/SiH4 ratio.

  2. Selective Growth of Nanocrystalline 3C-SiC Thin Films on Si

    NASA Astrophysics Data System (ADS)

    Beke, D.; Pongrácz, A.; Battistig, G.; Josepovits, K.; Pécz, B.

    2010-11-01

    Epitaxial formation of SiC nanocrystals has been investigated on single crystal silicon surfaces. A simple and cheap method using reactive annealing in CO has been developed and patented by our group (BME AFT and MTA MFA). By this technique epitaxial 3C-SiC nanocrystals can be grown at the Si side of a SiO2/Si interface without void formation at the SiC/Si interface. CO diffusion and SiC nanocrystal formation on different silicon based systems (SiO2/Si, Si3N4/3Si and SiO2/LPCVD poly-Si) after CO treatment at 105 Pa at elevated temperatures (T>1000° C) will be presented. By optimizing the annealing time a thin continuous nanocrystalline SiC layer has been formed. Applying a patterned Si3N4 capping layer as a barrier layer against CO diffusion, SiC nanocrystal formation at the Si3N4/Si interface is inhibited. We will present the selective growth of SiC nanocrystals using the before mentioned technique.

  3. Long-Wavelength Stacked Si(sub 1-x)/Si Heterojunction Internal Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; George, T.; Gunapala, S. D.

    1993-01-01

    Utilizing the low temperature silicon molecular beam epitaxy (MBE) growth of degenerately doped SiGe layers on Si, long wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Se layers have been fabricated and demonstrated.

  4. Optimum condition to fabricate 5-10 nm SiO2/Si structure using advanced nitric acid oxidation of Si method with Si source

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2012-12-01

    A low temperature (≦120 °C) fabrication method to form relatively thick SiO2/Si structure with a Si source has been developed using the advanced nitric acid oxidation of Si (NAOS) method, and the formation mechanism has been investigated. The reaction mechanism consists of direct oxidation of Si, dissolution of Si sources, and surface reaction of the dissolved Si species. The dissolved Si species is present in HNO3 solutions as mono-silicic acid and reacts with oxidizing species formed by decomposition of HNO3 on an ultrathin SiO2 layer (i.e., 1.4 nm) produced by the direct oxidation of Si substrates with HNO3 solutions. To achieve a uniform thickness of SiO2 layer with a smooth surface, HNO3 solutions with concentrations higher than 60 wt. % are needed because the dissolved Si species polymerizes in HNO3 solutions when the concentration is below 60 wt. %, resulting in the formation of SiO2 particles in HNO3, which are deposited afterwards on the SiO2 layer. In spite of the low temperature formation at 120 °C, the electrical characteristics of the advanced NAOS SiO2 layer formed with 68 wt. % HNO3 and subsequent post-metallization anneal at 250 °C are nearly identical to those of thermal oxide formed at 900 °C.

  5. Novel Si networks in Ca/Si phase diagram under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Ashcroft, Neil; Hoffmann, Roald

    2014-03-01

    In the Ca/Si phase diagram, many compositions are known. In these calcium silicides, silicon atoms form many different organizations, for example, at low pressure silicons are isolated silicon atoms in Ca2Si, Si chains in CaSi and corrugated hexagonal Si layers and a three-dimensional network of sp2 bonds in CaSi2. The crystal structures for these silicides under pressure have not been studied completely, and we are very interested in the new chemical and physical behavior of Si in these silicides under pressure. Therefore, we take a theoretical study of Ca2Si, CaSi and CaSi2 under pressure. We predicted many interesting Si networks in the calcium silicides under pressure. Si atoms form Si chains in Ca2Si, flat quadrangular and hexagonal Si layers in CaSi, and 6-coordinated Si tetrahedrons and 4, 8-coordinated Si octahedrons in CaSi2 at high pressure. All of these predicted structures are dynamically stable. Moreover, these calcium silicides are all metals. Some of them are good candidates to be superconductors. G. G., R. H., and N. W. A. acknowledge support by the NSF through research grant CHE-0910623 and DMR-0907425, and also EFree by the U.S. Department of Energy (Award No. DESC0001057 at Cornell).

  6. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    SciTech Connect

    Kowbel, W.; Tsou, K.T.; Withers, J.C.; Youngblood, G.E.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing.

  7. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  8. Introduction of SiGe/Si heterojunction into novel multilayer tunnel FinFET

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Fukuda, Koichi; Mori, Takahiro; Mizubayashi, Wataru; Migita, Shinji; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Matsukawa, Takashi; Ota, Hiroyuki

    2016-04-01

    A novel tunnel FinFET equipped with a SiGe/Si heterojunction and a multilayer fin-channel has been experimentally demonstrated. A high-quality SiGe layer is epitaxially grown on a heavily doped Si source as a tunnel junction. A FinFET-like hetero-multilayer channel with a trigate configuration significantly increases the drain current compared with conventional SiGe/Si heterojunction parallel-plate tunnel FETs.

  9. Infrared Detectors Containing Stacked Si(1-x)Ge(x)/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, Jin S.; Lin, True-Lon; Jones, Eric; Del Castillo, Hector; Gunapala, Sarath

    1996-01-01

    Long-wavelength-infrared detectors containing multiple layers of high-quality crystalline p(+) Si(1-x)Ge(x) alternating with layers of Si undergoing development. Each detector comprises stack of Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) photodetectors. In comparison with older HIP detectors containing single Si(1-x)Ge(x)/Si heterojunctions, developmental detectors feature greater quantum efficiencies and stronger photoresponses.

  10. A swelling-suppressed Si/SiOx nanosphere lithium storage material fabricated by graphene envelopment.

    PubMed

    Yoo, Hyundong; Park, Eunjun; Kim, Hyekyoung; Bae, Juhye; Chang, Hankwon; Jang, Hee Dong; Kim, Hansu

    2016-06-28

    A swelling-suppressed, Si nanocrystals-embedded SiOx nanospheres lithium storage material was prepared by graphene envelopment. The free void spaces formed between the graphene envelope and Si/SiOx nanospheres effectively accommodated the volume changes of Si/SiOx nanospheres during cycling, which significantly suppresses the swelling behavior and improves the capacity retention up to 200 cycles. PMID:27264845

  11. The epitaxial growth of (1 1 1) oriented monocrystalline Si film based on a 4:5 Si-to-SiC atomic lattice matching interface

    SciTech Connect

    Yang, Chen; Chen, Zhiming; Hu, Jichao; Ren, Zhanqiang; Lin, Shenghuang

    2012-06-15

    Highlights: ► A monocrystalline Si film was demonstrated by XRD to epitaxially grow on the 6H-SiC substrate. ► A 4:5 Si-to-SiC lattice matching structure was observed at the Si/SiC interface. ► The calculated value of the actual lattice mismatch is only 0.26%. ► Defects can be effectively reduced at the 4:5 Si-to-SiC lattice matching Si/SiC interface. -- Abstract: Due to a huge lattice mismatch of about 20% theoretically existing between SiC and Si, it is difficult for growing monocrystalline Si/SiC heterojunction to realize the light control of SiC devices. However, based on a 4:5 Si-to-SiC atomic lattice matching interface structure, the monocrystalline Si films were epitaxially prepared on the 6H-SiC (0 0 0 1) substrate by hot-wall chemical vapor deposition in our work. The film was characterized by X-ray diffraction analysis with only (1 1 1) orientation occurring. The X-ray rocking curves illustrated good symmetry with a full width at half maximum of 0.4339° omega. A 4:5 Si-to-SiC atomic matching structure of the Si/6H-SiC interface clearly observed by the transmission electron microscope revealed the essence of growing the monocrystalline Si film on the SiC substrate.

  12. Electrical properties of Si/Si interfaces by using surface-activated bonding

    SciTech Connect

    Liang, J.; Miyazaki, T.; Morimoto, M.; Nishida, S.; Shigekawa, N.

    2013-11-14

    Electrical properties of n-Si/n-Si, p-Si/n-Si, and p{sup −}-Si/n{sup +}-Si junctions fabricated by using surface-activated-bonding are investigated. The transmission electron microscopy/energy dispersive X-ray spectroscopy of the n-Si/n-Si interfaces reveals no evidence of oxide layers at the interfaces. From the current-voltage (I-V) and the capacitance-voltage (C-V) characteristics of the p-Si/n-Si and p{sup −}-Si/n{sup +}-Si junctions, it is found that the interface states, likely to have formed due to the surface activation process using Ar plasma, have a more marked impact on the electrical properties of the p-Si/n-Si junctions. An analysis of the temperature dependence of the I-V characteristics indicates that the properties of carrier transport across the bonding interfaces for reverse-bias voltages in the p-Si/n-Si and p{sup −}-Si/n{sup +}-Si junctions can be explained using the trap-assisted-tunneling and Frenkel-Poole models, respectively.

  13. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Tian, Y.L.

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  14. Straight β-SiC nanorods synthesized by using C-Si-SiO2

    NASA Astrophysics Data System (ADS)

    Lai, H. L.; Wong, N. B.; Zhou, X. T.; Peng, H. Y.; Au, Frederick C. K.; Wang, N.; Bello, I.; Lee, C. S.; Lee, S. T.; Duan, X. F.

    2000-01-01

    Straight beta-silicon carbide nanorods have been grown on silicon wafers using hot filament chemical vapor deposition with iron particles as catalyst. A plate made of a C-Si-SiO2 powder mixture was used as carbon and silicon sources. Hydrogen, which was the only gas fed into the deposition system, acts both as a reactant and as a mass transporting medium. The diameter of the β-SiC nanorod ranged from 20 to 70 nm, while its length was approximately 1 μm. A growth mechanism of beta-silicon carbide nanorods was proposed. The field emission properties of the beta-silicon carbide nanorods grown on the silicon substrate are also reported.

  15. SiC Micropipe Sprecta

    NASA Astrophysics Data System (ADS)

    Leff, David; Frasca, Albert

    1997-05-01

    This report focuses on the spectral response of 4H SiC PN junction micropipes when reverse and forward biased. Reverse biased 4H SiC PN junctions give a very strong UV line, 385nm (3.22eV), and blue line, 475nm (2.61eV). In the forward bias direction the spectra do not contain the UV, only the blue line, 490nm (2.53eV), with considerably better resolution. For isolating and measuring the micropipe spectra and structure, a sample fixture was fabricated from a power transistor case. In order to activate the micropipes in the SEM, a vacuum feed-thru was made from another power transistor case. The emitter and base leads were used as the vacuum feed-thru and were used to mount a very fine spring for making contact to the 1mm X 1mm PN junction on the SiC chip. In our attempts to study these pipes and their properties, we utilized the SE, BSE, and X-ray detectors on the SEM, a stereo microscope, and a grading monochrometer. From the utilization of this equipment, we found the locations of the micropipes, the forward and reverse bias spectrum, and the possible structural faults in the SiC. Thanks to Dr. Philip Neudeck at LeRC, and Dr. Kenneth Bladh of Wittenberg.

  16. Combinatorial growth of Si nanoribbons

    PubMed Central

    2011-01-01

    Silicon nanoribbons (Si NRs) with a thickness of about 30 nm and a width up to a few micrometers were synthesized. Systematic observations indicate that Si NRs evolve via the following sequences: the growth of basal nanowires assisted with a Pt catalyst by a vapor-liquid-solid (VLS) mechanism, followed by the formation of saw-like edges on the basal nanowires and the planar filling of those edges by a vapor-solid (VS) mechanism. Si NRs have twins along the longitudinal < 110 > growth of the basal nanowires that also extend in < 112 > direction to edge of NRs. These twins appear to drive the lateral growth by a reentrant twin mechanism. These twins also create a mirror-like crystallographic configuration in the anisotropic surface energy state and appear to further drive lateral saw-like edge growth in the < 112 > direction. These outcomes indicate that the Si NRs are grown by a combination of the two mechanisms of a Pt-catalyst-assisted VLS mechanism for longitudinal growth and a twin-assisted VS mechanism for lateral growth. PMID:21794158

  17. The Use of SI Units.

    ERIC Educational Resources Information Center

    British Standards Institution, London (England).

    This booklet (referred to as PD 5686:1969) replaces the 1967 edition by including subsequent recommendations of the International Organization for Standardization (ISO) and the General Conference on Weights and Measures (CGPM). The International System of Units (SI) is described and rules are given for the formation of derived units and decimal…

  18. Phonon heat transport in superlattices: Case of Si/SiGe and SiGe/SiGe superlattices

    NASA Astrophysics Data System (ADS)

    Hijazi, M.; Kazan, M.

    2016-06-01

    We present a predictive Boltzmann model for the cross-plane thermal conductivity in superlattices. The developed model considers particle-like phonons exhibiting wave characteristics at the interfaces and makes the assumption that the phonon heat transport in a superlattice has a mixed character. Exact Boltzmann equation comprising spatial dependence of phonon distribution function is solved to yield a general expression for the lattice thermal conductivity. The intrinsic phonon scattering rates are calculated from Fermi's golden rule, and the model vibrational parameters are derived as functions of temperature and crystallographic directions by using elasticity theory-based lattice dynamics approach. The developed theory is then adapted to calculate the cross-plane thermal conductivity of superlattices. It is assumed that the phonons of wavelengths comparable or smaller than the superlattice period or the root mean square irregularity at the superlattice interfaces may be subject to a resistive scattering mechanism at the interfaces, whereas the phonons of wavelengths much greater than the superlattice period undergo ballistic transmission through the interfaces and obey dispersion relations determined by the Brillouin zone folding effects of the superlattice. The accuracy of the concept of mixed phonon transport regime in superlattices is demonstrated clearly with reference to experimental measurements regarding the effects of period thickness and temperature on the cross-plane thermal conductivity of Si/Si0.7Ge0.3 and Si0.84Ge0.16/Si0.76Ge0.3 superlattices.

  19. The impact resistance of SiC and other mechanical properties of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Bradt, R. C.

    1984-01-01

    Studies focused on the impact and mechanical behavior of SiC and Si3N4 at high temperatures are summarized. Instrumented Charpy impact testing is analyzed by a compliance method and related to strength; slow crack growth is related to processing, and creep is discussed. The transient nature of flaw populations during oxidation under load is emphasized for both SiC and Si3N4.

  20. Study and Simulation of the Heterojunction Thin Film Solar Cell a-Si(n)/a-Si(i)/c-Si(p)/a-Si(i)/a-Si(p)

    NASA Astrophysics Data System (ADS)

    Toufik, Zarede; Hamza, Lidjici; Mohamed, Fathi; Achour, Mahrane

    2016-05-01

    In this article, we present a study based on numerical simulation of the electrical characteristics of a thin-film heterojunction solar cell (a-Si(n)/a-Si(i)/c-Si(p)/a-Si(i)/a-Si(p)), using the automat for simulation of hetero-structures (AFORS-Het) software. This cell is composed of four main layers of silicon (Si): (i) 5 nm amorphous silicon doped n, (ii) 100 μm crystalline silicon (substrate) doped p, (iii) 5 nm amorphous silicon doped p, and (iv) 3 nm amorphous silicon intrinsic. This cell has a front and rear metal contact of aluminum and zinc oxide (ZnO) front layer transparent conductive oxide of 80 nm thickness. The simulations were performed at conditions of "One Sun" irradiation with air mass 1.5 (AM1.5), and under absolute temperature T = 300 K. The simulation results have shown a high electrical conversion efficiency of about 30.29% and high values of open circuit voltage V oc = 779 mV. This study has also shown that the studied cell has good quality light absorption on a very broad spectrum.

  1. Enhanced light emission from Si nanocrystals produced using SiOx/SiO2 multilayered silicon-rich oxides

    NASA Astrophysics Data System (ADS)

    Yoon, Jong-Hwan

    2015-07-01

    The light emission from Si nanocrystals (NCs) produced in SiO2 by annealing of SiOx/SiO2 multilayered silicon-rich oxide (SRO) is examined as a function of the SiOx layer thickness. Multilayered SRO structures are shown to produce a significant increase in emission intensities with a large redshift of spectra as compared with a single-layer SRO film. A multilayered SRO film with ∼6-nm thick SiO1.45 layers exhibits a 13-fold increase in the emission intensity with a redshift of ∼70 nm relative to a single-layer SiO1.45 SRO film with a thickness equivalent to the total SiO1.45 layer thickness in the multilayered film. The transmission electron microscopy analyses indicate that the enhancement of the emission intensity with the redshift of spectrum is caused by the enhanced aggregation of phase separated Si atoms in the former SiOx layers due to the hindering of interlayer diffusion of Si by the neighboring SiO2 layers.

  2. The HFIR 14J irradiation SiC/SiC composite and SiC fiber collaboration

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira; Katoh, Yutai; Hasegawa, Akira; Snead, L.; Scholz, R.

    1998-09-01

    A short introduction with references establishes the current status of research and development of SiC{sub f}/SiC composites for fusion energy systems with respect to several key issues. The SiC fiber and composite specimen types selected for the JUPITER 14J irradiation experiment are presented together with the rationale for their selection.

  3. Glass-Si heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1975-01-01

    Experimental studies and models for In2O3/Si and SnO2/N-Si solar cells are considered for their suitability in terrestrial applications. The silicon is the active material, and the glass serves as the window to solar radiation, an antireflection coating of the Si, and a low resistance contact. Results show that amorphous windows or layers suppress photocurrent. The interfacial SiO2 layer suppresses photocurrent and increases series resistance. Suppression increases with illumination.

  4. Hybrid single mode lasers fabricated using Si/SiO2/SiON micromachined platforms

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Mansour, K.

    2003-01-01

    We have devised a hybridization scheme that, given suitable Fabri-Perot (F-P) ain medium, allows us to fabricate small, mechanically robust single frequency lasers in a wide spectral range, limited only by the transparency of the SiON material.

  5. Radio Frequency Single Electron Transistors on Si/SiGe

    NASA Astrophysics Data System (ADS)

    Yuan, Mingyun; Yang, Zhen; Rimberg, A. J.; Eriksson, M. A.; Savage, D. E.

    2011-03-01

    Superconducting single electron transistors (S-SETs) are ideal for charge state readout due to their high sensitivity and low back-action. Upon successful formation of quantum dots(QDs) on Si/SiGe, aluminum S-SETs are added in the vicinity of the QDs. Coupling of the S-SET to the QD is confirmed by using the S-SET to perform sensing of the QD charge state at 0.3 K. We have formed a matching network for an SET with an off-chip inductor. The reflection coefficient of the radio frequency(RF) signal is shown to be modulated by the SET resistance. Efforts to develop an on-chip matching network and perform charge sensing with the RF-SETs are in progress. Recent experimental results will be discussed. This research was supported by the NSA, LPS and ARO.

  6. Improved characterization of the Si-SiO2 interface

    NASA Technical Reports Server (NTRS)

    Su, P.; Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.

    1980-01-01

    Refined quasi-static and conductance methods, based on effectively thin composite insulating layers, low-carrier-concentration bulk semiconductors, and low-level illumination, have been applied to an improved characterization of the (100) Si-SiO2 interface. Accurate measurement of both the total density of interface states and its major components as a function of energy in the forbidden gap have been made over four decades (10-billion to 100-trillion states/eV sq cm) on a single sample. The normal U-shaped density of states is resolved into separate valence- and conduction-band-derived contributions as well as impurity-derived contributions corresponding to concentrations on the order of 20 ppm at the interface.

  7. Mn4Si7 nanoinclusions in Mn-implanted Si

    NASA Astrophysics Data System (ADS)

    Romanowski, P.; Bak-Misiuk, J.; Sobczak, K.; Dziawa, P.; Dynowska, E.; Szczepanska, A.; Misiuk, A.

    2013-12-01

    Silicon single crystals were implanted with 160 keV Mn+ ions to a dose of 1×1016 cm-2 and next annealed for 1 h up to 1070 K under ambient pressure. Glancing incidence diffraction research performed using synchrotron radiation indicated that the post-implantation treatment influenced the creation of Mn4Si7 nanoinclusions. The dimensions and concentration of these inclusions, calculated from distribution of the X-ray diffuse scattering intensity are dependent on annealing temperature. The sizes and shapes of the inclusions were also determined by high-resolution transmission electron microscopy. Magnetic properties of the Si:Mn samples were studied using superconducting quantum interference device. The origin of ferromagnetic ordering is discussed in terms of the size of nanoinclusions.

  8. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Black, W.M.

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  9. Effects of thermal annealing on photoluminescence of Si+/C+ implanted SiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Yu; Chao, Der-Sheng; Tsai, Hsu-Sheng; Liang, Jenq-Horng

    2016-04-01

    The mechanisms of photoluminescence (PL) originating from Si+/C+ implanted SiO2 are still unclear and need to be clarified. Thus, the purpose of this study is to thoroughly investigate the effects of ion implantation and post-annealing temperature on microstructures and PL characteristics of the Si+/C+ implanted SiO2 films. A comparative analysis was also conducted to clarify the different optical properties between the Si+ and Si+/C+ implanted SiO2 films. In this study, thermally-grown SiO2 films on Si substrates were used as the matrix materials. The Si+ ions and C+ ions were separately implanted into the SiO2 films at room temperature. After ion implantation, the post-annealing treatments were carried out using the furnace annealing (FA) method at various temperatures (600-1100 °C) for 1 h in a N2 ambient. The PL characteristics of the implanted SiO2 films were analyzed using a fluorescence spectrophotometer. The results revealed that the distinct PL peaks were observed at approximately 310, 450 and 650 nm in the Si+-implanted SiO2 films, which can be attributed to the defects, the so-called oxygen deficiency centers (ODCs) and non-bridging oxygen hole centers (NBOHCs), in the materials. In contrast to the Si+ ion implantation, the SiO2 films which were sequentially implanted with Si+ and C+ ions and annealed at 1100 °C can emit white light corresponding to the PL peaks located at around 420, 520 and 720 nm, those can be assigned to the Si-C bonding, C-C graphite-like structure (sp2), and Si nanocrystals, respectively. Moreover, a correlation between the optical properties, microstructures, and bonding configurations of the Si+/C+ implanted SiO2 films was also established in this study.

  10. Si@SiOx/graphene hydrogel composite anode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Bai, Xuejun; Yu, Yueyang; Kung, Harold H.; Wang, Biao; Jiang, Jianming

    2016-02-01

    A porous 3D graphene hydrogel (GH) composite embedded with Si nanoparticles coated with an ultrathin SiOx layer (Si@SiOx/GH) is successfully synthesized using a solution-based self-assembly process. The thickness of the SiOx coating, formed by an ozone treatment of the 30-50 nm diameter Si particles, increases with the treatment temperature, and its formation results in the presence of Si2+ and Si4+ on the surface of the Si nanoparticles. The GH provides an electrically conducting network of interconnecting, micron-size open cells bounded by ultrathin stacked graphene sheets onto which the coated Si nanoparticles are dispersed. The agglomeration among the Si particles decreases with increasing extent of surface oxidation. Electrodes constructed with the Si@SiOx/GH containing 71 wt.% Si@SiOx exhibit a stable storage capacity of 1020 mAh g-1 at 4 A g-1 and 1640 mAh g-1 after 140 cycles at 0.1 A g-1. The outstanding electrochemical performance can be attributed to the porous, open cell 3D structure of GH, which provides a large internal space and flexible and electrically conductive graphenic matrix that can accommodate volumetric changes of Si nanoparticles and a highly porous 3D structure of high specific surface area that allows rapid diffusion of Li-ions and easy penetration of electrolyte.

  11. Location and Electronic Nature of Phosphorus in the Si Nanocrystal--SiO2 System.

    PubMed

    König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel

    2015-01-01

    Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P. PMID:25997696

  12. Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System

    PubMed Central

    König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel

    2015-01-01

    Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P. PMID:25997696

  13. High energy electron-beam irradiation effects in Si-SiOx structures

    NASA Astrophysics Data System (ADS)

    Nesheva, D.; Dzhurkov, V.; Šćepanović, M.; Bineva, I.; Manolov, E.; Kaschieva, S.; Nedev, N.; Dmitriev, S. N.; Popović, Z. V.

    2016-02-01

    Homogeneous SiOx films (x=1.3, 200 nm and 1000 nm thick) and composite a-Si-SiOy films (y ∼ 1.80) containing amorphous Si nanoparticles have been prepared on crystalline (c-Si) substrate. A part of the films was irradiated at temperature below 50°C by 20 MeV electrons with two different fluences (7.2x1014 and 1.44x1015 el.cm-2). Atomic force microscopy (AFM), Raman spectroscopy and capacitance (conductance) - voltage (C(G)-V) measurements on Al/c-Si/SiOx/Al or Al/c-Si/(a-Si-SiOy)/Al structures were used to get information about the irradiation induced changes in the surface morphology, the phase composition in the film bulk and at the Si-SiOx interface. The AFM results show that the electron irradiation decreases the film surface roughness of the films annealed at 250°C. The Raman scattering data imply appearance of amorphous silicon phase and some structural changes in the oxide matrix of the homogeneous SiOx films. In the composite films electron beam stimulated decrease of the defects at the a-Si/SiOy interface has been assumed. The initial C(G)-V results speak about electron induced formation of electrically active defects in the SiOy matrix of the composite films.

  14. Location and Electronic Nature of Phosphorus in the Si Nanocrystal - SiO2 System

    NASA Astrophysics Data System (ADS)

    König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel

    2015-05-01

    Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P.

  15. Effect of Ge on SiC film morphology in SiC/Si films grown by MOCVD

    SciTech Connect

    Sarney, W.L.; Salamanca-Riba, L.; Zhou, P.; Spencer, M.G.; Taylor, C.; Sharma, R.P.; Jones, K.A.

    1999-07-01

    SiC/Si films generally contain stacking faults and amorphous regions near the interface. High quality SiC/Si films are especially difficult to obtain since the temperatures usually required to grow high quality SiC are above the Si melting point. The authors added Ge in the form of GeH{sub 2} to the reactant gases to promote two-dimensional CVD growth of SiC films on (111) Si substrates at 1,000 C. The films grown with no Ge are essentially amorphous with very small crystalline regions, whereas those films grown with GeH{sub 2} flow rates of 10 and 15 sccm are polycrystalline with the 3C structure. Increasing the flow rate to 20 sccm improves the crystallinity and induces growth of 6H SiC over an initial 3C layer. This study presents the first observation of spontaneous polytype transformation in SiC grown on Si by MOCVD.

  16. Kinetics of epitaxial growth of Si and SiGe films on (1 1 0) Si substrates

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Moriyama, Y.; Nakaharai, S.; Tezuka, T.; Mizuno, T.; Takagi, S.

    2004-03-01

    The epitaxial growth of Si and SiGe layers on (1 1 0) Si substrates using UHV-CVD is studied with comparing that on (1 0 0) substrates. It is revealed that, while the growth rate on (1 1 0) surfaces is quite lower than that on (1 0 0) surfaces, the Ge content of SiGe is the same between (1 0 0) and (1 1 0) surfaces, meaning that the ratio of decomposition yields of source molecules for Si and Ge are same in both the (1 0 0) and (1 1 0) substrates. This characteristic is expected to lead to the epitaxial growth of SiGe films with uniform Ge content over the three-dimensional patterned structure, which can be utilized for vertical FET and Fin-FETs. Actually, it has been experimentally confirmed that the SiGe films grown over trench structures has a uniform Ge content.

  17. Effect of carbon nanofiber dispersion on the properties of PIP-SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Taguchi, T.; Hasegawa, Y.; Shamoto, S.

    2011-10-01

    SiC/SiC composites with and without dispersed carbon nanofiber were fabricated by the polymer impregnation and pyrolysis process. The effect of dispersing carbon nanofiber on the mechanical and thermal properties of SiC/SiC composites was investigated. The bending strength and elastic modulus of SiC/SiC composites with carbon nanofiber decreased slightly compared to those of the SiC/SiC composites without the nanofiber. On the other hand, the thermal conductivity of SiC/SiC composites increased with increasing amount of dispersed nanofiber. The dominant reason is considered to be that the pore shape changed from an oblong shape perpendicular to the direction of heat flow to an isotropic. The shape change resulted from the dispersed carbon nanofiber.

  18. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    SciTech Connect

    Ping Wang, Y. Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O.; Stodolna, J.; Ponchet, A.; Bahri, M.; Largeau, L.; Patriarche, G.; Magen, C.

    2015-11-09

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.

  19. Si quantum dot structures and their applications

    NASA Astrophysics Data System (ADS)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  20. The effect of Ni:Si ratio on microstructural properties of Ni/Si ohmic contacts to SiC

    NASA Astrophysics Data System (ADS)

    Wzorek, M.; Borysiewicz, M. A.; Czerwinski, A.; Myśliwiec, M.; Ekielski, M.; Ratajczak, J.; Piotrowska, A.; Kątcki, J.

    2016-04-01

    Detailed microstructural studies were performed on Ni/Si ohmic contacts to silicon carbide in order to investigate the effect of initial Ni:Si ratio in as-deposited structures on the occurrence of characteristic defects in Ni silicide layers, such as voids, layer discontinuities, rough surface or rough interface. The chosen range of investigated Ni:Si ratios corresponded to δ-Ni2Si as a dominant phase after complete annealing sequence. Strong effect of the initial stoichiometry on the ohmic contact's microstructure was observed. The highest Ni concentration significantly lowered the temperature at which roughening of the surface and the interface occurred. The middle value of investigated concentrations resulted in the rough interface after high temperature annealing, while the lowest investigated Ni content preserved smooth interface but introduced large voids and layer discontinuities. After the first annealing step, γ-Ni31Si12 and/or δ-Ni2Si phases were detected. In the ohmic contacts (after two-step annealing sequence), beside δ-Ni2Si, the metastable, high temperature phase θ-Ni2Si was detected (also referred to as Ni3Si2·h). This phase can exist within a relatively broad range of Ni:Si stoichiometry. The stoichiometry change toward higher Si content, which occurs during high temperature annealing, was realized through this phase. Superstructures were detected in θ-Ni2Si (Ni3Si2·h) and in γ-Ni31Si12 grains. The effect of the stoichiometry change on the morphology of the Ni silicide layers is discussed.

  1. PtSi/Si LWIR Detectors Made With p+ Doping Spikes

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Park, Jin S.; George, Thomas; Fathauer, Robert W.; Jones, Eric W.; Maserjian, Joseph

    1996-01-01

    PtSi/Si Schottky-barrier devices detecting long-wavelength infrared (LWIR) photons demonstrated. Essential feature of one of these devices is p+ "doping spike"; layer of Si about 10 Angstrom thick, located at PtSi/Si interface, and doped with electron acceptors (boron atoms) at concentration between 5 x 10(19) and 2 x 10(20) cm(-3). Doping spikes extend cutoff wavelengths of devices to greater values than otherwise possible.

  2. Columnar growth of CoSi2 on Si(111), Si(100) and Si(110) by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Codeposition of silicon and cobalt on heated silicon substrates in ratios several times the silicide stoichiometry is found to result in epitaxial columns of CoSi2 surrounded by a matrix of epitaxial silicon. For (111)-oriented wafers, nearly cylindrical columns are formed, where both columns and surrounding silicon are defect free, as deduced from transmission electron microscopy. Independent control of the column diameter and separation is possible, and diameters of 27-135 nm have been demonstrated.

  3. Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  4. Effect of Si interface surface roughness to the tunneling current of the Si/Si1-xGex/Si heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Hasanah, Lilik; Suhendi, Endi; Tayubi, Yuyu Rahmat; Yuwono, Heru; Nandiyanto, Asep Bayu Dani; Murakami, Hideki; Khairrurijal

    2016-02-01

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si1-xGex/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  5. The Schottky barrier modulation at PtSi/Si interface by strain and structural deformation

    SciTech Connect

    Srivastava, Pooja; Lee, Kwang-Ryeol; Mizuseki, Hiroshi; Kim, Seungchul; Shin, Mincheol

    2015-08-15

    We show, using density functional theory (DFT) calculations, that the Schottky barrier height (SBH) at the PtSi/Si interface can be lowered by uniaxial strain applied not only on Si but also on PtSi. The strain was applied to the (001) direction of Si and PtSi, which is normal for the interface. The SBH of the hole is lowered by 0.08 eV under 2% of tensile strain on Si and by 0.09 eV under 4 % of compressive strain on PtSi. Because the SBH at PtSi/Si contact is approximately 0.2 eV, this amount of reduction can significantly lower the resistance of the PtSi/Si contact; thus applying uniaxial strain on both PtSi and Si possibly enhances the performance of Schottky barrier field effect transistors. Theoretical models of SB formation and conventional structure model are evaluated. It is found that Pt penetration into Si stabilizes the interface and lowers the SBH by approximately 0.1 eV from the bulk-terminated interface model, which implies that conventionally used bulk-terminated interface models have significant errors. Among the theoretical models of SB formation, the model of strong Fermi level pining adequately explains the electron transfer phenomena and SBH, but it has limited ability to explain SBH changes induced by changes of interface structure.

  6. Ion implantation and diffusion of Al in a {SiO 2}/{Si} system

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Galvagno, G.; Rinaudo, S.; Raineri, V.; Franco, G.; Camalleri, M.; Gasparotto, A.; Carnera, A.; Rimini, E.

    1996-08-01

    The diffusion and segregation of ion implanted Al in SiO 2 and Si layers were studied for several experimental conditions. Al ions were implanted into SiO 2, Si and through a SiO 2 layer into Si substrates at several energies (80, 300, 650 and 6000 keV) and doses (3.4 × 10 14-1 × 10 15 cm -2). The Al diffusion coefficient in SiO 2 was measured at 1200°C for times up to 5 days, and it results five orders of magnitude lower than in Si. The experiments show that the Al atoms implanted into Si do not out-diffuse during thermal treatments from the SiO 2 capping layer, but segregate at the {SiO 2}/{Si} interface. The high segregation coefficient gives rise to a trapping of Al into the oxide layer comparable to the out-diffusion of Al from uncapped Si substrates. The determined parameters for Al diffusion and segregation in the {SiO 2}/{Si} system were introduced in a simulation code to calculate the Al diffusion profiles which result in agreement with the experimental data.

  7. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1979-01-01

    Cold pressing and sintering techniques were used to produce ceramic test specimens in which the major phase was either Si3N4 or a solid solution having the beta Si3N4 structure. Additional components were incorporated to promote liquid phase sintering. Glass and/or crystalline phase were consequently retained in boundaries between Si3N4 grains which largely determined the physical properties of the bodies. Systems investigated most extensively included R-Si-Al-O-N (R = rare earth element) Zr-Si-Al-O-N, Y-Si-Be-O-N, and R1-R2-Si-O-N. Room temperature and 1370 C modulus of ruptured, 1370 C creep, and oxidation behavior are discussed in terms of phase relationships in a parent quinery, and relavent oxide systems.

  8. Differential cross sections measurement of 28Si(p,p/γ)28Si and 29Si(p,p/γ)29Si reactions for PIGE applications

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-03-01

    Differential cross sections for gamma-ray emission from the 28Si(p,p/γ)28Si (Eγ = 1779 keV) and the 29Si(p,p/γ)29Si (Eγ = 1273 keV) nuclear reactions were measured in the energy range of 2.0-3.2 MeV and 2.0-3.0 MeV, respectively. The thin Si targets were prepared by evaporating natural SiO onto self-supporting Ag films. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. The great advantage of this work is that differential cross sections were obtained with a procedure irrespective of absolute value of the collected beam charge.

  9. SiC nanowires: A photocatalytic nanomaterial

    SciTech Connect

    Zhou Weimin; Yan Lijun; Wang Ying; Zhang Yafei

    2006-07-03

    Single-crystal {beta}-SiC nanowires coated with amorphous SiO{sub 2} were synthesized by a simple thermal evaporation technique. The photocatalytic activity of the SiC nanowires was characterized by measuring the photodegradation rate of acetaldehyde catalyzed by SiC as a function of UV irradiation time. It exhibited excellent photocatalytic activity, leading to the efficient decomposition of acetaldehyde by irradiation with UV light. The progress of the photocatalytic reaction can be monitored by the evolution of one of the products, CO{sub 2}. It has been observed that the as-synthesized SiC nanowires (with the SiO{sub 2} coating) have higher catalytic activity than the HF-etched, oxide-free SiC nanowires.

  10. Formation of Si nanocrystals in SiOx, SiOx:C:H films and Si/SiO2 multilayer nano-heterostructures by pulse laser treatments

    NASA Astrophysics Data System (ADS)

    Neizvestniy, I. G.; Volodin, V. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. H.; Cherkov, A. G.; Litovchenko, V. G.; Lisovsky, I. P.; Maidanchuk, I. Yu.

    2014-12-01

    Furnace annealing and pulse laser treatments, including nanosecond laser treatments (KrF laser 248 nm wavelength, 20 ns pulse duration and XeCl laser 308 nm wavelength, 10 ns pulse duration) and femtosecond laser treatments (Tisapphire laser, 800 nm wavelength, <30 fs pulse duration) were applied for crystallization of amorphous hydrogenated silicon films, SiOx films and multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of impurities on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. The developed approach can be used for the creation of dielectric films with semiconductor nanoclusters on nonrefractory substrates.

  11. High temperature compounds for turbine vanes. [of SiC, Si3N4, and Si composites

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.; Cannon, R. M., Jr.

    1974-01-01

    Fabrication and microstructure control studies were conducted on SiC, Si3N and composites based on Si3N. Charpy mode impact testing to 2400 F established that Si3N4/Mo composites have excellent potential. Attempts to fabricate composites of Si3N4 with superalloys, both by hot pressing and infiltration were largely unsuccessful in comparison to using Mo, Re, and Ta which are less reactive. Modest improvements in impact strength were realized for monolithic Si3N4; however, SiC strengths increased by a factor of six and now equal values achieved for Si3N4. Correlations of impact strength with material properties are discussed. Reduced MgO densification aid additions to Si3N4 were found to decrease densification kinetics, increase final porosity, decrease room temperature bend strength, increase high temperature bend strength, and decrease bend stress rupture properties. The decrease in bend strength at high temperature for fine grain size SiC suggested that a slightly larger grain size material with a nearly constant strength-temperature relation may prove desirable in the creep and stress rupture mode.

  12. Characterization of defects in Si and SiO{sub 2}-Si using positrons

    SciTech Connect

    Asoka-Kumar, P.; Lynn, K.G.

    1993-12-31

    Positron annihilation spectroscopy of overlayers, interfaces, and buried regions of semiconductors has seen a rapid growth in recent years. The characteristics of the annihilation gamma rays depend strongly on the local environment of the annihilation sites, and can be used to probe defect concentrations in a range inaccessible to conventional defect probes. Some of the recent success of the technique in examining low concentrations of point defects in technologically important Si-based structures is discussed.

  13. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    SciTech Connect

    Halverson, H.; Curtin, W.A.

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  14. Electron impact collision strengths in Si IX, Si X, and Si XI

    SciTech Connect

    Liang Guiyun; Zhao Gang . E-mail: gzhao@bao.ac.cn; Zeng Jiaolong

    2007-05-15

    Electron impact collision strengths among 560 levels of Si IX, 320 levels of Si X, and 350 levels of Si XI have been calculated using the Flexible Atomic Code of Gu [M.F. Gu, Astrophys. J. 582 (2003) 1241]. Collision strengths {omega} at 10 scattered electron energies, namely 10, 50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 eV, are reported. Assuming a Maxwellian energy distribution, effective collision strengths Y are obtained on a finer electron temperature grid of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 MK, which covers the typical temperature range of astrophysical hot plasmas. Additionally, radiative rates A and weighted oscillator strengths gf are given for the more probable transitions among these levels. Comparisons of our results with available predictions reported in earlier literature are made and the accuracy of the data is assessed. Most transitions exhibit a good agreement, but large differences in gf appear for a few cases, which are due to the different configuration interactions included in different theoretical calculations. For excitations among levels of the ground and lower excited configurations, large discrepancies of Y may have resulted from the consideration of resonance effects in earlier works.

  15. Similarity of Stranski-Krastanow growth of Ge/Si and SiGe/Si (001)

    SciTech Connect

    Norris, D. J.; Qiu, Y.; Walther, T.; Dobbie, A.; Myronov, M.

    2014-01-07

    This study investigates the onset of islanding (Stranski-Krastanow transition) in strained pure germanium (Ge) and dilute silicon-germanium (SiGe) alloy layers grown by chemical vapour deposition on Si(001) substrates. Integration of compositional profiles is compared to a novel method for quantification of X-ray maps acquired in cross-sectional scanning transmission electron microscopy, together with simulations of surface segregation of Ge. We show that Si{sub 1−x}Ge{sub x} alloys for germanium concentrations x ≤ 0.27 grow two-dimensionally and stay flat up to considerable layer thicknesses, while layers with concentrations in the range 0.28 < x ≤ 1 form islands after deposition of ∼3.0/x monolayers (=quarter unit cells in the diamond lattice, ML). The uncertainty in the amount of deposited material for pure Ge is ±(0.2–0.3) ML. Modelling shows that of the amount of germanium deposited, 0.7 ML segregate towards the free surface so that only ∼2.3/x ML are directly incorporated in the layer within a few nanometres, in good agreement with our measurements. For pure Ge (x = 1), this thickness is smaller than most values quoted in the literature, which we attribute to the high sensitivity of our method to fractional monolayer changes in the effective chemical width of such thin layers.

  16. High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution.

    PubMed

    Wang, Hsin-Ping; Sun, Ke; Noh, Sun Young; Kargar, Alireza; Tsai, Meng-Lin; Huang, Ming-Yi; Wang, Deli; He, Jr-Hau

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm(2) at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. PMID:25665138

  17. Iron disilicide formation by Au-Si eutectic reaction on Si substrate

    NASA Astrophysics Data System (ADS)

    Akiyama, Kensuke; Kaneko, Satoru; Yokomizo, Kazuya; Itakura, Masaru

    2009-11-01

    We have investigated the growth of iron disilicide on Au-coated Si(0 0 1) substrates and its photoluminescence behaviour. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy observations revealed that the Si surface above 380 °C was melted as a result of the Au-Si eutectic reaction and that coarse island disilicide grains with sizes of several micrometres were formed on the Si surface. The full width at half maximum of 0.056° on the rocking curve of α-FeSi 2004 was observed on the sample deposited at 800 °C, and indicated the high crystal quality in perfection of orientation. The photoluminescence spectrum of β-FeSi 2 grains, which were deposited at 750 °C, was observed. The melted Si surface contributed to the improved crystallinity of α-FeSi 2 and β-FeSi 2.

  18. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna; Maltez, Rogerio Luis; Morkoc, Hadis; Xie, Jinqiao

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  19. Fusion of Si28+Si28,30: Different trends at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Jiang, C. L.; Corradi, L.; Courtin, S.; Fioretto, E.; Grebosz, J.; Haas, F.; Jia, H. M.; Mazzocco, M.; Michelagnoli, C.; Mijatović, T.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Torresi, D.

    2014-10-01

    Background: The fusion excitation function of the system Si28+Si28 at energies near and below the Coulomb barrier is known only down to ≃15 mb. This precludes any information on both coupling effects on sub-barrier cross sections and the possible appearance of hindrance. For Si28+Si30 even if the fusion cross section is measured down to ≃50 μb, the evidence of hindrance is marginal. Both systems have positive fusion Q values. While Si28 has a deformed oblate shape, Si30 is spherical. Purpose: We investigate 1. the possible influence of the different structure of the two Si isotopes on the fusion excitation functions in the deep sub-barrier region and 2. whether hindrance exists in the Si+Si systems and whether it is strong enough to generate an S-factor maximum, thus allowing a comparison with lighter heavy-ion systems of astrophysical interest. Methods: Si28 beams from the XTU Tandem accelerator of the INFN Laboratori Nazionali di Legnaro were used. The setup was based on an electrostatic beam separator, and fusion evaporation residues (ER) were detected at very forward angles. Angular distributions of ER were measured. Results: Fusion cross sections of Si28+Si28 have been obtained down to ≃600 nb. The slope of the excitation function has a clear irregularity below the barrier, but no indication of a S-factor maximum is found. For Si28+Si30 the previous data have been confirmed and two smaller cross sections have been measured down to ≃4 μb. The trend of the S-factor reinforces the previous weak evidence of hindrance. Conclusions: The sub-barrier cross sections for Si28+Si28 are overestimated by coupled-channels calculations based on a standard Woods-Saxon potential, except for the lowest energies. Calculations using the M3Y+repulsion potential are adjusted to fit the Si28+Si28 and the existing Si30+Si30 data. An additional weak imaginary potential (probably simulating the effect of the oblate Si28 deformation) is required to fit the low-energy trend of

  20. Surface modifying of SiC particles and performance analysis of SiCp/Cu composites

    NASA Astrophysics Data System (ADS)

    Ming, Hu; Yunlong, Zhang; Lili, Tang; Lin, Shan; Jing, Gao; Peiling, Ding

    2015-03-01

    In this study, the electroless copper plating method was applied to deposit a Cu coating on SiCp in order to improve interface bonding performance. The SiCp surface morphology with uncoated and coated copper was investigated. The SiCp/Cu composite was fabricated by the hot-pressed sintering technology. SiC particles with various contents were used as reinforcement. The results showed that the distribution of reinforced particle with electroless plating copper coating was uniform in the copper matrix. The SiCp content played had an important role on thermal expansion coefficient and wear properties behaviors of the SiCp/Cu composites. The wear resistance capacity and thermal expansion coefficient of the composites decreased with increasing amount of SiC. Compared with the pure Cu matrix, the obtained SiCp/Cu composites had better capacity of the wear resistance. The SiCp/Cu composites increased when compared with the pure Cu material.

  1. Facet engineering for SiGe/Si stressors in advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Kasim, Johnson; Reichel, Carsten; Dilliway, Gabriela; Bai, Bo; Zakowsky, Nadja

    2015-08-01

    A two-layer SiGe stressor was introduced for our CMOS technology containing a bottom layer with high Ge content to induce more stress to the channel and a top layer with lower Ge content for better nickel silicidation. However, even with the top lower Ge layer, defects were found after silicidation causing contact punch through. Since it is well known that the silicidation improves for Si, the SiGe top layer was replaced by a Si layer (Si-cap). Evaluation on 750 °C and 850 °C grown Si-cap was done. Different temperature grown Si-caps showed different growth behavior with morphology of the Si-cap grown at 850 °C completely different than that of the Si cap grown at 750 °C. There was a clear {3 1 1} facet formation for the higher temperature Si-cap resulting in a pinning effect to the spacer edge similar to that observed for the SiGe-cap. The faceted Si-cap improved silicidation and device parameters enabling the extension of this integration approach for SiGe/Si stressors to the more advanced technology nodes.

  2. Atomic Layer Epitaxy of Si and Ge on Si(100)-(2x1)

    NASA Astrophysics Data System (ADS)

    Veyan, Jean-Francois; Choi, Heesung; Ballard, Joshua; McDonnell, Stephen; Kirk, Willey P.; Wallace, Robert M.; Randall, John; Cho, Kyeongjae; Chabal, Yves J.

    2011-03-01

    Atomic Layer Epitaxy of Si and Ge on Si(100) surface using disilane (Si 2 H6) and digermane (Ge 2 H6) as precursors is a critical step for constructing 3-D nano-structures, and is indispensable for Atomically Precise Manufacturing of new devices such as quantum dots. Using IRAS and STM together with DFT calculations, we show that Si 2 H6 chemisorbs on clean Si(100)-(2x1) via beta-hydride elimination pathway, involving the intermediate states Si-H and Si- Si H2 - Si H3 . Thermal decomposition of the chemisorbed Si 2 H5 leads to the formation of Si 2 H2 as an added dimer rotated 90 degrees with respect to the initial dimer row. A similar chemisorption pathway is observed for Ge 2 H6 on Si(100)x(2x1). The thermal decomposition of Ge 2 H5 involves the migration of H from Ge to Si, and Ge ad-dimer formation. Evidence for Ge epitaxial growth on Si(100)x(2x1) using Ge 2 H6 will be presented.

  3. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  4. Formation of size-controlled and luminescent Si nanocrystals from SiOxNy/Si3N4 hetero-superlattices

    NASA Astrophysics Data System (ADS)

    Zelenina, A.; Sarikov, A.; Gutsch, S.; Zakharov, N.; Werner, P.; Reichert, A.; Weiss, C.; Zacharias, M.

    2015-05-01

    Silicon nanocrystals formed in the annealed SiNx/Si3N4 superlattices are attractive for research due to the smaller band offsets of Si3N4 matrix to Si in comparison with commonly used SiOx/SiO2 superlattices. However, the annealed SiNx/Si3N4 structures contain an increased number of nanocrystal interface defects, which completely suppress nanocrystal emission spectrum. In this work, we study a novel SiOxNy/Si3N4 hetero multilayer combination, which compromises the major issues of SiOx/SiO2 and SiNx/Si3N4 superlattices. The annealed SiOxNy/Si3N4 superlattices are investigated by TEM, demonstrating a precise sublayer thicknesses control. The PL spectra of the annealed SiOxNy/Si3N4 superlattices are centered at 845-950 nm with an expected PL peak shift for silicon nanocrystals of different sizes albeit the PL intensity is drastically reduced as compared to SiO2 separation barriers. The comparison of PL spectra of annealed SiOxNy/Si3N4 superlattice with those of SiOxNy/SiO2 superlattice enables the analysis of the interface quality of silicon nanocrystals. Using the literature data, the number of the interface defects and their distribution on the nanocrystal facets are estimated. Finally, it is shown that the increase of the Si3N4 barrier thickness leads to the increased energy transfer from the Si nanocrystals into the Si3N4 matrix, which explains an additional drop of the nanocrystal PL intensity.

  5. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiN{sub x}/SiN{sub y} multilayers

    SciTech Connect

    Jiang, Xiaofan; Ma, Zhongyuan Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-28

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  6. Solution plasma synthesis of Si nanoparticles.

    PubMed

    Saito, Genki; Sakaguchi, Norihito

    2015-06-12

    Silicon nanoparticles (Si-NPs) were directly synthesized from a Si bar electrode via a solution plasma. In order to produce smaller Si-NPs, the effects of different electrolytes and applied voltages on the product were investigated in the experiments detailed in this paper. The results demonstrated that the use of an acidic solution of 0.1 M HCl or HNO3 produced Si-NPs without SiO2 formation. According to the transmission electron microscopy and electron energy-loss spectroscopy, the obtained Si-NPs contained both amorphous and polycrystalline Si particles, among which the smaller Si-NPs tended to be amorphous. When an alkaline solution of K2CO3 was used instead, amorphous SiO2 particles were synthesized owing to the corrosion of Si in the high-temperature environment. The pH values of KCl and KNO3 increased during electrolysis, and the products were partially oxidized in the alkaline solutions. The particle size increased with an increasing applied voltage because the excitation temperature of the plasma increased. PMID:25990371

  7. Solution plasma synthesis of Si nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Genki; Sakaguchi, Norihito

    2015-06-01

    Silicon nanoparticles (Si-NPs) were directly synthesized from a Si bar electrode via a solution plasma. In order to produce smaller Si-NPs, the effects of different electrolytes and applied voltages on the product were investigated in the experiments detailed in this paper. The results demonstrated that the use of an acidic solution of 0.1 M HCl or HNO3 produced Si-NPs without SiO2 formation. According to the transmission electron microscopy and electron energy-loss spectroscopy, the obtained Si-NPs contained both amorphous and polycrystalline Si particles, among which the smaller Si-NPs tended to be amorphous. When an alkaline solution of K2CO3 was used instead, amorphous SiO2 particles were synthesized owing to the corrosion of Si in the high-temperature environment. The pH values of KCl and KNO3 increased during electrolysis, and the products were partially oxidized in the alkaline solutions. The particle size increased with an increasing applied voltage because the excitation temperature of the plasma increased.

  8. Resonance Raman mapping as a tool to monitor and manipulate Si nanocrystals in Si-SiO{sub 2} nanocomposite

    SciTech Connect

    Rani, Ekta; Ingale, Alka A.; Chaturvedi, A.; Joshi, M. P.; Kukreja, L. M.

    2015-10-19

    Specially designed laser heating experiment along with Raman mapping on Si-SiO{sub 2} nanocomposites elucidates the contribution of core and surface/interface in the intermediate frequency range (511–514 cm{sup −1}) Si phonons. The contribution of core to surface/interface increases with the size of Si nanocrystal, which itself increases on laser irradiation. Further, it is found that resonance Raman is crucial to the observance of surface/interface phonons and wavelength dependent Raman mapping can be corroborated with band edges observed in absorption spectra. This understanding can be gainfully used to manipulate and characterize Si-SiO{sub 2} nanocomposite, simultaneously for photovoltaic device applications.

  9. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Tape Casting TiC+Si Powders

    SciTech Connect

    Henager, Charles H.; Kurtz, Richard J.; Canfield, Nathan L.; Shin, Yongsoon; Luscher, Walter G.; Mansurov, Jirgal; Roosendaal, Timothy J.; Borlaug, Brennan A.

    2013-08-06

    The use of SiC composites in fusion environments likely requires joining of plates using reactive joining or brazing. One promising reactive joining method uses solid-state displacement reactions between Si and TiC to produce Ti3SiC2 + SiC. We continue to explore the processing envelope for this joint for the TITAN collaboration in order to produce optimal joints to undergo irradiation studies in HFIR. One noted feature of the joints produced using tape-calendared powders of TiC+Si has been the large void regions that have been apparently unavoidable. Although the produced joints are very strong, these voids are undesirable. In addition, the tapes that were made for this joining were produced about 20 years ago and were aging. Therefore, we embarked on an effort to produce some new tape cast powders of TiC and Si that could replace our aging tape calendared materials.

  10. Evaluation of photovoltaic properties of nanocrystalline-FeSi2/Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Shaban, Mahmoud; Bayoumi, Amr M.; Farouk, Doaa; Saleh, Mohamed B.; Yoshitake, Tsuyoshi

    2016-09-01

    In this paper, an application of nanocrystalline iron disilicide (NC-FeSi2) combined with nanocrystalline-Si (NC-Si) in a heterostructured solar cell is introduced and numerically evaluated in detail. The proposed cell structure is studied based on an experimental investigation of photovoltaic properties of NC-FeSi2/crystalline-Si heterojunctions, composed of unintentionally-doped NC-FeSi2 thin film grown on Si substrate. Photoresponse measurement of NC-FeSi2/crystalline-Si heterojunction confirmed ability of NC-FeSi2 to absorb NIR light and to generate photocarriers. However, collection of these carriers was not so efficient and a radical improvement in design of the device is required. Therefore, a modified device structure, comprising of NC-FeSi2 layer sandwiched between two heavily-doped p- and n-type NC-Si, is suggested and numerically evaluated. Simulation results showed that the proposed structure would exhibit a relatively high conversion efficiency of 25%, due to an improvement in collection efficiency of photogenerated carriers in the NC-FeSi2 and NC-Si layers. To attain such efficiency, defect densities in NC-FeSi2 and NC-Si layers should be kept less than 1014 and 1016 cm-3 eV-1, respectively. Remarkable optical and electrical properties of NC-FeSi2, employed in the proposed structure, facilitate improving device quantum efficiency spectrum providing significant spectrum extension into the near-infrared region beyond Si bandgap.

  11. SI PC104 Performance Test Report

    SciTech Connect

    Montelongo, S

    2005-12-16

    The Spectral Instruments (SI) PC104 systems associated with the SI-1000 CCD camera exhibited intermittent power problems during setup, test and operations which called for further evaluation and testing. The SI PC104 System is the interface between the SI-1000 CCD camera and its associated Diagnostic Controller (DC). As such, the SI PC104 must be a reliable, robust system capable of providing consistent performance in various configurations and operating conditions. This SI PC104 system consists of a stackable set of modules designed to meet the PC104+ Industry Standard. The SI PC104 System consists of a CPU module, SI Camera card, Media converter card, Video card and a I/O module. The root cause of power problems was identified as failing solder joints at the LEMO power connector attached to the SI Camera Card. The recommended solution was to provide power to the PC104 system via a PC104+ power supply module configured into the PC104 stack instead of thru the LEMO power connector. Test plans (2) were developed to test SI PC104 performance and identify any outstanding issues noted during extended operations. Test Plan 1 included performance and image acquisition tests. Test Plan 2 verified performance after implementing recommendations. Test Plan 2 also included verifying integrity of system files and driver installation after bootup. Each test plan was implemented to fully test against each set of problems noted. Test Plan presentations and Test Plan results are attached as appendices. Anticipated test results will show successful operation and reliable performance of the SI PC104 system receiving its power via a PC104 power supply module. A SI PC104 Usage Recommendation Memo will be sent out to the SI PC104 User Community. Recommendation memo(s) are attached as appendices.

  12. Oxidation Embrittlement Observed in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1997-01-01

    As part of a comprehensive materials characterization program at the NASA Lewis Research Center, tensile creep-rupture tests were performed on a SiC-fiber-reinforced SiC-matrix composite. The results of these tests and subsequent analysis revealed an oxidation embrittlement phenomena that occurs readily at a discreet temperature range below the maximum use temperature. The graph shows rupture lives for a creep stress of 83 MPa as a function of temperature. Note that the rupture time is constant at an intermediate temperature range of 700 to 982 C. This graph also shows the failure location, as measured from the center of the specimen. Whereas for temperatures of 500 to 700 C, failure occurred in the specimen gage section; at higher temperatures, the failure location migrated toward the cooled grip ends. Although the results initially suggested that the test procedure was influencing the measured creep rupture lives and driving the failure location out of the gage section, subsequent experiments and thermal stress analyses verified the robustness of the test method employed.

  13. Mechanical Behavior of Notched SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, John Z.; Gyekenyesi, Andrew L.; Levine, Stanley (Technical Monitor)

    2001-01-01

    Gas turbine components such as combustor liners or turbine vanes are subject to regions of high stress-concentration, e.g., attachment to the frame or at cooling holes. Ceramic matrix composites (CMCs) are potential materials for high temperature applications in gas turbines. They offer some capability to relieve stress at regions of high stress-concentration via matrix damage accumulation. In this study notch sensitivity was examined for woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with a BN interphase, utilizing either Hi-Nicalo(TM) fibers or the stiffer Sylramic fibers. The double-edge notched tensile test approach was used for a wide range of notch sizes and specimen widths. Both composite systems exhibited mild notch sensitivity similar to other CMC systems. Acoustic emission, detected during the tensile tests, indicated that matrix cracking occurred around notches at net-section stresses below the stress where matrix cracking first occurs in unnotched specimens. However, thermoelastic stress analysis did not show any measurable stress relief around notches after the specimens were preloaded.

  14. Modelling the influence of high currents on the cutoff frequency in Si/SiGe/Si heterojunction transistors

    NASA Astrophysics Data System (ADS)

    Briggs, P. J.; Walker, A. B.; Herbert, D. C.

    1998-05-01

    A one-dimensional self-consistent bipolar Monte Carlo simulation code has been used to model carrier mobilities in strained doped SiGe and the base-collector region of Si/SiGe/Si and SiC/Si heterojunction bipolar transistors (HBTs) with wide collectors, to study the variation of the cutoff frequency 0268-1242/13/5/005/img6 with collector current density 0268-1242/13/5/005/img7. Our results show that while the presence of strain enhances the electron mobility, the scattering from alloy disorder and from ionized impurities reduces the electron mobility so much that it is less than that of Si at the same doping level, leading to larger base transit times 0268-1242/13/5/005/img8 and hence poorer 0268-1242/13/5/005/img6 performance for large 0268-1242/13/5/005/img7 for an Si/SiGe/Si HBT than for an SiC/Si HBT. At high values of 0268-1242/13/5/005/img7, we demonstrate the formation of a parasitic electron barrier at the base-collector interface which causes a sharp increase in 0268-1242/13/5/005/img8 and hence a dramatic reduction in 0268-1242/13/5/005/img6. Based on a comparison of the height of this parasitic barrier with estimates from an analytical model, we suggest a physical mechanism for base pushout after barrier formation that differs somewhat from that given for the analytical model.

  15. Thoughts on a changing SI

    NASA Astrophysics Data System (ADS)

    Cabiati, Franco; Bich, Walter

    2009-10-01

    The trend towards an International System of Units (SI) based on fundamental constants has been confirmed and recent actions could result in the redefinition of the four units still necessary to cover all the quantities of interest for physics and chemistry. In this paper some issues whose solution is becoming critical with the approach of the General Conference on Weights and Measures (CGPM) of 2011 are discussed. The traditional kinds of definition and the new proposals are considered on the basis of their mathematical expressions and the advantageous features of the most advanced proposal are pointed out. The problem of choosing the set of fundamental constants to be adopted as reference quantities for the SI units is addressed and a general rule for verifying that the set is sufficient and non-redundant is pointed out in the form of a linear system giving also expressions of all the units as functions of the reference constants. A partial application to the most important units and different sets of constants offers some comparative criteria and shows the advantages of a set including both h and me. A general condition to be fulfilled by an experiment in order to realize an SI unit is given and a procedure suitable to optimize the availability of the best relization on a global basis is outlined. Finally, the dissemination process is analysed to show that the implied comparisons of standards at any level are not affected by the realization uncertainty, so that the process can be continued with the same standards, independently of any change in the basic reference quantities of the unit system.

  16. Purified Si film formation from metallurgical-grade Si by hydrogen plasma induced chemical transport

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Goto, Akihiro; Kamada, Daiki; Hamaoka, Yoshinori; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2009-11-01

    Purified Si film is prepared directly from metallurgical-grade Si (MG-Si) by using hydrogen plasma induced chemical transport at subatmospheric pressure. The purification mechanism is based on the different hydrogenation behaviors of the various impurity elements in MG-Si. The prepared Si films clearly had fewer typical metal impurities (Fe, Al, Ti, Cr, Mn, etc.) than those in the MG-Si. In particular, the Fe concentration was drastically reduced from 6900 mass ppm to less than 0.1 mass ppm by one time chemical transport. Furthermore, metal impurity concentrations were further reduced by repeating chemical transport deposition.

  17. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  18. Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well

    SciTech Connect

    Melnikov, M. Yu. Shashkin, A. A.; Dolgopolov, V. T.; Huang, S.-H.; Liu, C. W.; Kravchenko, S. V.

    2015-03-02

    We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m{sup 2}/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al{sub 2}O{sub 3}, as an insulator, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.

  19. Evolution of surface stress during oxygen exposure of clean Si(111), Si(100), and amorphous Si surfaces

    SciTech Connect

    Flötotto, D. Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-14

    The evolutions of the surface stress of Si(111)-7 × 7, Si(100)-2 × 1, and a-Si surfaces upon oxygen exposure at pO{sub 2} = 1 × 10{sup −4} Pa and room temperature have been investigated in a comparative manner using a specimen-curvature based technique. To this end, a generally applicable, dedicated set of experiments has been devised and performed to deduce and correct for the surface stress change owing to oxygen reaction(s) at the (poorly-defined) back face of the specimen only. On this basis, it could be demonstrated that exposure of clean Si(111)-7 × 7, Si(100)-2 × 1 and a-Si surfaces to pure oxygen gas results in compressive surface stress changes for all three surfaces due to the incorporation of oxygen into Si backbonds. The measured surface stress change decreases with decreasing atomic packing density at the clean Si surfaces, which complies well with the less-densily packed Si surface regions containing more free volume for the accommodation of adsorbed O atoms.

  20. Magnetron-sputter epitaxy of {beta}-FeSi{sub 2}(220)/Si(111) and {beta}-FeSi{sub 2}(431)/Si(001) thin films at elevated temperatures

    SciTech Connect

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-07-15

    {beta}-FeSi{sub 2} thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 Degree-Sign C. On Si(111), the growth is consistent with the commonly observed orientation of [001]{beta}-FeSi{sub 2}(220)//[1-10]Si(111) having three variants, in-plane rotated 120 Degree-Sign with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]{beta}-FeSi{sub 2}(431)//[110]Si(001) with four variants, which is hitherto unknown for growing {beta}-FeSi{sub 2}. Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between {beta}-FeSi{sub 2} grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of {beta}-FeSi{sub 2}/Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of {beta}-FeSi{sub 2}(431)/Si(001) is larger than that on the surface of {beta}-FeSi{sub 2}(220)/Si(111).

  1. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  2. First-principles calculations on atomic and electronic properties of Si(111)/6H-SiC(0001) heterojunction

    NASA Astrophysics Data System (ADS)

    He, Xiao-Min; Chen, Zhi-Ming; Huang, Lei; Li, Lian-Bi

    2015-10-01

    Combining advanced transmission electron microscopy with high-precision first-principles calculations, the properties of Si(111)//6H-SiC(0001) (Si-terminated and C-terminated) heterojunction interface, such as work of adhesion, geometry property, electronic structure and bonding nature, are studied. The experiments have demonstrated that interfacial orientation relationships of Si(111)//6H-SiC(0001) heterojunction are Si[2-1-1]/6H-SiC[101¯0] and Si(111)/6H-SiC(0001). Compared with C-terminated interface, Si-terminated interface has higher adhesion and less relaxation extent.

  3. Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures

    NASA Astrophysics Data System (ADS)

    Michailovska, Katerina; Indutnyi, Ivan; Shepeliavyi, Petro; Sopinskyy, Mykola

    2016-06-01

    The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree ( ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect.

  4. Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures.

    PubMed

    Michailovska, Katerina; Indutnyi, Ivan; Shepeliavyi, Petro; Sopinskyy, Mykola

    2016-12-01

    The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree (ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect. PMID:27255897

  5. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    SciTech Connect

    Wilson, Dane F.

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  6. SiLix-C Nanocomposites

    NASA Technical Reports Server (NTRS)

    Henry, Francois

    2015-01-01

    For this Phase II project, Superior Graphite Co., in collaboration with the Georgia Institute of Technology and Streamline Nanotechnologies, Inc., developed, explored the properties of, and demonstrated the enhanced capabilities of novel nanostructured SiLix-C anodes. These anodes can retain high capacity at a rapid 2-hour discharge rate and at 0 C when used in Li-ion batteries. In Phase I, these advanced anode materials had specific capacity in excess of 1,000 mAh/g, minimal irreversible capacity losses, and stable performance for 20 cycles at C/1. The goals in Phase II were to develop and apply a variety of novel nanomaterials, fine-tune the properties of composite particles at the nanoscale, optimize the composition of the anodes, and select appropriate binder and electrolytes. In order to achieve a breakthrough in power characteristics of Li-ion batteries, the team developed new nanostructured SiLix-C anode materials to offer up to 1,200 mAh/g at C/2 at 0 C.

  7. Lattice-matching of Si grown on 6H-SiC(000-1) C-face

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Chen, Z. M.; Xie, L. F.; Yang, C.

    2014-01-01

    Si films with <111> preferred orientation have been prepared on 6H-SiC(000-1) C-face. HRTEM and SAED results indicate that the Si film has epitaxial connection with the 6H-SiC substrate and the parallel-plane relationship of the Si/6H-SiC heterostructure is (111)Si//(000-1)6H-SiC. Using fast Fourier transform and Fourier mask filtering technique, misfit dislocations are clearly observed at the Si/6H-SiC interface, which accommodate the most of lattice mismatch strain. Every four Si (111) lattice planes are registered with five 6H-SiC(000-1) lattice planes along the interface. Based on the 4:5 lattice matching mode, the lattice structure of the Si/6H-SiC interface and its stability were energetically investigated by molecular dynamics simulations. When the Si films grow preferentially along <111> orientation on 6H-SiC(000-1) C-face, the misfit strain in Si layer significantly reduces due to the relaxation of C atoms in SiC layer near the Si/6H-SiC interface, and thus the Si/6H-SiC heterostructure has a stable interface with a small interface formation energy of -14.24 eV.

  8. Effective charge on silicon atom in the metal silicides Mg{sub 2}Si and CaSi

    SciTech Connect

    Ishii, Hideshi; Karimov, Pavel; Kawai, Jun; Matsuo, Shuji; Tanaka, Koki

    2005-05-15

    The effective charges of Si in both magnesium (Mg{sub 2}Si) and calcium silicides (CaSi and Ca{sub 2}Si) have been investigated by measuring high-resolution Si K{alpha} x-ray fluorescence spectra. CaSi showed small but positive chemical shifts (+0.03 eV), while the chemical shift of Mg{sub 2}Si was negative (-0.14 eV), as expected from their electronegativity (Ca: 1.00; Mg: 1.31; Si: 1.90). The similarity of the chemical shift for the Fe silicides and the calculations for the free single Si atom suggested that the effective charge of Si for CaSi was positive. From the observations the effective charges on Si in CaSi and Mg{sub 2}Si were estimated to be +0.1 and -0.3 electrons. The discrete variation Hatree-Fock-Slater calculations for Mg{sub 2}Si and CaSi also showed opposite chemical shifts and effective charges: -0.09 eV and -0.35 electrons for Mg{sub 2}Si and +0.09 eV and +0.26 electrons for CaSi, respectively. The composition of the nearest-neighbor atoms of Si, which are Si in CaSi and Mg in Mg{sub 2}Si, cause the opposite effective charges between the two silicides.

  9. Advances in Systemic siRNA Delivery

    PubMed Central

    Leng, Qixin; Woodle, Martin C; Lu, Patrick Y; Mixson, A James

    2009-01-01

    Sequence-specific gene silencing with small interfering RNA (siRNA) has transformed basic science research, and the efficacy of siRNA therapeutics toward a variety of diseases is now being evaluated in pre-clinical and clinical trials. Despite its potential value, the highly negatively charged siRNA has the classic delivery problem of requiring transport across cell membranes to the cytosol. Consequently, carrier development for siRNA delivery is one of the most important problems to solve before siRNA can achieve widespread clinical use. An assortment of non-viral carriers including liposomes, peptides, polymers, and aptamers are being evaluated for their ability to shepherd siRNA to the target tissue and cross the plasma membrane barrier into the cell. Several promising carriers with low toxicity and increased specificity for disease targets have emerged for siRNA-based therapeutics. This review will discuss non-viral approaches for siRNA therapeutics, with particular focus on synthetic carriers for in vivo systemic delivery of siRNA. PMID:20161621

  10. SiD Letter of Intent

    SciTech Connect

    Aihara, H.,; Burrows, P.,; Oreglia, M.,; Berger, E.L.; Guarino, V.; Repond, J.; Weerts, H.; Xia, L.; Zhang, J.; Zhang, Q.; Srivastava, A.; Butler, J.M.; Goldstein, Joel; Velthuis, J.; Radeka, V.; Zhu, R.-Y.; Lutz, P.; de Roeck, A.; Elsener, K.; Gaddi, A.; Gerwig, H.; /CERN /Cornell U., LNS /Ewha Women's U., Seoul /Fermilab /Gent U. /Darmstadt, GSI /Imperial Coll., London /Barcelona, Inst. Microelectron. /KLTE-ATOMKI /Valencia U., IFIC /Cantabria Inst. of Phys. /Louis Pasteur U., Strasbourg I /Durham U., IPPP /Kansas State U. /Kyungpook Natl. U. /Annecy, LAPP /LLNL, Livermore /Louisiana Tech. U. /Paris U., VI-VII /Paris U., VI-VII /Munich, Max Planck Inst. /MIT, LNS /Chicago, CBC /Moscow State U. /Nanjing U. /Northern Illinois U. /Obninsk State Nucl. Eng. U. /Paris U., VI-VII /Strasbourg, IPHC /Prague, Inst. Phys. /Princeton U. /Purdue U. /Rutherford /SLAC /SUNY, Stony Brook /Barcelona U. /Bonn U. /UC, Davis /UC, Santa Cruz /Chicago U. /Colorado U. /Delhi U. /Hawaii U. /Helsinki U. /Indiana U. /Iowa U. /Massachusetts U., Amherst /Melbourne U. /Michigan U. /Minnesota U. /Mississippi U. /Montenegro U. /New Mexico U. /Notre Dame U. /Oregon U. /Oxford U. /Ramon Llull U., Barcelona /Rochester U. /Santiago de Compostela U., IGFAE /Hefei, CUST /Texas U., Arlington /Texas U., Dallas /Tokyo U. /Washington U., Seattle /Wisconsin U., Madison /Wayne State U. /Yale U. /Yonsei U.

    2012-04-11

    This document presents the current status of the Silicon Detector (SiD) effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R and D needed to provide the technical basis for an optimised SiD.

  11. Graphene/Si-nanowire heterostructure molecular sensors

    PubMed Central

    Kim, Jungkil; Oh, Si Duk; Kim, Ju Hwan; Shin, Dong Hee; Kim, Sung; Choi, Suk-Ho

    2014-01-01

    Wafer-scale graphene/Si-nanowire (Si-NW) array heterostructures for molecular sensing have been fabricated by vertically contacting single-layer graphene with high-density Si NWs. Graphene is grown in large scale by chemical vapour deposition and Si NWs are vertically aligned by metal-assisted chemical etching of Si wafer. Graphene plays a key role in preventing tips of vertical Si NWs from being bundled, thereby making Si NWs stand on Si wafer separately from each other under graphene, a critical structural feature for the uniform Schottky-type junction between Si NWs and graphene. The molecular sensors respond very sensitively to gas molecules by showing 37 and 1280% resistance changes within 3.5/0.15 and 12/0.15 s response/recovery times under O2 and H2 exposures in air, respectively, highest performances ever reported. These results together with the sensor responses in vacuum are discussed based on the surface-transfer doping mechanism. PMID:24947403

  12. Si isotope homogeneity of the solar nebula

    SciTech Connect

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric; Jackson, Matthew G.; Barrat, Jean-Alix E-mail: savage@levee.wustl.edu E-mail: moynier@ipgp.fr E-mail: Jean-Alix.Barrat@univ-brest.fr

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  13. SiC-Based Gas Sensor Development

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Gray, M.; Androjna, D.; Chen, L.-Y.; Hoffman, R. W., Jr.; Liu, C. C.; Wu, Q. H.

    2000-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for applications such as emission measurements and leak detection. The effects of the geometry of the tin oxide film in a Pd/SnO2/SiC structure will be discussed as well as improvements in packaging SiC-based sensors. It is concluded that there is considerable versatility in the formation of SiC-based Schottky diode gas sensing structures which will potentially allow the fabrication of a SiC-based gas sensor array for a variety of gases and temperatures.

  14. Characterization of SiC-SiC composites for accident tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Deck, C. P.; Jacobsen, G. M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H. E.; Back, C. A.

    2015-11-01

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC-SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC-SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  15. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    PubMed Central

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  16. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  17. Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery.

    PubMed

    Jang, Yeon Lim; Ku, Sook Hee; Jin, So; Park, Jae Hyung; Kim, Won Jong; Kwon, Ick Chan; Kim, Sun Hwa; Jeong, Ji Hoon

    2014-10-01

    The clinical applications of therapeutic siRNA remain as a challenge due to the lack of efficient delivery system. In the present study, hyaluronic acid-siRNA conjugate (HA-SS-siRNA)/reducible polyethylenimine (BPEI1.2k-SS) complexes were developed to efficiently deliver the siRNA to HA receptor abundant region with the improved siRNA stability. HA and siRNA were conjugated with disulfide bonds, which are cleavable in cytoplasm. The synthesized HA-SS-siRNA was further complexed with BPEI1.2k-SS, resulting in the formation of spherical nanostructures with approximately 190 nm of size and neutral surface charge. HA-SS-siRNA/BPEI1.2k-SS complexes exhibited the improved stability against serum proteins or polyanions. These complexes were successfully translocated into intracellular region via HA receptor-mediated endocytosis, and silenced target gene expression. PMID:25942799

  18. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO{sub 2}/Si

    SciTech Connect

    Ma Ming; Xue Qingzhong; Chen Huijuan; Zhou Xiaoyan; Xia Dan; Lv Cheng; Xie Jie

    2010-08-09

    The Pd doped amorphous carbon (a-C:Pd) films were deposited on n-Si substrates with or without a native SiO{sub 2} layer using magnetron sputtering. The photovoltaic characteristics of the a-C:Pd/SiO{sub 2}/Si and a-C:Pd/Si junctions were studied. It is found that under light illumination of 15 mW/cm{sup 2} at room temperature, the a-C:Pd/SiO{sub 2}/Si solar cell fabricated at 350 deg. C has a high power conversion efficiency of 4.7%, which is much better than the a-C/Si junctions reported before. The enhanced conversion efficiency is ascribed to the Pd doping and the increase in sp{sup 2}-bonded carbon clusters in the carbon film caused by the high temperature deposition.

  19. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  20. 'Buffer-layer' technique for the growth of single crystal SiC on Si

    NASA Astrophysics Data System (ADS)

    Addamiano, A.; Sprague, J. A.

    1984-03-01

    The nature of the buffer layers needed for the single-crystal deposition of cubic SiC on Si substrates has been studied. The preparation of chemically formed surface layers of SiC on (100) Si wafers is described. The reaction-grown films of SiC were examined by reflection high-energy electron diffraction using an incident electron energy of 200 keV and by SEM using incident electron energies of 20 and 200 keV. It is concluded that the buffer layer obtained at about 1400 C is a stressed monocrystalline layer of cubic SiC whose crystals contain considerable imperfections. The stresses are due to quenching to room temperature because of the large difference between the thermal expansion coefficients of Si and SiC.

  1. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    SciTech Connect

    Windisch, C.F. Jr.; Jones, R.H.; Snead, L.L.

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials.

  2. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer.

    PubMed

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm(2) above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  3. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    NASA Astrophysics Data System (ADS)

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-11-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.

  4. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation

    PubMed Central

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  5. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation.

    PubMed

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-Ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  6. Fabrication and measurement of quantum dots in double gated, dopantless Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Ward, Daniel; Mohr, Robert; Prance, Jonathan; Gamble, John; Savage, Don; Lagally, Max; Coppersmith, Susan; Eriksson, Mark

    2012-02-01

    Significant progress has been made towards quantum dot spin qubits in Si/SiGe single and double quantum dots. In the past, these structures have been created by depleting a modulation-doped 2DEG that forms at the Si/SiGe interface. The modulation doping in such devices is believed to be a source of charge noise. Recently, undoped structures have been explored for the formation of both 2DEGs and quantum dots in Si/SiGe. Here we discuss measurements on double gated, dopantless quantum dots in Si/SiGe heterostructures. The devices are based on a new ``island mesa'' design incorporating micro-ohmic contacts. We present transport measurements on a double quantum dot showing a smooth transition from single dot to double dot behavior.

  7. Nanoscale structure of Si/SiO2/organics interfaces.

    PubMed

    Steinrück, Hans-Georg; Schiener, Andreas; Schindler, Torben; Will, Johannes; Magerl, Andreas; Konovalov, Oleg; Li Destri, Giovanni; Seeck, Oliver H; Mezger, Markus; Haddad, Julia; Deutsch, Moshe; Checco, Antonio; Ocko, Benjamin M

    2014-12-23

    X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources. PMID:25401294

  8. Room Temperature Creep Of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew; Levine, Stanley (Technical Monitor)

    2001-01-01

    During a recent experimental study, time dependent deformation was observed for a damaged Hi-Nicalon reinforced, BN interphase, chemically vapor infiltrated SiC matrix composites subjected to static loading at room temperature. The static load curves resembled primary creep curves. In addition, acoustic emission was monitored during the test and significant AE activity was recorded while maintaining a constant load, which suggested matrix cracking or interfacial sliding. For similar composites with carbon interphases, little or no time dependent deformation was observed. Evidently, exposure of the BN interphase to the ambient environment resulted in a reduction in the interfacial mechanical properties, i.e. interfacial shear strength and/or debond energy. These results were in qualitative agreement with observations made by Eldridge of a reduction in interfacial shear stress with time at room temperature as measured by fiber push-in experiments.

  9. Effects of nitrogen and fluorine on the Si/SiO(2) interface

    NASA Astrophysics Data System (ADS)

    Dugan, Brian Michael

    Several fundamental properties of the nitrided and/or fluorinated (100) Si/SiOsb2 interface are investigated. Nitridation of SiOsb2 by Nsb2O annealing is extended to thick oxides and is shown to result in strain relaxation at the Si/SiOsb2 interface which manifests itself in a reduction in the gate-size dependence of radiation damage. In addition to suppressing boron diffusion, Nsb2O nitrided oxides suppress hydrogen diffusion to the Si/SiOsb2 interface as these oxides exhibit significantly less latent generation of interface traps than pure SiOsb2. The considerable improvement in oxide reliability observed for Nsb2O nitrided oxides is attributed to both strain relaxation and hydrogen diffusion suppression. The interface-trap transformation process (ITTP) is found to be qualitatively similar for pure SiOsb2, nitrided SiOsb2, and nitrided/fluorinated SiOsb2 devices despite the apparent ability of nitrided oxides to suppress hydrogen diffusion. This similarity contradicts a water diffusion ITTP model, and supports an ITTP model based upon occupancy-driven changes in the bonding configurations of Pb centers which are unaltered by either fluorination or nitridation. Despite dramatically impacting oxide reliability, interfacial strain, and diffusion barrier properties, neither nitridation nor fluorination alters the electrical signature of Psb{b0}/Psb{b1} centers at the Si/SiOsb2 interface. The time evolution of a.c. conductance data for damaged nitrided and nitrided/fluorinated (100) n-type Si MOS capacitors suggests a second ITTP, possibly a Psb{b0}/Psb{b1} exchange. A novel NFsb3 annealing process for incorporating F at the Nsb2O nitrided Si/SiOsb2 interface produces a nitrided/fluorinated oxide with significantly improved oxide reliability characteristics compared to pure SiOsb2, but slightly less reliable than nitrided SiOsb2 without F. Accompanying the fluorination of nitrided SiOsb2 is a decrease in fast and slow interface traps. Water-vapor annealing is shown to

  10. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 {times} 6 {times} 2 mm{sup 3} with a span-to-depth ratio of 10/1.

  11. Effect of irradiation on thermal expansion of SiC{sub f}/SiC composites

    SciTech Connect

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC{sub f}/SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) {beta}-SiC at all temperatures.

  12. Electrophysical properties of Si/SiO2 nanostructures fabricated by direct bonding

    NASA Astrophysics Data System (ADS)

    Gismatulin, A. A.; Kamaev, G. N.

    2016-06-01

    The results of experimental investigation of diode n ++- p ++-Si structures, which were fabricated by direct bonding and have tunneling-thin SiO2 with Si nanoclusters embedded into the interface, are presented. The memristive effect with bipolar switching is demonstrated. The introduction of Si nanoclusters into the dielectric reduces the randomness of formation of a conducting channel. Intermediate metastable states are observed in the current-voltage characteristics. This may prove to be important for multibit data storage.

  13. Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation

    NASA Astrophysics Data System (ADS)

    Mala, S. A.; Tsybeskov, L.; Lockwood, D. J.; Wu, X.; Baribeau, J.-M.

    2014-07-01

    We present a quantitative analysis of Raman scattering in various Si/Si1-xGex multilayered nanostructures with well-defined Ge composition (x) and layer thicknesses. Using Raman and transmission electron microscopy data, we discuss and model Si/SiGe intermixing and strain. By analyzing Stokes and anti-Stokes Raman signals, we calculate temperature and discuss heat dissipation in the samples under intense laser illumination.

  14. Vanadium, Cr, Si, and the Mg/Si Ratio of the Earth

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Domanik, Kenneth; Bailey, Edward

    2003-01-01

    Experiments investigating the partitioning of V, Cr, and Si between metal and silicate at various pressures, temperatures, redox state, and composition demonstrate that V and Cr are always more siderophile than Si. The relatively high abundances of V and Cr in the Earth's upper mantle indicate that the high Mg/Si ratio of the Earth's upper mantle cannot be attributed to extraction of Si into the core and must be an intrinsic bulk property of the silicate Earth.

  15. Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation

    SciTech Connect

    Mala, S. A.; Tsybeskov, L.; Lockwood, D. J.; Wu, X.; Baribeau, J.-M.

    2014-07-07

    We present a quantitative analysis of Raman scattering in various Si/Si{sub 1-x}Ge{sub x} multilayered nanostructures with well-defined Ge composition (x) and layer thicknesses. Using Raman and transmission electron microscopy data, we discuss and model Si/SiGe intermixing and strain. By analyzing Stokes and anti-Stokes Raman signals, we calculate temperature and discuss heat dissipation in the samples under intense laser illumination.

  16. Structure of Si-capped Ge/SiC/Si (001) epitaxial nanodots: Implications for quantum dot patterning

    SciTech Connect

    Petz, C. W.; Floro, J. A.; Yang, D.; Levy, J.

    2012-04-02

    Artificially ordered quantum dot (QD) arrays, where confined carriers can interact via direct exchange coupling, may create unique functionalities such as cluster qubits and spintronic bandgap systems. Development of such arrays for quantum computing requires fine control over QD size and spatial arrangement on the sub-35 nm length scale. We employ electron-beam irradiation to locally decompose ambient hydrocarbons onto a bare Si (001) surface. These carbonaceous patterns are annealed in ultra-high vacuum (UHV), forming ordered arrays of nanoscale SiC precipitates that have been suggested to template subsequent epitaxial Ge growth to form ordered QD arrays. We show that 3C-SiC nanodots form, in cube-on-cube epitaxial registry with the Si substrate. The SiC nanodots are fully relaxed by misfit dislocations and exhibit small lattice rotations with respect to the substrate. Ge overgrowth at elevated deposition temperatures, followed by Si capping, results in expulsion of the Ge from SiC template sites due to the large chemical and lattice mismatch between Ge and C. Maintaining an epitaxial, low-defectivity Si matrix around the quantum dots is important for creating reproducible electronic and spintronic coupling of states localized at the QDs.

  17. Electronic and atomic structure of thin CoSi2 films on Si(111) and Si(100)

    NASA Astrophysics Data System (ADS)

    Chambliss, D. D.; Rhodin, T. N.; Rowe, J. E.

    1992-01-01

    The electronic and atomic structure of very thin epitaxial cobalt silicide films was studied to provide insight into the initial stages of interface formation. Thin CoSi2 films (3-30 Å) on Si(111) and Si(100) were studied experimentally using angle-resolved photoemission spectroscopy, low-energy electron diffraction (LEED), and Auger electron spectroscopy, and computationally using the pseudofunction method of Kasowski for determining the electronic band structure. The experimental and computational results support the models of Hellman and Tung for Co-rich and Si-rich CoSi2(111) surfaces. The surface-state dispersion that we measure for the Co-rich variant agrees with the behavior that we calculate for the Hellman-Tung model. For the Si-rich variant, the essentially bulklike bonding environment of the outermost Co atoms in the Hellman-Tung model agrees with the photoemission results. Preliminary results for thin films of CoSi2 on Si(100) grown by a template technique show clearly a strong dependence of film quality on the annealing temperature and initial Co thickness. A model for surface structure is suggested that accounts for LEED and photoemission results.

  18. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  19. Planetary and meteoritic Mg/Si and δ30 Si variations inherited from solar nebula chemistry

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Poitrasson, Franck; Burkhardt, Christoph; Kobayashi, Hiroshi; Kurosawa, Kosuke

    2015-10-01

    The bulk chemical compositions of planets are uncertain, even for major elements such as Mg and Si. This is due to the fact that the samples available for study all originate from relatively shallow depths. Comparison of the stable isotope compositions of planets and meteorites can help overcome this limitation. Specifically, the non-chondritic Si isotope composition of the Earth's mantle was interpreted to reflect the presence of Si in the core, which can also explain its low density relative to pure Fe-Ni alloy. However, we have found that angrite meteorites display a heavy Si isotope composition similar to the lunar and terrestrial mantles. Because core formation in the angrite parent-body (APB) occurred under oxidizing conditions at relatively low pressure and temperature, significant incorporation of Si in the core is ruled out as an explanation for this heavy Si isotope signature. Instead, we show that equilibrium isotopic fractionation between gaseous SiO and solid forsterite at ∼1370 K in the solar nebula could have produced the observed Si isotope variations. Nebular fractionation of forsterite should be accompanied by correlated variations between the Si isotopic composition and Mg/Si ratio following a slope of ∼1, which is observed in meteorites. Consideration of this nebular process leads to a revised Si concentration in the Earth's core of 3.6 (+ 6.0 / - 3.6) wt% and provides estimates of Mg/Si ratios of bulk planetary bodies.

  20. About the International System of Units (SI) Part III. SI Table

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II; French, Anthony P.; Iona, Mario

    2012-01-01

    Before discussing more details of SI, we will summarize the essentials in a few tables that can serve as ready references. If a unit isn't listed in Tables I-IV, it is not part of SI or specifically allowed for use with SI. The units and symbols that are sufficient for most everyday applications are given in bold.

  1. Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James A.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  2. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  3. Process dependent morphology of the Si/SiO2 interface measured with scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, L. D.; Grunthaner, F. J.; Kaiser, W. J.

    1988-01-01

    A new experimental technique to determine Si/SiO2 interface morphology is described. Thermal oxides of silicon are chemically removed, and the resulting surface topography is measured with scanning tunneling microscopy. Interfaces prepared by oxidation of Si (100) and (111) surfaces, followed by postoxidation anneal (POA) at different temperatures, have been characterized. Correlations between interface structure, chemistry, and electrical characteristics are described.

  4. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  5. Scanning capacitance microscope study of a SiO2/Si interface modified by charge injection

    NASA Astrophysics Data System (ADS)

    Tomiye, H.; Yao, T.

    We have investigated the local electrical properties of an SiO2/Si structure using a scanning capacitance microscope (SCaM) combined with an atomic force and a scanning tunneling microscope (AFM and STM). The electrical properties of the Si substrate and the SiO2/Si interface vary with position. In this experiment we have injected charge into the SiO2 and investigated the nature of charge storage at the SiO2/Si interface. We have used the combined microscope to apply a pulse to the SiO2/Si sample, causing charge to be trapped in the SiO2/Si interface. We could clearly detect the local variation of interface charge in a non-destructive manner using the SCaM and simultaneously by capacitance-voltage (C-V) characterization. The volume of the C-V curve shift along the voltage axis due to trapped charges is dependent upon the density of the trapped charges. In doing this experiment we show one of the many possible applications of the combined SCaM/AFM/STM.

  6. Rutherford backscattering research on the strained SiGe/Si structure

    NASA Astrophysics Data System (ADS)

    Hu, J. H.; Fan, Y. L.; Gong, D. W.; Wang, X.; Zhou, Z. Y.

    1994-12-01

    The ion beam channeling technique has been used to characterize the SiGe/Si structure. It reveals different relative yield between <100> and <110> aligned spectra for strained SiGe layer, silicon buffer layer and silicon substrate which depends on different atomic arrangement.

  7. siRNAmod: A database of experimentally validated chemically modified siRNAs

    PubMed Central

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  8. Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.

  9. NiSi formation at the silicide/Si interface on the NiPt/Si system

    NASA Astrophysics Data System (ADS)

    Ottaviani, G.; Tu, K. N.; Chu, W. K.; Hung, L. S.; Mayer, J. W.

    1982-07-01

    Alloy films of NiPt were e-beam codeposited on n-type Si and annealed up to 700 °C in a purified- He ambient furnace. Silicide formation was monitored using MeV4 He Rutherford backscattering and glancing-angle x-ray diffraction. At low temperatures (300-350 °C), Ni segregates at the Si/ silicide interface and the first phases detected are NiSi and PtSi. At intermediate temperatures (400- 500 °C), there is further accumulation of Ni at the Si/silicide interface, and at later stages an incursion of Pt to the interface. The barrier height increase reflects the presence of Pt. At 700 °C, the Ni and Pt redistribute to form a uniform ternary.

  10. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    SciTech Connect

    Youngblood, G.E.; Henager, C.H.; Jones, R.H.

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  11. Si infrared pixelless photonic emitter

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Bogatyrenko, V. V.; Malyutenko, O. Y.; Chyrchyk, S. V.

    2005-09-01

    We report on basic principle and technology of Si high-temperature (T>300K) IR emitter based on all optical down conversion concept. The approach is based on the possibility to modulate semiconductor thermal emission power in the spectral range of intra-band electron transitions through shorter wavelength (inter-band transitions) optical pumping (light down conversion process). Device emission bands are matched to transparency windows in atmosphere (3-5 μm and 8-12 μm) by adjusting thin film coat parameters. The carrier lifetime is responsible for the device time response whereas its maximum power emitted (mW-range) activates with temperature increase. One of the major advantages of devices employing optical "read in" technology is that they are free of contacts and junctions, thus making them ideal for operation at high temperatures.

  12. Hydrogen diffusion on Si(001)

    NASA Astrophysics Data System (ADS)

    Owen, J. H. G.; Bowler, D. R.; Goringe, C. M.; Miki, K.; Briggs, G. A. D.

    1996-11-01

    We have imaged hydrogen on Si(001) at low coverages in a variable-temperature STM from 300 K up to 700 K. Individual hydrogen atoms were imaged which became mobile at around 570 K. The observed rate of hopping along the dimer rows was consistent with an activation energy of 1.68 +/- 0.15 eV. Motion across dimer rows was rarely observed, even at the higher temperatures. The diffusion barrier for motion along the dimer rows has been calculated using tight-binding and density-functional theory in the generalized gradient approximation (GGA). The calculated barrier is 1.65 eV from tight binding and 1.51 eV from GGA.

  13. Modification of Mg{sub 2}Si in Mg–Si alloys with gadolinium

    SciTech Connect

    Ye, Lingying; Hu, Jilong Tang, Changping; Zhang, Xinming; Deng, Yunlai; Liu, Zhaoyang; Zhou, Zhile

    2013-05-15

    The modification effect of gadolinium (Gd) on Mg{sub 2}Si in the hypereutectic Mg–3 wt.% Si alloy has been investigated using optical microscope, scanning electron microscope, X-ray diffraction and hardness measurements. The results indicate that the morphology of the primary Mg{sub 2}Si is changed from coarse dendrite into fine polygon with the increasing Gd content. The average size of the primary Mg{sub 2}Si significantly decreases with increasing Gd content up to 1.0 wt.%, and then slowly increases. Interestingly, when the Gd content is increased to 4.0 and 8.0 wt.%, the primary and eutectic Mg{sub 2}Si evidently decrease and even disappear. The modification and refinement of the primary Mg{sub 2}Si is mainly attributed to the poisoning effect. The GdMg{sub 2} phase in the primary Mg{sub 2}Si is obviously coarsened as the Gd content exceeds 2.0 wt.%. While the decrease and disappearance of the primary and eutectic Mg{sub 2}Si are ascribed to the formation of vast GdSi compound. Therefore, it is reasonable to conclude that proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. - Highlights: ► Proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. ► We studied the reaction feasibility between Mg and Si, Gd and Si in Mg–Gd–Si system. ► We explored the modification mechanism of Gd modifier on Mg{sub 2}Si.

  14. LARC-SI Flatwire Twin Conduction Circuits

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Eight 2-line, L-shaped gold flex circuits have been imprinted on 1-mil LARC-SI. Each circuit was embedded in a space-applications trapezoidal truss made of carbon fiber reinforced resin composite (with protruding ends) to facilitate electrical connection of electronic devices mounted on the truss. LARC-SI is an advanced polymer highly suitable for multi layered electrical circuits.

  15. Using Si in floriculture fertility programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silicon (Si) is not considered to be an essential plant nutrient because most plant species can complete their life cycle without it. A clear benefit of Si for many ornamental crops has been reported including improved salt and drought tolerance, especially during post-harvest environments; stronger...

  16. siRNA-Based Therapy Ameliorates Glomerulonephritis

    PubMed Central

    Shimizu, Hideki; Hori, Yuichi; Kaname, Shinya; Yamada, Koei; Nishiyama, Nobuhiro; Matsumoto, Satoru; Miyata, Kanjiro; Oba, Makoto; Yamada, Akira; Kataoka, Kazunori

    2010-01-01

    RNA interference by short interfering RNAs (siRNAs) holds promise as a therapeutic strategy, but use of siRNAs in vivo remains limited. Here, we developed a system to target delivery of siRNAs to glomeruli via poly(ethylene glycol)-poly(l-lysine)-based vehicles. The siRNA/nanocarrier complex was approximately 10 to 20 nm in diameter, a size that would allow it to move across the fenestrated endothelium to access to the mesangium. After intraperitoneal injection of fluorescence-labeled siRNA/nanocarrier complexes, we detected siRNAs in the blood circulation for a prolonged time. Repeated intraperitoneal administration of a mitogen-activated protein kinase 1 (MAPK1) siRNA/nanocarrier complex suppressed glomerular MAPK1 mRNA and protein expression in a mouse model of glomerulonephritis; this improved kidney function, reduced proteinuria, and ameliorated glomerular sclerosis. Furthermore, this therapy reduced the expression of the profibrotic markers TGF-β1, plasminogen activator inhibitor-1, and fibronectin. In conclusion, we successfully silenced intraglomerular genes with siRNA using nanocarriers. This technique could aid the investigation of molecular mechanisms of renal disease and has potential as a molecular therapy of glomerular diseases. PMID:20203158

  17. Reactive sintering of SiC

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Lee, J. G.

    1984-01-01

    Investigation of the sintering processes involved in the sintering of SiC revealed a connection between the types and quantities of sintering additives or catalysts and densification, initial shrinkage, and weight loss of the sintered SiC material. By sintering processes, is meant the methods of mass transport, namely solid vapor transport and grain boundary diffusion.

  18. Investigation of Charge Trapping in a SiO2/Si System with a Scanning Capacitance Microscope

    NASA Astrophysics Data System (ADS)

    Tomiye, Hideto; Yao, Takafumi

    1998-06-01

    The local electrical properties of a SiO2/Si structure is investigated using a scanning capacitance microscope (SCaM). The sample investigated in this study was p-type Si with a 10-nm-thick thermal oxide layer. The capacitance measurement reveals the local variation of capacitance, which reflects the electrical properties of the Si substrate, SiO2/Si interface and SiO2 layer. We have injected charge into the SiO2/Si sample. The localvariation and time evolution of the stored charge is clearly detected in a nondestructive manner by the SCaM.

  19. High Mobility SiGe/Si n-MODFET Structures and Devices on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    Si/Ge/Si n-type modulation doped field effect structures and transistors (n-MODFET's) have been fabricated on r-plane sapphire substrates. Mobilities as high as 1380 cm(exp 2)/Vs were measured at room temperature. Excellent carrier confinement was shown by Shubnikov-de Haas measurements. Atomic force microscopy indicated smooth surfaces, with rm's roughness less than 4 nm, similar to the quality of SiGe/Si n-MODFET structures made on Si substrates. Transistors with 2 micron gate lengths and 200 micron gate widths were fabricated and tested.

  20. Monolayer-induced band shifts at Si(100) and Si(111) surfaces

    SciTech Connect

    Mäkinen, A. J. Kim, Chul-Soo; Kushto, G. P.

    2014-01-27

    We report our study of the interfacial electronic structure of Si(100) and Si(111) surfaces that have been chemically modified with various organic monolayers, including octadecene and two para-substituted benzene derivatives. X-ray photoelectron spectroscopy reveals an upward band shift, associated with the assembly of these organic monolayers on the Si substrates, that does not correlate with either the dipole moment or the electron withdrawing/donating character of the molecular moieties. This suggests that the nature and quality of the self-assembled monolayer and the intrinsic electronic structure of the semiconductor material define the interfacial electronic structure of the functionalized Si(100) and Si(111) surfaces.

  1. Isotropic plasma etching of Ge Si and SiNx films

    DOE PAGESBeta

    Henry, Michael David; Douglas, Erica Ann

    2016-05-01

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.

  2. Delivery materials for siRNA therapeutics

    NASA Astrophysics Data System (ADS)

    Kanasty, Rosemary; Dorkin, Joseph Robert; Vegas, Arturo; Anderson, Daniel

    2013-11-01

    RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery materials aim to overcome, as well as a discussion of the way that the most effective and clinically advanced classes of siRNA delivery systems, including lipid nanoparticles and siRNA conjugates, are designed to surmount these challenges. The systems that we discuss are diverse in their approaches to the delivery problem, and provide valuable insight to guide the design of future siRNA delivery materials.

  3. NiPt silicide agglomeration accompanied by stress relaxation in NiSi(010) ∥ Si(001) grains

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Pagès, Xavier; Vanormelingen, Koen; Smits, Martin; Granneman, Ernst; Fujisawa, Masahiko; Hattori, Nobuyoshi

    2015-04-01

    Pt-doped Ni (NiPt) silicide agglomeration in terms of NiSi crystal orientation, Pt segregation at the NiSi/Si interface, and residual stress is studied for the first time. In the annealing of Ni monosilicide (NiSi), the growth of NiSi grains whose NiSi b-axes are aligned normal to Si(001) [NiSi(010) ∥ Si(001)] with increasing Pt segregation at the NiSi/Si interface owing to a high annealing temperature was observed. The residual stress in NiSi(010) ∥ Si(001) grains also increases with increasing annealing temperature. Furthermore, the recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress continues through additional annealing after NiSi formation. After the annealing of NiSi(010) ∥ Si(001) grains with their strain at approximately 2%, the start of NiPt silicide agglomerates accompanied by stress relaxation was observed. This preferential recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress is considered to enhance the NiPt silicide agglomeration.

  4. Dislocation dynamics in SiGe alloys

    NASA Astrophysics Data System (ADS)

    Yonenaga, I.

    2013-11-01

    The dislocation velocities and mechanical strength of bulk crystals of SixGe1-x alloys grown by the Czochralski method have been investigated by the etch pit technique and compressive deformation tests, respectively. Velocity of dislocations in the SiGe alloys of the composition range 0.004 < x < 0.08 decreases monotonically with an increase in Si content at temperature 450-700°C and under stress 3-24MPa. In contrast, velocity of dislocations in the composition range 0.92 < x < 1 first increases, then decreases and again increases with a decrease in Si content at temperature 750-850°C and under stress 3-30MPa. The velocity of dislocations was quantitatively evaluated as functions of stress and temperature. Stress-strain behaviour in the yield region of the SiGe alloys of composition 0 < x < 0.4 is similar to that of Ge at temperatures lower than about 600°C. However, the yield stress becomes temperature-insensitive at high temperatures and increases with increasing Si content. The stress-strain curves of the SiGe alloys of composition 0.95 < x < 1 are similar to those of pure Si at temperatures 800-1000°C and the yield stress increases with decreasing Si content down to x = 0.95. The yield stress of the SiGe alloys is dependent on the composition, being proportional to x(1-x), showing a maximum around x ≈ 0.5. Built-in stress fields related to local fluctuation of the alloy composition and the dynamic development of a solute atmosphere around the dislocations, may suppress the activities of dislocations and lead to the hardening of SiGe alloys.

  5. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  6. Nano-SiC/SiC anti-oxidant coating on the surface of graphite

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Ehsani, N.; Khalifeh-Soltani, S. A.; Jalaly, M.

    2013-01-01

    In this research, a dual-layer coating has been used to improve high temperature oxidation resistance of graphite substrate. For first layer, silicon carbide was applied by pack cementation method. Powder pack consisted of Si, SiC and Al2O3 and heat-treated at 1650 °C in an argon atmosphere. SEM and XRD characterizations confirmed formation of SiC diffusion coating with about 500 μm including compositionally gradient of C and Si elements. Electrophoretic deposition (EPD) was used to deposit nano SiC (SiCn) particles as second layer. Thickness of second layer of SiCn in corresponded optimal situation was 50 μm. Samples with single and dual layers were investigated in oxidation test at 1600 °C. Results showed that an extreme increase was occurred in oxidation resistance after application of second layer of nano SiC. Weight loss value for single layer coating of SiC and dual layer coating of SiCn/SiC after oxidation test for 28 h at 1600 °C were 29 wt.% and 2.4 wt.%, respectively.

  7. Uniform SiGe/Si quantum well nanorod and nanodot arrays fabricated using nanosphere lithography

    PubMed Central

    2013-01-01

    This study fabricates the optically active uniform SiGe/Si multiple quantum well (MQW) nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using nanosphere lithography (NSL) combined with the reactive ion etching (RIE) process. Compared to the as-grown sample, we observe an obvious blueshift in photoluminescence (PL) spectra for the SiGe/Si MQW nanorod and nanodot arrays, which can be attributed to the transition of PL emission from the upper multiple quantum dot-like SiGe layers to the lower MQWs. A possible mechanism associated with carrier localization is also proposed for the PL enhancement. In addition, the SiGe/Si MQW nanorod arrays are shown to exhibit excellent antireflective characteristics over a wide wavelength range. These results indicate that SiGe/Si MQW nanorod arrays fabricated using NSL combined with RIE would be potentially useful as an optoelectronic material operating in the telecommunication range. PMID:23924368

  8. Role of hydrogen in SiH{sub 2} adsorption on Si(100)

    SciTech Connect

    Hong, S.; Chou, M.Y.

    1998-11-01

    When disilane (Si{sub 2}H{sub 6}) is used in the homoepitaxial growth of Si by chemical vapor deposition (CVD), the fragment SiH{sub 2} is believed to be the basic unit adsorbed on the surface. The bonding site of SiH{sub 2} on Si(100) has been proposed in the literature to be either on top of a dimer (the on-dimer site) or between two dimers in the same row (the intrarow site). Since the pathway of SiH{sub 2} combination is dependent on the adsorption site, a first-principles calculation will shed light on the underlying process. We have performed self-consistent pseudopotential density-functional calculations within the local-density approximation. On the bare Si(100) surface, the on-dimer site is found to be more stable than the intrarow site, even though the former has unfavorable Si-Si bond angles. This is ascribed to the extra dangling bond created in the latter geometry when the weak dimer {pi} bonds are broken. However, the presence of hydrogen adatoms eliminates this difference and makes the intrarow site more favorable than the on-dimer site. It is therefore revealed in this theoretical study that hydrogen, an impurity unavoidable in the CVD process, plays an important role in determining the stable configuration of adsorbed SiH{sub 2} on Si(100) and hence affects the growth mechanism. {copyright} {ital 1998} {ital The American Physical Society}

  9. Effects of SiC on Properties of Cu-SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Efe, G. Celebi; Altinsoy, I.; Ipek, M.; Zeytin, S.; Bindal, C.

    2011-12-01

    This paper was focused on the effects of particle size and distribution on some properties of the SiC particle reinforced Cu composites. Copper powder produced by cementation method was reinforced with SiC particles having 1 and 30 μm particle size and sintered at 700 °C. SEM studies showed that SiC particles dispersed in copper matrix homogenously. The presence of Cu and SiC components in composites were verified by XRD analysis technique. The relative densities of Cu-SiC composites determined by Archimedes' principle are ranged from 96.2% to 90.9% for SiC with 1 μm particle size, 97.0 to 95.0 for SiC with 30 μm particle size. Measured hardness of sintered compacts varied from 130 to 155 HVN for SiC having 1 μm particle size, 188 to 229 HVN for SiC having 1 μm particle size. Maximum electrical conductivity of test materials was obtained as 80.0% IACS (International annealed copper standard) for SiC with 1 μm particle size and 83.0% IACS for SiC with 30 μm particle size.

  10. Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates

    NASA Astrophysics Data System (ADS)

    Severino, A.; D'Arrigo, G.; Bongiorno, C.; Scalese, S.; La Via, F.; Foti, G.

    2007-07-01

    The growth of thin cubic silicon carbide (3C-SiC) buffer layers in an horizontal hot-wall chemical vapor deposition reactor, through the carbonization of differently oriented Si surfaces, is presented. A qualitative and quantitative study has been performed on statistical parameters related to voids due to the buffer layer growth on the different substrate orientations emphasizing shape, size, and density as a function of the substrate orientation. Variation in the void parameters can be attributed to the atomic packing density related to the substrate orientations, which were (100) Si, (111) Si, and (110) Si in this study. Scanning electron microscopy and transmission electron microscopy were performed to analyze the surface and the crystalline quality of the 3C-SiC films grown and, eventually, an empirical model for the carbonization of Si surfaces formulated. Large platens characterize the 3C-SiC films with shapes related to the orientations of the substrate. These platens derive from the two-dimensional growth of different SiC islands which enlarge during the process due to the continuous reaction between Si and C atoms. The interior part of platens was characterized by the presence of a pure crystalline material with the presence of small tilts affecting some grains in the 3C-SiC layer in order to relief the stress generated with the substrate.

  11. Large scale fabrication of lightweight Si/SiC lidar mirrors

    NASA Astrophysics Data System (ADS)

    Goela, Jitendra Singh; Taylor, Raymond L.

    1989-10-01

    An up-scalable CVD process has been used to fabricate 7.5-cm models of lightweight Si/SiC mirrors consisting of an f/1.6 concave face-plate of SiC coated with CVD Si, in conjunction with a lightweight backup structure of SiC. Due to CVD chamber fabrication, no bonding agent was required to attach the SiC backup structure to the face-plate. Upon up-scaling, the SiC deposition process has been able to produce 40-cm diameter f/1.6 concave mirror face-plates. The mirrors were polished to a 1/5-wave figure and 10 A rms surface finish. There appear to be no intrinsic physical limits to further up-scaling of this mirror-fabrication process.

  12. Spin and valley-orbit splittings in SiGe/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Nestoklon, M. O.; Golub, L. E.; Ivchenko, E. L.

    2006-06-01

    Spin and valley-orbit splittings are calculated in symmetric SiGe/Si/SiGe quantum wells (QWs) by using the tight-binding approach. In accordance with the symmetry considerations an existence of spin splitting of electronic states in perfect QWs with an odd number of Si atomic planes is microscopically demonstrated. The spin splitting oscillates with QW width and these oscillations related to the intervalley reflection of an electron wave from the interfaces. It is shown that the splittings under study can efficiently be described by an extended envelope-function approach taking into account the spin- and valley-dependent interface mixing. The obtained results provide a theoretical base to the experimentally observed electron spin relaxation times in SiGe/Si/SiGe QWs.

  13. Localization of electrons in dome-shaped GeSi/Si islands

    SciTech Connect

    Yakimov, A. I.; Kirienko, V. V.; Bloshkin, A. A.; Armbrister, V. A.; Kuchinskaya, P. A.; Dvurechenskii, A. V.

    2015-01-19

    We report on intraband photocurrent spectroscopy of dome-shaped GeSi islands embedded in a Si matrix with n{sup +}-type bottom and top Si layers. An in-plane polarized photoresponse in the 85–160 meV energy region has been observed and ascribed to the optical excitation of electrons from states confined in the strained Si near the dome apexes to the continuum states of unstrained Si. The electron confinement is caused by a modification of the conduction band alignment induced by inhomogeneous tensile strain in Si around the buried GeSi quantum dots. Sensitivity of the device to the normal incidence radiation proves a zero-dimensional nature of confined electronic wave functions.

  14. Electronic Properties of Si-Hx Vibrational Modes at Si Waveguide Interface.

    PubMed

    Bashouti, Muhammad Y; Yousefi, Peyman; Ristein, Jürgen; Christiansen, Silke H

    2015-10-01

    Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids. PMID:26722904

  15. Silicon Effects on Properties of Melt Infiltrated SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Gyekenyesi, John Z.; Hurst, Janet B.

    2000-01-01

    Silicon effects on tensile and creep properties, and thermal conductivity of Hi-Nicalon SiC/SiC composites have been investigated. The composites consist of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats and a silicon matrix, or a mixture of silicon matrix and SiC particles. The Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained about 24 and 13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has no significant effect on creep and thermal conductivity, but does decrease the primary elastic modulus and stress corresponding to deviation from linear stress-strain behavior.

  16. SiC fiber reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1986-01-01

    A technique for fabricating strong and tough SiC fiber reinforced reaction bonded Si3N4 matrix composites (SiC/RBSN) was developed. Using this technique, composites containing approximately 23, 30, and 40 volume fractions of aligned 140 micron diameter, chemically vapor deposited SiC fibers were fabricated. The room temperature physical and mechanical properties were evaluated. The results for composite tensile strength, bend strength, and fracture strain indicate that the composite displays excellent properties when compared with the unreinforced matrix of comparable porosity. The composite stress at which the matrix first cracks and the ultimate composite fracture strength increase with increasing volume fraction of fibers, and the composite fails gracefully. The mechanical property data of this ceramic composite are compared with similar data for unreinforced commercially available Si3N4 materials and for SEP SiC/SiC composites.

  17. SiOx/SiNy multilayers for photovoltaic and photonic applications

    PubMed Central

    2012-01-01

    Microstructural, electrical, and optical properties of undoped and Nd3+-doped SiOx/SiNy multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiNy as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiOx sublayers. Enhanced conductivity, emission, and absorption are attained at low thermal budget, which are promising for photovoltaic applications. Furthermore, the enhancement of Nd3+ emission in these multilayers in comparison with the SiOx/SiO2 counterparts offers promising future photonic applications. PACS: 88.40.fh (Advanced materials development), 81.15.cd (Deposition by sputtering), 78.67.bf (Nanocrystals, nanoparticles, and nanoclusters). PMID:22333343

  18. SiO x /SiN y multilayers for photovoltaic and photonic applications

    NASA Astrophysics Data System (ADS)

    Nalini, Ramesh Pratibha; Khomenkova, Larysa; Debieu, Olivier; Cardin, Julien; Dufour, Christian; Carrada, Marzia; Gourbilleau, Fabrice

    2012-02-01

    Microstructural, electrical, and optical properties of undoped and Nd3+-doped SiO x /SiN y multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiN y as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiO x sublayers. Enhanced conductivity, emission, and absorption are attained at low thermal budget, which are promising for photovoltaic applications. Furthermore, the enhancement of Nd3+ emission in these multilayers in comparison with the SiO x /SiO2 counterparts offers promising future photonic applications. PACS: 88.40.fh (Advanced materials development), 81.15.cd (Deposition by sputtering), 78.67.bf (Nanocrystals, nanoparticles, and nanoclusters).

  19. SiOx/SiNy multilayers for photovoltaic and photonic applications.

    PubMed

    Nalini, Ramesh Pratibha; Khomenkova, Larysa; Debieu, Olivier; Cardin, Julien; Dufour, Christian; Carrada, Marzia; Gourbilleau, Fabrice

    2012-01-01

    Microstructural, electrical, and optical properties of undoped and Nd3+-doped SiOx/SiNy multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiNy as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiOx sublayers. Enhanced conductivity, emission, and absorption are attained at low thermal budget, which are promising for photovoltaic applications. Furthermore, the enhancement of Nd3+ emission in these multilayers in comparison with the SiOx/SiO2 counterparts offers promising future photonic applications.PACS: 88.40.fh (Advanced materials development), 81.15.cd (Deposition by sputtering), 78.67.bf (Nanocrystals, nanoparticles, and nanoclusters). PMID:22333343

  20. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, Raymond C.; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    Silicon carbide (SiC) and Si3N4 materials were tested in various turbine engine combustion environments chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high-speed aircraft. Representative chemical vapor-deposited (CVD), sintered, and composite materials were evaluated by furnace and high-pressure burner rig exposures. Although protective SiO2 scales formed in all cases, the evidence presented supports a model based on paralinear growth kinetics (i.e., parabolic growth moderated simultaneously by linear volatilization). The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were thus used to map SiO2 volatility (and SiC recession) over a range of temperatures, pressures, and velocities. The functional dependency of material recession (volatility) that emerged followed the form A[exp(-Q / RT)](P(sup x)v(sup y). These empirical relations were compared with rates predicted from the thermodynamics of volatile SiO and SiOxHy reaction products and a kinetic model of diffusion through a moving boundary layer. For typical combustion conditions, recession of 0.2 to 2 micrometers/hr is predicted at 1200 to 1400 C, far in excess of acceptable long-term limits.

  1. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, R. Craig; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    SiC and Si3N4 materials were tested under various turbine engine combustion environments, chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high speed aircraft. Representative CVD, sintered, and composite materials were evaluated in both furnace and high pressure burner rig exposure. While protective SiO2 scales form in all cases, evidence is presented to support paralinear growth kinetics, i.e. parabolic growth moderated simultaneously by linear volatilization. The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were used to map SiO2 volatility (and SiC recession) over a range of temperature, pressure, and velocity. The functional dependency of material recession (volatility) that emerged followed the form: exp(-QIRT) * P(exp x) * v(exp y). These empirical relations were compared to rates predicted from the thermodynamics of volatile SiO and SiO(sub x)H(sub Y) reaction products and a kinetic model of diffusion through a moving, boundary layer. For typical combustion conditions, recession of 0.2 to 2 micron/h is predicted at 1200- 1400C, far in excess of acceptable long term limits.

  2. Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Kunimune, Yorinobu; Shimada, Yasuhiro; Sakurai, Yusuke; Inoue, Masao; Nishida, Akio; Han, Bin; Tu, Yuan; Takamizawa, Hisashi; Shimizu, Yasuo; Inoue, Koji; Yano, Fumiko; Nagai, Yasuyoshi; Katayama, Toshiharu; Ide, Takashi

    2016-04-01

    We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO2/SiN/SiO2 (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actual hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.

  3. Inherent interface defects in thermal (211)Si/SiO{sub 2}:{sup 29}Si hyperfine interaction

    SciTech Connect

    Iacovo, Serena E-mail: andre.stesmans@fys.kuleuven.be; Stesmans, Andre E-mail: andre.stesmans@fys.kuleuven.be

    2014-10-21

    Low temperature electron spin resonance (ESR) studies were carried out on ‘higher index’ (211)Si/SiO{sub 2} interfaces thermally grown in the temperature range T{sub ox} = 400–1066°C. The data reveal the presence of two species of a P{sub b}-type interface defect, exhibiting a significant difference in defect density. On the basis of the pertinent ESR parameters and interface symmetry, the basic defect is typified as P{sub b0}{sup (211)}, close to the Pb0 center observed in standard (100)Si/SiO{sub 2}. The dominant type is found to pertain to defected Si atoms at (111)Si-face terraces with the dangling bond along the [111] direction at ∼19.5°C with the interface normal, these sites thus apparently predominantly accounting for interface mismatch adaptation. The total of the P{sub b}-type defect appearance clearly reflects the higher-index nature of the interface. It is found that T{sub ox} = 750°C is required to minimize the P{sub b0}{sup (211)} defect density through relaxation of the oxide (interface). Q-band ESR saturation spectroscopy reveals an anisotropic {sup 29}Si (nuclear spin I=1/2) hyperfine (hf) doublet associated with the central P{sub b0}{sup (211)} Zeeman signal, with hf parameters closest to those of the similar hf structure of the P{sub b0}{sup (110)} defect in thermal (110)Si/SiO{sub 2}, adducing independent support to the P{sub b0}{sup (211)} typification.

  4. Time-resolved photoluminescence of SiOx encapsulated Si

    NASA Astrophysics Data System (ADS)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  5. p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films

    NASA Technical Reports Server (NTRS)

    Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)

    2000-01-01

    A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.

  6. On the peritectoid Ti{sub 3}Si formation in Ti-Si alloys

    SciTech Connect

    Ramos, Alfeu Saraiva . E-mail: alfeu@univap.br; Nunes, Carlos Angelo; Coelho, Gilberto Carvalho

    2006-03-15

    Ti-13.5Si and Ti-25Si (at.%) alloys have been arc-melted from high-purity raw materials, using a water-cooled copper hearth, a non-consumable tungsten electrode, and under an Ar atmosphere gettered by titanium. The cast ingots were then heat-treated for 90 h at 1000 and 1100 deg. C in an inert atmosphere, and both the as-cast and the heat-treated alloys were characterized using scanning electron microscopy and an energy dispersive microanalysis system. The as-cast Ti-13.5Si alloy presented a eutectic microstructure composed of the Ti{sub SS} and Ti{sub 5}Si{sub 3} phases, while the microstructure of the as-cast Ti-25Si alloy showed the presence of large primary precipitates of Ti{sub 5}Si{sub 3} in a eutectic matrix of Ti{sub SS} and Ti{sub 5}Si{sub 3}. Subsequent heat treatment at 1100 deg. C produced no significant microstructural modifications in the Ti-25Si alloy, and it is suggested that the presence of the large primary precipitates of Ti{sub 5}Si{sub 3} contributed to a reduction in the kinetics of Ti{sub 3}Si formation. In the Ti-13.5Si alloys, the formation of Ti{sub 3}Si was not observed after heat treatment at 1000 deg. C, but a large amount of Ti{sub 3}Si was found after heat treatment at 1100 deg. C, confirming its existence in Ti-Si alloys containing low interstitial contents.

  7. Modeling Creep Effects within SiC/SiC Turbine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Lang, J.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC ceramic composites into the hot section components of future gas turbine engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly select and manipulate constituent materials, processes, and geometries in order to minimize these effects. In initial studies aimed at SiC/SiC components experiencing through-thickness stress gradients, creep models were developed that allowed an understanding of detrimental residual stress effects that can develop globally within the component walls. It was assumed that the SiC/SiC composites behaved as isotropic visco-elastic materials with temperature-dependent creep behavior as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The creep models and their key results are discussed assuming state-of-the-art SiC/SiC materials within a simple cylindrical thin-walled tubular structure, which is currently being employed to model creep-related effects for turbine airfoil leading edges subjected to through-thickness thermal stress gradients. Improvements in the creep models are also presented which focus on constituent behavior with more realistic non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  8. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  9. Rapid synthesis of MoSi2-Si3N4 nanocomposite via reaction milling of Si and Mo powder mixture

    NASA Astrophysics Data System (ADS)

    Abdellahi, Majid; Amereh, Alireza; Bahmanpou, Hamed; Sharafati, Behzad

    2013-11-01

    The nanocomposite of MoSi2-Si3N4 (molybdenum disilicide-silicon nitride) was synthesized by reaction milling of the Mo and Si powder mixture. Changing the processing parameters led to the formation of different products such as α- and β-MoSi2, Si3N4, Mo2N, and Mo5Si3 at various milling times. A thermodynamic appraisal showed that the milling of Mo32Si68 powder mixture was associated with highly exothermic mechanically induced self-sustaining reaction (MSR) between Mo and Si. The MSR took place around 5 h of milling led to the formation of α-MoSi2 and the reaction between Si and N2 to produce Si3N4 under a nitrogen pressure of 1 MPa. By increasing the nitrogen pressure to 5 MPa, more heat is released, resulting in the dissociation of Si3N4 and the transformation of α-MoSi2 to β-MoSi2. Heat treatment was also performed on the milled samples and led to the formation of Mo2N and the transformation of α-MoSi2 to β-MoSi2 at the milling times of 10 and 40 h, respectively.

  10. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    NASA Astrophysics Data System (ADS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  11. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  12. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    NASA Astrophysics Data System (ADS)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  13. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  14. Dependence of Morphology of SiOx Nanowires on the Supersaturation of Au-Si Alloy Liquid Droplets Formed on the Au-Coated Si Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Li, Ji-Xue; Jin, Ai-Zi; Zhang, Ze

    2001-11-01

    A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850°C and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.

  15. {Sn9[Si(SiMe3)3]3}− and {Sn8Si[Si(SiMe3)3]3}−: variations of the E9 cage of metalloid group 14 clusters.

    PubMed

    Schrenk, Claudio; Neumaier, Marco; Schnepf, Andreas

    2012-04-01

    The disproportionation reaction of the subvalent metastable halide SnBr proved to be a powerful synthetic method for the synthesis of metalloid cluster compounds of tin. Hence, the neutral metalloid cluster compound Sn(10)[Si(SiMe(3))(3)](6) (3) was synthesized from the reaction of SnBr with LiSi(SiMe(3))(3). In the course of the reaction anionic clusters might also be present, and we now present the first anionic cluster compound {Sn(8)E[Si(SiMe(3))(3)](3)}(-) (E = Si, Sn), where one position in the cluster core is occupied by a silicon or a tin atom, giving further insight into structural variations of E(9) cages in metalloid group 14 cluster compounds. PMID:22436071

  16. siRNA and RNAi optimization.

    PubMed

    Alagia, Adele; Eritja, Ramon

    2016-05-01

    The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website. PMID:26840434

  17. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  18. SiC-Based Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak; Liu, C. C.; Wu, Q. H.

    1997-01-01

    Electronic grade Silicon Carbide (SiC) is a ceramic material which can operate as a semiconductor at temperatures above 600 C. Recently, SiC semiconductors have been used in Schottky diode gas sensor structures. These sensors have been shown to be functional at temperatures significantly above the normal operating range of Si-based devices. SiC sensor operation at these higher temperatures allows detection of gases such as hydrocarbons which are not detectable at lower temperatures. This paper discusses the development of SiC-based Schottky diode gas sensors for the detection of hydrogen, hydrocarbons, and nitrogen oxides (NO(x)). Sensor designs for these applications are discussed. High sensitivity is observed for the hydrogen and hydrocarbon sensors using Pd on SiC Schottky diodes while the NO(x) sensors are still under development. A prototype sensor package has been fabricated which allows high temperature operation in a room temperature ambient by minimizing heat loss to that ambient. It is concluded that SiC-based gas sensors have considerable potential in a variety of gas sensing applications.

  19. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  20. Si(hhm) surfaces: Templates for developing nanostructures

    SciTech Connect

    Bozhko, S. I. Ionov, A. M.; Chaika, A. N.

    2015-06-15

    The fabrication of ordered low-dimensional structures on clean and metal-atom-decorated stepped Si(557) and Si(556) surfaces is discussed. The formation conditions and atomic structure of regular step systems on clean Si(557) 7 × 7 and Si(556) 7 × 7 surfaces are studied. The atomic structure of stepped Si(hhm), Ag/Si(557), and Gd/Si(557) surfaces is studied using high-resolution scanning tunneling microscopy and low-energy electron diffraction. The possibility of fabricating 1D and 2D structures of gadolinium and silver atoms on the Si(557) surface is demonstrated.

  1. Helium Gas Permeability of SiC/SiC Composite Developed for Blanket Component

    SciTech Connect

    Hino, Tomoaki; Jinushi, Takahiro; Hirohata, Yuko; Hashiba, Masao; Yamauchi, Yuji; Katoh, Yutai; Kohyama, Akira

    2003-03-15

    To employ SiC/SiC composite as blanket components of a fusion reactor, permeation behavior of helium gas has to be investigated since the helium is used as the coolant. For this purpose, a vacuum system consisting of upstream and downstream chambers was fabricated for the measurement of permeability, and the permeability was measured for several SiC/SiC composite materials recently developed. For the pressure range from 10{sup 2} to 10{sup 5} Pa in the upstream chamber, the pressure rise due to the permeation of helium in the downstream chamber linearly increased with the pressure of the upstream chamber. Then, the permeability was roughly constant for the pressure range of the upstream chamber.The permeabilities of SiC/SiC composites produced by polymer impregnation and pyrolysis (PIP), hot pressing (HP) and melt-infiltration-finished PIP were 5 x 10{sup -5}, 4 x 10{sup -6}, and 9 x 10{sup -7} m{sup 2}/s, respectively. In the matrix structure of the SiC/SiC composite made by the PIP method with a high permeability, cracking in the matrix and pores of micron size were observed. Compared to these materials, SiC/SiC composites produced by liquid phase sintering using submicron or nanopowder of {beta}-SiC and the HP method had extremely low permeabilities. The permeability of the SiC/SiC composite made by using submicron or nanopowder of {beta}-SiC became 1.5 x 10{sup -9} or 4 x 10{sup -11} m{sup 2}/s.Based upon the present data, the helium gas flow was analyzed for a blanket module consisting of only SiC/SiC composite. If a vacuum pump is attached to the module, the helium leak into a plasma can be ignored, compared to the heliums produced by fusion reactions. Hence, the entire module can be made by only SiC/SiC composite, from a viewpoint of helium permeation.

  2. Mo-Si-B Alloy Development

    SciTech Connect

    Schneibel, Joachim H; Brady, Michael P; Meyer III, Harry M; Horton Jr, Joe A; Kruzic, JJ; Ritchie, R O

    2005-01-01

    Mo-Si-B silicides consisting of the phases {alpha}-Mo (Mo solid solution), Mo{sub 3}Si, and Mo{sub 5}SiB{sub 2} have melting points on the order of 2000 C and have potential as ultra-high temperature structural materials. Mo-Si-B alloys can be processed such that the {alpha}-Mo is present in the form of isolated particles in a silicide matrix, or as a continuous matrix 'cementing' individual silicide particles together. The latter microstructure is similar to that of WC-Co hard metals. This paper focuses on the relationship between the topology as well as scale of the microstructure of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} alloys, and their creep strength and fracture toughness. For example, the creep strength of Mo-Si-B alloys is improved by reducing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase discontinuous. The fracture toughness is improved by increasing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase continuous. Room temperature stress intensity factors as high as 21 MPa m{sup 1/2} were obtained. The room temperature fracture toughness of Mo-Si-B alloys can also be improved by microalloying with Zr. The room temperature ductility of Mo itself can be improved by adding MgAl{sub 2}O{sub 4} spinel particles suggesting yet another way to improve the ductile phase toughening of Mo-Si-B alloys.

  3. Mo-Si-B Alloy Development

    SciTech Connect

    Schneibel, J.H.; Kruzie, J.J.; Ritchie, R.O.

    2003-04-24

    Mo-Si-B silicides consisting of the phases {alpha}-Mo (Mo solid solution), Mo{sub 3}Si, and Mo{sub 5}SiB{sub 2} have melting points on the order of 2000 C and have potential as ultra-high temperature structural materials. Mo-Si-B alloys can be processed such that the {alpha}-Mo is present in the form of isolated particles in a silicide matrix, or as a continuous matrix ''cementing'' individual silicide particles together. The latter microstructure is similar to that of WC-Co hard metals. This paper focuses on the relationship between the topology as well as scale of the microstructure of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} alloys, and their creep strength and fracture toughness. For example, the creep strength of Mo-Si-B alloys is improved by reducing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase discontinuous. The fracture toughness is improved by increasing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase continuous. Room temperature stress intensity factors as high as 21 MPa m{sup 1/2} were obtained. The room temperature fracture toughness of Mo-Si-B alloys can also be improved by microalloying with Zr. The room temperature ductility of Mo itself can be improved by adding MgAl{sub 2}O{sub 4} spinel particles suggesting yet another way to improve the ductile phase toughening of Mo-Si-B alloys.

  4. Si-Si bond as a deep trap for electrons and holes in silicon nitride

    NASA Astrophysics Data System (ADS)

    Karpushin, A. A.; Sorokin, A. N.; Gritsenko, V. A.

    2016-02-01

    A two-stage model of the capture of electrons and holes in traps in amorphous silicon nitride Si3N4 has been proposed. The electronic structure of a "Si-Si bond" intrinsic defect in Si3N4 has been calculated in the tight-binding approximation without fitting parameters. The properties of the Si-Si bond such as a giant cross section for capture of electrons and holes and a giant lifetime of trapped carriers have been explained. It has been shown that the Si-Si bond in the neutral state gives shallow levels near the bottom of the conduction band and the top of the valence band, which have a large cross section for capture. The capture of an electron or a hole on this bond is accompanied by the shift of shallow levels by 1.4-1.5 eV to the band gap owing to the polaron effect and a change in the localization region of valence electrons of atoms of the Si-Si bond. The calculations have been proposed with a new method for parameterizing the matrix elements of the tightbinding Hamiltonian taking into account a change in the localization region of valence electrons of an isolated atom incorporated into a solid.

  5. Synthesis and characterization of Si/ZnO coaxial nanorod heterostructure on (100) Si substrate

    NASA Astrophysics Data System (ADS)

    Dong Cho, Hak; Young Cho, Hoon; Wook Kwak, Dong; Won Kang, Tae; Taek Yoon, Im

    2016-03-01

    One-dimensional ZnO nanorods were grown vertically on a (100) Si substrate using a vapor phase transport method. Following the fabrication of ZnO nanorods, Si layers were deposited by rapid thermal chemical vapor deposition (RTCVD) directly on the ZnO nanorod/Si (100) substrate. Field emission scanning electron microscopy revealed that a Si/ZnO nanorod coaxial heterostructure were synthesized vertically oriented along the (002) plane on a Si substrate. X-ray diffraction, Energy dispersive X-ray and Raman spectroscopy revealed that the ZnO nanorods were single crystals with a hexagonal structure, and grew with a c-axis orientation perpendicular to the Si substrate, whereas the Si layer was poly-silicon with cubic structure. These results demonstrated the Si/ZnO nanorod coaxial heterostructure were synthesized successfully on a (100) Si substrate and the ZnO nanorod enables the synthesis of a vertically grown well-aligned Si/ZnO coaxial nanorod heterostructure.

  6. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  7. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  8. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  9. Refinement of primary Si grains in Al-20%Si alloy slurry through serpentine channel pouring process

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-kai; Mao, Wei-min; Liu, Zhi-yong; Wang, Dong; Yue, Rui

    2016-05-01

    In this study, a serpentine channel pouring process was used to prepare the semi-solid Al-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al-20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701°C, primary Si grains in the semi-solid Al-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.

  10. Low temperature Silicon epitaxy on bare Si (100) and H terminated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Deng, Xiao; Namboodiri, Pradeep; Li, Kai; Wang, Xiqiao; Li, Tongbao; Silver, Richard

    Silicon on Silicon growth morphology is studied using an ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and transmission electron microscopy (TEM). Sub-monolayer to 18 nm of silicon was evaporated using an all-silicon sublimation source (SUSI) onto a UHV prepared Si (100) sample at 250°C. The results are compared with the growth characteristics on hydrogen passivated surfaces (H: Si) under identical experimental conditions. STM images indicate that growth morphology of both Si on Si and Si on H: Si is of epitaxial nature at temperatures as low as 250°C. For Si on bare Si growth at 250°C, there exists a stable thickness regime where Si epitaxial growth front keeps the same morphology. Although the mobility of silicon is modestly affected on the H: Si surface because of the H atoms during the initial sub-monolayer regime, the growth proceeds epitaxially with the 3D island growth mode and noticeable surface roughening.

  11. Interstitial Functionalization in elemental Si

    NASA Astrophysics Data System (ADS)

    Kiefer, Boris; Fohtung, Edwin

    Societies in the 21st century will face many challenges. Materials science and materials design will be essential to address and master some if not all of these challenges. Semiconductors are among the most important technological material classes. Properties such as electrical transport are strongly affected by defects and a central goal continues to be the reduction of defect densities as much as possible in these compounds. Here we present results of interstitial Fe doping in elemental Si using first-principles DFT calculations. The preliminary results show that Fe will only occupy octahedral interstitial sites. The analysis of the electronic structure shows that the compounds are ferromagnetic and that a bandgap opens as interstitial Fe concentrations decrease, with a possible intermittent semi-metallic phase. The formation energy for interstitial Fe is unfavorable, as expected, by ~1.5 eV but becomes favorable as the chemical potential of Fe increases. Therefore, we expect that biasing the system with an external electrical field will lead to the formation of these materials. Thus, our results show that interstitial defects can be beneficial for the design of functionalities that differ significantly from those of the host material.

  12. Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools

    NASA Astrophysics Data System (ADS)

    Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Meier, K.; Puppe, D.; Wanner, M.; Kaczorek, D.

    2013-07-01

    The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to DSi (Gerard et al., 2008). However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95%). Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007-04/2011), we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (version ZALF), (ii) related Si budgets, and (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha-1 yr-1 - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha-1. The comparatively high DSi concentrations (6 mg L-1) and DSi exports (12 kg Si ha-1 yr-1) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling.

  13. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.

    PubMed

    Liu, Chun-Yi; Li, Wun-Shan; Chu, Li-Wei; Lu, Ming-Yen; Tsai, Cho-Jen; Chen, Lih-Juann

    2011-02-01

    A method was developed to grow ordered silicon nanowire with NiSi(2) tip arrays by reacting nickel thin films on silica-coated ordered Si nanowire (NW) arrays. The coating of thin silica shell on Si NW arrays has the effect of limiting the diffusion of nickel during the silicidation process to achieve the single crystalline NiSi(2) NWs. In the meantime, it relieves the distortion of the NWs caused by the strain associated with formation of NiSi(2) to maintain the straightness of the nanowire and the ordering of the arrays. Other nickel silicide phases such as Ni(2)Si and NiSi were obtained if the silicidation processes were conducted on the ordered Si NWs without a thin silica shell. Excellent field emission properties were found for NiSi(2)/Si NW arrays with a turn on field of 0.82 V µm(-1) and a threshold field of 1.39 V µm(-1). The field enhancement factor was calculated to be about 2440. The stability test showed a fluctuation of about 7% with an applied field of 2.6 V µm(-1) for a period of 24 h. The excellent field emission characteristics are attributed to the well-aligned and highly ordered arrangement of the single crystalline NiSi(2)/Si heterostructure field emitters. In contrast to other growth methods, the present growth of ordered nickel silicide/Si NWs on silicon is compatible with silicon nanoelectronics device processes, and also provides a facile route to grow other well-aligned metal silicide NW arrays. The advantages will facilitate its applications as field emission devices. PMID:21178255

  14. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting

    NASA Astrophysics Data System (ADS)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-01-01

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ~20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  15. Substitution of Si in SAPO-5

    NASA Astrophysics Data System (ADS)

    Wang, Xingqiao; Liu, Xinsheng; Song, Tianyou; Hu, Jianzhi; Qiu, Jianqing

    1989-04-01

    A series of SAPO-5 samples with different numbers of silicon atoms are investigated by chemical analysis, XRD and CP/MAS NMR. The results indicate that the lines at about -102 and -110 ppm observed in the 29Si NMR spectra of the SAPO-5 samples are due to the non-framework silicon phase which is structurally similar to the synthesis gel. The corrected framework compositions of SAPO-5 samples strongly suggest that Si is only substituted by framework P (case 2). Si simultaneously substituted by both framework P and Al (case 3) is unlikely.

  16. SiO{2}/Si Interfacial Degradation and the Role of Oxygen Interstitials

    NASA Astrophysics Data System (ADS)

    Devine, R. A. B.

    1996-12-01

    High temperature annealing of Si/SiO{2}/Si structures in inert atmospheres is known to result in degradation of the oxide layer and electron and hole trap creation. We review our understanding of the basic mechanisms active in such structures that can result in point defect generation. Using electron spin resonance and infra-red absorption data, we demonstrate that in low oxygen content Si substrates (float zone) annealing of Si/SiO{2}/Si structures at high temperatures results in a gettering of oxygen from the oxide into interstitial sites in the Si substrate. Oxygen vacancy centres are left in the oxyde. This behaviour is well accounted for by a diffusion model in which oxygen diffuses out of the oxide, into the Si, the driving force this motion is the temperature dependent solubility limit of oxygen in Si. This mechanism should be active in float zone substrates for essentially all temperatures gtrsim 700 ^{circ}C. For high oxygen content substrates (Czochralski grown) we also observe oxygen vacancy creation in the oxide when very high temperature annealing is performed (sim 1320 ^{circ}C). However, for these substrates at lower temperatures which are more “technological” (sim 1000 ^{circ}C) we anticipate that dissolved O interstitial diffusion to the Si/SiO{2} interface and percipitation of SiO{2} platelets in the bulk will be the prime mechanisms to be considered. Il est connu que le recuit haute température des structures Si/SiO{2}/Si dans un atmosphère inerte conduit à la dégradation de la couche d'oxyde et à la création de pièges à électrons et à trous. Nous passons en revue les mécanismes fondamentaux qui peuvent engendrer des défauts. À partir des résultats d'expérience de résonance paramagnétique électronique et d'absorption infrarouge nous montrons que pour des substrats à faible concentration en oxygène (float zone) il y a des atomes d'oxygène qui quittent l'oxyde et qui diffusent dans le substrat Si sous forme d

  17. Continuous-wave laser annealing of Si-rich oxide: A microscopic picture of macroscopic Si-SiO{sub 2} phase separation

    SciTech Connect

    Khriachtchev, Leonid; Nikitin, Timur; Raesaenen, Markku; Domanskaya, Alexandra; Boninelli, Simona; Iacona, Fabio; Engdahl, Anders; Juhanoja, Jyrki; Novikov, Sergei

    2010-12-15

    We report on the first observation of the macroscopic (long-range) Si-SiO{sub 2} phase separation in Si-rich oxide SiO{sub x}(x<2) obtained by continuous-wave laser annealing of free-standing SiO{sub x} films. The effect is analyzed by a unique combination of microscopic methods (Raman, transmission, photoluminescence, and infrared spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy). Three regions can be distinguished on a SiO{sub x} free-standing film after 488 nm laser annealing at intensities above {approx}10{sup 4} W cm{sup -2}: central spot, ring around the central spot, and pristine film outside the irradiated area. In the pristine SiO{sub x} material, small Si nanocrystals (Si-nc) (diameters of a few nanometer) are surrounded by SiO{sub 2} with an addition of residual suboxides, the Si-nc being produced by annealing at 1100 deg. C in a furnace. The central spot of the laser-annealed area (up to {approx}30 {mu}m wide in these experiments) is practically free of Si excess and mainly consists of amorphous SiO{sub 2}. The ring around the central spot contains large spherical Si-nc (diameters up to {approx}100 nm) embedded in amorphous SiO{sub 2} without the presence of suboxides. Laser-induced temperatures in the structurally modified regions presumably exceed the Si melting temperature. The macroscopic Si-SiO{sub 2} phase separation is connected with extensive diffusion in temperature gradient leading to the Si concentration gradient. The present work demonstrates the advantages of high spatial resolution for analysis in materials research.

  18. Rapid thermal annealing of ion beam synthesized {beta}-FeSi{sub 2} nanoparticles in Si

    SciTech Connect

    Sun, C. M.; Tsang, H. K.; Wong, S. P.; Cheung, W. Y.; Ke, N.; Hark, S. K.

    2008-05-26

    High crystal-quality {beta}-FeSi{sub 2} nanoparticles in silicon, prepared by ion beam synthesis and subjected to rapid thermal annealing (RTA), are investigated. Completely amorphous Fe-Si layers are formed by Fe implantation at cryogenic temperature, with a dosage of 5x10{sup 15} cm{sup -2}, into float-zone silicon. After RTA at 900 deg. C for 60 s, {beta}-FeSi{sub 2} precipitates are aggregated in the Si matrix and give {approx}1.5 {mu}m photoluminescence. High-resolution plan-view transmission electron microscopy revealed that some strain is present in the RTA treated FeSi{sub 2} particles. Silicon dislocations, coming from the strain relaxation during the additional long-term annealing, are observed around {beta}-FeSi{sub 2} particles.

  19. Structure and chemistry of passivated SiC/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Houston Dycus, J.; Xu, Weizong; Lichtenwalner, Daniel J.; Hull, Brett; Palmour, John W.; LeBeau, James M.

    2016-05-01

    Here, we report on the chemistry and structure of 4H-SiC/SiO2 interfaces passivated either by nitric oxide annealing or Ba deposition. Using aberration corrected scanning transmission electron microscopy and spectroscopy, we find that Ba and N remain localized at SiC/SiO2 interface after processing. Further, we find that the passivating species can introduce significant changes to the near-interface atomic structure of SiC. Specifically, we quantify significant strain for nitric oxide annealed sample where Si dangling bonds are capped by N. In contrast, strain is not observed at the interface of the Ba treated samples. Finally, we place these results in the context of field effect mobility.

  20. Micropipes and voids at β¨SiC/Si(100) interfaces: an electron microscopy study

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Gösele, U.; Niemann, E.; Wischmeyer, F.

    The microstructure of β-SiC/Si(100) interfaces generated by carbonization and subsequent growth in a chemical vapor deposition (CVD) reactor was investigated by transmission electron microscopy (TEM). Differently prepared cross section and planar specimens allowed a detailed characterization of interface defects. Besides pyramidal voids, which were frequently reported to appear at SiC/Si interfaces within the substrate, recently discovered micropipes are of special interest. Both kinds of defects form by outdiffusion of silicon during the carbonization process. In contrast to voids. which initially remain empty, micropipes develop by simultaneous ingrowth of SiC. The area densities of micropipes were found to be orders of magnitude higher than those of voids. Micropipe formation may be due to a high density of SiC nuclei preexisting on the substrate surfaces after pretreatments. The simultaneous development of voids and micropipes is discussed on the basis of results obtained from a short-time carbonization experiment.

  1. Enhanced Electrochemical Performance of Heterogeneous Si/MoSi2 Anodes Prepared by a Magnesiothermic Reduction.

    PubMed

    Wu, Lili; Yang, Juan; Zhou, Xiangyang; Tang, Jingjing; Ren, Yongpeng; Nie, Yang

    2016-07-01

    This work explores facile synthesis of heterogeneous Si/MoSi2 nanocomposites via a one-step magnesiothermic reduction. MoSi2 serves as a highly electrically conductive nanoparticle that has several advantages of electrochemical properties, which is formed through the absorption of local heat accumulation generated by magnesiothermic reduction. As a result, the Si/MoSi2 nanocomposites exhibit excellent electrochemical performance, showing initial charge capacity of 1933.9 mA h g(-1) at a rate of 0.2 C and retaining 85.2% after 150 cycles. This work using local heat accumulation generated by magnesiothermic reduction demonstrates a large-scale method for producing high-performance Si-based anode materials, which could provide referential significances for other materials. PMID:27300698

  2. Advanced Environmental Barrier Coatings Developed for SiC/SiC Composite Vanes

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Eldridge, Jeffrey I.; Zhu, Dongming; Bansal, Narottam P.; Miller, Robert A.

    2003-01-01

    Ceramic components exhibit superior high-temperature strength and durability over conventional component materials in use today, signifying the potential to revolutionize gas turbine engine component technology. Silicon-carbide fiber-reinforced silicon carbide ceramic matrix composites (SiC/SiC CMCs) are prime candidates for the ceramic hotsection components of next-generation gas turbine engines. A key barrier to the realization of SiC/SiC CMC hot-section components is the environmental degradation of SiC/SiC CMCs in combustion environments. This is in the form of surface recession due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is a logical approach to achieve protection and long-term durability.

  3. SiC/Si3N4 nanotubes from peanut shells

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, C. R.

    2016-06-01

    Nanotubes and nanoparticles of SiC and Si3N4 were produced from the thermal treatment of peanut shells in argon and nitrogen atmospheres respectively, at temperatures in excess of 1350°C. Using x-ray diffraction, Raman spectroscopy and transmission electron microscopy analysis, the processed samples in argon atmosphere were shown to consist of 2H and 3C polytypes of SiC nanoparticles and nanotubes. Whereas the samples prepared in nitrogen atmosphere consisted of α-phase of Si3N4. Nanostructures formed by a single direct reaction provide a sustainable synthesis route for nanostructured SiC and Si3N4, for potential engineering applications due to their exceptional mechanical and electro-optic properties.

  4. Valence band offset at the Si/SiSn interface by applying deep level transient spectroscopy.

    PubMed

    Rangel-Kuoppa, Victor-Tapio; Tonkikh, Alexander; Zakharov, Nikolay; Eisenschmidt, Christian; Werner, Peter

    2016-02-19

    A set of Si1-x Sn x /Si(001) quantum wells (QWs) is grown by applying molecular beam epitaxy. The activation energies of holes in these QWs are studied by deep-level transient spectroscopy. It is observed that the holes activation energies increase monotonically with the Sn fraction (x). The valence band offset between pseudomorphic Si1-x Sn x and Si obeys the dependence ΔE(v) = 1.69x eV, while the offset between the average valence bands of unstrained Si1-x Sn x /Si heterojunction was deduced and obeys the dependence ΔE(v(av)) = 1.27x eV. PMID:26775681

  5. Si adatoms as catalyst for the growth of monolayer Al film on Si(111)

    NASA Astrophysics Data System (ADS)

    Teng, Jing; Zhang, Lixin; Wu, Kehui; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Ebert, Philipp; Sakurai, Toshio; Wang, Enge

    2010-03-01

    Recently, we reported the growth of atomically smooth Al(111) films on Si(111) with continuously controllable thickness down to the extreme level of 1 ML. Here, we study the underlying unexpected Si adatom-mediated clustering-melting mechanism by scanning tunneling microscopy and by the first-principles calculations. The Si adatoms in the initial Si(111)3x3-Al surface act as seeds to form SiAl2 clusters. The clusters are then transformed into Al(111)1x1 by incorporating further incoming Al atoms and spontaneously releasing the Si atoms, which then participate in the next cycle of the process. As a result, a two-dimensional growth of monolayer Al(111) is achieved.

  6. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Mei; Golberg, Dmitri; Bando, Yoshio; Fukata, Naoki

    2012-01-01

    A wafer-scale, low-cost solar cell based on n-ZnO/p-Si 3D heterojunction arrays on holey Si substrates has been fabricated. This device shows a power-conversion efficiency of 1.2% and high photosensitivity. The present n-ZnO/p-Si heterojunction architectures are envisaged as potentially valuable candidates for next-generation photovoltaics.A wafer-scale, low-cost solar cell based on n-ZnO/p-Si 3D heterojunction arrays on holey Si substrates has been fabricated. This device shows a power-conversion efficiency of 1.2% and high photosensitivity. The present n-ZnO/p-Si heterojunction architectures are envisaged as potentially valuable candidates for next-generation photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11752e

  7. Structure and defects at the SiC:SiO2 interface

    NASA Astrophysics Data System (ADS)

    Tuttle, Blair; Pantelides, Sokrates

    2010-03-01

    The pervasion of defects at the SiC:SiO2 interface has limited the performance and commercializing of SiC based transistors. While the defects are believed to be related to excess carbon in the interfacial region, no compelling microscopic models exists. Here we report the generation of microscopic interfaces models for the SiC:SiO2 interface. These models include a 1 nm amorphous oxide and several layers of crystalline SiC. Defect and defect reactions are explored. For instance, the 3-fold bonded carbon defect is calculated to have an acceptor level at Ev + 1.4 eV close to the value found experimentally and encouraging confidence in the methods employed. The recently discovered beneficial effect of sodium ions motivates our examination of the basic electrochemistry of the sodium ion interactions with the ideal and defected interfaces. A comparison between microscopic defect results and experiment will be presented.

  8. Silicon-silicon bonds in the oxide near the SiO 2/Si interface

    NASA Astrophysics Data System (ADS)

    Terada, Naozumi; Haga, Takashi; Miyata, Noriyuki; Moriki, Kazunori; Fujisawa, Masami; Morita, Mizuho; Ohmi, Tadahiro; Hattori, Takeo

    The contribution of the SiO 2/Si interface structure to optical absorption below the optical absorption edge of fused quartz was studied by measuring the reflectance of thermally grown ultrathin silicon oxide films. From the modified Kramers-Kronig analysis of reflectance, it was found that optical absorption at the photon energy of 7.8 eV arises from Si sbnd Si bonds in the oxide film within 1.4 nm of the interface. The approximate areal density of Si sbnd Si bonds is 7 × 10 14 cm -2 and is approximately equal to the areal density of silicon su☐ides determined by X-ray photoelectron spectroscopy.

  9. Characterization of Si and C implantation induced defects in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Kummari, Venkata; Dhoubhadel, Mangal; Rout, Bibhudutta; Reinert, Tilo; Spemann, Daniel; Jiang, Weilin; McDaniel, Floyd

    2011-10-01

    Silicon Carbide is considered to be a promising material for dilute magnetic semiconductors (DMSs). Past experimental studies reveal that ferromagnetism can be observed in SiC diluted with 3d transition metals. Recent studies, based on first principle calculations, show that for SiC monolayers, the presence of silicon vacancies (VSi) may induce local magnetization. However, no spin polarization occurs for carbon vacancies (VC), Si+C divacancies, and Si-C antisite defects. Ion implantation is an excellent technique to create vacancies for defect induced magnetism. We have implanted Si and C into 4H-SiC at low energy 60 keV to study the implantation defects for different fluences which corresponds to different percentages of simulated damages (e.g. 10 -- 60 %) obtained using Monte-Carlo simulations code SRIM/TRIM-2008. Defect disorder after ion implantation has been investigated using Rutherford Backscattering Spectrometry/Channeling (RBS/C) and Raman spectroscopy.

  10. Disilicon complexes with two hexacoordinate Si atoms: paddlewheel-shaped isomers with (ClN4 )Si-Si(S4 Cl) and (ClN2 S2 )Si-Si(S2 N2 Cl) skeletons.

    PubMed

    Wagler, Jörg; Brendler, Erica; Heine, Thomas; Zhechkov, Lyuben

    2013-10-11

    The reaction of 1-methyl-3-trimethylsilylimidazoline-2-thione with hexachlorodisilane proceeds toward substitution of four of the disilane Cl atoms during the formation of disilicon complexes with two neighboring hexacoordinate Si atoms. The N,S-bidentate methimazolide moieties adopt a buttressing role, thus forming paddlewheel-shaped complexes of the type ClSi(μ-mt)4 SiCl (mt=methimazolyl). Most interestingly, three isomers (i.e., with (ClN4 )SiSi(S4 Cl), (ClN3 S)SiSi(S3 NCl), and (ClN2 S2 )SiSi(S2 N2 Cl) skeletons as so-called (4,0), (3,1), and cis-(2,2) paddlewheels) were detected in solution by using (29) Si NMR spectroscopic analysis. Two of these isomers could be isolated as crystalline solids, thus allowing their molecular structures to be analyzed by using X-ray diffraction studies. In accord with time-dependent NMR spectroscopy, computational analyses proved the cis-(2,2) isomer with a (ClN2 S2 )SiSi(S2 N2 Cl) skeleton to be the most stable. The compounds presented herein are the first examples of crystallographically evidenced disilicon complexes with two SiSi-bonded octahedrally coordinated Si atoms and representatives of the still scarcely explored class of Si coordination compounds with sulfur donor atoms. PMID:24009095

  11. Solute embrittlement of SiC

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2014-09-01

    The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

  12. Solute embrittlement of SiC

    SciTech Connect

    Enrique, Raúl A.; Van der Ven, Anton

    2014-09-21

    The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

  13. La3Si6N11

    PubMed Central

    Yamane, Hisanori; Nagura, Toshiki; Miyazaki, Tomohiro

    2014-01-01

    Colorless transparent single crystals of trilanthanum hexa­silicon undeca­nitro­gen, La3Si6N11, were prepared at 0.85 MPa of N2 and 2273 K. The title compound is isotypic with Sm3Si6N11. Silicon-centered nitro­gen tetra­hedra form a three-dimensional network structure by sharing their corners. Layers of one type of SiN4 tetra­hedra and slabs composed of the two different La3+ cations and the other type of SiN4 tetra­hedra are alternately stacked along the c axis of the tetra­gonal unit cell. The site symmetries of the two La3+ cations are are ..m and 4.., respectively. PMID:24940184

  14. Comparison of SiC mirror approaches

    NASA Astrophysics Data System (ADS)

    Carrigan, Keith; Riso, Michael; Khatri, Shayna; Douglas, Christopher

    2013-09-01

    Silicon Carbide (SiC) mirrors hold many advantages over traditional optical materials and are increasingly common in optical systems. The wide range of optical applications necessitates different approaches to the manufacturing and finishing of SiC mirrors. Three key advancements have led to this differentiation: 1) manufacturing of CVD clad SiC mirrors in near cost and schedule parity with Zerodur, 2) super-polish of amorphous Silicon claddings, 3) low-roughness polishing results of bare reaction-bonded SiC aspheres. Three approaches which utilize these advancements will be discussed, each with its own strengths and weaknesses for specific applications. The relative schedules and performance of these approaches will also be compared, with Zerodur used as a reference.

  15. SI Units? A Camel is a Camel.

    ERIC Educational Resources Information Center

    Adamson, Arthur W.

    1978-01-01

    This paper is a summary of remarks made at a recent symposium on new directions in the teaching of physical chemistry. The author takes exception to the claims made for the International System of Units (SI). (HM)

  16. Cu2ZnSiS4

    PubMed Central

    Rosmus, Kimberly A.; Aitken, Jennifer A.

    2011-01-01

    Single crystals of Cu2ZnSiS4, dicopper(I) zinc silicon tetrasulfide, have been prepared via high-temperature solid-state synthesis. Cu2ZnSiS4 was found to have the wurtz-stannite structure type, like that of Li2CdGeS4, Li2CdSnS4, and Cu2CdSiS4. Each sulfur anion is tetra­hedrally coordinated by two Cu cations, one Si cation, and one Zn cation, forming a three-dimensional honeycomb structure. When viewed along the c axis, the atoms are aligned in rows in which each cation alternates with the sulfur anions. PMID:21753925

  17. SiGe nanowire growth and characterization.

    PubMed

    Qi, Cheng; Goncher, Gary; Solanki, Raj; Jordan, Jay

    2007-02-21

    Single-crystal SiGe nanowires were synthesized via the vapour-liquid-solid (VLS) growth mechanism using disilane and germane as precursor gases. We have investigated the effect of temperature, pressure, and the inlet gas ratio on the growth and stoichiometry of Si(x)Ge(1-x) nanowires. The nanowires were characterized using scanning and transmission electron microscopies and energy dispersive x-ray analysis. It was found that nanowires with a Si:Ge ratio of about 1 had smooth surfaces, whereas departure from this ratio led to rough surfaces. Electrical properties were then investigated by fabricating back-gated field effect transistors (using a focused ion beam system) where single SiGe nanowires served as the conduction channels. Gated conduction was observed although resistance in the undoped devices was high. PMID:21730497

  18. Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries.

    PubMed

    Zhang, Lin; Deng, Junwen; Liu, Lifeng; Si, Wenping; Oswald, Steffen; Xi, Lixia; Kundu, Manab; Ma, Guozhi; Gemming, Thomas; Baunack, Stefan; Ding, Fei; Yan, Chenglin; Schmidt, Oliver G

    2014-07-01

    Hierarchically designed SiOx /SiOy rolled-up bilayer nanomembranes are used as anodes for lithium-ion batteries. The functionalities of the SiO(x,y) layers can be engineered by simply controlling the oxygen content, resulting in anodes that exhibit a reversible capacity of about 1300 mA h g(-1) with an excellent stability of over 100 cycles, as well as a good rate capability. PMID:24788116

  19. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  20. Precautions toward XTEM of Si3N4/SiO2

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1991-01-01

    Severe difficulties are encountered in the preparation of oxidized Si3N4 specimens for XTEM transmission electromicroscopic inspection, in virtue of the extreme difference between Si3N4 and SiO2 mechanical properties. Attention is presently given to a preparation method in which an overlayer of the nitride is always occluded; this protects the oxide through most of the thinning that specimen preparation entails. An XTEM image of the oxide/nitride interface is presented.

  1. Microstructure, strength and toughness of Si3N4-SiC whisker composites

    SciTech Connect

    Champion, E.; Goursat, P.; Besson, J.L.; Madigou, V.; Monthioux, M.; Lespade, P.

    1992-10-01

    Si3N4-SiC whisker composites were fabricated using several routes (i.e., pressure filtration or CIP) followed by HP or HIP. The fracture strength ranges from 650 MPa to 750 MPa on account of the whiskers orientation. Compared to the Si3N4 matrix, the toughness is increased. A strong R-curve effect can be obtained, suggesting that, to be efficient, the whisker diameter must exceed a critical size. 13 refs.

  2. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V.; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G.; Pisano, Albert P.

    2013-02-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C-SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C-SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C-SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C-SiC/Si multilayer structure exhibits a phase velocity of 5528 m s-1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C-SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C-SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C-SiC layers are applicable to timing and sensing applications in harsh environments.

  3. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  4. Novel C Induced Structures on Si(111)

    NASA Astrophysics Data System (ADS)

    Flores, M.; Häberle, P.

    2003-12-01

    We report thermally induced roughness at the nanometer scale, formed in the process of obtaining the (7×7) reconstruction on Si(111). C contamination seems to be the precursor in the formation of the different structures associated to this roughness. The large scale rearrangements, observed after the SiO2 high temperature induced desorption, show various shapes, namely: pyramids, raspberry shapes and tori.

  5. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix

  6. Disilane-based cyclic deposition/etch of Si, Si:P and Si1-yCy:P layers: I. The elementary process steps

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Deguet, C.

    2013-02-01

    We have benchmarked the 550 °C, 20 Torr growth of Si:P and Si1-yCy:P using SiH4 and Si2H6. P segregation has prevented us from reaching P+ ion concentrations in Si higher than a few 1019 cm-3 using SiH4; the resulting surface ‘poisoning’ led to a severe growth rate reduction. Meanwhile, [P+] increased linearly with the phosphine flow when using Si2H6 as the Si precursor; values as high as 1.7 × 1020 cm-3 were obtained. The Si:P growth rate using Si2H6 was initially stable then increased as the PH3 flow increased. Mono-methylsilane flows 6.5-10 times higher were needed with Si2H6 than with SiH4 to reach the same substitutional C concentrations in intrinsic Si1-yCy layers ([C]subst. up to 1.9%). Growth rates were approximately six times higher with Si2H6 than with SiH4, however. 30 nm thick Si1-yCy layers became rough as [C]subst. exceeded 1.6% (formation of increasing numbers of islands). We have also studied the structural and electrical properties of ‘low’ and ‘high’ C content Si1-yCy:P layers (˜ 1.5 and 1.8%, respectively) grown with Si2H6. Adding significant amounts of PH3 led to a reduction of the tensile strain in the films. This was due to the incorporation of P atoms (at the expense of C atoms) in the substitutional sites of the Si matrix. Si1-yCy:P layers otherwise became rough as the PH3 flow increased. Resistivities lower than 1 mΩ cm were nevertheless associated with those Si1-yCy:P layers, with P atomic concentrations at most 3.9 × 1020 cm-3. Finally, we have quantified the beneficial impact of adding GeH4 to HCl for the low-temperature etching of Si. Etch rates 12-36 times higher with HCl + GeH4 than with pure HCl were achieved at 20 Torr. Workable etch rates close to 1 nm min-1 were obtained at 600 °C (versus 750 °C for pure HCl), enabling low-temperature cyclic deposition/etch strategies for the selective epitaxial growth of Si, Si:P and Si1-yCy:P layers on patterned wafers.

  7. Terbium induced nanostructures on Si(111)

    NASA Astrophysics Data System (ADS)

    Franz, M.; Große, J.; Kohlhaas, R.; Dähne, M.

    2015-07-01

    The growth of self-assembled Tb induced nanostructures on the Si(111) surface is investigated using scanning tunneling microscopy. Depending on the growth conditions, three regimes are identified in which different types of nanostructures appear. At very low Tb coverages and moderate growth temperatures, the 7 × 7 periodicity of the Si(111) surface remains intact and magic clusters form within single 7 × 7 half unit cells. In the intermediate regime of Tb coverages below one monolayer, the formation of different superstructures is observed. Here, a chain-like 5 × 2 superstructure, a 2√3 × 2√3 R30° superstructure, and elongated islands showing a 2 × 1 reconstruction on top are found. From a detailed study of the 5 × 2 superstructure it is demonstrated that it consists of alternating Si Seiwatz and Si honeycomb chains with rows of Tb atoms in the channels in between. Moreover, registry shifts between the Tb rows lead to different configurations of this superstructure. At coverages exceeding one monolayer, the growth of islands of two-dimensional TbSi2 monolayers and three-dimensional Tb3Si5 multilayers dominates.

  8. Roll Casting of Al-25%Si

    SciTech Connect

    Haga, Toshio; Harada, Hideto; Watari, Hisaki

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  9. Transparent conductor-Si pillars heterojunction photodetector

    SciTech Connect

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang

    2014-08-14

    We report a high-performing heterojunction photodetector by enhanced surface effects. Periodically, patterned Si substrates were used to enlarge the photo-reactive regions and yield proportionally improved photo-responses. An optically transparent indium-tin-oxide (ITO) was deposited on a Si substrate and spontaneously formed an ITO/Si heterojunction. Due to an electrical conductive ITO film, ITO/Si heterojunction device can be operated at zero-bias, which effectively suppresses the dark current, resulting in better performances than those by a positive or a negative bias operation. This zero-bias operating heterojunction device exhibits a short response time (∼ 22.5 ms) due to the physical reaction to the incident light. We revealed that the location of the space charge region (SCR) is crucial for a specific photon-wavelength response. The SCR space has the highest collection efficiency of the photo-generated carriers. The photo-response can be maximized when we design the photodetector by superposing the SCR space over a corresponding photon-absorption length. The surface enhanced Si pillar devices significantly improved the photo-responses ratios from that of a planar Si device. According to this design scheme, a high photo-response ratio of 5560% was achieved at a wavelength of 600 nm. This surfaced-enhanced heterojunction design scheme would be a promising approach for various photoelectric applications.

  10. Emission efficiency limit of Si nanocrystals

    PubMed Central

    Limpens, Rens; Luxembourg, Stefan L.; Weeber, Arthur W.; Gregorkiewicz, Tom

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 1012 cm12, which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible. PMID:26786062

  11. Modified SiC-MoSi2 Oxidation Protective Coating for SiC-COATED Carbon/carbon Composites Through Infiltrating Liquid Si

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng-Zhong; Li, He-Jun; Ma, Chao; Fu, Qian-Gang; Zhang, Yu-Lei; Wu, Heng; Tao, Jun

    To improve the oxidation resistance of the SiC-MoSi2 coating prepared by two-step pack cementation, a liquid Si infiltrating method was adopted to modify it. The phase composition and microstructure of the coatings were analyzed by XRD and SEM. The results show that the size and number of the cracks in the modified coating decreased evidently after infiltrating Si. The oxidation test results in air at 1773 K show that the mass loss of the SiC-MoSi2 coating coated carbon/carbon (C/C) composites was up to 1.18% after oxidation for 206 h, while that of the modified coating coated C/C composites was only 0.77% after oxidation for 460 h. The reason is that the cracks formed in the pack cementation process were partly sealed and there were no penetrable cracks in the modified coating. Therefore, there were no direct channels for the oxygen to diffuse into the C/C substrate.

  12. In vacuo growth studies of Ru thin films on Si, SiN, and SiO2 by high-sensitivity low energy ion scattering

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Sturm, J. M.; Yakshin, A. E.; Bijkerk, F.

    2016-08-01

    In vacuo high-sensitivity low energy ion scattering (HS-LEIS) has been used to investigate the initial growth stages of DC sputtered Ru on top of Si, SiN, and SiO2. The high surface sensitivity of this technique allowed an accurate determination of surface coverages and thicknesses required for closing the Ru layer on all three substrates. The Ru layer closes (100% Ru surface signal) at about 2.0, 3.2, and 4.7 nm on top of SiO2, SiN, and Si, respectively. In-depth Ru concentration profiles can be reconstructed from the Ru surface coverages when considering an error function like model. The large intermixing (4.7 nm) for the Ru-on-Si system is compared to the reverse system (Si-on-Ru), where only 0.9 nm intermixing occurs. The difference is predominantly explained by the strong Si surface segregation that is observed for Ru-on-Si. This surface segregation effect is also observed for Ru-on-SiN but is absent for Ru-on-SiO2. For this last system, in vacuo HS-LEIS analysis revealed surface oxygen directly after deposition, which suggests an oxygen surface segregation effect for Ru-on-SiO2. In vacuo XPS measurements confirmed this hypothesis based on the reaction of Ru with oxygen from the SiO2, followed by oxygen surface segregation.

  13. Theory of Si and C Pb Centers on the (111) Interfaces of the β-SiC-SiO2 System.

    NASA Astrophysics Data System (ADS)

    Fowler, W. Beall; Edwards, Arthur H.

    1997-03-01

    We report theoretical calculations on the Si and C Pb centers on the (111) interfaces of the β-SiC-SiO2 system. Our atomic cluster sizes are such that our results apply equally to (0001) 6H and 4H SiC-SiO2 interfaces. Using semiempirical quantum mechanical (MOPAC 6.0)(J. J. P. Stewart, MOPAC 6.0, QCPE 455) (1990). and ab-initio (GAMESS)(M. W. Schmidt et) al., J. Comput. C hem. 14, 1347 (1993). codes, we have calculated equilibrium geometries and have predicted ^29Si and ^14C hyperfine parameters and electrical level positions. We have also used a modified(W. B. Fowler and R. J. El liott, Phys. Rev. B34), 5525 (1986). Haldane-Anderson approach to estimate level positions and defect charge s. Compared with the Pb center on the (111) Si-SiO2 interface, we predict greater atomic relaxations for the Si Pb and smaller atomic relaxations for the C P_b. Furthermore, we predict a large increase in hyperfine constants for the Si Pb as compared with that on the Si-SiO2 interface. For the Si P_b, both -/0 and 0/+ levels are predicted to lie in the upper half of the SiC gap; for the C Pb the -/0 level is predicted to lie in the upper half and the 0/+ level in the lower half of the gap.

  14. Toward 17µm pitch heterogeneously integrated Si/SiGe quantum well bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ericsson, Per; Fischer, Andreas C.; Forsberg, Fredrik; Roxhed, Niclas; Samel, Björn; Savage, Susan; Stemme, Göran; Wissmar, Stanley; Öberg, Olof; Niklaus, Frank

    2011-06-01

    Most of today's commercial solutions for un-cooled IR imaging sensors are based on resistive bolometers using either Vanadium oxide (VOx) or amorphous Silicon (a-Si) as the thermistor material. Despite the long history for both concepts, market penetration outside high-end applications is still limited. By allowing actors in adjacent fields, such as those from the MEMS industry, to enter the market, this situation could change. This requires, however, that technologies fitting their tools and processes are developed. Heterogeneous integration of Si/SiGe quantum well bolometers on standard CMOS read out circuits is one approach that could easily be adopted by the MEMS industry. Due to its mono crystalline nature, the Si/SiGe thermistor material has excellent noise properties that result in a state-ofthe- art signal-to-noise ratio. The material is also stable at temperatures well above 450°C which offers great flexibility for both sensor integration and novel vacuum packaging concepts. We have previously reported on heterogeneous integration of Si/SiGe quantum well bolometers with pitches of 40μm x 40μm and 25μm x 25μm. The technology scales well to smaller pixel pitches and in this paper, we will report on our work on developing heterogeneous integration for Si/SiGe QW bolometers with a pixel pitch of 17μm x 17μm.

  15. Si diffusion path for pit-free graphene growth on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Sun, G. F.; Liu, Y.; Rhim, S. H.; Jia, J. F.; Xue, Q. K.; Weinert, M.; Li, L.

    2011-11-01

    Density functional theory calculations reveal that the interfacial 63 × 63 structure [a warped graphene layer with periodic inclusions of pentagon-hexagon-heptagon (H5,6,7) defects] facilitates a Si diffusion path vertically through the interface layer during epitaxial growth of graphene on SiC(0001). The calculated diffusion barrier is 4.7 eV, competitive with Si interstitial diffusion of ˜3.5 eV in SiC [M. Bockstedte , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.68.205201 68, 205201 (2003)]. Scanning tunneling microscopy study shows that, for growth in an Ar background, where Si desorption is suppressed and all diffusion channels contribute, graphene films with reduced pit density can be grown on nominally flat SiC substrates. On the other hand, for Si diffusion-limited growth in ultrahigh vacuum, the Si interstitial diffusion is the energetically favorable path where the step edges serve as the necessary outlet toward Si desorption. The much higher density of step edges on vicinal substrates also facilitates the growth of pit-free graphene.

  16. Growth of Si thin film on 6H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Ju; Hoang, M. Tien; Li, Yuntao; First, Phillip N.

    2015-03-01

    Graphene is much studied for its unusual electronic properties. Other carbon group elements such as silicon (Si) and germanium (Ge) also are predicted to have stable 2D phases for which the electronic structure and properties could be still more interesting. Silicon carbide, already an excellent insulating substrate for epitaxial graphene, could potentially play a similar role for silicene. Commonalities in the substrate and processing may lead to the integration of carbon and silicon technologies. Here, we use surface analysis techniques (LEED, AES, STM) to investigate the formation of 2D Si on SiC(0001), under low pressures of silane or silicon. Similar methods allow control of surface graphene growth by compensating Si desorption from SiC. Among several Si-rich reconstructions, we find a single stable hexagonal phase, at a coverage close to twice the Si density predicted for silicene, and with a unit cell consistent with a commensurate layer of silicene or silicane. For a graphitized SiC starting surface, silane is shown to etch graphene, reforming SiC. Work supported in part by NSF (DMR-1106131, DMR-0820382 [MRSEC]).

  17. Joining of machined SiC/SiC composites for thermonuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Ferraris, Monica; Salvo, Milena; Casalegno, Valentina; Ciampichetti, Andrea; Smeacetto, Federico; Zucchetti, Massimo

    2008-04-01

    A low-activation glass-ceramic based on silica, alumina and yttria has been designed and tested as joining material for 2D fusion grade SiC/SiC. Neutron-induced radioactivity of elements present in the glass has been simulated by European Activation System EASY-2007 code package. The mechanical strength of the joined SiC/SiC has been tested by 4-point bending on three different kinds of joined samples. Bending strength higher than 120 MPa has been measured at room temperature, with composite failure in most cases.

  18. Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces

    SciTech Connect

    Warren, Emily L.; Kibbler, Alan E.; France, Ryan M.; Norman, Andrew G.; Olson, Jerry M.; McMahon, William E.

    2015-06-14

    Antiphase-domain (APD) free growth of GaP on Si has been achieved on Si surfaces prepared in situ by etching with AsH3. The pre-nucleation AsH3 etching removes O and C contaminants at a relatively low temperature, and creates a single-domain arsenic-terminated Si surface. The As-As dimer rows are all parallel to the step edges, and subsequent GaP growth by MOCVD retains this dimerization orientation. Both LEED and TEM indicate that the resulting epilayer is APD-free, and could thereby serve as a template for III-V/Si multijunction solar cells.

  19. Behavior of Au-Si droplets in Si(001) at high temperatures

    NASA Astrophysics Data System (ADS)

    Shao, Y. M.; Nie, T. X.; Jiang, Z. M.; Zou, J.

    2012-07-01

    The transport behavior of Au-Si droplets near the Si(001) surface at elevated temperatures is investigated using transmission electron microscopy. It has been found that Au-Si droplets move differently under different temperatures, which lead to the formation of SiOx surface islands on top of droplets, and result in the lateral movements of smaller droplets away from their corresponding surface islands. Since Au droplets have been widely used as catalysts to induce semiconductor nanowires, this study provides insight behavior of Au containing droplets on semiconductor surfaces, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  20. Response of SiC/SiC to Transient Thermal Conditions: A Review

    SciTech Connect

    Jones, Russell H.

    2001-06-30

    The database on thermal shock behavior of SiC/SiC composites is very limited. The existing data suggests continuous fiber ceramic matrix composites, such as SiC/SiC, exhibit very good thermal shock characteristics but most data was obtained for -Delta T conditions as a result of quenching from an elevated temperature. Thermal shock in a fusion energy system will result from plasma discharge and will result in a +Delta T. One study was reported for SiC/SiC composites given a +Delta T with no loss in strength following 25 cycles at a heating rate of 1700 degrees C/s. Monolithic SiC failed in 1.5 cycles at a heating rate of 1400 degrees C/s. Thermal fatigue test results also suggest that SiC/SiC composites will exhibit little or no degradation for 100's of cycles. It was estimated that radiation could, in an extreme case, cause a reduction in the thermal shock performance from a calculated Delta Tc of 957K to about 300K if the fiber strength is reduced by 50%. Newer composites with greater radiation resistance should have a much smaller change in the Delta Tc.

  1. Dislocation engineering in SiGe heteroepitaxial films on patterned Si (001) substrates

    SciTech Connect

    Gatti, R.; Boioli, F.; Montalenti, F.; Miglio, Leo; Grydlik, M.; Brehm, M.; Groiss, H.; Glaser, M.; Fromherz, T.; Schaeffler, F.

    2011-03-21

    We demonstrate dislocation engineering without oxide masks. By using finite element simulations we show how nanopatterning of Si substrates with (111) trenches provides anisotropic elastic relaxation in a SiGe film, generates preferential nucleation sites for dislocation loops, and allows for dislocation trapping, leaving wide areas free of threading dislocations. These predictions are confirmed by atomic force and transmission electron microscopy performed on overcritical Si{sub 0.7}Ge{sub 0.3} films. These were grown by molecular beam epitaxy on a Si(001) substrate patterned with periodic arrays of selectively etched (111)-terminated trenches.

  2. The Present Status of SiC/SiC R & D for Nuclear Application in Japan

    NASA Astrophysics Data System (ADS)

    Kohyama, Akira

    2011-10-01

    SiC/SiC R & D for nuclear application in Japan is quite active under the coordinated activities of Atomic Energy Society of Japan's committee on "Applications of Ceramic Materials for Advanced Nuclear Power Systems" and mainly government funded nuclear engineering/materials activities collaborating academia and industries. Start with the brief introduction of those activities, representing research activities are introduced. ITER and BA related SiC/SiC activities are emphasized, followed by introductions of extensive OASIS, Muroran Institute of Technology activities. The importance of international collaboration and strategic planning is mentioned.

  3. Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111).

    PubMed

    Teng, Jing; Zhang, Lixin; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Ebert, Philipp; Sakurai, T; Wu, Kehui

    2010-07-01

    The formation mechanism of monolayer Al(111)1x1 film on the Si(111) radical3x radical3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the radical3x radical3-Al substrate play important roles in the growth process. The growth of Al-1x1 islands is mediated by the formation and decomposition of SiAl(2) clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. PMID:20614981

  4. Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites

    NASA Technical Reports Server (NTRS)

    Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.

    2002-01-01

    Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.

  5. Si=Si Double Bonds: Synthesis of an NHC-Stabilized Disilavinylidene.

    PubMed

    Ghana, Priyabrata; Arz, Marius I; Das, Ujjal; Schnakenburg, Gregor; Filippou, Alexander C

    2015-08-17

    An efficient two-step synthesis of the first NHC-stabilized disilavinylidene (Z)-(SIdipp)Si=Si(Br)Tbb (2; SIdipp=C[N(C6H3-2,6-iPr2)CH2]2, Tbb=C6H2-2,6-[CH(SiMe3)2]2-4-tBu, NHC=N-heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2-dibromodisilene (E)-Tbb(Br)Si=Si(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC-stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) (1). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC-stabilized disilavinylidene 2. Both low-valent silicon compounds were comprehensively characterized by X-ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum-chemical methods. PMID:26136260

  6. X-ray absorption spectroscopy from H-passivated porous Si and oxidized Si nanocrystals

    SciTech Connect

    Schuppler, S.; Marcus, M.A.; Friedman, S.L.

    1994-11-01

    Quantum confinement in nanoscale Si structures is widely believed to be responsible for the visible luminescence observed from anodically etched porous silicon (por-Si), but little is known about the actual size or shape of these structures. Extended x-ray absorption fine structure data from a wide variety of por-Si samples show significantly reduced average Si coordination numbers due to the sizable contribution of surface-coordinated H. (The IUSI ratios, as large as 1.2, were independently confirmed by ir-absorption and {alpha}-recoil measurements.) The Si coordinations imply very large surface/volume ratios, enabling the average Si structures to be identified as crystalline particles (not wires) whose dimensions are typically <15 {Angstrom}. Comparison of the size-dependent peak luminescence energies with those of oxidized Si nanocrystals, whose shapes are known, shows remarkable agreement. Furthermore, near-edge x-ray absorption fine structure measurements of the nanocrystals shows the outer oxide and interfacial suboxide layers to be constant over a wide range of nanocrystal sizes. The combination of these results effectively rules out surface species as being responsible for the observed visible luminescence in por-Si, and strongly supports quantum confinement as the dominant mechanism occurring in Si particles which are substantially smaller than previously reported or proposed.

  7. Specimen size effect considerations for irradiation studies of SiC/SiC

    SciTech Connect

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H.

    1996-10-01

    For characterization of the irradiation performance of SiC/SiC, limited available irradiation volume generally dictates that tests be conducted on a small number of relatively small specimens. Flexure testing of two groups of bars with different sizes cut from the same SiC/SiC plate suggested the following lower limits for flexure specimen number and size: Six samples at a minimum for each condition and a minimum bar size of 30 x 6.0 x 2.0 mm{sup 3}.

  8. High thermal conductivity SiC/SiC composites for fusion applications

    SciTech Connect

    Withers, J.C.; Kowbel, W.; Loutfy, R.O.

    1997-04-01

    SiC/SiC composites are considered for fusion applications due to their neutron irradiation stability, low activation, and good mechanical properties at high temperatures. The projected magnetic fusion power plant first wall and the divertor will operate with surface heat flux ranges of 0.5 to 1 and 4 to 6 MW/m{sup 2}, respectively. To maintain high thermal performance at operating temperatures the first wall and divertor coolant channels must have transverse thermal conductivity values of 5 to 10 and 20 to 30 W/mK, respectively. For these components exposed to a high energy neutron flux and temperatures perhaps exceeding 1000{degrees}C, SiC/SiC composites potentially can meet these demanding requirements. The lack of high-purity SiC fiber and a low through-the-thickness (transverse) thermal conductivity are two key technical problems with currently available SiC/SiC. Such composites, for example produced from Nicalon{trademark} fiber with a chemical vapor infiltrated (CVI) matrix, typically exhibit a transverse conductivity value of less than 8 W/mK (unirradiated) and less than 3 W/mK after neutron irradiation at 800{degrees}C. A new SiC/SiC composite fabrication process has been developed at MER Corp. This paper describes this process, and the thermal and mechanical properties which are observed in this new composite material.

  9. Fe-Si networks in Na2FeSiO4 cathode materials.

    PubMed

    Wu, P; Wu, S Q; Lv, X; Zhao, X; Ye, Z; Lin, Z; Wang, C Z; Ho, K M

    2016-08-24

    Using a combination of adaptive genetic algorithm search, motif-network search scheme and first-principles calculations, we have systematically studied the low-energy crystal structures of Na2FeSiO4. We show that the low-energy crystal structures with different space group symmetries can be classified into several families based on the topologies of their Fe-Si networks. In addition to the diamond-like network which is shared by most of the low-energy structures, another three robust Fe-Si networks are also found to be stable during the charge/discharge process. The electrochemical properties of representative structures from these four different Fe-Si networks in Na2FeSiO4 and Li2FeSiO4 are investigated and found to be strongly correlated with the Fe-Si network topologies. Our studies provide a new route to characterize the crystal structures of Na2FeSiO4 and Li2FeSiO4 and offer useful guidance for the design of promising cathodes for Na/Li ion batteries. PMID:27523264

  10. Oxidation of thin ErSi 1.7 overlayers on Si(111)

    NASA Astrophysics Data System (ADS)

    Guerfi, N.; Tan, T. A. Nguyen; Veuillen, J. Y.; Lollman, D. B.

    The oxidation of ErSi 1.7 thin films, epitaxially grown on Si(111)(7×7) surfaces by solid phase epitaxy, has been investigated by X-ray and UV photoelectron spectroscopies. Oxidation has been carried out at room temperature under low pressure (≤ 2×10 -5mbar) and 1 atm of oxygen, and at 700°C under 2 × 10 -5 mbar of oxygen. In all cases, both Si and Er react with oxygen. At room temperature the reaction depends on the pressure. Under low pressure the silicide surface is rather inert: a chemisorption phase of oxygen on Si and Er is detected only after exposures < 10 3 langmuir. High oxygen pressure produces a thin layer of mixed SiO 2, Si su☐ides and Er 2O 3. At 700°C, SiO 2 and Er 2O 3 are simultaneously formed, thus implying the decomposition of the silicide. The oxide layer has a SiO 2 termination at the surface. Only about half of the decomposed Si atoms react with oxygen. The preferential oxidation of Er is attributed to the high value of the heat of formation of Er 2O 3. An oxidation mechanism is proposed.

  11. siRNA Delivery to the Glomerular Mesangium Using Polycationic Cyclodextrin Nanoparticles Containing siRNA

    PubMed Central

    Gale, Aaron; Wu, Peiwen; Ma, Rong; Davis, Mark E.

    2015-01-01

    There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs. PMID:25734248

  12. ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars

    SciTech Connect

    Wang, Dong Yan, Yong; Schaaf, Peter; Sharp, Thomas; Schönherr, Sven; Ronning, Carsten; Ji, Ran

    2015-01-01

    Porous Si nanopillar arrays are used as templates for atomic layer deposition of ZnO and TiO{sub 2}, and thus, ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars are fabricated. The diffusion of the precursor molecules into the inside of the porous structure occurs via Knudsen diffusion and is strongly limited by the small pore size. The luminescence of the ZnO/porous-Si nanocomposite nanopillars is also investigated, and the optical emission can be changed and even quenched after a strong plasma treatment. Such nanocomposite nanopillars are interesting for photocatalysis and sensors.

  13. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    SciTech Connect

    Talochkin, A. B. Chistokhin, I. B.

    2011-07-15

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest 'quantum box' model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  14. Formation and characterization of SiC/Si heterostructures by MEVVA implantation

    NASA Astrophysics Data System (ADS)

    Chen, Dihu

    High dose carbon implantation into Si to form silicon carbide (SiC) was performed using a metal vapor vacuum arc (MEVVA) ion source under various conditions. The phase formation characteristics, nucleation and growth kinetics, microstructures and other properties were systematically studied using Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), transmission electron microscopy (TEM), Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), and electron field emission measurements. A consistent scheme to de-convolute the FTIR spectra of SiC layers into amorphous and crystalline SiC components was devised. Results showed that at a fixed dose, the total amount of SiC formed increased linearly with the implant energy and at a fixed energy, it increased with a fractional power of the implant dose (D0.41). It was also found that there is a critical implant energy at a fixed implant dose and a critical dose at a fixed implant energy, at which the crystalline 3C-SiC fraction increases abruptly. Existence of the critical energy and dose is discussed in terms of the ion beam induced crystallization (IBIC) effect. The crystalline 3C-SiC fraction in the as-implanted samples was found to depend significantly on the order of the dual-energy implantation as a result of the IBIC effect. The phase formation characteristics and growth kinetics of the SiC layers during annealing were studied by deconvolution of the FTIR spectra. It was found that the total amount of SiC formed increased upon annealing, indicating that in the as-implanted samples, not all the implanted C atoms were bonded to Si atoms. During annealing, besides the transformation reaction of a-SiC to 3C-SiC, there is also the reaction between the unbonded C atoms and the host Si atoms to form 3C-SiC. It was also shown that the carbon composition depth profile in the as-implanted samples was a Gaussian

  15. Evaluation of band offset at amorphous-Si/BaSi2 interfaces by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Takabe, Ryota; Takeuchi, Hiroki; Du, Weijie; Ito, Keita; Toko, Kaoru; Ueda, Shigenori; Kimura, Akio; Suemasu, Takashi

    2016-04-01

    The 730 nm-thick undoped BaSi2 films capped with 5 nm-thick amorphous Si (a-Si) intended for solar cell applications were grown on Si(111) by molecular beam epitaxy. The valence band (VB) offset at the interface between the BaSi2 and the a-Si was measured by hard x-ray photoelectron spectroscopy to understand the carrier transport properties by the determination of the band offset at this heterointerface. We performed the depth-analysis by varying the take-off angle of photoelectrons as 15°, 30°, and 90° with respect to the sample surface to obtain the VB spectra of the BaSi2 and the a-Si separately. It was found that the barrier height of the a-Si for holes in the BaSi2 is approximately -0.2 eV, whereas the barrier height for electrons is approximately 0.6 eV. This result means that the holes generated in the BaSi2 layer under solar radiation could be selectively extracted through the a-Si/BaSi2 interface, promoting the carrier separation in the BaSi2 layer. We therefore conclude that the a-Si/BaSi2 interface is beneficial for BaSi2 solar cells.

  16. Particles cellulation composite (PCC): Dispersion morphology of SiC particles in Si{sub 3}N{sub 4}/SiC composites

    SciTech Connect

    Yamada, K.; Kamiya, N.

    1995-10-01

    Dispersion morphology of fine SiC particles in Si{sub 3}N{sub 4}/xSiC (x = 0, 10, 20, 30wt%, average size: 0.03 {micro} m) composites was statistically analyzed, and typical properties of the composites such as creep, electric and thermal conductivity were investigated. The dispersion morphology of SiC particles was analyzed by observing the ECR-plasma etched surface of the sintered composites using scanning electron microscopy. SiC particles in Si{sub 3}N{sub 4}/SiC composites were distributed both within Si{sub 3}N{sub 4} grains and on Si{sub 4}N{sub 4} grain boundary, but 90% or more of them was located on the grain boundary. For the composites with 20--30 wt%SiC, the SiC particles on the grain boundary clearly formed a three-dimensional network structure surrounding a few or more Si{sub 3}N{sub 4} crystalline grains. A Si{sub 3}N{sub 4}/SiC composite with a three-dimensional network structure of SiC particles, named particles cellulation composite (PCC), was artificially made by pressing the granulated Si{sub 3}N{sub 4} powder (less than 500 {micro} m diameter) discontinuously coated with SiC particles (average size: 0.4 {micro}m). The creep deformation of PCC was reduced to about 60% of that of the composites with SiC particles randomly dispersed. Electrical and thermal properties were also improved. These results suggest that the formation of three-dimensional network structure by the second phase particles in a composite would considerably improve its mechanical property as well as electrical and thermal properties.

  17. Expanding the Repertoire of Molecular Linkages to Silicon: Si-S, Si-Se, and Si-Te Bonds.

    PubMed

    Hu, Minjia; Liu, Fenglin; Buriak, Jillian M

    2016-05-01

    Silicon is the foundation of the electronics industry and is now the basis for a myriad of new hybrid electronics applications, including sensing, silicon nanoparticle-based imaging and light emission, photonics, and applications in solar fuels, among others. From interfacing of biological materials to molecular electronics, the nature of the chemical bond plays important roles in electrical transport and can have profound effects on the electronics of the underlying silicon itself, affecting its work function, among other things. This work describes the chemistry to produce ≡Si-E bonds (E = S, Se, and Te) through very fast microwave heating (10-15 s) and direct thermal heating (hot plate, 2 min) through the reaction of hydrogen-terminated silicon surfaces with dialkyl or diaryl dichalcogenides. The chemistry produces surface-bound ≡Si-SR, ≡Si-SeR, and ≡Si-TeR groups. Although the interfacing of molecules through ≡Si-SR and ≡Si-SeR bonds is known, to the best of our knowledge, the heavier chalcogenide variant, ≡Si-TeR, has not been described previously. The identity of the surface groups was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and depth profiling with time-of-flight-secondary ionization mass spectrometry (ToF-SIMS). Possible mechanisms are outlined, and the most likely, based upon parallels with well-established molecular literature, involve surface silyl radicals or dangling bonds that react with either the alkyl or aryl dichalcogenide directly, REER, or its homolysis product, the alkyl or aryl chalcogenyl radical, RE· (where E = S, Se, and Te). PMID:27055056

  18. Use of SI Metric Units Misrepresented in College Physics Texts.

    ERIC Educational Resources Information Center

    Hooper, William

    1980-01-01

    Summarizes results of a survey that examined 13 textbooks claiming to use SI units. Tables present data concerning the SI and non-SI units actually used in each text in discussion of fluid pressure and thermal energy, and data concerning which texts do and do not use SI as claimed. (CS)

  19. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    Doug Schulz

    2010-12-09

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  20. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    D.L. Schulz; J.M. Hoey; J. Smith; J. Lovaasen; C. Braun; X. Dai; K. Anderson; A. Elangovan; X. Wu; S. Payne; K. Pokhodnya; I. Akhatov; L. Pederson; P. Boudjouk

    2010-12-01

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  1. Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1989-01-01

    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by an Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced.

  2. Surface photovoltage studies of Si nanocrystallites prepared by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Patel, B. K.; Rath, S.; Sahu, S. N.

    2006-06-01

    Nanocrystalline Si has been prepared by anodic etching of Si in an electrolyte consisting of ethanol and HF. The structure and surface morphology have been studied using transmission electron microscopy which reveal the cubic structure and porous morphology of Si nanocrystals (NCs). Electrochemical etching has resulted in surface oxidation of Si NCs as confirmed from X-ray photoelectron spectroscopic measurements. The average size of the Si NCs has been estimated from the line broadening analysis of the Raman scattering. Unique optical transitions associated with porous Si/SiO2 quantum well (QW) like structure has been investigated by surface photovoltage (SPV) measurements.

  3. Si transfers during Archean weathering processes traced by silicon isotopes and Ge/Si ratios

    NASA Astrophysics Data System (ADS)

    Delvigne, Camille; Opfergelt, Sophie; Hofmann, Axel; Cardinal, Damien; André, Luc

    2015-04-01

    Weathering conditions in the Mesoarchean are poorly constrained. Recent advances in analytical capabilities have added Si isotopes and Ge/Si ratios to the repertoire of tracers used in the study of soil formation processes: neoformation of secondary clay minerals is associated with large Si isotope and Ge/Si fractionation in response to desilication processes and the weathering degree [1, 2, 3, 4]. Here we combine Si isotopes and Ge/Si ratios of a Mesoarchean paleosol (~2.95 Ga) and of nearly coeval but younger shales as proxies of weathering processes and Si mass transfer at the early Earth's surface. The paleosol is developed on andesite and shows a well defined mineralogical and chemical differentiation. In a first step, similar to modern soils, neoformation of secondary clay minerals in the paleosol was associated with fractionation of Si isotopes and Ge/Si ratios in response to chemical weathering degree and soil desilication. In a second step, the loss of Fe(II)-rich minerals, likely Fe-rich smectites, due to low pO2 conditions produced additional control on Si and Ge mobilities. Opposite fractionation behaviors are observed: products of desilication acted as 28Si and Ge sink while the leaching of Fe(II)-rich minerals released 28Si and Ge to soil solutions. Furthermore, the shales deposited immediately after the paleosol display δ30Si and Ge/Si compositions which may be explained as mixtures of the recognized Archean paleosols components. Their recording within the sedimentary pile suggests that the observed weathering-induced desilication might have been widely effective during the Mesoarchean as well as Fe(II)-rich minerals leaching in a lesser extent and pointing out these processes as determinant in the Si transfers from continents to hydrosphere. [1] Kurtz et al., (2002) Geochim. Cosmochim. Acta 66, 1525-1537 [2] Ziegler et al., (2005) Geochim. Cosmochim. Acta 69, 4597-4610. [3] Opfergelt et al., (2010) Geochim. Cosmochim. Acta 74, 225-240. [4

  4. Eu-doped Si-SiO2 core-shell nanowires for Si-compatible red emission.

    PubMed

    Xu, Jinyou; Guo, Pengfei; Zou, Zhijun; Lu, Yang; Yan, Hailong; Luo, Yongsong

    2016-09-30

    The indirect bandgap of single-crystalline silicon has so far precluded the full integration of silicon microelectronics with photonics-which is expected to allow the realization of low-cost, high-speed optical information processing and communication in the future. Here we report the growth of europium (Eu)-doped Si-SiO2 core-shell nanowires by an oxide-assisted chemical vapor deposition method. The Eu concentration in these nanowires is effectively improved by intentionally increasing the thickness of SiO2 shells. As a result, a strong Si-compatible red emission from Eu(3+) ions was observed under laser illumination. The effect of Eu(3+) concentration on the emission efficiency was comprehensively studied, with the highest efficiency at Eu content about 0.8 at%. The relaxation mechanism of this concentration dependent luminescence was further explored through lifetime measurements. In light of the strong characteristic red emission and nanoscale footprint, these nanowires are promising Si-compatible light emission materials for future integrated nanophotonics. PMID:27560836

  5. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Ting; Yang, Kuo-Ching; Liao, Po-Hsiang; George, Tom; Li, Pei-Wen

    2016-02-01

    We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5‑90 nm), the SiO2 thickness (3‑4 nm), and as well the SiGe-shell thickness (2‑15 nm) has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS) devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5) in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge) MOS nanoelectronic and nanophotonic applications.

  6. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K.

    2016-05-01

    The existence of two distinct crystalline phases viz., Si2Te3 and SiTe2, in the Si-Te system is established from differential thermal analysis (DTA) studies. Thermo-gravimetric (TG) data on SiTe2 indicate that the compound decomposes to Si in multiple steps via intermediate Si2Te3 phase. X-ray diffraction (XRD) reveals that SiTe2 crystallizes in P 3 ̅m1 space group with CdI2 trigonal structure, whereas Si2Te3 crystallizes in trigonal structure with space group P 3 ̅1c with varying occupation of octahedral voids. Single Si atoms fill only 1/2 of the octahedral voids in SiTe2 structure whereas in Si2Te3, Si atoms are arranged in pairs occupying 2/3 of the octahedral voids in alternating planes along c-axis. Further, X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) confirm the distinctness of the chemical environment in the two crystalline structures confirming the uniqueness of both the phases. DTA results on the two compounds indicate the presence of one crystallographic phase-transition in each of the compound with transition temperatures at 441 °C for Si2Te3 and 392 °C for SiTe2. At the same time both Si2Te3 and SiTe2 undergo peritectic decomposition at 683 °C and 432 °C forming [Si(s)+Te(liq)] and [α-Si2Te3(s)+Te(liq)], respectively. The system revealed eutectic reaction between β-SiTe2 and Te at 398 °C [L=Te+SiTe2]. Consequently, the phase diagram in the Si-Te system has been delineated.

  7. Si(SiMe3)2SiPh3 - a ligand for novel sub-valent tin cluster compounds.

    PubMed

    Klink, R; Schrenk, C; Schnepf, A

    2014-11-14

    For the synthesis of metalloid tin cluster compounds applying the disproportionation reaction of a Sn(i) halide, silyl ligands, especially the symmetric Si(SiMe3)3 has proven to be extremely useful. Silyl ligands of lower symmetry where e.g. one SiMe3 group is substituted with SiPh3 are thereby unexplored, although the synthesis of the anionic silyl precursors is quite easy, referring to previously described methods. Here the synthesis of the silanide [Si(SiMe3)2(SiPh3)](-) as its potassium () as well as its lithium salt () in excellent yield is presented. proved to be a suitable starting material for the synthesis of subvalent tin compounds as shown by the reaction with tin halides in oxidation state +2 (SnCl2) and +1 (SnCl); i.e. on the one hand the anticipated stannide [Sn(Si(SiMe3)2SiPh3)2Cl](-) could be isolated and on the other hand the unexpectedly partly substituted ring compound Cl4Sn4[Si(SiMe3)2SiPh3]4 is obtained. As no elemental tin is formed during the reaction with SnCl, metalloid tin clusters may be present in solution too, which is supported by the nearly black color of the reaction mixture, showing that might be a suitable ligand for the synthesis of such cluster compounds. PMID:25242586

  8. Morphology of α-Si3N4 in Fe-Si3N4 prepared via flash combustion

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Jun-hong; Su, Jin-dong; Yan, Ming-wei; Sun, Jia-lin; Li, Yong

    2015-12-01

    The state and formation mechanism of α-Si3N4 in Fe-Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that α-Si3N4 crystals exist only in the Fe-Si3N4 dense areas. When FeSi75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The product between Si gas and N2 is a mixture of α-Si3N4 and β-Si3N4. At the later stage of the flash combustion process, α-Si3N4 crystals dissolve and reprecipitate as β-Si3N4 and the β-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe-Si3N4. The phase composition of flash-combustion-synthesized Fe-Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and the α→β transformation in the later stage.

  9. The revolution in SiGe: impact on device electronics

    NASA Astrophysics Data System (ADS)

    Harame, D. L.; Koester, S. J.; Freeman, G.; Cottrel, P.; Rim, K.; Dehlinger, G.; Ahlgren, D.; Dunn, J. S.; Greenberg, D.; Joseph, A.; Anderson, F.; Rieh, J.-S.; Onge, S. A. S. T.; Coolbaugh, D.; Ramachandran, V.; Cressler, J. D.; Subbanna, S.

    2004-03-01

    SiGe is having a major impact in device electronics. The most mature application is the SiGe BiCMOS technology which is in production throughout the world. The areas of most rapid growth are in CMOS where SiGe is being considered for a wide variety of elements including raised S/D, poly-SiGe Gates, in buffer layers to create a tensile strained Si layer, and as the conducting channel in MODFETs.

  10. Synthesis of micro-sized interconnected Si-C composites

    DOEpatents

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  11. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    NASA Astrophysics Data System (ADS)

    Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid

    2016-03-01

    Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 – 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 – 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy

  12. Disilane-based cyclic deposition/etch of Si, Si:P and Si1-yCy:P layers: II. The CDE features

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Prévitali, B.; Batude, P.

    2013-02-01

    We have developed innovative cyclic deposition/etch (CDE) processes in order to grow Si, Si:P and Si1-yCy:P raised sources and drains (RSDs) on patterned wafers. A Si2H6 + PH3 + SiCH6 chemistry was used for the 550 °C growth steps. Meanwhile, the selective etch of poly-crystalline layers on dielectrics was conducted at 600 °C with HCl + GeH4. We have first studied the specifics of those isobaric (P = 20 Torr) CDE processes on bulk, blanket Si(0 0 1) substrates. CDE-grown Si, Si:P and Si1-yCy(:P) layers were high crystalline quality and smooth, although these also contained 2-3% of Ge. Due to the preferential incorporation of P atoms in the lattice, the ‘apparent’ substitutional C content was higher for intrinsic than for in situ phosphorous-doped layers (1.29% versus 1.17% and 1.59% versus 1.47% for the two SiCH6 mass-flows probed). The atomic P concentration in our Si1-yCy:P layers was close to 2.6 × 1020 cm-3, versus 2.1 × 1020 cm-3 in the Si:P layers. The Si, Si:P and Si1-yCy(:P) thickness deposited in each CDE cycle decreased linearly as the HCl+GeH4 etch time increased, with the ‘equivalent’ etch rate (i.e. the slope of this linear decrease) being lower in intrinsic than in in situ doped layers. Higher C contents resulted in lower ‘equivalent’ etch rates. A CDE strategy suppressed the surface roughening occurring for high C content, several tens of nm thick Si1-yCy:P layers grown in one step only. We have then calibrated, for 19-23 nm thick CDE-grown Si, Si:P and Si1-yCy:P RSDs, the HCl + GeH4 etch time per step necessary to achieve full selectivity on patterned silicon-on-insulator substrates. Selectivity was obtained for intrinsic Si once 180 s etch steps were used. Longer etch times were needed for Si:P and especially Si1-yCy:P (270 and 315 s/CDE cycle, respectively). The resulting S/D areas were rather smooth and slightly facetted, but the un-protected poly-Si layers sitting on top of the gate stacks were completely removed with these etch

  13. Choindroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Anti Tumor Efficacy: A Mathematical Model

    PubMed Central

    Kim, Yangjin; Lee, Hyun Geun; Dmitrieva, Nina; Kim, Junseok; Kaur, Balveen; Friedman, Avner

    2014-01-01

    Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV). We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC) on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment. PMID:25047810

  14. Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: a mathematical model.

    PubMed

    Kim, Yangjin; Lee, Hyun Geun; Dmitrieva, Nina; Kim, Junseok; Kaur, Balveen; Friedman, Avner

    2014-01-01

    Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV). We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC) on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment. PMID:25047810

  15. Scavenger receptor class B, type I-mediated uptake of A1AT by pulmonary endothelial cells.

    PubMed

    Lockett, Angelia D; Petrusca, Daniela N; Justice, Matthew J; Poirier, Christophe; Serban, Karina A; Rush, Natalia I; Kamocka, Malgorzata; Predescu, Dan; Predescu, Sanda; Petrache, Irina

    2015-08-15

    In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions. PMID:26092999

  16. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.

    PubMed Central

    Kushnareva, Yulia; Murphy, Anne N; Andreyev, Alexander

    2002-01-01

    Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition. This increased ROS production can be mimicked by rotenone, a complex I inhibitor, as well as other chemical inhibitors of electron flow that act further downstream in the electron transport chain. The effects of cytochrome c depletion from mitoplasts on ROS production and respiration are reversible upon addition of exogenous cytochrome c. Thus in these models of mitochondrial injury, a primary site of ROS generation in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than in complex III. ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain. Redox clamp experiments using the acetoacetate/L-beta-hydroxybutyrate couple in the presence of a maximally inhibitory rotenone concentration suggest that the site is approx. 50 mV more electronegative than the NADH/NAD(+) couple. In the absence of inhibitors, this highly reduced state of mitochondria can be induced by reverse electron flow from succinate to NAD(+), accounting for profound ROS production in the presence of succinate. These results lead us to propose a model of thermodynamic control of mitochondrial ROS production which suggests that the ROS-generating site of complex I is the Fe-S centre N-1a. PMID:12180906

  17. Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Lee, J. K.; Wang, Y. Q.; Nastasi, M.; Thompson, Phillip E.; David Theodore, N.; Alford, T. L.; Mayer, J. W.; Chen, Peng; Lau, S. S.

    2006-06-01

    We have investigated hydrogen diffusion in hydrogenated <100> Si/Si homoepitaxial structures, which were grown by molecular beam epitaxy at various temperatures. The substrate growth temperature can significantly affect the H diffusion behavior, with higher growth temperatures resulting in deeper H diffusion. For the Si/Si structure grown at the highest temperature of 800 °C, H trapping occurs at the epitaxial Si/Si substrate interface, which results in the formation of (100) oriented microcracks at the interface. The mechanism of H trapping and the potential application of these findings for the development of a method of transferring ultrathin Si layers are discussed.

  18. Polymer-derived micro-nano-structured Si{sub 3}N{sub 4}/SiC-composites

    SciTech Connect

    Greiner, A.; Bill, J.; Riedel, R.

    1994-12-31

    Micro-nano-structured Si{sub 3}N{sub 4}/SiC-composites were prepared by liquid phase sintering of either amorphous, polymer derived Si-C-N powder or SiC{sub 1+x} coated {alpha}-Si{sub 3}N{sub 4} powder, followed by gas pressure sintering. The obtained microstructures were investigated by scanning and transmission electron microscopy (SEM, TEM). Nanosized SiC inclusions embedded in microcrystalline Si{sub 3}N{sub 4} grains were analyzed by elemental mapping with electron spectroscopic imaging (ESI).

  19. Processing and properties of SiCf/SiBOC ceramic matrix composites by polyborosiloxane impregnation and pyrolysis

    NASA Astrophysics Data System (ADS)

    Vijay, Vipin; Prabhakaran, P. V.; Devasia, Renjith

    2013-06-01

    SiCf/SiBOC Ceramic Matrix Composites (CMCs) were fabricated using polyborosiloxane as the matrix resin and Nicalon™ NL-202 silicon carbide fiber as the reinforcement via polymer infiltration/impregnation and pyrolysis process (PIP). Repeated PIP cycles resulted in CMCs with a density value of ≈ 2 g/cc and a maximum average flexural strength value of 108 MPa. Oxidation resistance of SiCf/SiBOC was compared with Cf/C and Cf/SiBOC at 1000°C. SiCf/SiBOC composite shows a better oxidation resistance due to the formation of a protective layer of amorphous borosilicate glass on oxidation.

  20. Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356

    SciTech Connect

    Wang, Q.

    2011-05-01

    Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

  1. Modeling the optical response of grating-profiled PtSi/Si infrared detectors

    NASA Astrophysics Data System (ADS)

    Rea, Chris J. T.; Cairns, Gerald F.; Dawson, Paul

    1997-10-01

    Modeling the optical response of grating profiled PtSi/Si structures is examined to demonstrate the potential of microstructuring in optimizing the absorption of infrared detectors. Coupling to angularly broad surface plasmon polariton resonances near normal incidence is, in fact, achieved at both Si/PtSi and SiO2/PtSi interfaces for the same grating parameters in the wavelength ranges 3.0 - 4.4 micrometer and 1.3 - 1.9 micrometer respectively. These ranges correspond to two infrared, atmospheric transmission windows, and demonstrate the potential for a single device geometry to operate optimally in two different spectral bands. It is also shown that, throughout these spectral bands, it is possible to attain reflectance significantly lower than that of the planar structure counterparts in the angle range 0 degrees to plus or minus 20 degrees (corresponding to the use of F1.4 optics), along with containment of low reflectance to that angle range. Absorption mediated by the PtSi/Si surface plasmon polariton mode may be of particular interest in these Schottky barrier structures, since there would be considerable enhancement in the generation of hot carriers in the near barrier region where they have a better chance of direct or indirect (via elastic scattering) promotion over the barrier to give rise to a detectable charge.

  2. Atomic state and characterization of nitrogen at the SiC/SiO{sub 2} interface

    SciTech Connect

    Xu, Y.; Garfunkel, E. L.; Zhu, X.; Lee, H. D.; Xu, C.; Shubeita, S. M.; Gustafsson, T.; Ahyi, A. C.; Sharma, Y.; Williams, J. R.; Lu, W.; Ceesay, S.; Tuttle, B. R.; Pantelides, S. T.; Wan, A.; Feldman, L. C.

    2014-01-21

    We report on the concentration, chemical bonding, and etching behavior of N at the SiC(0001)/SiO{sub 2} interface using photoemission, ion scattering, and computational modeling. For standard NO processing of a SiC MOSFET, a sub-monolayer of nitrogen is found in a thin inter-layer between the substrate and the gate oxide (SiO{sub 2}). Photoemission shows one main nitrogen related core-level peak with two broad, higher energy satellites. Comparison to theory indicates that the main peak is assigned to nitrogen bound with three silicon neighbors, with second nearest neighbors including carbon, nitrogen, and oxygen atoms. Surprisingly, N remains at the surface after the oxide was completely etched by a buffered HF solution. This is in striking contrast to the behavior of Si(100) undergoing the same etching process. We conclude that N is bound directly to the substrate SiC, or incorporated within the first layers of SiC, as opposed to bonding within the oxide network. These observations provide insights into the chemistry and function of N as an interface passivating additive in SiC MOSFETs.

  3. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods

    PubMed Central

    Montesano, Francesco Fabiano; D’Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  4. Foreign Object Damage Resistance of Uncoated and EBC Coated SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Choi, S. R.; Cosgriff, L. M.; Fox, D.; Lee, K. N.

    2004-01-01

    SiC/SiC composites fabricated by the melt infiltration method are candidate materials for the turbine components such as combustor liners, nozzle vanes and blades because of their high temperature strength, and thermal conductivity. To avoid surface recession in a combustion environment containing moisture, these materials also require an environmental barrier coating (EBC). Under thermal loading condition alone, the EBC coated SiC/SiC components show microstructural and strength stability after -1 5000 hr exposure to 12OO0C in combustion environment. However, the stability of SiC/SiC composites under impact conditions is not fully understood. In this study, both uncoated and EBC coated SiC/SiC composite specimens were impact tested by steel-ball projectiles at room temperature and at 1300 C in air. After impact, the specimens were analyzed under a scanning electron microscope to assess coating damage, and then tensile and bend tested at room temperature to determine their residual strength. The extent of coating and substrate damage with increasing projectile velocity was imaged and analyzed using nondestructive evaluation (NDE) methods such as micro focus x-ray radiography, tomography, and thermal wave imaging. The mechanical property results of impacted specimens are correlated with the NDE results and the scanning electron microscopy (SEM) observations. Influence of projectile velocity on impact damage of the coating/substrate, and the implication coating damage on durability of the composite will be discussed.

  5. Characterization by XDR of amorphous SiCx/c-Si structures at high temperatures

    NASA Astrophysics Data System (ADS)

    Torres, I.

    2011-09-01

    By annealing thin hydrogenated amorphous silicon carbide (a-SiCx:H) films deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) on crystalline silicon (c-Si) wafers, pn-junctions with very low inverse saturation current can be formed. This has been shown in heterojunction bipolar transistors and solar cells with +/- 400°C for this process. The characterization of these structures indicates that a-SiCx:H films partially re-crystallize during the annealing process forming Si-nanocrystals embedded in the amorphous film. Understanding this process and further improving the pn-junction the study of the re-crystallization process by X-Ray Diffraction (XRD) measurements has been done. This paper deals with the characterization of amorphous SiCx/c-Si structures with 100 and 300 nm thickness measured by XRD with the temperature chamber with an annealing process at 900°C. Both intrinsic and phosphorus-doped a-SiCx:H films were deposited on a c-Si substrate p-type of 300um-thickness with crystallographic orientation <100> using the PECVD reactor. From the in-situ measurements using the XDR, the crystallization phase was obtained; this was done by taking the maximum value of intensity at the dominant peak in the orientation <111> and normalization. Fitting this with the Avrami-Mehl-Johnson Theory the incubation as well as the crystallization time were obtained to study the thermally activated process.

  6. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.

    PubMed

    Lee, Jeong-Hoon; Song, Kwan-Woo; Park, Min-Ho; Kim, Hyung-Kyu; Yang, Cheol-Woong

    2011-07-01

    Graphene was synthesized deliberately at the interface between Ni film and SiO2/Si substrate as well as on top surface of Ni film using chemical vapor deposition (CVD) which is suitable for large-scale and low-cost synthesis of graphene. The carbon atom injected at the top surface of Ni film can penetrate and reach to the Ni/SiO2 interface for the formation of graphene. Once we have the graphene in between Ni film and SiO2/Si substrate, the substrate spontaneously provides insulating SiO2 layer and we may easily get graphene/SiO2/Si structure simply by discarding Ni film. This growth of graphene at the interface can exclude graphene transfer step for electronic application. Raman spectroscopy and optical microscopy show that graphene was successfully synthesized at the back of Ni film and the coverage of graphene varies with temperature and time of synthesis. The coverage of graphene at the interface depends on the amount of carbon atoms diffused into the back of Ni film. PMID:22121737

  7. MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Munuera, Carmen; Varela del Arco, Maria; Soria, Federico; Ocal, Carmen; Ruiz, Ana; Alonso, Maria

    2006-01-01

    Two types of fairly regular distributions of Si nanostructures, of interest as templates to grow spatially controlled ensembles of metal (Co, Fe, Ag, etc.) nanostructures, are presented in this paper. Both of them are achieved by self-assembling processes during Si homoepitaxy. One corresponds to films grown by molecular beam epitaxy (MBE) on Si(0 0 1)-2 x 1 surfaces with low (<1 degree) miscut angles. In this case, arrays of 3D Si-islands displaying well defined pyramid-like shapes can be obtained, as evidenced by Scanning Force Microscopy (SFM) and Scanning Transmission Electron Microscopy (STEM). Such arrays exhibit strong similarities with those reported for Ge and SiGe islands on Si(0 0 1), and may thus serve as a simpler route to produce ordered distributions of metallic nanodots. On the other hand, on Si(1 1 1)-7 x 7 vicinal substrates misoriented 4 degrees toward the View the MathML source direction, step rearrangement during homoepitaxy permits to produce nanopatterned surfaces, the building-blocks of which are triangular (1 1 1) platforms, with lateral dimensions of hundreds of nanometers, bound by step bunches about 30 nm high. Furthermore, different Ag deposition experiments support this spontaneous patterning on Si(1 1 1) as a promising approach to achieve regular distributions of metallic nanocrystals with an overall homogeneity in sizes, shapes and spacing.

  8. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  9. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods.

    PubMed

    Montesano, Francesco Fabiano; D'Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  10. Comparison of Nanocarbon-Silicon Solar Cells with Nanotube-Si or Graphene-Si Contact.

    PubMed

    Xu, Wenjing; Deng, Bing; Shi, Enzheng; Wu, Shiting; Zou, Mingchu; Yang, Liusi; Wei, Jinquan; Peng, Hailin; Cao, Anyuan

    2015-08-12

    Nanocarbon structures such as carbon nanotubes (CNTs) and graphene (G) have been combined with crystalline silicon wafers to fabricate nanocarbon-Si solar cells. Here, we show that the contact between the nanocarbon and Si plays an important role in the solar cell performance. An asymmetrically configured CNT-G composite film was used to create either CNT-Si dominating or G-Si dominating junctions, resulting in obviously different solar cell behavior in pristine state. Typically, solar cells with direct G-Si contacts (versus CNT-Si) exhibit better characteristics due to improved junction quality and larger contact area. On the basis of the composite film, the obtained CNT-G-Si solar cells reach power conversion efficiencies of 14.88% under air mass 1.5, 88 mW/cm2 illumination through established techniques such as acid doping and colloidal antireflection. Engineering the nanocarbon-Si contact is therefore a possible route for further improving the performance of this type of solar cells. PMID:26212335

  11. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  12. Swift heavy ion irradiation of a-Si/Fe/c-Si trilayers

    SciTech Connect

    Zhang, K.; Lieb, K. P.; Milinovic, V.; Sahoo, P. K.

    2006-09-01

    Si/Fe/Si trilayers, with 12 nm amorphous Si and 45 nm polycrystalline Fe films deposited on Si(100) wafers, were irradiated with 350 MeV Au{sup 26+} ions at fluences of (0.6-11.3)x10{sup 14} ions/cm{sup 2}. The ion-induced modifications of their structural and magnetic properties were characterized by means of Rutherford backscattering, glancing angle x-ray diffractometry, and the magneto-optical Kerr effect. The mixing rate at the upper a-Si/Fe interface was three times as high as that at the lower Fe/c-Si interface. A simple formula is proposed, which on the basis of (nuclear) thermal-spike mixing reproduces the observed (electronic) mixing rates. Ion irradiation at a moderate fluence (6.7x10{sup 14}/cm{sup 2}) induced a magnetic anisotropy in the sample, which was magnetically isotropic after deposition. At the highest fluence, full interface mixing occurred and the magnetic anisotropy almost disappeared. The results are compared with those obtained in Fe/Si and Ni/Si bilayers ion irradiated in the regimes of nuclear and electronic stopping.

  13. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, H.-T.; Stone, I. C.; Fan, Z.

    2012-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.

  14. Si nanocrystals embedded in SiO{sub 2}: Optical studies in the vacuum ultraviolet range

    SciTech Connect

    Pankratov, V.; Osinniy, V.; Kotlov, A.; Nylandsted Larsen, A.; Bech Nielsen, B.

    2011-01-15

    Photoluminescence excitation and transmission spectra of Si nanocrystals of different diameters embedded in a SiO{sub 2} matrix have been investigated in the broad visible-vacuum ultraviolet spectral range using synchrotron radiation. The dependence of the photoluminescence excitation spectra on the nanocrystals size was experimentally established. It is shown that the photoluminescence excitation and absorption spectra are significantly blueshifted with decreasing Si nanocrystal size. A detailed comparison of photoluminescence excitation and absorption spectra with data from theoretical modeling has been done. It is demonstrated that the experimentally determined blueshift of the photoluminescence excitation and absorption spectra is larger than the theoretical predictions. The influence of point defects in the SiO{sub 2} matrix on the optical and luminescence properties of the embedded Si nanocrystals is discussed. Moreover, it is demonstrated that no energy transfer takes place between the SiO{sub 2} and Si nanocrystals when the excitation energy is higher than the band-to-band transition energy in SiO{sub 2}.

  15. X-Ray Videomicroscopy Studies of Eutectic Al-Si Solidification in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Mathiesen, R. H.; Arnberg, L.; Li, Y.; Meier, V.; Schaffer, P. L.; Snigireva, I.; Snigirev, A.; Dahle, A. K.

    2011-01-01

    Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.

  16. MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces

    NASA Astrophysics Data System (ADS)

    Galiana, Natalia; Martin, Pedro-Pablo; Munuera, Carmen; Varela, María; Soria, Federico; Ocal, Carmen; Ruiz, Ana; Alonso, María

    2006-09-01

    Two types of fairly regular distributions of Si nanostructures, of interest as templates to grow spatially controlled ensembles of metal (Co, Fe, Ag, etc.) nanostructures, are presented in this paper. Both of them are achieved by self-assembling processes during Si homoepitaxy. One corresponds to films grown by molecular beam epitaxy (MBE) on Si(0 0 1)-2 × 1 surfaces with low (<1°) miscut angles. In this case, arrays of 3D Si-islands displaying well defined pyramid-like shapes can be obtained, as evidenced by Scanning Force Microscopy (SFM) and Scanning Transmission Electron Microscopy (STEM). Such arrays exhibit strong similarities with those reported for Ge and SiGe islands on Si(0 0 1), and may thus serve as a simpler route to produce ordered distributions of metallic nanodots. On the other hand, on Si(1 1 1)-7 × 7 vicinal substrates misoriented 4° toward the [1 1 2¯] direction, step rearrangement during homoepitaxy permits to produce nanopatterned surfaces, the building-blocks of which are triangular (1 1 1) platforms, with lateral dimensions of hundreds of nanometers, bound by step bunches about 30 nm high. Furthermore, different Ag deposition experiments support this spontaneous patterning on Si(1 1 1) as a promising approach to achieve regular distributions of metallic nanocrystals with an overall homogeneity in sizes, shapes and spacing.

  17. Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices

    NASA Astrophysics Data System (ADS)

    Yadav, Asha; Agarwal, Pratima

    2015-09-01

    The electronic properties of undoped a-Si:H/nc-Si:H superlattice structures have been investigated by photoconductivity measurements. Multilayer structures having alternate layers of a-Si:H and nc-Si:H were deposited on corning 1737 glass substrate by Hot wire chemical vapor deposition technique, keeping the total thickness of films constant at 700 nm. Dark and photo conductivity along with persistent photoconductivity (PPC) are measured in coplanar geometry using Ag paste as electrodes. Quite interestingly room temperature PPC has been observed in these undoped a-Si:H/nc-Si:H superlattice structures. PPC decay time constant, its dependence on exposure time, electric field, number of periods and annealing temperature have been studied in detail. The origin of PPC is understood in terms of competition between carriers transport in the lateral direction due to external field and along the depth due to band bending at a-Si:H/nc-Si:H interfaces. Carriers trapped in the interfaces states or the separation of carriers due to band bending are likely to be responsible for observed PPC.

  18. Fabrication and Characteristics of an nc-Si/c-Si Heterojunction MOSFETs Pressure Sensor

    PubMed Central

    Zhao, Xiaofeng; Wen, Dianzhong; Li, Gang

    2012-01-01

    A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W) ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor. PMID:22778646

  19. Thermally Active Screw Dislocations in Si, SiC, PbSe, and SiGe Nanowires

    NASA Astrophysics Data System (ADS)

    Al-Ghalith, Jihong; Ni, Yuxiang; Xiong, Shiyun; Volz, Sebastian; Dumitrica, Traian

    We elucidate thermal conductivity along the screw dislocation line, which represents a transport direction inaccessible to classical theories. By using equilibrium and non-equilibrium molecular dynamics simulations, and the atomistic Green function method, we uncover a Burgers vector dependent thermal conductivity reduction in Si, SiC, PbSe, and SiGe nanowires. The effect is uncorrelated with the classical theory of Klemens. The influence of dislocations on thermal transport originates in the highly deformed core region, which represents a significant source of anharmonic phonon-phonon scattering. High strain reduces the phonon relaxation time, especially in the longitudinal acoustic branches, and creates an effective internal thermal resistance around the dislocation axis. The effect can be distinguished from the thermal transport reduction caused by the nanowire surface imperfections and vacancies. Our results have implications for designing materials useful for high-temperature electronics and thermoelectric applications.

  20. Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET

    NASA Technical Reports Server (NTRS)

    Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.

    1993-01-01

    A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.

  1. Hysteresis in the Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  2. Microstructural characterization of as-cast Cr-Si alloys

    SciTech Connect

    Chad, V.M. Faria, M.I.S.T.; Coelho, G.C.; Nunes, C.A.; Suzuki, P.A.

    2008-01-15

    This work presents results of microstructural characterization of as-cast Cr-Si alloys. The alloys were prepared by arc melting pure Cr (min. 99.996%) and Si (min. 99.998%) powder mixtures under argon atmosphere in a water-cooled copper crucible with nonconsumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using the back-scattered electron (BSE) image mode and X-ray diffraction (XRD). The results confirm the currently accepted Cr-Si phase diagram in terms of the invariant reactions and solid phases present in this system. Small corrections are proposed for the compositions of the liquid phase in the following reactions: (i) L {r_reversible} Cr{sub SS}+Cr{sub 3}Si, from 15 to 16 at.% Si; (ii) L+{alpha}Cr{sub 5}Si{sub 3} {r_reversible} CrSi, from 51 at.% Si to slightly above 53 at.% Si; (iii) L {r_reversible} CrSi+CrSi{sub 2}, from 56 to slightly above 57 at.% Si; (iv) L {r_reversible} CrSi{sub 2}+Si, from 82 to slightly above 85 at.% Si.

  3. Hydrogen silsequioxane-derived Si/SiO(x) nanospheres for high-capacity lithium storage materials.

    PubMed

    Park, Min-Sik; Park, Eunjun; Lee, Jaewoo; Jeong, Goojin; Kim, Ki Jae; Kim, Jung Ho; Kim, Young-Jun; Kim, Hansu

    2014-06-25

    Si/SiOx composite materials have been explored for their commercial possibility as high-performance anode materials for lithium ion batteries, but suffer from the complexity of and limited synthetic routes for their preparation. In this study, Si/SiOx nanospheres were developed using a nontoxic and precious-metal-free preparation method based on hydrogen silsesquioxane obtained from sol-gel reaction of triethoxysilane. The resulting Si/SiOx nanospheres with a uniform carbon coating layer show excellent cycle performance and rate capability with high-dimensional stability. This approach based on a scalable sol-gel reaction enables not only the development of Si/SiOx with various nanostructured forms, but also reduced production cost for mass production of nanostructured Si/SiOx. PMID:24846871

  4. Influence of remaining C on hardness and emissivity of SiC/SiO 2 nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Yi, J.; He, X. D.; Sun, Y.; Li, Y.; Li, M. W.

    2007-06-01

    SiC/SiO 2 nanocomposite coating was deposited by electron beam-physical vapor deposition (EB-PVD) through depositing SiC target on pre-oxidized 316 stainless steel (SS) substrate. High melting point component C remained and covered on the surface of ingot after evaporation. When SiC ingot was reused, remaining C had an effect on the composition, hardness and emissivity of SiC/SiO 2 nanocomposite coating. The composition of ingot and coating was studied by X-ray photoelectron spectroscopy (XPS). The influence of remaining C on hardness and spectral normal emissivity of SiC/SiO 2 nanocomposite coating was investigated by nanoindentation and Fourier transform infrared spectrum (FTIR), respectively. The results show that remaining C has a large effect on hardness and a minor effect on spectral normal emissivity of SiC/SiO 2 nanocomposite coating.

  5. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    SciTech Connect

    Demiroğlu, D.; Tatar, B.; Kazmanli, K.; Urgen, M.

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  6. Compression of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  7. SiC polytypes process affected by Ge predeposition on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Nader, Richard; Moussaed, Elie; Kazan, Michel; Pezoldt, Joerg; Masri, Pierre

    2008-08-01

    Structural and optical measurements were performed on silicon carbide (SiC) samples containing several polytypes. The SiC samples investigated were grown on (111) Si substrates by solid source molecular beam epitaxy (SSMBE). Several quantities of Ge were predeposited before the growth procedure. The influence of Ge on the SiC polytypes formation was studied by X-Ray, FTIR and μ-Raman characterizations methods. The spectra of the samples with less than one Ge monolayer exhibit a mixture of 2H, 15R and 3C-SiC polytypes. This mixture is due to the mismatch between the heterostructure layers. We propose that the Ge predeposition in the heterostructure can be used to stabilize and unify the polytypes formation.

  8. Epitaxial graphene on SiC(0001): It takes a Si jump

    NASA Astrophysics Data System (ADS)

    Sun, G. F.; Liu, Y.; Rhim, S. H.; Jia, J. F.; Xue, Q. K.; Weinert, M.; Li, L.

    2011-03-01

    Using scanning tunneling microscopy with transition metal (Fe, Cr)-coated W tips and first-principles calculations, we have recently shown that interface of epitaxial graphene/SiC(0001) is a warped graphene layer with periodic inclusions of hexagon-pentagon-heptagon (H5 , 6 , 7) defects that break the six-fold honeycomb symmetry. Here we show that this unique structure facilitate a novel pathway for the disposal of Si during growth: the diffusion of Si vertically through the warped interfacial layer via a series of configurations that involve the dissociation and formation of C-C and Si-C bonds within the pentagon and heptagon of the H5 , 6 , 7 complex. The calculated energy barrier for this diffusion path is 4.7 eV. These results and their implications on the self-limiting growth of epitaxial graphene on SiC(0001) will be presented at the meeting.

  9. Texture of CoSi2 Films on Si(111) (110) and (001) Substrates

    SciTech Connect

    K De Keyser; C Detavernier; J Jordan-Sweet; C Lavoie

    2011-12-31

    Synchrotron radiation was used to study the texture of polycrystalline CoSi{sub 2} films that were formed by a solid-state reaction between a 30 nm Co film and Si(111), (110) and (001) substrates. All films were strongly textured, and several texture components were identified. We discuss the simultaneous occurrence of axiotaxy (i.e. alignment of lattice planes across the interface) and several different types of epitaxy in each of the films. Comparison of the different texture components observed on the three substrate orientations suggests a strong preference for the alignment of CoSi{sub 2}{l_brace}110{r_brace} planes in the film with Si{l_brace}110{r_brace} planes in the substrate, and twinning around Si[111] directions.

  10. Recent developments in SiC monofilament reinforced Si sub 3 N sub 4 composites

    SciTech Connect

    Thomson, B.; LeCoistaouec, J.F. )

    1991-04-01

    The use of SiC monofilament to reinforce a Si{sub 3}N{sub 4} matrix has led to a refractory ceramic composite with outstanding high temperature properties. These composites provide many of the properties required for future generation aerospace applications and make viable candidates for structural applications where use temperatures exceed 1,350C. SiC/Si{sub 3}N{sub 4} composites are fabricated by using collimated fibers and a matrix slurry to produce preform tapes. Fully densified composites are achieved by hot pressing of tapes. Various aspects of the work related to shape forming, fabrication techniques, joining and processing considerations are addresses. Data are presented on high temperature tensile strength, impact characteristics, and environmental behavior. Recent developments are centered about the use of 75 {mu}m diameter SiC monofilaments in conjunction with hot isostatic pressing techniques to produce more complex shapes and improved properties.

  11. Measurements of Local Strain Variation in Si(1-x)Ge(x)/Si Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Manion, S. J.; Milliken, S. J.; Pike, W. T.; Fathauer, R. W.

    1995-01-01

    The energy splitting of the conduction-band minimum of Si(1-x), Ge(x), due to strain has been directly measured by the application of ballistic-electron-emission microscope (BEEM) spectroscopy to Ag/Si(1-x), Ge(x) structures. Experimental values for this conduction-band splitting agree well with calculations. For Au/Si(1-x), Ge(x), however, heterogeneity in the strain of the Si(1-x), Ge(x) layer is introduced by deposition of the Au. This variation is attributed to species interdiffusion, which produces a rough Si(1-x)Ge(x) surface. Preliminary modeling indicates that the observed roughness is consistent with the strain variation measured by BEEM.

  12. A model for thermal oxidation of Si and SiC including material expansion

    SciTech Connect

    Christen, T. Ioannidis, A.; Winkelmann, C.

    2015-02-28

    A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.

  13. Photoresponse Model for Si_(1-x)Ge_x/Si Heterojunction Internal Photoemission Infrared Detector

    NASA Technical Reports Server (NTRS)

    Lin, T.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1993-01-01

    A photoresponse model has been developed for the Si_(1-x)Ge_x/Si heterojunction internalphotoemission (HIP) infrared detector at wavelengths corresponding to photon energies less than theFermi energy. A Si_(0.7)Ge_(0.3)/Si HIP detector with a cutoff wavelength of 23 micrometers andan emission coefficient of 0.4 eV^(-1) has been demonstrated. The model agrees with the measureddetector response at lambda greater than 8 micrometers. The potential barrier determined by themodel is in close agreement (difference similar to 4 meV) with the potential barrier determined by theRichardson plot, compared to the discrepancies of 20-50 meV usually observed for PtSi Schottkydetectors.

  14. Si6H12/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes

    SciTech Connect

    Schulz, Douglas L.; Hoey, Justin; Smith, Jeremiah; Elangovan, Arumugasamy; Wu, Xiangfa; Akhatov, Iskander; Payne, Scott; Moore, Jayma; Boudjouk, Philip; Pederson, Larry; Xiao, Jie; Zhang, Jiguang

    2010-08-04

    Amorphous silicon nanowires 'a-SiNWs' have been prepared by electrospinning a liquid silane-based precursor. Cyclohexasilane 'Si6H12' was admixed with poly-methyl methacrylate (PMMA) in toluene giving an ink that was electrospun into the Si6H12/PPMA wires with diameters of 50-2000 nm. Raman spectroscopy revealed that thermal treatment at 350 C transforms this deposit into a-SiNWs. These materials were coated with a thin carbon layer and then tested as half-cells where a reasonable plateau in electrochemical cycling was observed after an initial capacity fade. Additionally, porous a-SiNWs were realized when the thermally decomposable binder polypropylene carbonate/polycyclohexene carbonate was used as the polymer carrier.

  15. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Wu, Wengang; Mao, Haiyang; Han, Xiang; Xu, Jun; Wang, Weibing

    2016-07-01

    This work presents arrays of heterogeneous nanopillars stacked with Si bodies and SiO2 heads for biomedical applications. Novel crossed and overlapped spacer techniques are proposed to fabricate the nanopillar arrays in controllable dimensions. For the nanopillars in the arrays, the minimum spacing, body diameter and head tip-radius reach 100 nm, 23 nm and 11 nm, respectively. The maximum height is 1.2 μm. In addition, because of hydrophilic/hydrophobic selectivity between the SiO2 heads and Si bodies, localized nanoliter water-droplet condensing, fluorescein solution extraction and protein capturing are observed on the SiO2 pillar heads. These experiments demonstrate the great potential of heterogeneous nanopillars in biomedical applications.

  16. SiC/SiC Ceramic Matrix Composites Developed for High-Temperature Space Transportation Applications

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bhatt, Ramakrishna, T.; Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.; Petko, Jeanne F.

    2005-01-01

    Researchers at the NASA Glenn Research Center have been developing durable, high-temperature ceramic matrix composites (CMCs) with silicon carbide (SiC) matrices and SiC or carbon fibers for use in advanced reusable launch vehicle propulsion and airframe applications in the Next Generation Launch Technology (NGLT) Program. These CMCs weigh less and are more durable than competing metallic alloys, and they are tougher than silicon-based monolithic ceramics. Because of their high specific strength and durability at high temperatures, CMCs such as C/SiC (carbon- fiber-reinforced silicon carbide) and SiC/SiC (silicon-carbide-fiber-reinforced silicon carbide) may increase vehicle performance and safety significantly and reduce the cost of transporting payloads to orbit.

  17. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  18. Photovoltaic effect in a-Si/c-Si heterostructure prepared by RF magnetron sputtering technique

    SciTech Connect

    Budaguan, B.G.; Sherchenkov, A.A.; Aivazov, A.A.

    1996-12-31

    Photosensitivity spectral dependencies of the a-Si(n-type)/c-Si(p-type) heterostructure for the different reverse biases, V{sub b}, amorphous Si film thickness, substrate predeposition temperatures, T{sub s}, and annealing conditions, T{sub a}, were investigated in the wavelengths range of 500--1,200 nm. It was found that the position of the relative photosensitivity maximum depends on T{sub a} and V{sub b} and can be varied in the wavelengths range of 840--1,080 nm. The energy band diagram of the heterostructure was analyzed to explain the observed results. It was shown that the photosensitivity properties of the a-Si/c-Si heterostructure depend on the interfacial condition. The perspective application of the structures investigated is IR detector fabrication.

  19. Selective epitaxial Si based layers and TiSi 2 deposition by integrated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Regolini, J. L.; Margail, J.; Bodnar, S.; Maury, D.; Morin, C.

    1996-07-01

    High performance IC manufacturing requirements, such as large diameter wafer uniformity, reproducibility, throughput and reliability can be fulfilled by commercial integrated processing, single wafer cluster tools. This paper presents results obtained on an industrial cluster reactor for 200 mm wafers by combining epitaxial silicon related materials and selective deposition of TiSi 2. Low temperature epitaxial Si and SiGe alloys are studied for buried thin layers used in CMOS and HBT devices. The doping profile abruptness for B and P are within SIMS resolution limits. TheTiSi 2/Si selective deposition is also investigated, sequentially and in situ, as a technique for future salicidedS/D with a reduction in technological steps and interface contamination. Statistical electrical results obtained using 0.35 and 0.25 μm CMOS technologies in which the CVD silicide deposition is tested, are presented and compared with the standard salicide technique.

  20. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays.

    PubMed

    Wu, Wengang; Mao, Haiyang; Han, Xiang; Xu, Jun; Wang, Weibing

    2016-07-29

    This work presents arrays of heterogeneous nanopillars stacked with Si bodies and SiO2 heads for biomedical applications. Novel crossed and overlapped spacer techniques are proposed to fabricate the nanopillar arrays in controllable dimensions. For the nanopillars in the arrays, the minimum spacing, body diameter and head tip-radius reach 100 nm, 23 nm and 11 nm, respectively. The maximum height is 1.2 μm. In addition, because of hydrophilic/hydrophobic selectivity between the SiO2 heads and Si bodies, localized nanoliter water-droplet condensing, fluorescein solution extraction and protein capturing are observed on the SiO2 pillar heads. These experiments demonstrate the great potential of heterogeneous nanopillars in biomedical applications. PMID:27319739

  1. On the nucleation of PdSi and NiSi2 during the ternary Ni(Pd)/Si(100) reaction

    NASA Astrophysics Data System (ADS)

    Schrauwen, A.; Demeulemeester, J.; Kumar, A.; Vandervorst, W.; Comrie, C. M.; Detavernier, C.; Temst, K.; Vantomme, A.

    2013-08-01

    During the solid phase reaction of a Ni(Pd) alloy with Si(100), phase separation of binary Ni- and Pd-silicides occurs. The PdSi monosilicide nucleates at temperatures significantly below the widely accepted nucleation temperature of the binary system. The decrease in nucleation temperature originates from the presence of the isomorphous NiSi, lowering the interface energy for PdSi nucleation. Despite the mutual solubility of NiSi and PdSi, the two binaries coexist in a temperature window of 100 °C. Only above 700 °C a Ni1-xPdxSi solid solution is formed, which in turn postpones the NiSi2 formation to a higher temperature due to entropy of mixing. Our findings highlight the overall importance of the interface energy for nucleation in ternary systems.

  2. In situ doping control for growth of n p n Si/SiGe/Si heterojunction bipolar transistor by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gao, F.; Huang, D. D.; Li, J. P.; Liu, C.

    2005-01-01

    N-p-n Si/SiGe/Si heterostructures have been grown by a disilane (Si 2H 6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH 3) and diborane (B 2H 6) as n- and p-type in situ doping sources, respectively. Adopting an in situ doping control technology, the influence of background B dopant on the growth of n-Si emitter layer was reduced, and an abrupt B dopant distribution from SiGe base to Si emitter layer was obtained. Besides, higher n-type doping in the surface region of emitter to reduce the emitter resist can be realized, and it did not result in the drop of growth rate of Si emitter layer in this technology.

  3. Rational Design of Immunostimulatory siRNAs

    PubMed Central

    Gantier, Michael P; Tong, Stephen; Behlke, Mark A; Irving, Aaron T; Lappas, Martha; Nilsson, Ulrika W; Latz, Eicke; McMillan, Nigel AJ; Williams, Bryan RG

    2010-01-01

    Short-interfering RNAs (siRNAs) have engendered much enthusiasm for their ability to silence the expression of specific genes. However, it is now well established that siRNAs, depending on their sequence, can be variably sensed by the innate immune system through recruitment of toll-like receptors 7 and 8 (TLR7/8). Here, we aimed to identify sequence-based modifications allowing for the design of bifunctional siRNAs with both proinflammatory and specific silencing activities, and with potentially increased therapeutic benefits. We found that the introduction of a micro-RNA (miRNA)-like nonpairing uridine-bulge in the passenger strand robustly increased immunostimulatory activity on human immune cells. This sequence modification had no effect on the silencing efficiency of the siRNA. Increased immunostimulation with the uridine-bulge design was specific to human cells, and conserved silencing efficiency required a Dicer-substrate scaffold. The increased cytokine production with the uridine-bulge design resulted in enhanced protection against Semliki Forest virus (SFV) infection, in viral assays. Thus, we characterize a design scaffold applicable to any given siRNA sequence, that results in increased innate immune activation without affecting gene silencing. Our data suggest that this sequence modification coupled with structural modification differentially recruits human TLR8 over TLR7, and could have potential application in antiviral therapies. PMID:20125126

  4. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    SciTech Connect

    Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P.; Martin, E.; Serra, C.

    2010-07-05

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  5. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-05-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  6. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-04-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  7. Flexible micromorph tandem a-Si/μc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Söderström, T.; Haug, F.-J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2010-01-01

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline (μc-Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of μc-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the μc-Si:H cell and the light-induced degradation of the a-Si:H cell. As a result, μc-Si:H cell has to grow on a smooth substrate with large periodicity (>1 μm) and the a-Si:H cell on sharp pyramids with smaller feature size (˜350 nm) to strongly scatter the light in the weak absorption spectra of a-Si:H material. The asymmetric intermediate reflector introduced in this work uncouples the growth and light scattering issues of the tandem micromorph solar cells. The stabilized efficiency of the tandem n-i-p/n-i-p micromorph is increased by a relative 15% compared to a cell without AIR and 32% in relative compared to an a-Si:H single junction solar cells. The overall process (T <200 °C) is kept compatible with low cost plastic substrates. The best stabilized efficiency of a cell deposited on polyethylene-naphthalate plastic substrate is 9.8% after 1000 h of light soaking at Voc, 1 sun, and 50 °C.

  8. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-05-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  9. Flexible micromorph tandem a-Si/{mu}c-Si solar cells

    SciTech Connect

    Soederstroem, T.; Haug, F.-J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2010-01-15

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of {mu}c-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the {mu}c-Si:H cell and the light-induced degradation of the a-Si:H cell. As a result, {mu}c-Si:H cell has to grow on a smooth substrate with large periodicity (>1 {mu}m) and the a-Si:H cell on sharp pyramids with smaller feature size ({approx}350 nm) to strongly scatter the light in the weak absorption spectra of a-Si:H material. The asymmetric intermediate reflector introduced in this work uncouples the growth and light scattering issues of the tandem micromorph solar cells. The stabilized efficiency of the tandem n-i-p/n-i-p micromorph is increased by a relative 15% compared to a cell without AIR and 32% in relative compared to an a-Si:H single junction solar cells. The overall process (T<200 deg. C) is kept compatible with low cost plastic substrates. The best stabilized efficiency of a cell deposited on polyethylene-naphthalate plastic substrate is 9.8% after 1000 h of light soaking at V{sub oc}, 1 sun, and 50 deg. C.

  10. MeV electron irradiation of Si-SiO2 structures with magnetron sputtered oxide

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2016-03-01

    MeV electrons influence on the characteristics of Si-SiO2 structure with magnetron sputtered oxide was studied by ellipsometry and the thermally stimulated current (TSC) method. The MOS structures used in this study were fabricated on <100> oriented p-Si wafers of 12.75-17,25 Ω.cm resistivity. Magnetron sputtered oxides with different thicknesses of 20 and 100 nm were deposited on p-Si substrates. Both groups of samples were irradiated by 23 MeV electrons. The oxide thicknesses and TSC characteristics of the MOS samples were measured before and after MeV electron irradiation with doses of 4.8×1015 and 4.8×1016 el.cm-2. The oxide thicknesses of both groups of samples increased after irradiation. The main defects generated by the MeV electrons were evaluated. It was shown that the trap concentration increases with the electron irradiation dose. The main peak in the TSC characteristics gives information about the main radiation defects at the Si-SiO2 interface of the MOS structures. These defects can be related to the vacancy-boron complexes which are associated with the main impurities in the p-Si substrate. These results correspond to our results reported earlier for MeV electron irradiated Si-SiO2 structures with thermally grown oxide. But (in this case) the effects observed are more pronounced for the magnetron sputtered oxide. A possible reason is the higher defect concentration generated in the magnetron sputtered oxide during its deposition on Si-substrates.

  11. Edge-Controlled Mechanical Failure of Si and SiC Semiconductor Chips

    SciTech Connect

    Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip

    2010-01-01

    Silicon (Si) and silicon carbide (SiC) semiconductor chips are subjected to thermal gradients during service, have coefficient of thermal expansion mismatches with the constituents they are attached to, and are therefore subjected to thermomechanical tensile stresses that can initiate their fracture. Because of inherent brittleness, their probabilistic (Weibull) tensile failure strength was examined to understand sustainable tensile stresses and any exhibition of strength-size-scaling. Failure stress testing of entire (10-mm-square) chips was conducted using uniaxial flexure (3-point-bending) and biaxial flexure (anticlastic bending). The advantage of the anticlastic bend test is all eight primary edges are subjected to identical sinusoidal stress distribution so tensile failure stress is concurrently sensitive to edge-state quality, surface-state quality, crystallographic orientation, and any strength anisotropies of any of those. Tensile stress tolerance of both Si and SiC chips was limited by extrinsic strength-limiting flaws located at their edges and on lapped surfaces too in the case of the Si. Both materials exhibited strength-size scaling; namely, a larger chip is likely to fail at a lower tensile stress. The anticlastic bend test method was effective for evaluating edge failure stress provided surface-type strength-limiting flaws were not dominant. Edge-strength anisotropy (i.e., crystallographic orientation dependence) was observed with both the Si and SiC chips. Surface-strength anisotropy also occurred with Si chips because one side was lapped and the other polished. Lastly, the SiC chips failed at much higher tensile stresses than Si chips; however, that strength difference could be a ramification of differences in edge-slicing quality and not necessarily from intrinsic material differences.

  12. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  13. Reaction of an alkyne with dinickel-diphenylsilyl complexes. An emissive disilane formed via the consecutive Si-C and Si-Si bond-making processes.

    PubMed

    Tanabe, Makoto; Yumoto, Ryouhei; Osakada, Kohtaro

    2012-02-18

    [{Ni(dmpe)}(2)(μ-SiHPh(2))(2)] (dmpe = 1,2-bis(dimethylphosphino)ethane) reacted with PhC≡CPh to yield fluorescent 1,2-bis{(E)-1,2-diphenylethenyl}-1,1,2,2-tetraphenyldisilane via addition of the Si-H bond of the ligand to the alkyne and subsequent coupling of the tertiary silyl ligands forming the Si-Si bond. PMID:22241522

  14. Ab initio quantum chemical investigation of several isomers of anionic Si 6

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Kawazoe, Yoshiyuki

    2006-02-01

    Eight isomers (planar hexagon, benzvalene, Dewar benzene, triangular prismane, bicyclopropenyl, octahedron, chair form, and twist boat form) of Si 6, Si62-, Si64-, and Si66-, have been searched for by the MP2 and B3LYP electronic structure calculations. Totally 14 isomers were found: two Si 6, six Si62-, five Si64-, and one Si66-. Two of them are different from the eight isomers: deformed triangle Si62-; pentagonal pyramidal Si64-. We discovered that the predicted stable shapes of Si62-, Si64-, and Si66- are octahedral, pentagonal pyramidal, and hexagonal, respectively, which agrees well with Wade rule.

  15. Generation of core-shell structures and segregation of dopants in Si/SiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Park, Ji-Sang; Chang, K. J.

    2013-03-01

    Oxidized Si nanowires (SiNWs) are usually synthesized by subsequent thermal annealing of as-grown SiNWs. It has been observed that B diffusivity is enhanced during thermal annealing in SiNWs, similar to the phenomena called transient enhanced diffusion or oxidation enhanced diffusion in planar Si/SiO2 interfaces. However, previous theoretical studies have been focused on hydrogen or hydroxyl terminated SiNWs. In this work, we generate realistic atomic models for oxidized SiNWs in which crystalline Si core is sheathed by amorphous SiO2 by using a combined approach of classical molecular dynamics simulations with first-principles density functional calculations. For realistic core-shell structures, we investigate the stability and segregation behavior of B and P dopants. A single substitutional B is more stable in the Si core, with a very small energy variation with the radial position of B. On the other hand, B dopants easily segregate to the oxide shell with the aid of Si self-interstitials generated during thermal oxidation. In contrast to B dopants, P dopants prefer to reside in the Si core even in the presence of Si self-interstitials but tend to aggregate in the Si region near the interface, forming nearest-neighbor donor pairs which are electrically inactive.

  16. Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers

    NASA Astrophysics Data System (ADS)

    Komiyama, Jun; Abe, Yoshihisa; Suzuki, Shunichi; Nakanishi, Hideo

    2006-08-01

    Stress in the epitaxial films of GaN on Si is reduced by using SiC as intermediate layers. The crystalline films of cubic SiC (0-1μm), thin AlN (50nm), and GaN (1-3μm) were prepared on 3in. (1 1 1) Si substrates—stacked in the order of GaN /AlN/SiC/Si—by metalorganic vapor-phase epitaxy. It is revealed by Raman spectroscopy that the tensile stress in GaN is reduced to half (reduction of about 300MPa) for GaN on Si with SiC intermediate layers compared with GaN on Si without SiC intermediate layers. Because of stress reduction, crack-free GaN on Si with a thickness of 2μm was obtained by using SiC intermediate layers. Cracking was minimized even on thicker GaN on Si (3μm thick) with SiC intermediate layers. The SiC intermediate layers are promising for the realization of nitride based electronic devices on Si.

  17. SiC Composite Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Verilli, Michael J.

    2006-01-01

    Turbine inlet guide vanes have been fabricated from composites of silicon carbide fibers in silicon carbide matrices. A unique design for a cloth made from SiC fibers makes it possible to realize the geometric features necessary to form these vanes in the same airfoil shapes as those of prior metal vanes. The fiber component of each of these vanes was made from SiC-fiber cloth coated with boron nitride. The matrix was formed by chemical-vapor infiltration with SiC, then slurry-casting of SiC, followed by melt infiltration with silicon. These SiC/SiC vanes were found to be capable of withstanding temperatures 400 F (222 C) greater than those that can be withstood by nickel-base-superalloy turbine airfoils now in common use in gas turbine engines. The higher temperature capability of SiC/SiC parts is expected to make it possible to use them with significantly less cooling than is used for metallic parts, thereby enabling engines to operate more efficiently while emitting smaller amounts of NOx and CO. The SiC/SiC composite vanes were fabricated in two different configurations. Each vane of one of the configurations has two internal cavities formed by a web between the suction and the pressure sides of the vane. Each vane of the other configuration has no web (see Figure 1). It is difficult to fabricate components having small radii, like those of the trailing edges of these vanes, by use of stiff stoichiometric SiC fibers currently preferred for SiC/SiC composites. To satisfy the severe geometric and structural requirements for these vanes, the aforementioned unique cloth design, denoted by the term Y-cloth, was conceived (see Figure 2). In the regions away from the trailing edge, the Y-cloth features a fiber architecture that had been well characterized and successfully demonstrated in combustor liners. To form a sharp trailing edge (having a radius of 0.3 mm), the cloth was split into two planes during the weaving process. The fiber tows forming the trailing

  18. ICP Etching of SiC

    SciTech Connect

    Grow, J.M.; Lambers, E.S.; Ostling, M.; Pearton, S.J.; Ren, F.; Shul, R.J.; Wang, J.J.; Zetterling, C.-M.

    1999-02-04

    A number of different plasma chemistries, including NF{sub 3}/O{sub 2}, SF{sub 6}/O{sub 2}, SF{sub 6}/Ar, ICl, IBr, Cl{sub 2}/Ar, BCl{sub 3}/Ar and CH{sub 4}/H{sub 2}/Ar, have been investigated for dry etching of 6H and 3C-SiC in a Inductively Coupled Plasma tool. Rates above 2,000 {angstrom} cm{sup {minus}1} are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl{sub 2}-based etching does not provide high rates, even though the potential etch products (SiCi{sub 4} and CCl{sub 4}) are volatile. Photoresist masks have poor selectivity over SiC in F{sub 2}-based plasmas under normal conditions, and ITO or Ni are preferred.

  19. composite and p-type Si

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Yang, Shih-Hung

    2014-07-01

    The present work reports the fabrication and detailed electrical properties of heterojunction diodes based on p-type Si and the reduced graphene oxide-based TiO2 (TiO2:RGO) composite. The enhanced dark conductivity was observed for TiO2:RGO composite films. The improved electrical conductivity is considered to mainly come from the mobility enhancement. The TiO2/p-type Si diode shows a poor rectifying behavior and low photoresponse. This is because of the dominance of electron traps in TiO2. However, the TiO2:RGO/p-type Si diode shows a good rectifying behavior and high photoresponse, which is attributed to high-mobility electron transport combined with the reduced number of electron traps.

  20. The Stellar Imager (SI) "Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.

    2004-01-01

    The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (greater than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.

  1. The Stellar Imager (SI) "Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.

    2004-01-01

    The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, a t ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (>20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.

  2. SiGe nanowire growth and characterization

    NASA Astrophysics Data System (ADS)

    Qi, Cheng; Goncher, Gary; Solanki, Raj; Jordan, Jay

    2007-02-01

    Single-crystal SiGe nanowires were synthesized via the vapour-liquid-solid (VLS) growth mechanism using disilane and germane as precursor gases. We have investigated the effect of temperature, pressure, and the inlet gas ratio on the growth and stoichiometry of SixGe1-x nanowires. The nanowires were characterized using scanning and transmission electron microscopies and energy dispersive x-ray analysis. It was found that nanowires with a Si:Ge ratio of about 1 had smooth surfaces, whereas departure from this ratio led to rough surfaces. Electrical properties were then investigated by fabricating back-gated field effect transistors (using a focused ion beam system) where single SiGe nanowires served as the conduction channels. Gated conduction was observed although resistance in the undoped devices was high.

  3. Recent advances in siRNA delivery.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    2015-12-01

    In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs. PMID:26609865

  4. Characterization of Si/SiO 2 interface defects by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Poindexter, Edward H.; Caplan, Philip J.

    The defect structure of the Si/SiO 2 interface is increasingly important as the size of metal-oxide-semiconductor (MOS) integrated circuits shrinks into the submicron regime. Extensive electrical studies of the interface over the past two decades, interpreted via indirect physico-chemical theory, have yielded useful, but empirical, interface models. Electron spin resonance (ESR) has now given a spectroscopic identification of the trivalent silicon or P b center (·Si≡Si 3) at the interface. This center is perhaps the most important characteristic defect at the interface. Its specific detection and identification allow a better diagnosis of interface and oxide electrical properties. This paper reviews the present status and historical development of ESR application to the Si/SiO 2 system, and includes a background of relevant ESR research on other materials systems. A very brief overview of popular electrical characterization methods is included, and also a short review of the basic principles of ESR spectroscopy. The detection and identification of the critical trivalent silicon defect (·Si≡Si 3) on oxidized Si wafers (111, 110, 100 orientations) is presented in detail. The correlation of this center with interface traps is shown over a variety of device-pertinent thermal processes. The nearly 1:1 quantitative relation between ·Si≡Si 3 and interface trap concentration is emphasized. The response of ·Si≡Si 3 to light and electric field is explored in order to define its physical and electrical nature. These results, in comparison with similar defects in bulk Si and SiO 2, are interpreted to yield a tentative working model of the ·Si≡Si 3 interface defect. It is thus shown to be a plausible source for the majority of interface bandgap traps. A variety of other pertinent ESR centers in oxidized Si, including radiation-induced defects, is surveyed briefly. A few oft-expected centers, such as the silica E‧ center, are not found in significant

  5. The use of Ge/Si ratios to quantify Si transformations in grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Blecker, S. W.; Derry, L. A.; Chadwick, O. A.; Kelly, E. F.

    2005-12-01

    Germanium (Ge) has been shown to behave as a heavy isotope of silicon (Si), enabling the use of Ge/Si ratios as a weathering tracer in terrestrial environments. The two major mechanisms of Ge/Si fractionation in soils result from mineral weathering reactions and biogenic silica formation by plants. The role of plants in Ge fractionation has been deduced from relatively few field studies, and geochemical Ge fractionation data in temperate systems are lacking. The objectives of this research were to quantify biologic Ge fractionation, and to utilize differences in Ge/Si values among the major biogeochemical pools across a grassland bioclimosequence to examine stream water silica provenance. Quantification of biological Ge fractionation was carried out under controlled experimental conditions. Plant phytoliths grown in hydroponic solutions fractionated against Ge (comparing Ge/Sisolution with Ge/Siphytolith) by an average of 82%. Differences in Ge/Si values between roots, stems, and leaves indicate fractionation likely occurs at the root/solution interface. Phytoliths from plants grown in two different soil mediums fractionated against Ge, averaging 44% to 63%, with no clear trends among the species. From the field study, the greater fractionation factor (Kw, where Kw = (Ge/Siclay)/(Ge/Sibedrock)) of the tallgrass (Kw =2.8) vs. shortgrass sites (Kw =1.4) results from the increased weathering intensity across the bioclimosequence. Plant phytoliths exhibit relatively low Ge/Si values (0.15-0.44; x =0.29; n=15), compared to those of the corresponding surface soil water Ge/Si (0.22-0.94; x =0.66; n=6). Stream water Ge/Si values along the grassland climosequence (0.07-1.29, x = 0.34; n = 20) are typical of natural water Ge/Si values. Higher groundwater Ge values (0.42-3.4; x = 1.3; n=16) may represent an increased residence time or contact with minerals of higher Ge/Si ratios. The lack of Ge/Si separation among the major terrestrial pools confounds stream Si provenance

  6. GaP/Si heterojunction Solar Cells

    SciTech Connect

    Saive, R.; Chen, C.; Emmer, H.; Atwater, H.

    2015-05-11

    Improving the efficiency of solar cells requires the introduction of novel device concepts. Recent developments have shown that in Si solar cell technology there is still room for tremendous improvement. Using the heterojunction with intrinsic thin layer (HIT) approach 25.6 % power conversion efficiency was achieved. However, a-Si as a window and passivation layer comes with disadvantages as a-Si shows low conductivity and high parasitic absorption. Therefore, it is likely that using a crystalline material as window layer with high band gab and high mobility can further improve efficiency. We have studied GaP grown by MOCVD on Si with (001) and (112) orientation. We obtained crystalline layers with carrier mobility around 100 cm2/Vs and which passivate Si as confirmed by carrier lifetime measurements. We performed band alignment studies by X-ray photoelectron spectroscopy yielding a valence band offset of 0.3 eV. Comparing this value with the Schottky-model leads to an interface dipole of 0.59 eV. The open circuit voltage increases with increasing doping and is consistent with the theoretical open circuit voltage deduced from work function difference and interface dipole. We obtain an open circuit voltage of 0.38 V for n-doped GaP with doping levels in the order of 10^17 1/cm^3. In our next steps we will increase the doping level further in order to gain higher open circuit voltage. We will discuss the implications of these findings for GaP/Si heterojunction solar cells.

  7. Cuboplexes: Topologically Active siRNA Delivery.

    PubMed

    Kim, Hojun; Leal, Cecilia

    2015-10-27

    RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems. PMID:26390340

  8. Aptamer-siRNA chimeras for HIV.

    PubMed

    Takahashi, Mayumi; Burnett, John C; Rossi, John J

    2015-01-01

    Since 1980s, HIV/AIDS has escalated into a global pandemic. Although combinatorial antiretroviral therapy (cART) regimens can suppress plasma virus levels to below the detection limit and the survival rate of HIV-1 infected patients has been improving, long-term cART holds the potential to cause a number of chronic diseases. RNA interference (RNAi) is considered as a powerful method for developing new generation of therapeutics. Discovery of small interfering RNAs (siRNAs) shed light on limitations of targets that are "undruggable" with current technologies. However, delivery remains a major hurdle of siRNA-based therapy. Recent progress in technology of engineering nucleic acid enables a targeted delivery of siRNAs using aptamers, which, as often regarded as nucleic acid "antibodies," can recognize/bind to multiple different proteins and small-molecule targets by forming scaffolds for molecular interactions. SELEX technology enabled to isolate highly target specific aptamers from a random sequence oligonucleotide library. A number of aptamers for HIV-1 proteins as well as host proteins that interact with HIV-1 have been developed and some of them have potent viral neutralization ability and inhibition of HIV-1 infectivity. The availability of these aptamers has given an idea of using aptamers for targeting delivery of siRNAs. So far, aptamers against either HIV-1 gp120 or CD4 have been eagerly evaluated as the aptamer portion of the aptamer-siRNA chimeras for the treatment or prevention of HIV-1. In this chapter, we highlight the development and therapeutic potential of aptamer-siRNA chimeras for HIV-1. PMID:25757623

  9. SiC nanowires synthesized from graphene and silicon vapors

    NASA Astrophysics Data System (ADS)

    Weichenpei, Luo; Gong-yi, Li; Zengyong, Chu; Tianjiao, Hu; Xiaodong, Li; Xuefei, Zhang

    2016-04-01

    The preparation of silicon carbide (SiC) nanowires is basically important for its potential applications in nanodevices, nanocomposites, etc. In the present work, a simple route was reported to synthesize SiC nanowires by heating commercial graphene with silicon vapors and no catalyst. Characterization by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, electron energy scattering, X-ray diffraction, and Raman dispersive spectrum demonstrates the products are composed of β-SiC crystal. The SiC nanowires have the average diameter of about 50 nm and length of tens of micrometers. The vapor-solid mechanism was employed to interpret the SiC nanowires growth. Gaseous SiO which was produced by the reaction of Si powders with its surface oxidation reacted with the solid graphene to form SiC crystal nuclei. And SiC crystal nuclei would act as active sites for further growing into nanowires.

  10. Hybrid Si nanocones/PEDOT:PSS solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Jianxiong; Rusli, ᅟ

    2015-04-01

    Periodic silicon nanocones (SiNCs) with different periodicities are fabricated by dry etching of a Si substrate patterned using monolayer polystyrene (PS) nanospheres as a mask. Hybrid Si/PEDOT:PSS solar cells based on the SiNCs are then fabricated and characterized in terms of their optical, electrical, and photovoltaic properties. The optical properties of the SiNCs are also investigated using theoretical simulation based on the finite element method. The SiNCs reveal excellent light trapping ability as compared to a planar Si substrate. It is found that the power conversion efficiency (PCE) of the hybrid cells decreases with increasing periodicity of the SiNCs. The highest PCE of 7.1% is achieved for the SiNC hybrid cell with a 400-nm periodicity, due to the strong light trapping near the peak of the solar spectrum and better current collection efficiency.

  11. Generation of siRNA Nanosheets for Efficient RNA Interference

    PubMed Central

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  12. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  13. Evidence from a hot atom experiment for the silylsilylene-to-disilene rearrangement: SiH/sub 3/SiH:. -->. SiH/sub 2/=SiH/sub 2/

    SciTech Connect

    Gaspar, P.P.; Boo, B.H.; Svoboda, D.L.

    1987-09-10

    Adducts of disilene (SiH/sub 2/=SiH/sub 2/) and silylsilylene (SiH/sub 3/SiH:) to butadiene have been found, in addition to the previously reported products from the reactions of recoiling silicon atoms in gaseous mixtures of phosphine (PH/sub 3/), butadiene (C-H/sub 2/=CH-CH=CH/sub 2/), and silane (SiH/sub 4/). The change in yields when neon moderator is present - the yield of the silylsilylene adduct increases while that of the disilene adduct decreases - is in accord with the formation of disilene via a silylsilylene intermediate. This is strong evidence for the rearrangement of silylsilylene to disilene: SiH/sub 3/SiH: ..-->.. SiH/sub 2/=SiH/sub 2/.

  14. Ag on Si(111) from basic science to application

    SciTech Connect

    Belianinov, Aleksey

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  15. Experimental investigations of Si-isotope fractionation associated with Fe-Si co-precipitates in simulated Precambrian seawater

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Beard, B. L.; Reddy, T. R.; Johnson, C.

    2014-12-01

    The Si cycle was dramatically different in the Precambrian ocean due to the absence of marine Si-secreting organisms. Precambrian Si isotopic compositions were largely controlled by chemical precipitation of Si, input of Si with different isotopic compositions (e.g., continental versus hydrothermal sources) and later alteration and diagenetic processes associated with silicification. In Precambrian banded iron formations (BIFs) and chert deposits there is an over 4‰ spread of Si isotopes (δ30Si), which stands in marked contrast to the narrow range (<0.5) measured in igneous rocks, highlighting the potential of using Si isotopes to reconstruct those processes that controlled the Precambrian marine Si cycle. However, unequivocal interpretations of Si isotope compositions measured in Precambrian Fe-Si rich sediments is hampered by a lack of understanding of Si-isotope fractionation factors associated with formation of these sediments and subsequent diagenetic processes. This study experimentally investigates Si isotope fractionation during the formation of Fe-Si co-precipitates, and between aqueous Si and Fe-Si co-precipitates. All experiments are conducted in an artificially prepared medium that mimics Archean seawater (e.g. Si: ~60 ppm), rather than in a simple Fe-Si solution, because previous studies have revealed distinct Fe isotope fractionation behaviors in artificial Archean seawater (AAS) compared to simple solutions. One set of experiments investigated oxidation of Fe2+ in the AAS at room temperature, which produced amorphous Fe-Si precipitates. Preliminary results show that δ30Si values of Fe-Si co-precipitates are ~2‰ lower than the initial AAS (Δ30Siprecip-AAS = -2.13 ± 0.18‰ (2σ)). A second set of experiments trace Si-isotope exchange between aqueous Si (AAS) and Fe-Si co-precipitates in an anaerobic chamber, using a 29Si spike (i.e. three-isotope method). The results of these experiments will form a basis for reliable interpretations of Si

  16. Comparison of the vacuum-ultraviolet radiation response of HfO{sub 2}/SiO{sub 2}/Si dielectric stacks with SiO{sub 2}/Si

    SciTech Connect

    Upadhyaya, G. S.; Shohet, J. L.

    2007-02-12

    Vacuum ultraviolet (vuv) emitted during plasma processing degrades dielectrics by generating electron-hole pairs. VUV-induced charging of SiO{sub 2}/p-Si and HfO{sub 2}/SiO{sub 2}/p-Si dielectric stacks are compared. For SiO{sub 2}/p-Si, charging is observed for photon energies >15 eV by ionization of dielectric atoms from photoinjected electrons. In HfO{sub 2}/SiO{sub 2}/p-Si, charging is observed for photon >10 eV and is due to ionization by photoinjected electrons and by H{sup +} trapping in the HfO{sub 2}/SiO{sub 2} bulk. Hydrogen appears during annealing at the Si-SiO{sub 2} interface forming Si-H, which, during irradiation, is depassivated by photoinjected electrons. The authors conclude that dielectric charging in thin oxides (<10 nm) occurs more easily in HfO{sub 2}/SiO{sub 2} than in SiO{sub 2}.

  17. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  18. Simulation of electron transmittance and tunnel current in n{sup +} Poly-Si/HfSiO{sub x}N/Trap/SiO{sub 2}/Si(100) capacitors using analytical and numerical approaches

    SciTech Connect

    Noor, Fatimah A. Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2015-04-16

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.

  19. The bis metallacyclic anion [U(N{SiMe3}2)(CH2SiMe2N{SiMe3})2]-.

    PubMed

    Bénaud, Olivier; Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2010-09-01

    A series of bis metallacyclic compounds [M(THF)(x)UN*(CH(2)SiMe(2)N{SiMe(3)})(2)](n) [M = Na (2), Li (3), or K (4), N* = N(SiMe(3))(2)] were isolated from reactions of UCl(4) or [UN*(3)Cl] with MN* or by treatment of [UN*(2)(CH(2)SiMe(2)N{SiMe(3)})] (1) or [UN*(3)] with MN*, MH, or LiCH(2)SiMe(3) in tetrahydrofuran (THF). Crystals of 2a x 1/6n-pentane (x = 0), 2b (x = 1), 2c (x = 2), and 4b (x = 1) were obtained by crystallization of 2 and 4 from pentane, and [Na(18-crown-6)(THF)][UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] (2d) and [Na(15-crown-5)][UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] (2e) were formed upon addition of the crown ether. The crystal structures of 2a-2e and 4b exhibit the same [UN*(CH(2)SiMe(2)N{SiMe(3)})(2)] units which are linked to Na or K atoms via methylene or methyl groups, giving either tight cation-anion pairs (2d and 2e) or one-dimensional (1D) or two-dimensional (2D) polymeric compounds with Na or K atoms in bridging position between methylene groups of adjacent units. Reaction of 2 with CO gave the double insertion derivative [Na(2)(THF)U(2)N*(2)(OC{=CH(2)}SiMe(2)N{SiMe(3)})(4)] (5b) and [Na(15-crown-5)UN*(OC{=CH(2)}SiMe(2)N{SiMe(3)})(2)] (5c) in the presence of the crown ether. Thermal decomposition of 5b gave [Na(2)(THF)U(OC{=CH(2)}SiMe(2)N{SiMe(3)})(3)](2) (6), the product of CO insertion into the putative tris metallacycle [Na(2)(THF)(x)U(CH(2)SiMe(2)N{SiMe(3)})(3)]. The crystal structures of 5b, 5c, and 6 show the interaction of the Na atoms with the exocyclic C=CH(2) bonds. Diffusion of CO(2) into a THF solution of 2 led to the formation of [Na(THF)(x)UN*(OC{O}CH(2)SiMe(2)N{SiMe(3)})(2)] (7) which crystallized from pyridine/pentane to give [Na(THF)(2)(py)(2)UN*(OC{O}CH(2)SiMe(2)N{SiMe(3)})(2)] x 0.5 py (8 x 0.5 py), the first crystallographically characterized complex resulting from CO(2) insertion into a M(CH(2)SiMe(2)N{SiMe(3)}) metallacycle. Compound 2 reacted with I(2) to give [UN*(CH(2)SiMe(2)N{SiMe(3)})(N{SiMe(3)}SiMe(2)CH(2)I)] (9) which would

  20. Reactivity of the isolable disilene R*PhSi=SiPhR* (R* = SitBu3).

    PubMed

    Wiberg, Nils; Niedermayer, Wolfgang; Polborn, Kurt; Mayer, Peter

    2002-06-17

    The disilene R*PhSi=SiPhR* (R* = supersilyl = SitBu3), which can be quantitatively prepared by dehalogenation of the disilane R*PhClSi-SiBrPhR* with NaR* (yellow, water- and air-sensitive crystals; decomp at ca. 70 degrees C; Si=Si distance 2.182 A), is comparatively reactive. It transforms 1) with Cl2, Br2, HCl, HBr, and HOH under 1,2-addition into disilanes R*PhXSi-SiX'PhR* (X/X' = Hal/Hal, H/Hal, H/OH), 2) with O2, S8, and Sen under insertion into 1,3-disiletanes R*PhSi(-Y-)2SiPhR* (Y = O, S, Se), 3) with Me2C=CH2 under ene reaction into the disilane R*PhRSi-SiHPhR* (R = CH2-CMe=CH2), 4) with N2O, Ten, tBuN identical to C, and Me3SiN=N=N under [2 + 1] cycloaddition into disiliranes -R*PhSi-Y-SiPhR*- (Y = O, Te, C=NtBu, NSiMe3; P4 adds 2 molecules of disilene), 5) with CO2, COS, PhCHO, and Ph2CS under [2 + 2] cycloaddition into disiletanes -R*PhSi-SiPhR*-Y-CO- (Y = O, S) as well as -R*PhSi-SiPhR*-Y-CRPh- (Y/R = O/H, S/Ph), 6) with CS2 and CSe2 under [2 + 3] cycloaddition into ethenes R*2Ph2Si2Y2C = CY2Si2Ph2R*2 (Y = S, Se), and 7) with CH2 = CMe-CMe=CH2 and Ph2CO under [2 + 4] cycloaddition into "Diels-Alder adducts". X-ray structure analyses of seven of these compounds are presented. PMID:12391651

  1. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  2. A novel crystalline SiCO compound.

    PubMed

    Marqués, Miriam; Morales-García, Angel; Menéndez, José Manuel; Baonza, Valentín G; Recio, José Manuel

    2015-10-14

    Ab initio evolutionary structural searches have been performed on SixCyO2(x+y) compounds. A novel structure, with SiC2O6 stoichiometry and the P21/c space group is calculated to be stable against decomposition within a wide pressure window from 7.2 to 41 GPa, and metastable under ambient conditions. It consists of CO3 units, linked to SiO6 octahedra, supporting previous experimental studies. The evolution of the carbon environment towards tetrahedral CO4 units, thus resembling the crystal chemistry of silicon, is predicted at higher pressures. PMID:26345349

  3. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  4. Stacking faults in SiC nanowires.

    PubMed

    Wallis, K L; Wieligor, M; Zerda, T W; Stelmakh, S; Gierlotka, S; Palosz, B

    2008-07-01

    SiC nanowires were obtained by a reaction between vapor silicon and multiwall carbon nanotubes, CNT, in vacuum at 1200 degrees C. Raman and IR spectrometry, X-ray diffraction and high resolution transmission electron microscopy, HRTEM, were used to characterize properties of SiC nanowires. Morphology and chemical composition of the nanowires was similar for all samples, but concentration of structural defects varied and depended on the origin of CNT. Stacking faults were characterized by HRTEM and Raman spectroscopy, and both techniques provided complementary results. Raman microscopy allowed studying structural defects inside individual nanowires. A thin layer of amorphous silicon carbide was detected on the surface of nanowires. PMID:19051903

  5. Thermoelectric properties of -FeSi2

    SciTech Connect

    Parker, David S; Singh, David J; Pandey, Tribhuwan; Singh, Abhishek

    2013-01-01

    We investigate the thermoelectric properties of -FeSi2 using first principles electronic structure and Boltzmann trans- port calculations. We report a high thermopower for both p- and n-type -FeSi2 over a wide range of carrier concentra- tion and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 1020 - 2 1021 cm 3 may optimize the thermoelectric performance.

  6. Direct growth of graphene on Si(111)

    SciTech Connect

    Thanh Trung, Pham Joucken, Frédéric; Colomer, Jean-François; Robert, Sporken; Campos-Delgado, Jessica; Raskin, Jean-Pierre; Hackens, Benoît; Santos, Cristiane N.

    2014-06-14

    Due to the need of integrated circuit in the current silicon technology, the formation of graphene on Si wafer is highly desirable, but is still a challenge for the scientific community. In this context, we report the direct growth of graphene on Si(111) wafer under appropriate conditions using an electron beam evaporator. The structural quality of the material is investigated in detail by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, high resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. Our experimental results confirm that the quality of graphene is strongly dependent on the growth time during carbon atoms deposition.

  7. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction

    NASA Astrophysics Data System (ADS)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  8. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-02-01

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics. PMID:26763192

  9. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  10. Energetics and carrier transport in doped Si/SiO2 quantum dots.

    PubMed

    Garcia-Castello, Nuria; Illera, Sergio; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert; Guerra, Roberto

    2015-08-01

    In the present theoretical work we have considered impurities, either boron or phosphorous, located at different substitutional sites in silicon quantum dots (Si-QDs) with diameters around 1.5 nm, embedded in a SiO2 matrix. Formation energy calculations reveal that the most energetically-favored doping sites are inside the QD and at the Si/SiO2 interface for P and B impurities, respectively. Furthermore, electron and hole transport calculations show in all the cases a strong reduction of the minimum voltage threshold, and a corresponding increase of the total current in the low-voltage regime. At higher voltages, our findings indicate a significant increase of transport only for P-doped Si-QDs, while the electrical response of B-doped ones does not stray from the undoped case. These findings are of support for the employment of doped Si-QDs in a wide range of applications, such as Si-based photonics or photovoltaic solar cells. PMID:26144524

  11. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  12. Fiber creep rate and high-temperature properties of SiC/SiC composites

    SciTech Connect

    Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Henager, C.H. Jr.

    1998-03-01

    Results of studies aimed at relating the fiber creep rate to the subcritical crack growth rate and fracture properties of SiC/SiC composites have demonstrated that the crack growth rate in a bulk composite is controlled by the fiber creep rate. This result was demonstrated for Nicalon-CG and Hi-Nicalon fiber reinforced material where a 50--75 c shift in the creep strength of the fiber resulted in a similar shift in the crack growth rate of the composite. Irradiation enhanced creep of SiC fibers and matrix must also be considered in the performance assessment of SiC/SiC composites. The shape of the displacement versus time curve for composites containing Hi-Nicalon fibers were similar to those of the previously tested materials, containing Ceramic-grade fibers, that exhibited subcritical crack growth controlled by time-dependent relaxation of the fiber-bridging stresses due to fiber creep. The crack velocity in the CG-C composites at 1100 C in argon was very close to that of the Hi-C materials at 1150--1175 C, this roughly corresponds to the temperature differential shown by DiCarlo et al. to obtain the same relaxation in 1 hour bend stress relaxation (BSR) tests in the two fibers. This supports the hypothesis that subcritical crack growth in SiC/SiC composites is controlled by fiber creep.

  13. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  14. Infrared absorption of thin films MoSi2/SiNx micro-bridge

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Su, Yan; He, Yong; Wang, Kaiying

    2016-02-01

    In this paper, we report the infrared absorption and opto-electrical characteristics of multilayered thin films of MoSi2/SiNx with a micro-bridge structure. The thin films of MoSi2 deposited by radio frequency magnetron sputtering exhibit a relatively smooth surface (RMS roughness <1 nm, ˜0.98 Å/s), on which their square resistance is linearly increased from 340 to 550 Ω/sq. as the thickness decreases from 32 to 16 nm. Fourier transform infrared spectroscopy analysis indicates that the thin film MoSi2 with a thickness of ˜24 nm (450 Ω/sq.) presents the maximum infrared absorption on nearly dielectric thin film SiNx. Optical simulation verifies that the resistivity of the nearly dielectric thin film SiNx has an important influence on the infrared absorption of the thin film MoSi2. This work provides the physical understanding regarding the building of micro-bridges with the high infrared absorption.

  15. SiC formation on Si(100) via C 60 precursors

    NASA Astrophysics Data System (ADS)

    De Seta, M.; Tomozeiu, N.; Sanvitto, D.; Evangelisti, F.

    2000-07-01

    The interaction between C 60 molecules and the Si(100) surface and the preparation of silicon-carbide thin films by thermal reaction of C 60 molecules with the Si(100) surface have been investigated using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, reflection high-energy electron diffraction and atomic force microscopy measurements. The effects of annealing temperature and C 60 coverage on the SiC formation will be discussed. It is found that the C 60 molecules bond covalently with silicon, and the number of bonds increase upon increasing the annealing temperature. Annealing at T≥830°C entails the formation of stoichiometric silicon carbide clusters that coalesce to form a continuous SiC layer when the C 60 coverage is greater than one monolayer. Deep pits acting as silicon diffusion channels are present with dimensions that increase with the amounts of C 60. The interaction of C 60 with the SiC surface was also investigated. It is found that a similar covalent interaction is present in the two systems C 60/Si and C 60/SiC.

  16. Giant magnetic coercivity in orthorhombic YNi4Si-type SmNi4Si compound

    NASA Astrophysics Data System (ADS)

    Yao, Jinlei; Morozkin, A. V.

    2015-10-01

    Magnetic properties, magnetocaloric effect and heat capacity of the YNi4Si-type SmNi4Si compound have been investigated. SmNi4Si exhibits ferromagnetic transition at 17 K. Below ~9 K, the magnetic isotherms of SmNi4Si show metamagnetic-like behavior with critical field of 20 kOe at 5 K. Heat capacity measurements of SmNi4Si show the electronic heat capacity coefficient γ=94 mJ/(mol K2), phonon coefficient β=0.35 mJ/(mol K4) and Debye temperature TD=310 K. The magnetocaloric effect of SmNi4Si is calculated in terms of isothermal magnetic entropy change which is obtained by the isothermal magnetization (ΔSmmagn) and heat capacity measurements (ΔSmheat). Both ΔSmmagn and ΔSmheat reach a maximum of -1.0 J/kg K at 17 K for a field change of 50 kOe and they show positive values for a field change of 20 kOe at ~9 K. Below 15 K, SmNi4Si shows large magnetic hysteresis with considerable remanence. At 5 K it exhibits giant coercive field of 58 kOe in an applied field of 90 kOe.

  17. Influence of irradiation with swift heavy ions on multilayer Si/SiO{sub 2} heterostructures

    SciTech Connect

    Kachurin, G. A. Cherkova, S. G.; Marin, D. V.; Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh.; Kamaev, G. N.; Skuratov, V. A.

    2013-03-15

    The influence of Xe ions with an energy of 167 MeV and a dose in the range 10{sup 12}-3 Multiplication-Sign 10{sup 13} cm{sup -2} on heterostructures consisting of six pairs of Si/SiO{sub 2} layers with the thicknesses {approx}8 and {approx}10 nm, correspondingly, is studied. As follows from electron microscopy data, the irradiation breaks down the integrity of the layers. At the same time, Raman studies give evidence for the enhancement of scattering in amorphous silicon. In addition, a yellow-orange band inherent to small-size Si clusters released from SiO{sub 2} appears in the photoluminescence spectra. Annealing at 800 Degree-Sign C recovers the SiO{sub 2} network, whereas annealing at 1100 Degree-Sign C brings about the appearance of a more intense photoluminescence peak at {approx}780 nm typical of Si nanocrystals. The 780-nm-peak intensity increases, as the irradiation dose is increased. It is thought that irradiation produces nuclei, which promote Si-nanocrystal formation upon subsequent annealing. The processes occur within the tracks due to strong heating because of ionization losses of the ions.

  18. Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies.

    PubMed

    Liu, Wenna; Chen, Junhong; Yang, Tao; Chou, Kuo-Chih; Hou, Xinmei

    2016-09-14

    Coaxial nanocables (CNs) with an SiC core and a SiO2 shell were fabricated at a large scale by a simple and low cost method. The thickness of the SiO2 shell could be controlled by etching in 1 M NaOH aqueous solution for different amounts of time. XRD, SEM, TEM, HRTEM, PL and UV-Vis spectra were adopted to investigate the morphology and optical properties of the obtained SiC/SiO2CNs. Blue photoluminescence was observed at room temperature from the coaxial structure. The intensity of the single emission band at 468 nm (2.65 eV) exhibited a strong dependence on the thickness of the SiO2 layer and was significantly enhanced when the outer SiO2 shell had a thickness of 2.8 nm. The enhancement effect was attributed to oxygen vacancies (OV) and this was verified by deliberately enriching the surface OV through hydrogen treatment. PMID:27503431

  19. Partitioning of Si and platinum group elements between liquid and solid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Badro, J.

    2014-05-01

    Crystallization of the Earth's inner core fractionates major and minor elements between the solid and liquid metal, leaving physical and geochemical imprints on the Earth's core. For example, the density jump observed at the Inner Core Boundary (ICB) is related to the preferential partitioning of lighter elements in the liquid outer core. The fractionation of Os, Re and Pt between liquid and solid during inner core crystallization has been invoked as a process that explains the observed Os isotopic signature of mantle plume-derived lavas (Brandon et al., 1998; Brandon and Walker, 2005) in terms of core-mantle interaction. In this article we measured partitioning of Si, Os, Re and Pt between liquid and solid metal. Isobaric (2 GPa) experiments were conducted in a piston-cylinder press at temperatures between 1250 °C and 1600 °C in which an imposed thermal gradient through the sample provided solid-liquid coexistence in the Fe-Si system. We determined the narrow melting loop in the Fe-Si system using Si partitioning values and showed that order-disorder transition in the Fe-Si solid phases can have a large effect on Si partitioning. We also found constant partition coefficients (DOs, DPt, DRe) between liquid and solid metal, for Si concentrations ranging from 2 to 12 wt%. The compact structure of Fe-Si liquid alloys is compatible with incorporation of Si and platinum group elements (PGEs) elements precluding solid-liquid fractionation. Such phase diagram properties are relevant for other light elements such as S and C at high pressure and is not consistent with inter-elemental fractionation of PGEs during metal crystallization at Earth's inner core conditions. We therefore propose that the peculiar Os isotopic signature observed in plume-derived lavas is more likely explained by mantle source heterogeneity (Meibom et al., 2002; Baker and Krogh Jensen, 2004; Luguet et al., 2008).

  20. Ultraviolet Emission Lines of Si ii in Quasars: Investigating the "Si ii Disaster"

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.

    2016-07-01

    The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the “Si ii disaster,” and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity (∼ 500 {km} {{{s}}}-1) may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.

  1. Nanoscale PtSi Tips for Conducting Probe Technologies

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Harish; Sebastian, Abu; Despont, Michel

    2009-01-01

    A method to improve the conduction and wear properties of nanometric conducting tips by forming silicides of Pt at the tip apex is presented. Tips with PtSi apexes are fabricated in conjunction with standard Si tips. Wear measurements are carried out on both tip types of similar geometries, and a one-on-one comparison between Si and PtSi at the nanoscale is shown for the first time. Both the wear properties on tetrahedral amorphous carbon and the conduction on Au of the PtSi tip apexes are shown to be superior to the Si tips.

  2. Local anodic oxidation patterning of Au deposited Si surfaces.

    PubMed

    Vijaykumar, T; Kulkarni, G U

    2009-09-01

    Nanopatterning of Si(100) surfaces deposited with Au films from physical and chemical methods, has been carried out using a AFM set up mounted with a conducting tip. At a tip bias of -12 V, the LAO patterns drawn on various Au/SiOx surfaces have been compared with those on bare Si. The height of the oxide patterns is several times higher in the case of Au covered Si surfaces compared to patterns on bare Si surface. The enhancement in LAO is related to the catalytic activity of Au nanoparticulates at SiOx interface. PMID:19928226

  3. Formation and ferromagnetic properties of FeSi thin films

    SciTech Connect

    Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae

    2013-05-07

    In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

  4. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  5. Chemical bonding and charge redistribution - Valence band and core level correlations for the Ni/Si, Pd/Si, and Pt/Si systems

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Madhukar, A.

    1982-01-01

    Via a systematic study of the correlation between the core and valence level X-ray photoemission spectra, the nature of the chemical bonding and charge redistribution for bulk transition metal silicides has been examined. Particular emphasis is placed on Pt2Si and PtSi. It is observed that the strength of the metal (d)-silicon (p) interaction increases in the order Ni2Si, Pd2Si, Pt2Si. It is also observed that both the metal and silicon core lines shift to higher binding energy as the silicides are formed. The notion of charge redistribution for metallic bonds is invoked to explain these data.

  6. Subsurface Growth of CoSi2 by Deposition of Co on Si-Capped CoSi2 Seed Regions

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1991-01-01

    At a growth temperature of 800 C, Co deposited on Si(111) diffuses through a Si cap and exhibits oriented growth on buried CoSi2 grains, a process referred to as endotaxy. This occurs preferentially to surface nucleation of CoSi2 provided the thickness of the Si cap is less than a critical value between 100 and 200 nm for a deposition rate of 0.01 nm/s. Steady-state endotaxy is modeled under the assumption that the process is controlled by Co diffusion.

  7. Electron beam-physical vapor deposition of SiC/SiO 2 high emissivity thin film

    NASA Astrophysics Data System (ADS)

    Yi, Jian; He, XiaoDong; Sun, Yue; Li, Yao

    2007-02-01

    When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO 2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO 2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO 2, especially, SiO 2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO 2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO 2 composite thin film.

  8. Mechanism of Hydrogenated Microcrystalline Si Film Deposition by Magnetron Sputtering Employing a Si Target and H2/Ar Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fukaya, Kota; Tabata, Akimori; Sasaki, Koichi

    2009-03-01

    The mechanism of hydrogenated microcrystalline silicon (µc-Si:H) film deposition by magnetron sputtering employing a Si target and H2/Ar gas mixture has been investigated by measuring Si and H atom densities in the gas phase by laser-induced fluorescence spectroscopy. The crystalline volume fraction of the film correlated positively with H atom density. The variation in Si atom density indicated the increase in sputtering yield from the Si target in the H2/Ar discharge. The surface of the Si target immersed in the H2/Ar discharge was hydrogenated. Therefore, it is reasonable to expect the production of SiHx molecules (typically SiH4) from the hydrogenated Si target via reactive ion etching. Since SiHx molecules produced from the target may function as a deposition precursor, the mechanism of µc-Si:H film deposition is considered to be similar to that of plasma-enhanced chemical vapor deposition (PECVD) employing a SiH4/H2 gas mixture. The advantage of magnetron sputtering deposition over PECVD is the production of SiHx molecules without using toxic, explosive SiH4.

  9. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  10. Purity and radioactive decay behaviour of industrial 2D-reinforced SiC f/SiC composites

    NASA Astrophysics Data System (ADS)

    Scholz, H. W.; Zucchetti, M.; Casteleyn, K.; Adelhelm, C.

    1994-09-01

    Ceramic matrix composites based on SiC with continuous fibres (SiC f/SiC) are considered promising structural materials for future fusion devices. It was still to clarify, whether impurities in industrial SiC f/SiC could jeopardise radiological advantages. Experimental impurity analyses revealed a two-dimensionally reinforced SiC f/SiC with the matrix produced by CVI as very pure. Chemo-spectrometric methods were combined with radioactivation methods (CPAA, NAA). A quantification of the main constituents Si, C and O was added. Calculations with the FISPACT-2.4 code and EAF-2 library identified elements detrimental for different low-activation criteria. For the neutron exposure, EEF reactor-study first wall and blanket conditions were simulated. The calculated SiC f/ SiC included 48 trace elements. Even under conservative assumptions, all low-activation limits of European interest are fulfilled. Exclusively the hands-on recycling limit for the First Wall can intrinsically not be satisfied with SiC. The theoretical goal of a SiC f/SiC depleted of 28Si (isotopic tailoring) is critically discussed.

  11. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    NASA Astrophysics Data System (ADS)

    Cao, Yunqing; Lu, Peng; Zhang, Xiaowei; Xu, Jun; Xu, Ling; Chen, Kunji

    2014-11-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%.

  12. Development of Readout Interconnections for the Si-W Calorimeter of SiD

    SciTech Connect

    Woods, M.; Fields, R.G.; Holbrook, B.; Lander, R.L.; Moskaleva, A.; Neher, C.; Pasner, J.; Tripathi, M.; Brau, J.E.; Frey, R.E.; Strom, D.; Breidenbach, M.; Freytag, D.; Haller, G.; Herbst, R.; Nelson, T.; Schier, S.; Schumm, B.; /UC, Santa Cruz

    2012-09-14

    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.

  13. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-05-01

    Interface characteristics of Co2MnSi/Ag/Co2MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  14. Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001)

    SciTech Connect

    Grydlik, Martyna; Groiss, Heiko; Brehm, Moritz; Schaeffler, Friedrich; Boioli, Francesca; Montalenti, Francesco; Miglio, Leo; Gatti, Riccardo; Devincre, Benoit

    2012-07-02

    We show that suitable pit-patterning of a Si(001) substrate can strongly influence the nucleation and the propagation of dislocations during epitaxial deposition of Si-rich Si{sub 1-x}Ge{sub x} alloys, preferentially gettering misfit segments along pit rows. In particular, for a 250 nm layer deposited by molecular beam epitaxy at x{sub Ge} = 15%, extended film regions appear free of dislocations, by atomic force microscopy, as confirmed by transmission electron microscopy sampling. This result is quite general, as explained by dislocation dynamics simulations, which reveal the key role of the inhomogeneous distribution in stress produced by the pit-patterning.

  15. Thermophysical and mechanical properties of SiC/SiC composites

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-09-01

    The key thermophysical and mechanical properties for SiC/SiC composites are summarized, including temperature-dependent tensile properties, elastic constants, thermal conductivity, thermal expansion, and specific heat. The effects of neutron irradiation on the thermal conductivity and dimensional stability (volumetric swelling, creep) of SiC is discussed. The estimated lower and upper temperatures limits for structural applications in high power density fusion applications are 400 and 1000 C due to thermal conductivity degradation and void swelling considerations, respectively. Further data are needed to more accurately determine these estimated temperature limits.

  16. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  17. Electromigration performance improvement of Al-Si-Cu/TiN/Ti/n+Si contact

    NASA Astrophysics Data System (ADS)

    Shi, Gang; Sun, Zhen; Xu, Geng-Fu; Min, Yun-Hao; Luo, Jun-Yi; Lu, Yong; Li, Bing-Zong; Qu, Xin-Ping; Qian, Gang; Doan, My T.; Lee, Edmund

    1998-02-01

    In this study, two different processes, with and without rapid thermal annealing (RTA), have been compared for the Al-Si- Cu/TiN/Ti multilayer contact on n+ diffusions. A series of wafer level reliability (WLR) measurement performed on a test structure with two 1.08 X 1.08 micrometer2 contacts on n+ diffusion. The results show that RTA can increase contact electromigration (EM) lifetime dramatically. The XRD, AES and TEM analysis indicate that this improvement is attributed to oxygen stuffing in TiN, phase change of TiN and TiSi2 formation at the interface of Ti and Si.

  18. Morphology and electrical conduction of Si:P δ-doped layers on vicinal Si(001)

    NASA Astrophysics Data System (ADS)

    Reusch, T. C. G.; Goh, K. E. J.; Pok, W.; Lo, W.-C. N.; McKibbin, S. R.; Simmons, M. Y.

    2008-09-01

    We present a combined scanning tunneling microscopy (STM) and low-temperature magnetotransport study of Si:P δ-doped layers on vicinal Si(001) substrates. The substrates were misoriented 4° toward [110] resulting in a high step density on the starting growth surface. Atomically resolved STM was used to study all stages of the fabrication. We find only a weak influence of the high step density and discuss the implications for the fabrication δ-doped layers and planar nanoscale Si:P devices by scanning tunneling lithography.

  19. Particle size reduction of Si3N4 with Si3N4 milling hardware

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Freedman, M. R.; Kiser, J. D.

    1986-01-01

    The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.

  20. Homogenization of the melting depth in SiC on Si structures during flash lamp irradiation

    NASA Astrophysics Data System (ADS)

    Voelskow, Matthias; Skorupa, Wolfgang; Smith, Mark P.; McMahon, Richard A.

    2005-12-01

    Flash lamp annealing of heteroepitaxial silicon carbide on silicon structures involves melting the silicon below the SiC layer but the faceted nature of the liquid-solid interface leads to unacceptable surface roughness. This letter describes a method of controlling melting by using a melt stop created at a controlled depth below the Si /SiC interface by implanting a high dose of carbon, which significantly increases the silicon melting temperature. Results confirm the effectiveness of this approach for increasing surface uniformity, making liquid phase processing compatible with standard device fabrication techniques.

  1. Homogenization of the melting depth in SiC on Si structures during flash lamp irradiation

    SciTech Connect

    Voelskow, Matthias; Skorupa, Wolfgang; Smith, Mark P.; McMahon, Richard A.

    2005-12-12

    Flash lamp annealing of heteroepitaxial silicon carbide on silicon structures involves melting the silicon below the SiC layer but the faceted nature of the liquid-solid interface leads to unacceptable surface roughness. This letter describes a method of controlling melting by using a melt stop created at a controlled depth below the Si/SiC interface by implanting a high dose of carbon, which significantly increases the silicon melting temperature. Results confirm the effectiveness of this approach for increasing surface uniformity, making liquid phase processing compatible with standard device fabrication techniques.

  2. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi2/n-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Takabe, Ryota; Yachi, Suguru; Du, Weijie; Tsukahara, Daichi; Takeuchi, Hiroki; Toko, Kaoru; Suemasu, Takashi

    2016-08-01

    Fabrication of p-BaSi2(20nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (da-Si) and varying air exposure durations (tair) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η) reached approximately 4.7% regardless of tair (varying from 12-150 h) for solar cells with da-Si = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing tair for those with da-Si = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J0) and diode ideality factor decreased with tair, resulting in the enhancement of η. The effects of the variation of da-Si (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping tair = 150 h. The η reached a maximum of 9.0% when da-Si was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J0 exhibited a tendency to decrease as da-Si increased. These results demonstrate that a moderate oxidation of BaSi2 is a very effective means to enhance the η of BaSi2 solar cells.

  3. Electrical behavior of MIS devices based on Si nanoclusters embedded in SiOxNy and SiO2 films

    PubMed Central

    2011-01-01

    We examined and compared the electrical properties of silica (SiO2) and silicon oxynitride (SiOxNy) layers embedding silicon nanoclusters (Sinc) integrated in metal-insulator-semiconductor (MIS) devices. The technique used for the deposition of such layers is the reactive magnetron sputtering of a pure SiO2 target under a mixture of hydrogen/argon plasma in which nitrogen is incorporated in the case of SiOxNy layer. Al/SiOxNy-Sinc/p-Si and Al/SiO2-Sinc/p-Si devices were fabricated and electrically characterized. Results showed a high rectification ratio (>104) for the SiOxNy-based device and a resistive behavior when nitrogen was not incorporating (SiO2-based device). For rectifier devices, the ideality factor depends on the SiOxNy layer thickness. The conduction mechanisms of both MIS diode structures were studied by analyzing thermal and bias dependences of the carriers transport in relation with the nitrogen content. PMID:21711698

  4. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  5. Porous Si structure as moisture sensor

    SciTech Connect

    Peterson, D.W.; Nguyen, L.T.

    1996-12-31

    Development and characterization of a capacitive moisture sensor made from porous Si is presented. The sensor development was in support of the DoD funded Plastic Package Availability program and was intended for the detection of pinholes and defects in moisture barrier coatings applied to ICs during fabrication or during the plastic encapsulation assembly process.

  6. Si/Cu Interface Structure and Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2006-03-01

    An ab initio investigation of the Si(111)/Cu(111) interfacial atomic structure and adhesion is reported [1]. Misfit dislocations appear naturally, as do hcp interfacial silicide phases that vary with temperature. The silicides form in the interface even at relatively low temperatures. These results are consistent with available experimental data. [1] Xiao-Gang Wang, John Smith, Physical Review Letters 95, 156102 (2005).

  7. COMPUTING SI AND CCPP USING SPREADSHEET PROGRAMS

    EPA Science Inventory

    Lotus 1-2-3 worksheets for calculating the calcite saturation index (SI) and calcium carbonate precipitation potential of a water sample are described. A simplified worksheet illustrates the principles of the method, and a more complex worksheet suitable for modeling most potabl...

  8. Interface-mediated intervalley coupling in Si

    NASA Astrophysics Data System (ADS)

    Koiller, Belita; Saraiva, A. L.; Calderon, M. J.; Hu, Xuedong; Das Sarma, S.

    2011-03-01

    The conduction band degeneracy in Si is detrimental to spin qubits, for which a nondegenerate ground orbital state is desirable. The Si valley degeneracy is reduced to 2 near an interface with an insulator, and it may be lifted by the spatially abrupt change in the crystal potential. Basic physical mechanisms for Si/barrier mediated valley coupling in different situations are addressed here. Theoretical studies of the interface-induced valley splitting in Si are presented. Abrupt and smooth interface profiles are considered, and the full plane wave expansions of the Bloch functions at the conduction band minima are included. Simple criteria are suggested for optimal fabrication parameters affecting the valley splitting, emphasizing the relevance of different interface-related properties. Refs: A.L.Saraiva et al, PRB 80, 081305 R (2009); arXiv:1006.3338 Support: BK and ALS thank CNPq, FUJB, INCT on Quantum Information, and FAPERJ. M.J.C. acknowledges Ministerio de Ciencia e Innovación (Spain). XH amd SDS thank NSA and L PS. S.D.S. also thanks CMTC.

  9. Segmented SiGe-PbTe couples

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Mueller, J. J.

    1969-01-01

    New design of segmented couples incorporates an intermediate junction contacted by pressure, and eliminates transition members that bond materials differing in thermal expansion. Development of a reproducible and reliable intermediate junction between PbTe and SiGe will be applicable to direct conversion of energy.

  10. Universal Converter Using SiC

    SciTech Connect

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  11. Periodically twinned SiC nanowires.

    PubMed

    Wang, Dong-Hua; Xu, Di; Wang, Qing; Hao, Ya-Juan; Jin, Guo-Qiang; Guo, Xiang-Yun; Tu, K N

    2008-05-28

    Twinning has been recognized to be an important microstructural defect in nanoscale materials. Periodically twinned SiC nanowires were largely synthesized by the carbothermal reduction of a carbonaceous silica xerogel prepared from tetraethoxysilane and biphenyl with iron nitrate as an additive. The twinned β-SiC nanowires, with a hexagonal cross section, a diameter of 50-300 nm and a length of tens to hundreds of micrometers, feature a zigzag arrangement of periodically twinned segments with a rather uniform thickness along the entire growth length. Computer simulation has been used to generate three-dimensional atomic structures of the zigzag columnar twin structure by the stacking of hexagonal discs of {111} planes of SiC. A minimum surface energy and strain energy argument is proposed to explain the formation of periodic twins in the SiC nanowires. The thickness of the periodic twinned segments is found to be linearly proportional to the nanowire diameter, and a constant volume model is proposed to explain the relation. PMID:21730575

  12. Passive SiC irradiation temperature monitor

    SciTech Connect

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  13. Si-nanocrystal-based nanofluids for nanothermometry.

    PubMed

    Cardona-Castro, M A; Morales-Sánchez, A; Licea-Jiménez, L; Alvarez-Quintana, J

    2016-06-10

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting-freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale. PMID:27125568

  14. Si-nanocrystal-based nanofluids for nanothermometry

    NASA Astrophysics Data System (ADS)

    Cardona-Castro, M. A.; Morales-Sánchez, A.; Licea-Jiménez, L.; Alvarez-Quintana, J.

    2016-06-01

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting–freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale.

  15. Growth kinetics of Si and Ge nanowires

    NASA Astrophysics Data System (ADS)

    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M.

    2009-02-01

    Si and Ge nanowires have potential applications in a wide variety of areas including thermoelectrics, optoelectronics, and sensors. Nanowires are most commonly grown via the vapor-liquid-solid (VLS) process. In this method, a vapor phase containing the material of interest preferentially dissociates at a liquid catalyst and is incorporated as a solid at the solid-liquid interface. However, despite 40 years of research in this area, several aspects of nanowire growth remain unclear, even for relatively simple elemental Si and Ge wires. Here, we will review our in situ transmission electron microscopy (TEM) investigations of Si and Ge nanowire growth kinetics. The observations are carried out in an ultra-high vacuum TEM (the IBM UHV-TEM) equipped with facilities for deposition during observation. Using Au as the catalyst, we study the VLS growth of Si and Ge nanowires as a function of disilane or digermane pressure and substrate temperature. We find surprisingly different growth mechanisms for the two materials. The insights gained from in situ results may help devise methods for large-scale fabrication of wires with controlled architecture.

  16. A comparative study of three-terminal Hanle signals in CoFe/SiO2/n+-Si and Cu/SiO2/n+-Si tunnel junctions

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Hyeon; He, Shumin; Grünberg, Peter; Jin, Mi-Jin; Yoo, Jung-Woo; Cho, B. K.

    2016-01-01

    We performed three-terminal (3T) Hanle measurement for two types of sample series, CoFe/SiO2/n+-Si and Cu/SiO2/n+-Si, with various tunnel resistances. Clear Hanle signal and anomalous scaling between spin resistance-area product and tunnel resistance-area product were observed in CoFe/SiO2/n+-Si devices. In order to explore the origin of the Hanle signal and the impurity-assisted tunneling effect on the Hanle signal in our devices, Hanle measurement in Cu/SiO2/n+-Si devices was performed as well. However, no detectable Hanle signal was observed in Cu/SiO2/n+-Si, even though a lot of samples with various tunnel resistances were studied in wide temperature and bias voltage ranges. Through a comparative study, it is found that the impurity-assisted tunneling magnetoresistance mechanism would not play a dominant role in the 3T Hanle signal in CoFe/SiO2/n+-Si tunnel junctions, where the SiO2 was formed by plasma oxidation to minimize impurities.

  17. Characterization of ultrathin SiO x layers formed on a spatially controlled atomic-step-free Si(001) surface

    NASA Astrophysics Data System (ADS)

    Ando, Atsushi; Sakamoto, Kunihiro; Miki, Kazushi; Matsumoto, Kazuhiko; Sakamoto, Tsunenori

    1999-04-01

    We have demonstrated the characterizations of the morphologies and local electrical properties of ultrathin (<5 nm) SiO x/Si(001) structures that were formed by thermal oxidation of a spatially controlled atomic-step-free Si(001) surface. Both the SiO x surface and the SiO x/Si(001) interface had good morphology, with root-mean-square values of roughness, less than 0.12 nm. In contrast, spatial differences were observed in the local electrical properties measured using an atomic force microscope (AFM) with nanometer scale resolution.

  18. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-04-01

    In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

  19. Compositional and optical properties of SiO x films and (SiO x /SiO y ) junctions deposited by HFCVD

    PubMed Central

    2014-01-01

    In this work, non-stoichiometric silicon oxide (SiO x ) films and (SiO x /SiO y ) junctions, as-grown and after further annealing, are characterized by different techniques. The SiO x films and (SiO x /SiO y ) junctions are obtained by hot filament chemical vapor deposition technique in the range of temperatures from 900°C to 1,150°C. Transmittance spectra of the SiO x films showed a wavelength shift of the absorption edge thus indicating an increase in the optical energy band gap, when the growth temperature decreases; a similar behavior is observed in the (SiO x /SiO y ) structures, which in turn indicates a decrease in the Si excess, as Fourier transform infrared spectroscopy (FTIR) reveals, so that, the film and junction composition changes with the growth temperature. The analysis of the photoluminescence (PL) results using the quantum confinement model suggests the presence of silicon nanocrystal (Si-nc) embedded in a SiO x matrix. For the case of the as-grown SiO x films, the absorption and emission properties are correlated with quantum effects in Si-nc and defects. For the case of the as-grown (SiO x /SiO y ) junctions, only the emission mechanism related to some kinds of defects was considered, but silicon nanocrystal embedded in a SiO x matrix is present. After thermal annealing, a phase separation into Si and SiO2 occurs, as the FTIR spectra illustrates, which has repercussions in the absorption and emission properties of the films and junctions, as shown by the change in the A and B band positions on the PL spectra. These results lead to good possibilities for proposed novel applications in optoelectronic devices. PACS 61.05.-a; 68.37.Og; 61.05.cp; 78.55.-m; 68.37.Ps; 81.15.Gh PMID:25342935

  20. Energy-band alignments at ZrO2/Si, SiGe, and Ge interfaces

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Huan, A. C. H.; Foo, Y. L.; Chai, J. W.; Pan, J. S.; Li, Q.; Dong, Y. F.; Feng, Y. P.; Ong, C. K.

    2004-11-01

    The energy-band alignments for the ZrO2/Si, ZrO2/Si0.75Ge0.25, and ZrO2/Ge interfaces have been studied using x-ray photoemission. The valence-band offsets of ZrO2/Si, ZrO2/Si0.75Ge0.25, and ZrO2/Ge interfaces are determined to be 2.95, 3.13, and 3.36eV, respectively, while the conduction-band offsets are found to be the same value of 1.76±0.03eV for three interfaces. The upward shift of valence-band top accounts for the difference in the energy-band alignment at three interfaces.