Sample records for silicate weathering rates

  1. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  2. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  3. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  4. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves

    2018-07-01

    The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).

  5. Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.

    2017-12-01

    Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.

  6. Inferring silicate weathering rates over recent timescales (less than 100 years) in crystalline aquifers by calibrating lumped parameters models with atmospheric tracers

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Labasque, T.; Gauvain, A.; De Dreuzy, J. R.; Aquilina, L.; Abbott, B. W.

    2016-12-01

    Silicate minerals (e.g. feldspars, micas and olivines) are ubiquitous in crystalline rocks such as granite and schist. Groundwater dissolves some of this silica via weathering processes as it passes through the catchment, increasing silica concentration with residence time. However, quantifying weathering rates is complicated by the fact that groundwater residence time distributions (RTD) are typically unknown. Batch experiments can characterize weathering reaction type and provide estimates of dissolution rates, but weathering timescales in the field are far greater than what can be simulated in the laboratory (White and Brantley, 2003). Here we implement a novel approach coupling chlorofluorocarbons (CFC) and dissolved silica concentrations to infer timescales of silica weathering processes at the watershed scale. We investigated 6 crystalline aquifers in Brittany with contrasting lithology. We quantified silicate weathering at the watershed scale based on individual measurements from multiple wells, assuming first-order reaction kinetics. For each well, we used a lumped parameter model to determined RTD with inverse gaussian distributions, which allow two degrees of freedom. Production rate and initial silicate concentration were then optimized at the watershed scale with the calibrated model. Weathering rates were relatively similar among watersheds, varying for most sites from 0.16 to 0.42 mg/L/yr (SD = 0.09 mg/L/yr), and estimates of weathering rates were not significantly influenced by single well measurements. This work demonstrates how atmospheric tracers can be used with dissolved silica concentration to inform both RTD and first order kinetics of weathering reactions. Together these results suggest that dissolved silica could be a robust and cheap groundwater age proxy for recent timescales (less than 100 years). ------------------ White, Art F, and Susan L Brantley. 2003. « The effect of time on the weathering of silicate minerals: why do weathering

  7. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2018-07-01

    We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be

  8. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  9. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  10. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  11. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  12. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    PubMed

    Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R

    2012-12-23

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.

  13. Impact of atmospheric CO2 levels on continental silicate weathering

    NASA Astrophysics Data System (ADS)

    Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.

    2010-07-01

    Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.

  14. Negative CO2 emissions via enhanced silicate weathering in coastal environments

    PubMed Central

    Montserrat, Francesc

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634

  15. Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.

    1999-10-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 {+-} 2.5 kcal/mol) and olivine (21.3 {+-} 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution ofmore » plagioclase and olivine underneath lichen is far more sensitive to rainfall.« less

  16. The Evolution of Land Plants and the Silicate Weathering Feedback

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  17. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India

    NASA Astrophysics Data System (ADS)

    Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.

    2013-11-01

    The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical weathering rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate weathering rates in the drainage basin. At Musuri silicate weathering rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate weathering rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from weathering of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate weathering FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate weathering (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate weathering is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate weathering in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of global CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.

  18. Weathering and weathering rates of natural stone

    NASA Astrophysics Data System (ADS)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  19. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process

  20. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  1. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  2. A subsurface Fe-silicate weathering microbiome

    NASA Astrophysics Data System (ADS)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  3. Silicate Weathering and Carbon Cycle Controls on the Oligocene-Miocene Transition Glaciation

    NASA Astrophysics Data System (ADS)

    Stewart, Joseph A.; James, Rachael H.; Anand, Pallavi; Wilson, Paul A.

    2017-10-01

    Changes in both silicate weathering rates and organic carbon burial have been proposed as drivers of the transient "Mi-1" glaciation event at the Oligocene-Miocene transition (OMT; 23 Ma). However, detailed geochemical proxy data are required to test these hypotheses. Here we present records of Li/Ca, Mg/Ca, Cd/Ca, U/Ca, δ18O, δ13C, and shell weight in planktonic foraminifera from marine sediments spanning the OMT in the equatorial Atlantic Ocean. Li/Ca values increase by 1 μmol/mol across this interval. We interpret this to indicate an 20% increase in silicate weathering rates, which would have lowered atmospheric CO2, potentially forcing the Antarctic glaciation 23 Ma. δ13C of thermocline dwelling planktonic foraminifera track the global increase in seawater δ13C across the OMT and during the Mi-1 event, hence supporting a hypothesized global increase in organic carbon burial rates. High δ13C previously measured in epipelagic planktonic foraminifera and high Cd/Ca ratios during Mi-1 are interpreted to represent locally enhanced primary productivity, stimulated by increased nutrients supply to surface waters. The fingerprint of high export production and associated organic carbon burial at this site is found in reduced bottom water oxygenation (inferred from high foraminiferal U/Ca) and enhanced respiratory dissolution of carbonates, characterized by reduced foraminiferal shell weight. Replication of our results elsewhere would strengthen the case that weathering-induced CO2 sequestration preconditioned climate for Antarctic ice sheet growth across the OMT, and increased burial of organic carbon acted as a feedback that intensified cooling at this time.

  4. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area

  5. Silicate Weathering and Pervasive Authigenic Carbonate Precipitation Coupled to Methanogenesis in the Krishna-Godavari Basin, Offshore India

    NASA Astrophysics Data System (ADS)

    Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.

    2014-12-01

    The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in

  6. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  7. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Grace Andrews, M.; Lehn, Gregory O.; Holmden, Chris

    2015-04-01

    Several studies have measured riverine fluxes of Ca and carbonate alkalinity in Iceland with the aim of quantifying the role of basalt weathering in the long-term carbon cycle. A major assumption is that all of the Ca and alkalinity originates from the dissolution of Ca-bearing silicate minerals, such as plagioclase and clinopyroxene. However, hydrothermal calcite occurs throughout Iceland, and even trace levels are expected to impact river geochemistry owing to the mineral's high solubility and fast dissolution rate. To test this hypothesis, we used a new, high-precision Ca isotope MC-TIMS method (δ44/40Ca; 2σSD = ± 0.04 ‰) to trace sources of Ca in Icelandic rivers. We report elemental and Ca isotope data for rivers, high- and low-temperature groundwater, basalt, hydrothermal calcite (including Iceland Spar), and stilbite and heulandite, which are two types of zeolites commonly formed during low-grade metamorphism of basalt. In agreement with previous research, we find that rivers have higher δ44/40Ca values than basalt, with a maximum difference of ∼0.40‰. This difference may reflect isotope fractionation in the weathering zone, i.e., preferential uptake of 40Ca during clay mineral formation, adsorption, and other geochemical processes that cycle Ca. However, calcite δ44/40Ca values are also up to ∼0.40‰ higher than bedrock values, and on a diagram of δ44/40Ca versus Sr/Ca, nearly all waters plot within a plausible mixing domain bounded by the measured compositions of basalt and calcite, with glacial rivers plotting closer to calcite than non-glacial rivers. Calcite and heulandite form during hydrothermal alteration of basalt in the deep lava pile and often occur together in metabasalts now exposed at the surface. Because heulandite δ44/40Ca values are ∼1-2‰ lower than basalt, we suggest that 40Ca uptake by heudlandite explains the relatively high δ44/40Ca values of calcite and that calcite weathering in turn elevates riverine δ44/40Ca

  8. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface

  9. Constraining Silicate Weathering Processes in an Active Volcanic Complex: Implications for the Long-term Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Washington, K.; West, A. J.; Hartmann, J.; Amann, T.; Hosono, T.; Ide, K.

    2017-12-01

    While analyzing geochemical archives and carbon cycle modelling can further our understanding of the role of silicate weathering as a sink in the long-term carbon cycle, it is necessary to study modern weathering processes to inform these efforts. A recent compilation of data from rivers draining basaltic catchments estimates that rock weathering in active volcanic fields (AVFs) consumes atmospheric CO2 approximately three times faster than in inactive volcanic fields (IVFs), suggesting that the eruption and subsequent weathering of large igneous provinces likely played a major role in the carbon cycle in the geologic past [1]. The study demonstrates a significant correlation between catchment mean annual temperature (MAT) and atmospheric CO2 consumption rate for IVFs. However CO2 consumption due to weathering of AVFs is not correlated with MAT as the relationship is complicated by variability in hydrothermal fluxes, reactive surface area, and groundwater flow paths. To investigate the controls on weathering processes in AVFs, we present data for dissolved and solid weathering products from Mount Aso Caldera, Japan. Aso Caldera is an ideal site for studying the how the chemistry of rivers draining an AVF is impacted by high-temperature water/rock interactions, volcanic ash weathering, and varied groundwater flow paths and residence times. Samples were collected over five field seasons from two rivers and their tributaries, cold groundwater springs, and thermal springs. These samples capture the region's temperature and precipitation seasonality. Solid samples of unaltered volcanic rocks, hydrothermally-altered materials, volcanic ash, a soil profile, and suspended and bedload river sediments were also collected. The hydrochemistry of dissolved phases were analyzed at the University of Hamburg, while the mineralogy and geochemical compositions of solid phases were analyzed at the Natural History Museum of Los Angeles. This work will be discussed in the context of

  10. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.

    PubMed

    Wu, Weihua

    2016-01-15

    The geographic region around the northern and northeastern Tibetan Plateau is the source of several inland rivers (e.g. Tarim River) of worldwide importance that are generated in the surrounding mountains systems of Tianshan, Pamir, Karakorum, and Qilian. To characterize chemical weathering and atmospheric CO2 consumption in these regions, water samples from the Tarim, Yili, Heihe, Shule, and Shiyang Rivers were collected and analyzed for major ion concentrations. The hydrochemical characteristics of these inland rivers pronouncedly distinguish them from large exorheic rivers (e.g., the Yangtze River and the Yellow River), as reflected in very high total dissolution solids (TDS) values. TDS was 115-4345 mg l(-1) with an average of 732 mg l(-1), which is an order of magnitude higher than the mean value for world rivers (65 mg l(-1)). The Cheerchen River, Niya River, Keliya River and the terminal lakes of the Tarim River and the Heihe River have TDS values higher than 1 gl(-1), indicating saline water that cannot be directly consumed. Therefore, the problem of sufficient and safe drinking water has become increasingly prominent in the northwestern China arid zone. According to an inversion model, the contribution from evaporite dissolution to the dissolved loads in these rivers is 12.5%-99% with an average of 54%. The calculated silicate and carbonate weathering rates are 0.02-4.62 t km(-2)y(-1) and 0.01-11.7 t km(-2)y(-1) for these rivers. To reduce the influence of lithology, only the silicate weathering rates in different parts of the Tibetan Plateau are compared. A rough variation tendency can be seen in the rates: northern regional (0.15-1.73 t km(-2)y(-1))weathering rates did not show a noticeable correlation with a single influencing factor, such as temperature, elevation, vegetation, and physical

  11. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to

  12. Weathering in Monsoonal Rivers : The Mekong

    NASA Astrophysics Data System (ADS)

    Relph, K.; Tipper, E.; Bickle, M. J.; Parsons, D. R.; Darby, S. E.; Robinson, R. A. J.

    2017-12-01

    The magnitude of the global total CO2 flux from silicate and carbonate weathering remains uncertain partly because there is a lack of samples from some of the largest rivers in the world. The Mekong is the worlds 12th largest river by discharge [1]. Despite its global significance, published chemical weathering rates are contradictory and isotopic data is sparse. To better constrain the chemical weathering fluxes and rates in the Mekong we sampled tributaries and the Mekong main channel in Laos, Cambodia, Thailand and China in 2014, 2016 and 2017. Here we present 87Sr/86Sr ratios and major cations and anions. This new data and a historic time series collected between 1985 and 2000 by the Mekong River Commission and published data from China [2] are used to characterise 1) the geochemical and hydrological spatial and temporal signatures, 2) the carbonate and silicate weathering rates and 3) the carbon (HCO3-) flux of the Mekong basin. The magnitude of the chemical inputs from rainfall and weathering of silicates, carbonates and evaporates have been calculated using a simple forward model assuming cation ratios of the weathering inputs given by [1]. The upper (Tibet to Northern Thailand), middle (Laos) and lower (Cambodia) regions of the Mekong vary in size, discharge and weathering signatures. 34% of the total carbon flux, 31% of the carbonate, 36% of the silicate carbon fluxes but only 20% of the basin discharge originates in the upper Mekong. The middle Mekong contributes 49% of the discharge, 44% of the carbonate and 32% of the silicate carbon fluxes. The lower Mekong contributes 31% of the discharge, 32% of the silicate carbon flux but only 15% of the carbonate carbon flux. The Mekong transports comparable amounts of CO2, via carbonate weathering, to the Brahmaputra and the Ganges; some of which is likely derived by weathering with sulphuric acid. 87Sr/86Sr isotopic ratios at the river mouth vary from 0.71041 to 0.71083 with a systematic increase during the

  13. A case of the tail wagging the dog? Reverse weathering and Earth's CO2 thermostat.

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.

    2017-12-01

    Feedbacks between climate, the global carbon cycle, and the chemistry of seawater stabilize Earth's surface temperature on geologic timescales and are likely responsible for its habitability over billions of years of Earth history. The most important component of the geologic carbon cycle is the precipitation and burial of carbonate sediments. The amount of carbonate sediment produced depends, in turn, on the alkalinity generated during silicate weathering less the amount consumed during the formation of secondary clay minerals both on the continents and in the ocean. In marine enviroments this process, often referred to as reverse weathering, consumes seawater alkalinity (and cations) via reaction with degraded Al-silicate minerals. Because these reactions constitute a sink of seawater alkalinity, changes in the amount of reverse weathering will lead to imbalances between alkalinity sources and sinks. The net effect is that on timescales greater than the timescale of carbonate compensation (< 10 kyr), changes in reverse weathering will lead to changes in the rate of continental silicate weathering through the dependence of continental silicate weathering on atmospheric CO2 and climate. This mechanism is capable of changing rates of continental silicate weathering without changing either the rate of volcanic outgassing or the rate constant for continental silicate weathering (i.e. through mountain-building or the exposure of different rock types) and as a result represents a unique way of modulating the global carbon cycle and Earth's climate on geologic timescales.

  14. Space Weathering of Silicate Asteroids: An Observational Investigation

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Emery, Joshua; Lindsay, Sean S.

    2017-10-01

    Solar wind exposure and micrometeoroid bombardment are known to cause mineralogical changes in the upper few microns of silicate grains (by forming amorphous “composition” rims with embedded nano-phase Fe0). These processes, jointly called space weathering (SW), affect the light-scattering properties and subsequently the geometric albedo and spectral parameters (spectral slope and band depth). Earth’s Moon exhibits the well known “lunar-style” of SW: albedo decrease, spectral slope increase, and absorption band suppression. However, space mission images of (243) Ida and (433) Eros suggest that different SW “styles” exist among the silicate-bearing (olivine and pyroxene) S-complex asteroids, which exhibit diagnostic absorption features near 1 & 2 μm. While Eros generally shows only albedo differences between younger and older locations, Ida’s surface only shows changes in spectral slope and band depth. It is not clear if these SW styles are unique to Ida and Eros or if they can be observed throughout the entire asteroid population.We hypothesize that the SW styles seen on Eros and Ida also exist on other asteroid surfaces. Additionally, we hypothesize that increased solar wind exposure, smaller regolith particles, higher olivine abundance, and older asteroid surfaces will increase the observed degree of SW. Our dataset includes publicly available Visible (0.4-0.8 μm) and Near Infrared (~0.7-2.5 μm) reflectance spectra of silicate-bearing asteroids (those with 1 & 2 μm bands) from the PDS and the SMASS, S3OS2 and MIT-UH-IRTF spectral surveys. We have also conducted a spectral survey with the IRTF/SpeX targeting 52 silicate asteroids for which we have constraints for regolith grain sizes from interpretation of thermal-IR data. The relevant band parameters to SW and to interpreting mineralogical properties are calculated using the band analysis code, SARA. Geometric albedos are calculated using thermal-IR data from WISE/NEOWISE. Using these derived

  15. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    time. Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (qp and qs), which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering. A secondary to primary hydraulic conductivity ratio of qs/qp = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, qs/qp = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run, is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate. In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability. Copyright ?? 2001 Elsevier Science Ltd.

  16. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    NASA Astrophysics Data System (ADS)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  17. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    NASA Astrophysics Data System (ADS)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  18. Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA

    Treesearch

    Jason R. Price; Michael A. Velbel

    2013-01-01

    Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging....

  19. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Frings, Patrick J.; Murphy, Melissa J.

    2017-02-01

    The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.

  20. Ca isotopes, chemical weathering, and geomorphic controls on long-term climate

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.

    2009-12-01

    Calcium isotope geochemistry (δ44Ca) offers a unique opportunity to directly quantify proportions of riverine Ca originating from silicate versus carbonate weathering, which is essential for understanding how geomorphic processes affecting landscape evolution, such as tectonic uplift and glaciation, influence the long-term cycling of atmospheric CO2. We measured the elemental and δ44Ca chemistry of river and rock samples from the New Zealand Southern Alps. In combination with our geochemical data, we used runoff and suspended sediment fluxes to elucidate relationships between chemical weathering, mechanical erosion, and long-term climate. The S. Alps have uniform bedrock chemistry but significant tectonic and climatic gradients. West of the main topographic divide, watersheds drain schist and experience high runoff, uplift, and erosion rates. East of the main divide, watersheds drain greywacke or schist and experience lower runoff, uplift, and erosion rates. Glaciated watersheds with high erosion rates are present throughout the mountain range. Both schist and greywacke contain up to 3% metamorphic and hydrothermal calcite. Waters exhibit two-component mixing between calcite and silicate end-members when plotted as δ44Ca versus Ca/Sr. Scatter about the mixing curve is generally smaller than the analytical uncertainty of the measurements and likely reflects variability of the end-member compositions rather than fractionation. We used the mixing relationships to calculate percentages of Ca from silicate weathering. Rivers draining greywacke average 27.6% of Ca from silicate weathering with glaciated and non-glaciated watersheds yielding 41.8 and 19.5%, respectively. Rivers draining schist average 9.8% with glaciated and non-glaciated watersheds yielding 17.7 and 3.9%, respectively. Although Ca fluxes are larger west of the main divide where erosion and runoff are higher, the percentage of Ca from silicate weathering is smaller. Hence, long-term atmospheric CO2

  1. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    PubMed

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-04-01

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  2. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  3. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect

  4. Chemical weathering and CO₂ consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 μmolc/L, and the mean (1,572 μmolc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  6. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites

    USGS Publications Warehouse

    White, A.F.

    2002-01-01

    Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster weathering rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  8. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by

  9. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: Quartz dissolution rates

    USGS Publications Warehouse

    Schulz, M.S.; White, A.F.

    1999-01-01

    The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g-1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area. Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (17-81 ??M). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10-14.5-10-15.1 mol m-2 s-1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10-12.4-10-14.2 mol m-2 s-1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.

  10. Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: Chemical weathering and controlling factors

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian

    2017-05-01

    This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.

  11. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

  12. Effect of iron sulfides on the space weathering of airless silicate bodies: Laboratory simulation

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Hiroi, Takahiro; Okazaki, Mizuki

    The spectral mismatch between S-type asteroids and ordinary chondrites is explained by the process "space weathering", which should change the optical properties of the surface of airless silicate bodies: darkening, spectral reddening, and attenuation of absorption bands in reflectance spectra. It is caused by nanophase metallic iron (nanoFe) particles within the amorphous rims, which are formed on regolith particles by high velocity dust impacts as well as irradiation of the solar wind ions. Those nanoFe particles were discovered in lunar soils, Kapoeta meteorite, and regolith grains from the surface of S-type asteroid Itokawa. Experimental studies using nano-second pulse laser confirmed that nanoFe should control the spectral darkening and reddening. In ordinary chondrites, iron sulfides, especially troilite FeS is the main sulfur-bearing mineral. TEM observation of a dust grain of Itokawa showed the presence of not only iron, but also nanophase FeS particles, which would be formed within a surface vapor-deposited thin layer (<10 to 15nm) (Noguchi et al., 2011). Among dust grains of Itokawa, one grain is composed mainly of FeS (-40 mum) with smaller olivine and pyroxene grains embedded in the FeS (Yada et al., 2014). Previously surface sulfur depletion of S-type asteroid Eros was explained by the same causes (high velocity dust impacts as well as irradiation of the solar wind ions) as space weathering (Loeffler et al. 2008), but the effect of FeS on the surface optical properties of silicate bodies has not discussed well. To examine this effect, we conducted pulse laser irradiation experiments on mixture of olivine (and pyroxene) and FeS particles with sizes typically 45-75micron, under various FeS fraction (0-20wt%). We found that addition of FeS promotes the change of optical properties in accordance with space weathering. Compared with the cases where Fe particles are mixed, darkening of 1.0 - 2.5 micron region is observed. Probably FeS nanoparticles would be

  13. Effect of Silicate Slag Application on Wheat Grown Under Two Nitrogen Rates

    PubMed Central

    White, Brandon; Tubana, Brenda S.; Babu, Tapasya; Mascagni, Henry; Agostinho, Flavia; Datnoff, Lawrence E.; Harrison, Steve

    2017-01-01

    Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha−1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha−1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha−1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg−1. Yield increases due to N or Si were attributed to the increase in number of spike m−2 and grain number spike−1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3−), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si. PMID:29019922

  14. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction

  15. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of

  16. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.; Szymanski, David W.

    2013-01-01

    Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would

  17. Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering

    USGS Publications Warehouse

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-01-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 ?? 2.5 kcal/mol) and olivine (21.3 ?? 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  18. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed Central

    Hedin, Lars O.; Leake, Jonathan R.

    2017-01-01

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58–42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35–65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation. PMID:28814651

  19. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  20. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    PubMed Central

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  1. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  2. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    PubMed

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  3. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  4. Porosity evolution during weathering of Marcellus shale

    NASA Astrophysics Data System (ADS)

    Gu, X.; Brantley, S.

    2017-12-01

    Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral

  5. Effects of climate on chemical weathering in watersheds

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.

    1995-01-01

    Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors

  6. Global perspectives on oxidative weathering of organic carbon in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Horan, K.; Gaillardet, J.

    2016-12-01

    Over geological timescales, the oxidation of organic carbon in sedimentary rocks is major source of carbon dioxide (CO2) to the atmosphere. The global magnitude of this flux remains poorly constrained, but it is likely to be between 40-100 x 1012 g C yr-1, similar to the CO2 emissions from volcanism. The rates of CO2 emission ultimately set the rate of silicate weathering by carbonic acid and new organic carbon burial, which act together to stabilise the climate system. To constrain how the geological carbon cycle operates and modifies Earth's climate over millions of years, we must better understand the controls on the oxidation of sedimentary rock-derived organic carbon (`petrogenic' OC, OCpetro). Here we examine new and published constraints on OCpetro oxidation flux, which come from indirect measurements (e.g. trace element proxies such as rhenium) and direct measurements (e.g. CO2 trapping and 14C). Existing datasets track the gaseous and dissolved products of weathering as well as the solid residues over a range of spatial scales, from soil profiles to large river catchments. Although the datasets are still sparse, they indicate that physical denudation plays a major role in setting OCpetro oxidation flux. These measurements are interrogated in the framework of a catchment-scale numerical model of OCpetro oxidation. By harnessing approaches developed to examine and quantify acid-hydrolysis reactions (i.e. silicate mineral weathering by carbonic acid) the model considers realistic geochemical processes and the links between erosion and weathering. Key parameters emerge, such as the `weathering thickness' which describes a depth to which oxidative waters penetrate. The reaction kinetics of OCpetro remain poorly constrained, but nevertheless, the model predicts that the kinetic limitation of OCpetro oxidation is not reached until physical erosion rates exceed 2 mm yr-1, which is much higher than for CO2 consumption by silicate weathering. These findings mirror

  7. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  8. Space Weathering on Airless Bodies.

    PubMed

    Pieters, Carle M; Noble, Sarah K

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  9. Space Weathering on Airless Bodies

    PubMed Central

    Pieters, Carle M.; Noble, Sarah K.

    2018-01-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145

  10. Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2).

    PubMed

    Wilson, Siobhan A; Dipple, Gregory M; Power, Ian M; Barker, Shaun L L; Fallon, Stewart J; Southam, Gordon

    2011-09-15

    The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.

  11. Rates of weathering rind formation on Costa Rican basalt

    NASA Astrophysics Data System (ADS)

    Sak, Peter B.; Fisher, Donald M.; Gardner, Thomas W.; Murphy, Katherine; Brantley, Susan L.

    2004-04-01

    Weathering rind thicknesses were measured on ∼ 200 basaltic clasts collected from three regionally extensive alluvial fill terraces (Qt 1, Qt 2, and Qt 3) preserved along the Pacific coast of Costa Rica. Mass balance calculations suggest that conversion of unweathered basaltic core minerals (plagioclase and augite) to authigenic minerals in the porous rind (kaolinite, allophane, gibbsite, Fe oxyhydroxides) is iso-volumetric and Ti and Zr are relatively immobile. The hierarchy of cation mobility (Ca ≈ Na > K ≈ Mg > Si > Al > Fe ≈ P) is similar to other tropical weathering profiles and is indicative of differential rates of mineral weathering (anorthite > albite ≈ hypersthene > orthoclase ≫ apatite). Alteration profiles across the cm-thick rinds document dissolution of plagioclase and augite and the growth of kaolinite, with subsequent dissolution of kaolinite and precipitation of gibbsite as weathering rinds age. The rate of weathering rind advance is evaluated using a diffusion-limited model which predicts a parabolic rate law for weathering rind thickness, rr, as a function of time, t(rr =κt), and an interface-limited model which predicts a linear rate law for weathering rind thickness as a function of time (rr = kappt). In these rate laws, κ is a diffusion parameter and kapp is an apparent rate constant. The rate of advance is best fit by the interface model. Terrace exposures are confined to the lower reaches of streams draining the Pacific slope near the coast where the stream gradient is less than ∼3 m/km, and terrace deposition is influenced by eustatic sea level fluctuations. Geomorphological evidence is consistent with terrace deposition coincident with sea level maxima when the stream gradient would be lowest. Assigning the most weathered regionally extensive terrace Qt 1 (mean rind thickness 6.9 ± 0. 6cm) to oxygen isotope stage (OIS) 7 (ca. 240 ka), and assuming that at time = 0 rind thickness = 0, it is inferred that terrace Qt 2 (rr

  12. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  13. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering

    USGS Publications Warehouse

    Murphy, S.F.; Brantley, S.L.; Blum, A.E.; White, A.F.; Dong, H.

    1998-01-01

    Samples of soil, saprolite, bedrock, and porewater from a lower montane wet forest, the Luquillo Experimental Forest (LEF) in Puerto Rico, were studied to investigate the rates and mechanisms of biotite weathering. The soil profile, at the top of a ridge in the Rio Icacos watershed, consists of a 50-100-cm thick layer of unstructured soil above a 600-800 cm thick saprolite developed on quartz diorite. The only minerals present in significant concentration within the soil and saprolite are biotite, quartz, kaolinite, and iron oxides. Biotite is the only primary silicate releasing significant K and Mg to porewaters. Although biotite in samples of the quartz diorite bedrock is extensively chloritized, chlorite is almost entirely absent in the saprolite phyllosilicates. Phyllosilicate grains are present as 200-1000 ??m wide books below about 50 cm depth. X-ray diffraction (XRD) and electron microprobe analyses indicate that the phyllosilicate grains contain a core of biotite surrounded by variable amounts of kaolinite. Lattice fringe images under transmission electron microscope (TEM) show single layers of biotite altering to two layers of kaolinite, suggesting dissolution of biotite and precipitation of kaolinite at discrete boundaries. Some single 14-A?? layers are also observed in the biotite under TEM. The degree of kaolinitization of individual phyllosilicate grains as observed by TEM decreases with depth in the saprolite. This TEM work is the first such microstructural evidence of epitaxial growth of kaolinite onto biotite during alteration in low-temperature environments. The rate of release of Mg in the profile, calculated as a flux through the soil normalized per watershed land area, is approximately 500 mol hectare-1 yr-1 (1.6 ?? 10-9 molMg m-2soil s-1). This rate is similar to the flux estimated from Mg discharge out the Rio Icacos (1000 mol hectare-1 yr-1, or 3.5 ?? 10-9 molMg m-2soil s-1), indicating that scaling up from the soil to the watershed is

  14. Weathering and carbon fluxes of the Irrawaddy-Salween-Mekong river system

    NASA Astrophysics Data System (ADS)

    Baronas, J. J.; Tipper, E.; Hilton, R. G.; Bickle, M.; Relph, K.; Parsons, D. R.

    2017-12-01

    The Irrawaddy-Salween-Mekong (ISM) rivers with their source regions draining the eastern Tibetan Plateau account for a significant portion of the global solute and sediment flux to the ocean, and appear to exhibit some of the highest chemical weathering rates in the world. However they are greatly understudied, despite their significance. We will present data from the first part of a recently started multi-year study of these monsoon-controlled river systems. Our aim is to fully deconvolve and quantify the multiple processes and fluxes which play a role in the long-term feedback loop between tectonics, climate, and the critical zone. The long-term goals of the project are to accurately partition the silicate and carbonate weathering rates, acidity sources, and various organic and inorganic carbon fluxes, using a large range of geochemical and isotopic analyses. In addition, we have begun to collect extensive suspended sediment depth profiles to assess changes in sediment chemistry from the Himalayan headwaters to the river mouths, in an attempt to quantify whole-catchment silicate weathering rates over millennial timescales. Finally, bi-weekly multi-annual time-series data are being used to assess the catchment biogeochemical response to the strong hydrological seasonality imposed by the monsoonal climate. Here, we will present some of our preliminary findings of our dissolved dissolved and sediment data from the main-stems and major tributaries of the ISM rivers.

  15. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  16. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    NASA Astrophysics Data System (ADS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  17. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  18. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios

    NASA Astrophysics Data System (ADS)

    Dannhaus, N.; Wittmann, H.; Krám, P.; Christl, M.; von Blanckenburg, F.

    2018-02-01

    Quantifying rates of weathering and erosion of mafic rocks is essential for estimating changes to the oceans alkalinity budget that plays a significant role in regulating atmospheric CO2 levels. In this study, we present catchment-wide rates of weathering, erosion, and denudation measured with cosmogenic nuclides in mafic and ultramafic rock. We use the ratio of the meteoric cosmogenic nuclide 10Be, deposited from the atmosphere onto the weathering zone, to stable 9Be, a trace metal released by silicate weathering. We tested this approach in stream sediment and water from three upland forested catchments in the north-west Czech Republic. The catchments are underlain by felsic (granite), mafic (amphibolite) and ultramafic (serpentinite) lithologies. Due to acid rain deposition in the 20th century, the waters in the granite catchment exhibit acidic pH, whereas waters in the mafic catchments exhibit neutral to alkaline pH values due to their acid buffering capability. The atmospheric depositional 10Be flux is estimated to be balanced with the streams' dissolved and particulate meteoric 10Be export flux to within a factor of two. We suggest a correlation method to derive bedrock Be concentrations, required as an input parameter, which are highly heterogeneous in these small catchments. Derived Earth surface metrics comprise (1) Denudation rates calculated from the 10Be/9Be ratio of the "reactive" Be (meaning sorbed to mineral surfaces) range between 110 and 185 t km-2 y-1 (40 and 70 mm ky-1). These rates are similar to denudation rates we obtained from in situ-cosmogenic 10Be in quartz minerals present in the bedrock or in quartz veins in the felsic and the mafic catchment. (2) The degree of weathering, calculated from the fraction of 9Be released from primary minerals as a new proxy, is about 40-50% in the mafic catchments, and 10% in the granitic catchment. Lastly, (3) erosion rates were calculated from 10Be concentrations in river sediment and corrected for sorting

  19. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  20. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  1. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geo- chemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth surface.

  2. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Sliverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geochemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth's surface.

  3. Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Stough, H. P.

    2000-01-01

    In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.

  4. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the

  5. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.

    2016-09-01

    The correlation between chemical weathering fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating weathering fluxes. However, the effect of weathering on pCO2 is not solely determined by the total mass flux. Instead, the effect of weathering on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace weathering reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid weathering as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that weathering in the Andes Mountains is a CO2 source whereas foreland weathering is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate weathering increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced weathering on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.

  6. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  7. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)

    NASA Astrophysics Data System (ADS)

    Lupker, Maarten; France-Lanord, Christian; Galy, Valier; Lavé, Jérôme; Gaillardet, Jérôme; Gajurel, Ananta Prasad; Guilmette, Caroline; Rahman, Mustafizur; Singh, Sunil Kumar; Sinha, Rajiv

    2012-05-01

    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92) × 109 and (69 ± 22) × 109 mol/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18) × 109 and (42 ± 13) × 109 mol/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20 × 109 mol/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into

  8. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Bullen, T.D.; Vivit, D.V.; Schulz, M.; Fitzpatrick, J.

    1999-01-01

    The effects of climatic temperature variations (5-35??C) on chemical weathering are investigated both experimentally using flow-through columns containing fresh and weathered granitoid rocks and for natural granitoid weathering in watersheds based on annual solute discharge. Although experimental Na and Si effluent concentrations are significantly higher in the fresh relative to the weathered granitoids, the proportional increases in concentration with increasing temperature are similar. Si and Na exhibit comparable average apparent activation energies (E(a)) of 56 and 61 kJ/mol, respectively, which are similar to those reported for experimental feldspar dissolution measured over larger temperature ranges. A coupled temperature-precipitation model, using an expanded database for solute discharge fluxes from a global distribution of 86 granitoid watersheds, produces an apparent activation energy for Si (51 kJ/mol), which is also comparable to those derived from the experimental study. This correlation reinforces evidence that temperature does significantly impact natural silicate weathering rates. Effluent K concentrations in the column study are elevated with respect to other cations compared to watershed discharge due to the rapid oxidation/dissolution of biotite. K concentrations are less sensitive to temperature, resulting in a lower average E(a) value (27 kJ/mol) indicative of K loss from lower energy interlayer sites in biotite. At lower temperatures, initial cation release from biotite is significantly faster than cation release from plagioclase. This agrees with reported higher K/Na ratios in cold glacial watersheds relative to warmer temperate environments. Increased release of less radiogenic Sr from plagioclase relative to biotite at increasing temperature produces corresponding decreases in 87Sr/86Sr ratios in the column effluents. A simple mixing calculation using effluent K/Na ratios, Sr concentrations and 87Sr/86Sr ratios for biotite and plagioclase

  9. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    NASA Astrophysics Data System (ADS)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  10. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare

    2017-10-01

    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.

  11. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  12. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  13. Kinetically limited weathering at low denudation rates in semi-arid climates

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Opfergelt, S.; Ameijeiras-Marino, Y.; Christl, M.

    2016-12-01

    On Earth, the Critical Zone supports terrestrial life, being the near-surface environment where interactions between the atmosphere, lithosphere, hydrosphere, and biosphere take place Quantitative understanding of the interaction between mechanical rock breakdown, chemical weathering, and physical erosion is essential for unraveling Earth's biogeochemical cycles. In this study, we explore the role of soil water balance on regulating soil chemical weathering under water deficit regimes. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We present and compare quantitative information on soil weathering, chemical depletion and total denudation that were derived based on geochemical mass balance, 10Be cosmogenic nuclides and U-series disequilibria. Soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) are of the same order of magnitude as 10Be-derived denudation rates, suggesting steady state soil thickness, in two out of three sampling sites. The chemical weathering intensities are relatively low (˜5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Soil weathering extents increase (nonlinearly) with soil thickness and decrease with increasing surface denudation rates, consistent with kinetically limited or controlled weathering. Our study suggests that soil residence time and water availability limit weathering processes in semi-arid climates, which has not been validated previously with field data. An important implication of this finding is that climatic regimes may strongly regulate soil weathering by modulating soil solute fluxes.

  14. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    NASA Astrophysics Data System (ADS)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time

  15. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  16. The role of sediments stored in valleys in modulating the Quaternary weathering flux variations

    NASA Astrophysics Data System (ADS)

    Carretier, Sebastien; Goddéris, Yves; Vigier, Nathalie; Maffre, Pierre

    2017-04-01

    Silicate weathering is known to be central to the regulation of atmospheric CO2. Yet it is unclear how weathering responds to climatic variations. Data sets based on different proxies in sediment cores suggest either negligible Quaternary silicate weathering variations, or more weathering during wet and hot periods, or even the reverse. For example, a recent study based on d7Li in clay of Himalayan river terraces suggests, counter-intuitively, a less intense weathering during hot and wet periods compared to dry periods for the last 40 ka, with no clear physical explanation. We analyse catchment scale weathering signals using the numerical model Cidre, coupling landscape evolution with chemical weathering. Chemical weathering occurs within a regolith, either produced in situ at a rate depending on regolith thickness, temperature and precipitation, or corresponding to a deposit. The chemical flux is calculated from the dissolution of granitoid clasts, first exhumed on the hillslopes and then transported and potentially stocked in the valleys. This approach accounts for part of the stochastic nature of grain weathering within a catchment. We prescribe an uplift to an initial horizontal surface to reach a dynamic equilibrium under a constant climate. Then, we vary the precipitation rate and the temperature, alternating cold and dry periods with hot and wet periods (10 to 400 ka tested). When these variations are applied to an equilibrium mountain covered by a regolith ("transport-limited"), the weathering outlfux and the erosion flux are larger during wet and hot periods. On the contrary, for less weatherable conditions such that the mountain is not covered by regolith ("kinetically-limited"), the weathering is the highest at the beginning of the dry, cold and low erosive periods. This apparent paradox is explained by the temporary accumulation of sediment in the valleys in response to the drought. The hillslopes being striped, these valley deposits constitute the only

  17. Enhanced oxidative weathering in glaciated mountain catchments: A stabilising feedback on atmospheric carbon dioxide?

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Burton, K. W.; Selby, D. S.; Ottley, C. J.

    2015-12-01

    Mountain belts act as sources of carbon dioxide (CO2) to the atmosphere if physical erosion and exhumation expose rock-derived organic carbon ('petrogenic' organic carbon, OCpetro) to chemical weathering. Estimates suggest 15x1021g of carbon is stored in rocks globally as OCpetro, ~25,000 times the amount of carbon in the pre-industrial atmosphere. Alongside volcanic and metamorphic degassing, OCpetro weathering is thought to be the main source of CO2 to the atmosphere over geological timescales. Erosion in mountain river catchments has been shown to enhance oxidative weathering and CO2 release. However, we still lack studies which quantify this process. In addition, it is not clear how glaciation may impact OCpetro oxidation. In analogy with silicate weathering, large amounts of fine sediment in glacial catchments may enhance oxidative weathering. Here we quantify oxidative weathering in nine catchments draining OCpetro bearing rocks in the western Southern Alps, New Zealand. Using rhenium (Re) as a tracer of oxidative weathering, we develop techniques to precisely measure Re concentration at sub-ppt levels in river waters. Using [Re]water/[Re]rock as a weathering tracer, we estimate that the weathering efficiency in glacial catchments is >4 times that of non-glacial catchments. Combining this with the OCpetro content of rocks and dissolved Re flux, we estimate the CO2 release by OCpetro oxidation. The analysis suggests that non-glacial catchments in the western Southern Alps release similar amounts of CO2 as catchments in Taiwan where erosion rates are comparable. In this mountain belt, the CO2 release does not negate CO2 drawdown by silicate weathering and by riverine transfer of organic matter. Based on our results, we propose that mountain glaciation may greatly enhance OCpetro oxidation rates. Depending on the global fluxes involved, this provides a feedback to damp low atmospheric CO2 levels and global cooling. During glacial periods (low CO2, low global

  18. Flat world versus real world : where is weathering the most important ?

    NASA Astrophysics Data System (ADS)

    Godderis, Yves; Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-04-01

    Mountain ranges are a key driver of the Earth climates. Acting on a large range of timescales, they modulate the atmospheric and oceanic circulations but also plays a crucial role in regulating the geological carbon cycle through their impacts on erosion and continental weathering. Since the 90's, there is an ongoing debate about the role of the mountain uplift on the long term global cooling of the Earth climate. Mountain ranges are thought to enhance silicate weathering and the associated CO2 consumption. But this has been repeatedly questioned in the recent years. Here we present a new method for modeling the spatial distribution of both physical erosion and coupled chemical weathering. The IPSL ocean-atmosphere model calculates the continental climate, which is used to force the erosion/weathering model. We first compare the global silicate weathering for two geographical configurations: the present-day world with mountain ranges, and a world where all mountains have been removed. Depending on the chosen formalism for silicate weathering and on the climate changes linked to the removal of mountains, it can be higher in the flat world than in the real world, or up to 5 times weaker. In the second part of the talk, we will explore the role of the Hercynian mountain range on the onset and demise of the late Paleozoic ice age, within the context of the Pangea assembly.

  19. Comparative ratings of 1951 forest fire weather in western Oregon.

    Treesearch

    Owen P. Cramer; Robert Kirkpatrick

    1951-01-01

    The 1951 forest fire weather in western Oregon is generally conceded to have been unusually severe. In order to compare this season with others, this report uses a scheme for rating fire seasons recently developed by the Fire Research section of the Experiment Station, The rating is based on indices of three weather characteristics which generally control burning...

  20. Space Weathering Effects at UV Wavelengths: Asteroids and the Moon

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda; Vilas, F.

    2006-09-01

    Space weathering, the bombardment of airless bodies by micrometeoroids and irradiation by solar wind particles, affects spectra of solar system bodies at visible/near IR (VNIR) wavelengths by darkening and reddening their surface materials, as well as degrading absorption features. We present new results detailing space weathering effects at ultraviolet wavelengths. We focus on new spectral modeling results, and also present spacecraft data of asteroids and the Moon, along with new UV measurements of asteroid families from HST, to demonstrate the effects of varying degrees of weathering and the outcome of weathering on surfaces of different compositions. Weathered surfaces are relatively bright and spectrally blue in the UV; these UV effects can be more obvious than the VNIR effects. The cause of these weathering effects is likely vapor deposition of submicroscopic iron (SMFe), through solar wind irradiation and micrometeoroid bombardment of the bodies' surfaces. In silicate minerals, the NUV region is dominated by a decrease in reflectance with wavelength - the "UV absorption edge.” In contrast to silicates, iron is opaque and relatively bright in the UV, so the addition of SMFe to a silicate grains has the effect of making the UV region brighter; this is in opposition to the situation at longer wavelengths, where the addition of SMFe decreases the albedo. Our spectral modeling results show that the addition of SMFe decreases the steepness of the UV dropoff, in effect making the UV spectrum bluer. This can explain the difference in UV spectral behavior seen between S-class asteroids and less-weathered ordinary chondrite meteorites, and between lunar rocks and more weathered lunar soils. This work is funded in part by Hubble Space Telescope Grant #10557.

  1. Strontium stable isotope behaviour accompanying basalt weathering

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  2. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture

    PubMed Central

    Lim, Felix; James, Rachael H.; Pearce, Christopher R.; Scholes, Julie; Freckleton, Robert P.; Beerling, David J.

    2017-01-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. PMID:28381631

  3. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  4. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    USGS Publications Warehouse

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  5. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  6. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Vivit, D.V.; Stonestrom, David A.; Larsen, M.; Murphy, S.F.; Eberl, D.

    1998-01-01

    The pristine Rio Icacos watershed in the Luquillo Mountains in eastern Puerto Rico has the fastest documented weathering rate of silicate rocks on the Earth's surface. A regolith propagation rate of 58 m Ma-1 calculated from iso-volumetric saprolite formation from quartz diorite, is comparable to the estimated denudation rate (25-50 Ma-1) but is an order of magnitude faster than the global average weathering rate (6 Ma-1). Weathering occurs in two distinct environments; plagioclase and hornblende react at the saprock interface and biotite and quartz weather in the overlying thick saprolitic regolith. These environments produce distinctly different water chemistries, with K, Mg, and Si increasing linearly with depth in saprolite porewaters and with stream waters dominated by Ca, Na, and Si. Such differences are atypical of less intense weathering in temperate watersheds. Porewater chemistry in the shallow regolith is controlled by closed-system recycling of inorganic nutrients such as K. Long-term elemental fluxes through the regolith (e.g., Si = 1.7 ?? 10-8 moles m-2 s-1) are calculated from mass losses based on changes in porosity and chemistry between the regolith and bedrock and from the age of the regolith surface (200 Ma). Mass losses attributed to solute fluxes are determined using a step-wise infiltration model which calculates mineral inputs to the shallow and deep saprolite porewaters and to stream water. Pressure heads decrease with depth in the shallow regolith (-2.03 m H2O m-1), indicating that both increasing capillary tension and graviometric potential control porewater infiltration. Interpolation of experimental hydraulic conductivities produces an infiltration rate of 1 m yr-1 at average field moisture saturation which is comparable with LiBr tracer tests and with base discharge from the watershed. Short term weathering fluxes calculated from solute chemistries and infiltration rates (e.g., Si = 1.4 ?? 10-8 moles m-2 s-1) are compared to watershed

  7. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  8. Correlation-study about the ambient dose rate and the weather conditions

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  9. The contribution of weathering of the main Alpine rivers on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Donnini, Marco; Probst, Jean-Luc; Probst, Anne; Frondini, Francesco; Marchesini, Ivan; Guzzetti, Fausto

    2013-04-01

    classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e., correlated to the short term carbon cycle, or longer than about 1 million years i.e., correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999). References Amiotte-Suchet, P. "Cycle Du Carbone, Érosion Chimique Des Continents Et Transfert Vers Les Océans." Sci. Géol. Mém. Strasbourg 97 (1995): 156. Amiotte-Suchet, P., and J.-L. Probst. "Origins of dissolved inorganic carbon in the Garonne river waters: seasonal and interannual variations." Sci. Géologiques Bull. Strasbourg 49, no. 1-4 (1996): 101-126. Berner, E.K., and R.A. Berner. The Global Water Cycle. Geochemistry and Environment. Prentice Halle. Engelwood Cliffs, NJ, 1987. Drever, J.L. The Geochemistry of Natural Waters. Prentice Hall, 1982. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. "Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers." Chemical Geology 159 (1999): 3-30. Garrels, R.M., and F.T. Mackenzie. Evolution of Sedimentary Rocks. New York: W.W. Nortonand, 1971. Huh, Y

  10. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Štyriaková, I.; Štyriak, I.; Oberhänsli, H.

    2012-07-01

    The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.

  11. Melting mountains of Appalachia: exceptionally high weathering rates in mined watersheds

    NASA Astrophysics Data System (ADS)

    Ross, M. R.; Nippgen, F.; Hassett, B.; McGlynn, B. L.; Bernhardt, E. S.

    2016-12-01

    Mountaintop mining operations excavate ridges as deep as 200 m and bury adjacent valleys and streams beneath fractured bedrock and coal residues. Post-mining, landscapes have lower slopes, greatly increased water storage potential, and an abundance of acid-generating pyrite, which is intentionally mixed with neutralizing calcareous bedrock. Together these design features of mountaintop mined lands create ideal conditions for long water residence times and rapid weathering rates, leading to widely documented and substantial increases in streamwater ion concentrations. To date, these concentration changes have not been linked to rates of watershed scale element flux. In a paired catchment study, we documented a 4,000% increase in the export of total dissolved solids from a mined watershed, and estimate that pyrite and carbonate weathering in reclaimed mines can export 9,000 kg ha-1 y-1 of dissolved rock to receiving streams. Such high rates of element flux after a disturbance are not only much higher than other watershed disturbances, but are among the highest rates of weathering ever reported globally. Sulfuric acid weathering of carbonate rock drives these patterns of chemical erosion. This strong acid weathering changes Appalachian geology from a slight net geologic CO2 sink-sequestering 800-1,500 kg CO2 km-2 yr-1 through carbonic acid weathering of carbonates-to a substantial net geologic source of CO2, releasing 170,000 kg CO2 km-2 yr-1. Over the more than 4,000 km2 area of Central Appalachia that has undergone mountaintop mining, this rapid weathering represents 4 million tons of dissolved rock being delivered to the streams of West Virginia, potentially releasing 680,000 tons of CO2 in the process.

  12. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence

    NASA Astrophysics Data System (ADS)

    Kiczka, Mirjam; Wiederhold, Jan G.; Frommer, Jakob; Voegelin, Andreas; Kraemer, Stephan M.; Bourdon, Bernard; Kretzschmar, Ruben

    2011-10-01

    The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ 56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ 56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH 2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral

  13. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    USGS Publications Warehouse

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  14. Possible Links Among Iron Reduction, Silicate Weathering, and Arsenic Mobility in the Mississippi River Alluvial Aquifer in Louisiana

    NASA Astrophysics Data System (ADS)

    Borrok, D. M.; Lenz, R. M.; Jennings, J. E.; Gentry, M. L.; Vinson, D. S.

    2017-12-01

    The Lower Mississippi River Alluvial Aquifer (LMRAA) is a critical groundwater resource for Arkansas, Mississippi, and Louisiana. Part of the aquifer in Louisiana contains waters rich in Na, HCO3, Fe, and As. We hypothesize that CO2 generated from dissimilatory iron reduction (DIR) within the aquifer acts to weather Na-bearing silicates, contributing Na and HCO3, which may influence the mobility of As. We examined the geochemistry of the aquifer using historical and new data collected from the Louisiana Department of Environmental Quality (LDEQ). Major and trace element data were collected from about 25 wells in the LMRAA in Louisiana every three years from 2001-2016. Samples collected in 2016 were additionally analyzed for water isotopes and the δ13C of dissolved inorganic carbon (DIC). Results suggest that groundwater in the LMRAA can be broken into two broad categories, (1) water with a molar Na/Cl ratio near 1 and/or high salinity, and (2) water with excess Na (i.e., the molar concentration of Na is greater than that of Cl) that is often higher in alkalinity (up to 616 mg/L as CaCO3), Fe (up to 21 mg/L), and sometimes As (up to 67 µg/L). Concentrations of dissolved Fe were found to correlate, at least weakly, with alkalinity and Na excess. Six of the approximately 25 wells historically sampled consistently had concentrations of As >10 µg/L. These locations generally correspond with groundwater characterized by higher Fe, alkalinity, and Na-excess. Initial results for δD and δ18O suggest that more isotopically depleted waters are sourced from the Mississippi River, whereas local precipitation recharges the aquifer farther from the river (δ18O ranged from -7.5‰ to -3.5‰). Part of the δ13C-DIC variation (-17.4‰ to -10.6‰) is consistent with pH modification (6.5-7.7) along differing horizontal and vertical flow paths in the aquifer. This geochemistry appears to be controlled in part by geology. Areas nearer to the current Mississippi River where

  15. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  16. The role of disseminated calcite in the chemical weathering of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

    1999-01-01

    Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport

  17. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  18. Isotopic insights into sources of acid driving weathering across a mountain-floodplain transition in the Amazon headwaters of Peru

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Clark, K.; Paris, G.; Adkins, J. F.; West, A.

    2012-12-01

    The carbon budget associated with mineral weathering depends on the extent to which weathering is driven by strong acids (e.g., H2SO4, HNO3) as opposed to weak acids derived from atmospheric CO2 (e.g., H2CO3, organic acids). It has remained difficult to accurately partition acid sources associated with carbonate and silicate weathering, presenting an obstacle to quantifying weathering drawdown of CO2. Moreover, little is known about how acid sources change along material pathways from mountains, where rocks are eroded, producing reactive carbonate and silicate minerals, but also sulfides that generate H2SO4, and floodplains, where the resulting sediment is transported, deposited, and chemically reworked. Such mountain-floodplain transitions are increasingly recognized as important weathering reactors, making it important to quantify any associated variation in acid sources. In this study, these questions are addressed using the dissolved major element geochemistry, the carbon isotopic composition of dissolved inorganic carbon (δ13C DIC), and the sulfur isotopic composition of dissolved sulfate (δ34S) of rivers draining the Peruvian Andes and Madre de Dios floodplain. The dissolved major element geochemistry of the Andean headwater catchments suggests inputs of sulfuric acid (from the oxidation of sulfide minerals) but is also consistent with the weathering of sulfate minerals. The δ13C DIC values of river water samples from the Andean catchments provide key constraints and range from -18 to -5 ‰, which is consistent with the mixing of DIC derived from the weathering of silicates by respired CO2 and from the weathering of carbonates by either atmospheric CO2 or sulfuric acid. In order to distinguish between the two possible carbonate weathering agents, we calculated the fraction of carbonate-derived DIC both using an isotope mass balance model and a mineral mass balance model. These results were compared assuming either pure sulfuric acid or atmospheric CO2

  19. Forest soil mineral weathering rates: use of multiple approaches

    Treesearch

    Randy K. Kolka; D.F. Grigal; E.A. Nater

    1996-01-01

    Knowledge of rates of release of base cations from mineral dissolution (weathering) is essential to understand ecosystem elemental cycling. Although much studied, rates remain enigmatic. We compared the results of four methods to determine cation (Ca + Mg + K) release rates at five forested soils/sites in the northcentral U.S.A. Our premise was that multiple...

  20. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  1. Rhenium Concentration Variations in the Non-flood Period of the Yangtze River Water and Estimation of the Oxidation Rate of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Xu, P.; Chen, Y.; Li, S.; Wang, K.

    2017-12-01

    In geological history, the uplift of the Tibet plateau has accelerated the silicate weathering and organic carbon burial at the same time, which made great influence on the global carbon cycle by increasing the carbon sink. Because of the vital connection between tectonic uplift and carbon cycle, more and more attention was casted on rivers originating from orogens. The Yangtze River, as an important large river in the world, is one of them. However, although silicate weathering has been studied thoroughly, researches on organic carbon cycle are much less, and oxidation of fossil organic carbon remained poorly constrained. In this study, we try to use rhenium(Re) as a proxy to estimate the oxidation rate of fossil organic carbon and thus proceed our understanding towards the carbon cycle, the silicate weathering. This is because Re has a close relationship with organic carbon in the sediments and will be released into hydrological network in the mountain river catchments by being oxidized and exist as soluble ReO4-, so that we can use Re concentration in river water to estimate the oxidation rate of organic carbon. We collected water samples from the Yangtze River fortnightly at Banqiao Ferry and the sampling date cover the non-flood period. In this way, we are able to have a rough estimate of the amount of carbon dioxide that released to the atmosphere by the oxidation of organic carbon, using the data of non-flood period we got. We found that Re concentration in Yangtze River ranges approximately from 45 to 85 pmol/L. The rate of organic carbon weathering is estimated using the expression, ΦCO2,fossil=[Re]×runoff×[OC/Re]rock, and according to researches on the black shale of Yangtze River, the value 2.86×106 is chosen as the ratio OC(organic carbon) to Re in the black shale. The result is a really high flux, up to 152×109mol/y, just a little less than of the CO2 consumption rates from silicate weathering which is 191×109mol/y and about 166×109mol/y in non

  2. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE PAGES

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...

    2018-05-18

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  3. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  4. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    PubMed Central

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  5. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.

    PubMed

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-14

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  6. Predicting soil formation on the basis of transport-limited chemical weathering

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  7. Quantification of the effect of plants on weathering: Studies in Iceland

    NASA Astrophysics Data System (ADS)

    Moulton, Katherine L.; Berner, Robert A.

    1998-10-01

    The weathering of calcium and magnesium silicate minerals on the continents has exerted a major control on atmospheric CO2 over geologic time, and vascular plants may have played an important role in this process. In western Iceland, we have examined the role of plants in weathering by measuring the chemistry of waters draining adjacent areas of basaltic rocks that are either barren (having a partial cover of mosses and lichens) or populated by trees. The study area was chosen to maximize vegetational differences and to minimize differences in microclimate, slope, and lithology, while avoiding hydrothermal waters and anthropogenic acid rain. Results, including data on cation uptake by growing trees, indicate that the rate of weathering release of Ca and Mg to streams and vegetation is two to five times higher in vegetated areas than the release of Ca and Mg to streams in barren areas. This finding suggests a major role for vascular plants in accelerating weathering and thereby lowering atmospheric CO2 as they invaded upland areas of the continents between 380 and 350 Ma.

  8. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.

  9. Measuring U-series Disequilibrium in Weathering Rinds to Study the Influence of Environmental Factors to Weathering Rates in Tropical Basse-Terre Island (French Guadeloupe)

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.

    2015-12-01

    Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.

  10. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  11. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2013-10-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  12. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  13. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  14. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  15. Permian Minimum and the Following Major Rise in Seawater 87Sr/86Sr Linked to the Glaciation/Deglaciation and Resultant Change in Weathering Rate

    NASA Astrophysics Data System (ADS)

    Kani, T.; Isozaki, Y.

    2014-12-01

    We report a detailed secular change of the middle Middle to early Late Permian seawater 87Sr/86Sr ratio for and Akasaka and Kamura carbonates (Japan) deposited on mid-Pansalassan seamounts and for Shizipo carbonates (South China) deposited on the shallow marine shelf. In these coeval sections, extremely low values (<0.7069; the lowest values of the Phanerozoic) continued from upper Wordian (middle Middle Permian) to the topmost Capitanian (upper Middle Permian) barren interval immediately below the Middle-Late Permian boundary characterized by the major crisis of large-tested fusulines and rugose corals. Immediately after ca. 5 m.y.-long minimum interval, the major rise in 87Sr/86Sr was started and the rate of the rise (0.00007/m.y.) continued in period of time containing 21 m.y. until early Triassic (~239 Ma), that is faster than the Cenozoic major rise (0.00003/m.y.). The most significant shift through Phanerozoic in Sr isotope trend can be explained by the remarkable changes in continental erosion/weathering rate; in particular, by the onset of glaciation and the following deglaciation, that is supported by global sea level change, in addition to the initial doming/rifting of Pangea. After the Capitanian cooling, the long-term climatic regime shifted to a warmer one during which inland ice sheet was removed to expose old crustal silicates for to erosion/weathering. A mantle plume impingiment might lead a domal uplift that accelerate weathering. Highly radiogenic continental Sr could enter the ocean along the new drainage systems developed with the rifting.

  16. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  17. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars.

  18. MSATT Workshop on Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger (Editor); Banin, Amos (Editor)

    1992-01-01

    The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.

  19. Extreme limestone weathering rates due to micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Levenson, Yael

    2014-05-01

    Chemical dissolution is often assumed to control the weathering rates of carbonate rocks, although some studies have indicated that mechanical erosion could also play a significant role. Quantifying the rates of the different processes is challenging due to the high degree of variability encountered in both field and lab settings. To measure the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Surface retreat rates in fine-grained micritic limestone blocks are found to be as much as 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these elevated reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained carbonate rocks.

  20. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation

    NASA Astrophysics Data System (ADS)

    Andrews, M. Grace; Jacobson, Andrew D.

    2017-10-01

    volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.

  1. The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2017-02-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  2. Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys

    USGS Publications Warehouse

    Gooseff, Michael N.; McKnight, Diane M.; Lyons, W. Berry; Blum, Alex E.

    2002-01-01

    In the McMurdo Dry Valleys, Antarctica, dilute glacial meltwater flows down well‐established streambeds to closed basin lakes during the austral summer. During the 6–12 week flow season, a hyporheic zone develops in the saturated sediment adjacent to the streams. Longer Dry Valley streams have higher concentrations of major ions than shorter streams. The longitudinal increases in Si and K suggest that primary weathering contributes to the downstream solute increase. The hypothesis that weathering reactions in the hyporheic zone control stream chemistry was tested by modeling the downstream increase in solute concentration in von Guerard Stream in Taylor Valley. The average rates of solute supplied from these sources over the 5.2 km length of the stream were 6.1 × 10−9 mol Si L−1 m−1 and 3.7 × 10−9 mol K L−1 m−1, yielding annual dissolved Si loads of 0.02–1.30 mol Si m−2 of watershed land surface. Silicate minerals in streambed sediment were analyzed to determine the representative surface area of minerals in the hyporheic zone subject to primary weathering. Two strategies were evaluated to compute sediment surface area normalized weathering rates. The first applies a best linear fit to synoptic data in order to calculate a constant downstream solute concentration gradient, dC/dx (constant weathering rate contribution, CRC method); the second uses a transient storage model to simulate dC/dx, representing both hyporheic exchange and chemical weathering (hydrologic exchange, HE method). Geometric surface area normalized dissolution rates of the silicate minerals in the stream ranged from 0.6 × 10−12 mol Si m−2 s−1 to 4.5 × 10−12 mol Si m−2 s−1 and 0.4 × 10−12 mol K m−2 s−1to 1.9 × 10−12 mol K m−2 s−1. These values are an order of magnitude lower than geometric surface area normalized weathering rates determined in laboratory studies and are an order of magnitude greater than geometric surface area

  3. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain

    NASA Astrophysics Data System (ADS)

    Burgess, K. D.; Stroud, R. M.

    2018-03-01

    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  4. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  5. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Harden, J.W.

    2005-01-01

    Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary

  6. The Rate of Dielectric Breakdown Weathering of Lunar Regolith in Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2016-01-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for approx.10(exp 6 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8-3. 5 ×10(exp -7) kg/sq m/yr, which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is con- ceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  7. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  8. Experimental high strain-rate deformation products of carbonate-silicate rocks: Comparison with terrestrial impact materials

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Schultz, P. H.; Spray, J. G.

    2008-09-01

    Introduction. The response of carbonate to impact processes has thus far been investigated using a combination of thermodynamic modelling, shock experiments, and impact experiments. Localized shear deformation was suggested to play an important role in the failure of carbonate during some shock experiments [1,2], and was invoked to explain significant degassing of carbonates during oblique impact experiments [3]. The results of the impact experiments are at odds with experiments [4] that show back-reaction of CO2 with CaO and MgO could significantly reduce CO2 degassing during impact events. We performed a frictional-welding experiment in order to investigate the effects of high strain-rate deformation on carbonate-silicate target materials, exclusive of shock deformation effects, and to investigate the differing results of other experiments. Samples and Techniques. A frictional melting experiment was performed using dolomitic marble and quartzite samples to simulate conditions during an impact into carbonate-silicate target rocks. The experiment followed the method of Spray (1995) [5]. The 1.5 cm3 samples were mounted onto separate steel cylinders with epoxy. Using a Blacks FWH-3 axial friction-welding rig, the samples were brought into contact at room temperature and under dry conditions with ~5 MPa applied pressure. Contact was maintained for two seconds at 750 rpm for a sustained strain-rate of 102 to 103 s-1. Results. Vapor or fine dust escaped from the interface during the experiment. Immediately after sample separation, the interfaces were incandescent. Once cooled, opaque white material adhered to both the quartzite and dolomitic marble samples. Quartzite sample. Material was injected into cracks that formed in the quartzite sample. Cooling and crystallization of the friction products resulted in the formation of submicron-sized minerals such as periclase and Ca- and Ca,Mg-silicates (Fig. 1) including merwinite and åkermanite. While periclase was observed

  9. A Quantitative Geochemical, Mineralogical and Physical Study of Some Selected Rock Weathering Profiles from Brazil

    DTIC Science & Technology

    1977-08-17

    weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has

  10. Stable and Radiogenic Sr Isotopes in Barite - Clues on the Links Between Weathering, Climate and the C Cycle

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Eisenhauer, A.; Wallmann, K. J. G.; Griffith, E. M.; Ridgwell, A.

    2017-12-01

    The radiogenic Sr-isotopic signature (87Sr/86Sr) of seawater fluctuates primarily in response to changes in the inputs of Sr from weathering and hydrothermal activity, which have distinct 87Sr/86Sr values. Changes in the isotopic ratio of the weathered terrain also contribute to observed changes in 87Sr/86Sr. The stable Sr-isotope ratios in seawater (mass dependent isotopic fractionation; δ88/86Sr) fluctuate primarily in response to the rate of calcium carbonate (CaCO3) accumulation at the seafloor. Together the radiogenic and stable Sr can constrain the coupling between weathering and sedimentation and shed light on the relation between weathering, CaCO3 deposition, the global carbon (C) cycle and climate. Reconstruction of the coupled stable and radiogenic Sr seawater curves over the past 35 Ma of Earth history indicates that the location and rate of CaCO3 burial in the ocean fluctuated considerably over the past 35 Ma. Between 35 to 18 Ma a reduction in neritic CaCO3 burial and increased burial in pelagic settings is observed. The trend was reversed between 20 and 3 Ma and finally over the last 3 million years a rapid change from neritic to pelagic burial is seen. The lack of continues increase of pelagic CaCO3 burial rates suggests that silicate weathering rates have not increased monotonically over the past 35 Ma implying strong feedbacks operating in the climate system - lower atmospheric pCO2 and cooling trends (which control chemical weathering as seen from carbonate deposition in the ocean) countered the effects of uplift (which controls physical weathering) - modulating weathering rates and preventing a runaway ice-house. In addition the data suggests considerable fluctuations in seawater Sr concentrations over time. These data demonstrate how using multiple isotope proxies can help constrain interpretations of the geological record.

  11. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  12. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    PubMed Central

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  13. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  14. Calcium Isotope Fractionation during Carbonate Weathering in the Northern Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Mao, G.; Wei, G.; Zhang, Z.

    2017-12-01

    CO2 is consumed during the weathering of carbonates, whereas carbonates are precipitated rapidly in the oceans, which are pivotal to modulate atmospheric CO2, oceanic pH and climate. Calcium carbonate in limestone is one of the largest reservoirs of carbon at the Earth's surface, so calcium is an important element that links the lithosphere, hydrosphere, biosphere, and the atmosphere. Compared with silicate rocks, carbonate rocks have more rapid rates of physical and chemical erosions, so the carbonate weathering will respond more quickly to the climatic changes. In the southeast of China, enormous of carbonate rocks are widely distributed. Due to the influence of the subtropical monsoon climate, the rocks experienced strong chemical weathering and pedogenic process, resulting in red weathering crust of carbonate rocks. This type of weathering crust is geochemistry-sensitive and ecology-vulnerable, which can provide important insights into the recycle of supergene geochemistry in the karst areas. In this study, we report calcium isotopic compositions of saprolites from a weathering profile developed on argillaceous carbonate rocks in northern Guangdong, South China. The acid-leachable fraction, which was extracted by 1N hydrochloride acid, showed limited variation of δ44/40Ca(NIST 915a) spanning from 0.55 ± 0.06‰ (2SD) to 0.72 ± 0.05‰ (2SD) despite CaO content ranging from 0.01 wt.% to 45.7 wt.%, implying that Ca isotope didn't fractionate much which may due to the congruent dissolution of limestone minerals. In contrast, radiogenic 87Sr/86Sr ratios of the whole rocks changed with depth from 0.710086 ± 6 (2SE) at the base rock to 0.722164± 8 (2SE) at the top-soil, which are possibly attributed to the mixing effect between carbonate and silicate fractions. Sr is an analogue for Ca due to its similar ionic size and charge; however, these two systems can differ in certain respects. The coupled study of Ca and Sr will be helpful to verify sources of Ca and the

  15. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    DTIC Science & Technology

    2007-03-01

    time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT

  16. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  17. Rates of Space Weathering in Lunar Regolith Grains

    NASA Technical Reports Server (NTRS)

    Zhang, S.; Keller, L. P.

    2012-01-01

    While the processes and products of lunar space weathering are reasonably well-studied, their accumulation rates in lunar soils are poorly constrained. Previously, we showed that the thickness of solar wind irradiated rims on soil grains is a smooth function of their solar flare particle track density, whereas the thickness of vapor-deposited rims was largely independent of track density [1]. Here, we have extended these preliminary results with data on additional grains from other mature soils.

  18. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    PubMed

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  19. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    PubMed Central

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-01-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. PMID:27834377

  20. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-11-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ~1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  1. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars.

    PubMed

    Schröder, Christian; Bland, Phil A; Golombek, Matthew P; Ashley, James W; Warner, Nicholas H; Grant, John A

    2016-11-11

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  2. Trees and Weathering: Using Soil Petrographic and Chemical Analyses to Compare the Relative Weathering Effects of Gymnosperms and Angiosperms in the Cascade Mountains of Washington State, USA

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Ague, J. J.; Berner, R. A.

    2006-12-01

    Knowledge of the long-term carbon cycle and its control on atmospheric carbon dioxide levels over the Phanerozoic is crucial to understanding the impending dynamics of contemporary anthropogenic carbon contributions to the atmosphere. One aspect of the long-term carbon cycle that is poorly understood is the role of large vascular plants (trees) in contributing to the chemical weathering of silicate minerals. In particular, little is known about the differences in weathering rates between gymnosperms and angiosperms and how these dissimilarities may have impacted the carbon cycle subsequent to the evolution of angiosperm trees in the Mesozoic. One approach to evaluating these potential differences in weathering is to examine and quantitatively compare the chemistry and petrology of the soil mineral constituents from beneath modern groves of each broad tree type, where the groves have been subject to nearly identical environmental and geological conditions. This particular study focuses on field samples collected along transects through adjacent groves of angiosperms and gymnosperms in the Cascade Mountains of Washington State. Preliminary data demonstrate a significant difference in the soil texture and composition beneath the two types of trees. While soil at each field site has been generated from a homogeneous parent material, and subjected to similar inorganic environmental phenomena, soil density, particle size, and organic content vary across the transects. Soils beneath the angiosperms are denser and have a more clay-like texture, while soils beneath the gymnosperms are more organic-rich and have a sandy texture. Additional macroscopic and microscopic differences in the chemistry and petrology of these soils will illuminate the varied impacts these trees have on the silicate minerals in their immediate environment, and therefore lend insight into the potential impact these groups of organisms have had on the long-term carbon cycle over the past five hundred

  3. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  4. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  5. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids

    USGS Publications Warehouse

    Santiago Ramos, Danielle P.; Morgan, Leah; Lloyd, Nicholas S.; Higgins, John A.

    2018-01-01

    In situ Al-silicate formation, also known as “reverse weathering,” is an important sink of many of the major and minor cations in seawater (e.g. Mg, K, and Li). However, the importance of this sink in global geochemical cycles and isotopic budgets of these elements remains poorly constrained. Here, we report on the potassium isotopic composition (41">41K/39">39K) of deep-sea sediment pore-fluids from four (Integrated) Ocean Drilling Program sites (1052, U1378, U1395 and U1403) to characterize potassium isotopic fractionation associated with the formation of authigenic Al-silicate minerals in marine sediments and its role in elevating the 41">41K/39">39K of seawater relative to bulk silicate Earth. Isotopic ratios are obtained by high-resolution multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in cold plasma conditions with a long-term external reproducibility of ca. 0.17‰. We find that, although all sites are characterized by pore-fluid K concentrations that decline with increasing depth, their K isotopic profiles vary systematically from site-to-site; at sites characterized by rapid sedimentation rates, pore-fluid profiles of 41">41K/39">39K are relatively invariant whereas at sites characterized by slow sedimentation rates, 41">41K/39">39K declines with depth by up to 1.8‰. Results from 1-D diffusion-advection-reaction models suggest that these differences may result from a complex interplay between sedimentation rate and fractionation of K isotopes during diffusion, Al-silicate authigenesis, and ion exchange. Model simulations suggest fractionation factors between 0.9980 and 1.0000 for reverse weathering reactions in deep-sea sediments. Although deep-sea sites do not constitute major sinks of K in seawater, some of the processes responsible for K isotopic fractionation at these sites (diffusion and Al-silicate authigenesis) likely play a role in determining the 41">41K/39">39K of seawater.

  6. A Weathering Index for CK and R Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Huber, Heinz

    2006-01-01

    We present a new weathering index (wi) for the metallic-Fe-Ni-poor chondrite groups (CK and R) based mainly on transmitted light observations of the modal abundance of crystalline material that is stained brown in thin sections: wi-0, <5 vol%; wi-1, 5-25 vol%; wi-2,25-50 vol%; wi-3,50- 75 vol%; wi-4, 75-95 vol%; wi-5, >95 vol%, wi-6, significant replacement of mafic silicates by phyllosilicates. Brown staining reflects mobilization of oxidized iron derived mainly from terrestrial weathering of Ni-bearing sulfide. With increasing degrees of terrestrial weathering of CK and R chondrites, the sulfide modal abundance decreases, and S, Se, and Ni become increasingly depleted. In addition, bulk Cl increases in Antarctic CK chondrites, probably due to contamination from airborne sea mist.

  7. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  8. Impact cratering: The process and its effects on planetary evolution. [and silicate-carbonate reactions on Venus

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.

    1984-01-01

    The potential for silicate-carbon dioxide reactions as a geochemical weathering agent on Venus was studied. A tholetitic basalt close to the composition determined by the XRF experiment at the Venera 14 sites was subjected to high temperature and pressure (with pure CO2 as the pressure medium) for varying time durations. The starting basalt material and the run products were examined optically and by X-ray diffraction and electron microscopy. The kinetics of the silicate-carbonate reactions is discussed. A study to elucidate details of impact processes and to assess the effects of impact cratering on planetary evolution is mentioned.

  9. Quantifying weathering advance rates in basaltic andesite rinds with uranium-series isotopes: a case study from Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, L.; Chabaux, F. J.; Pelt, E.; Granet, M.; Sak, P. B.; Gaillardet, J.; Brantley, S. L.

    2010-12-01

    Weathering of basaltic rocks plays an important role in many Earth surface processes. It is thus of great interest to quantify their weathering rates. Because of their well-documented behaviors during water-rock interaction, U-series isotopes have been shown to have utility as a potential chronometer to constrain the formation rates of weathering rinds developed on fresh basaltic rocks. In this study, U-series isotopes and trace element concentrations were analyzed in a basaltic andesite weathering rind collected from the Bras David watershed, Guadeloupe. From the clast, core and rind samples were obtained by drilling along a 63.8 mm linear profile across a low curvature segment of the core-rind boundary. Trace element concentrations reveal: significant loss of REE, Y, Rb, Sr, and Ba in the weathering rind; conservative behaviors of Ti and Th; and external addition of U into the rind during clast weathering. Measured (234U/238U) activity ratios of the rind samples are much higher than the core samples and show excess 234U. Measured (238U/232Th) and (230Th/232Th) activity ratios of the core and rind samples increase gradually from the core into the weathering rind. The observed depletion profiles for the trace elements in the clast suggest that the earliest chemical reaction that creates significant porosity is dissolution of plagioclase, consistent with the previous study [Sak et al., 2010, CG, in press]. The porosity growth within the rind allows for an influx of soil solution that carries dissolved U with (234U/238U) activity ratios >1 into the clast. The deposition of U in the rind is most likely associated with precipication of secondary minerals during clast weathering. Such a continuous U addition is responsible for the observed gradual increase of (238U/232Th) activity ratios in the rind. Subsequent production of 230Th in the rind over time from the decay of excess 234U accounts for the observed continuous increase of (230Th/232Th) activity ratios. The U

  10. Chemical weathering in response to tectonic uplift and denudation rate in a semi-arid environment, southeast Spain

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2014-05-01

    Soil thickness reflects the balance between soil production and denudation by chemical weathering and physical erosion. At topographic steady state, the soil weathering intensity is expected to be higher at low denudation rate (transport-limited) than at high denudation rate (weathering-limited). We tested this hypothesis for the first time in a semi-arid environment where chemical weathering processes are generally slow. The study site is the Internal Zone of the Betic Cordillera in Southeast Spain, Almeria province. The lithology is mainly mica-schist and quartzite with local presence of phyllite. Three catchments (EST, FIL, CAB) were selected upstream local faults along a gradient of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr), following the sequence ESTweathering intensity. Three independent indices were used to compare soil weathering intensity across the EST, FIL and CAB catchments: the Total Reserve in Bases (TRB = [Ca2+] + [Na+] + [K+] + [Mg2+]); the soil Fed/Fet ratio that reflects the formation of secondary Fe-oxides, and the Cation Exchange Capacity (CEC) that varies with the amount of secondary clay minerals and organic matter. The difference in TRB between the soil and the bedrock (ΔTRB = TRB soil - TRB bedrock) should be more negative as weathering increases, whereas the Fed/Fet ratio is expected to augment with the intensity of weathering. Since these soils have low organic carbon content, the CEC should increase with weathering degree. Our results indicate that the ΔTRB (cmolc.kg-1) is -8±14 (n=8), -79±2 (n=8) and -51±38 (n=9) for CAB, FIL and EST, respectively. The Fed/Fet ratio for CAB, FIL and EST is 0.20±0.05 (n=8), 0.20±0.03 (n=8) and 0.29±0.05 (n=9), respectively. The CEC (cmolc.kg-1) increases from 3.3

  11. Short- and long-term olivine weathering in Svalbard: implications for Mars.

    PubMed

    Hausrath, E M; Treiman, A H; Vicenzi, E; Bish, D L; Blake, D; Sarrazin, P; Hoehler, T; Midtkandal, I; Steele, A; Brantley, S L

    2008-12-01

    Liquid water is essential to life as we know it on Earth; therefore, the search for water on Mars is a critical component of the search for life. Olivine, a mineral identified as present on Mars, has been proposed as an indicator of the duration and characteristics of water because it dissolves quickly, particularly under low-pH conditions. The duration of olivine persistence relative to glass under conditions of aqueous alteration reflects the pH and temperature of the reacting fluids. In this paper, we investigate the utility of 3 methodologies to detect silicate weathering in a Mars analog environment (Sverrefjell volcano, Svalbard). CheMin, a miniature X-ray diffraction instrument developed for flight on NASA's upcoming Mars Science Laboratory, was deployed on Svalbard and was successful in detecting olivine and weathering products. The persistence of olivine and glass in Svalbard rocks was also investigated via laboratory observations of weathered hand samples as well as an in situ burial experiment. Observations of hand samples are consistent with the inference that olivine persists longer than glass at near-zero temperatures in the presence of solutions at pH approximately 7-9 on Svalbard, whereas in hydrothermally altered zones, glass has persisted longer than olivine in the presence of fluids at similar pH at approximately 50 degrees C. Analysis of the surfaces of olivine and glass samples, which were buried on Sverrefjell for 1 year and then retrieved, documented only minor incipient weathering, though these results suggest the importance of biological impacts. The 3 types of observations (CheMin, laboratory observations of hand samples, burial experiments) of weathering of olivine and glass at Svalbard show promise for interpretation of weathering on Mars. Furthermore, the weathering relationships observed on Svalbard are consistent with laboratory-measured dissolution rates, which suggests that relative mineral dissolution rates in the laboratory, in

  12. Fractionation of Fe isotopes during granite weathering, soil formation, and plant uptake in an Alpine glacier forefield

    NASA Astrophysics Data System (ADS)

    Kretzschmar, R.; Kiczka, M.; Wiederhold, J. G.; Voegelin, A.; Kraemer, S.; Bourdon, B.

    2010-12-01

    Iron (Fe) is not only an essential element for almost all organisms, but is also involved in many biogeochemical processes including silicate weathering and soil formation. The aim of this study was to gain a better understanding of Fe isotope fractionation during initial silicate weathering and soil formation processes. Therefore, we investigated changes in Fe speciation and Fe isotope signatures in total soils and selected Fe pools along a weathering chronosequence within an Alpine glacier forefield on granite. The sampling sites along the dated chronosequence were deglaciated since up to 150 years, and we included two additional sites which were ice-free since several thousands of years. Changes in Fe speciation were investigated using Fe K-edge X-ray absorption spectroscopy (XAS) and also qualitatively documented by optical microscopy of soil thin sections. Iron in the unweathered rock was mainly present as structural Fe in biotite, with smaller amounts in chlorite, epidote, and magnetite. Within 150 years of deglaciation, the fraction of Fe(III) relative to total Fe increased from 34 to 53%, clearly documenting oxidation of Fe(II) in primary phyllosilicates. After 100 years of deglaciation, secondary Fe(III)-oxyhydroxides were detected by XAS and were also clearly evident in soil thin sections. Elemental analysis and Fe isotope analysis of particle size fractions by MC-ICP-MS showed that the clay fractions were significantly enriched in Fe and their δ56Fe signatures were up to 0.35‰ lower than those of the bulk soils (<2 mm). In addition, the hydroxylamine-hydrochloride extractable Fe pool (1 M HA-HCl in 25% acetic acid, pH 1.5), representing mainly poorly-crystalline Fe(III)-oxyhydroxides, increased with time of deglaciation and also had a significantly (by up to 0.7‰) lighter δ56Fe signature than the respective bulk soils. Thus, our data show that weathering of primary silicates, mainly biotite and chlorite, preferentially releases light Fe isotopes

  13. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  14. Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    da Conceição, Fabiano Tomazini; dos Santos, Carolina Mathias; de Souza Sardinha, Diego; Navarro, Guillermo Rafael Beltran; Godoy, Letícia Hirata

    2015-03-01

    The chemical weathering rate and atmospheric/soil CO2 consumption of Paraná flood basalts in the Preto Stream basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. Surface and rain water samples were collected in 2006, and analyses were performed to assess pH, temperature, dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS), including SO42-, NO3-, PO43 -, HCO3-, Cl-, SiO2, Ca2 +, Mg2 +, Na+ and K+. Fresh rocks and C horizon samples were also collected, taking into account their geological context, abundance and spatial distribution, to analyze major elements and mineralogy. The Preto Stream, downstream from the city of Ribeirão Preto, receives several elements/compounds as a result of anthropogenic activities, with only sulfate yielding negative flux values. The negative flux of SO42 - can be attributed to atmospheric loading that is mainly related to anthropogenic inputs. After corrections were made for atmospheric inputs, the riverine transport of dissolved material was found to be 30 t km- 2 y- 1, with the majority of the dissolved material transported during the summer (wet) months. The chemical weathering rate and atmospheric/soil CO2 consumption were 6 m/Ma and 0.4 · 106 mol km- 2 y- 1, respectively. The chemical weathering rate falls within the lower range of Paraná flood basalt denudation rates between 135 and 35 Ma previously inferred from chronological studies. This comparison suggests that rates of basalt weathering in Brazil's present-day tropical climate differ by at most one order of magnitude from those prevalent at the time of hothouse Earth. The main weathering process is the monosiallitization of anorthoclase, augite, anorthite and microcline. Magnetite is not weathered and thus remains in the soil profile.

  15. Direct Determination of the Space Weathering Rates in Lunar Soils and Itokawa Regolith from Sample Analyses

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.

    2016-01-01

    Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.

  16. Determining rates of chemical weathering in soils - Solute transport versus profile evolution

    USGS Publications Warehouse

    Stonestrom, David A.; White, A.F.; Akstin, K.C.

    1998-01-01

    SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform

  17. Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory

    USGS Publications Warehouse

    Buss, Heather L.; Lara, Maria Chapela; Moore, Oliver; Kurtz, Andrew C.; Schulz, Marjorie S.; White, Arthur F.

    2017-01-01

    Lithologic differences give rise to the differential weatherability of the Earth’s surface and globally variable silicate weathering fluxes, which provide an important negative feedback on climate over geologic timescales. To isolate the influence of lithology on weathering rates and mechanisms, we compare two nearby catchments in the Luquillo Critical Zone Observatory in Puerto Rico, which have similar climate history, relief and vegetation, but differ in bedrock lithology. Regolith and pore water samples with depth were collected from two ridgetops and at three sites along a slope transect in the volcaniclastic Bisley catchment and compared to existing data from the granitic Río Icacos catchment. The depth variations of solid-state and pore water chemistry and quantitative mineralogy were used to calculate mass transfer (tau) and weathering solute profiles, which in turn were used to determine weathering mechanisms and to estimate weathering rates.Regolith formed on both lithologies is highly leached of most labile elements, although Mg and K are less depleted in the granitic than in the volcaniclastic profiles, reflecting residual biotite in the granitic regolith not present in the volcaniclastics. Profiles of both lithologies that terminate at bedrock corestones are less weathered at depth, near the rock-regolith interfaces. Mg fluxes in the volcaniclastics derive primarily from dissolution of chlorite near the rock-regolith interface and from dissolution of illite and secondary phases in the upper regolith, whereas in the granitic profile, Mg and K fluxes derive from biotite dissolution. Long-term mineral dissolution rates and weathering fluxes were determined by integrating mass losses over the thickness of solid-state weathering fronts, and are therefore averages over the timescale of regolith development. Resulting long-term dissolution rates for minerals in the volcaniclastic regolith include chlorite: 8.9 × 10−14 mol m−2 s−1, illite: 2.1

  18. Space-weathering processes and products on volatile-rich asteroids

    NASA Astrophysics Data System (ADS)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  19. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.; Steefel, C. I.; White, A.F.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and

  20. Hydrological controls on chemical weathering in the typical carbonated river basin, SW China

    NASA Astrophysics Data System (ADS)

    LI, S. L.; Jin, L.; Zhong, J., Sr.

    2016-12-01

    The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars

  1. Climate Cycling on Early Mars Caused by the Carbonate-Silicate Cycle

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Batalha, N. E.; Haqq-Misra, J. D.; Kopparapu, R.

    2016-12-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere [1]. Another suggests early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism [2,3], with warming possibly extended by cirrus clouds [4]. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. We suggest that both schools of thought are partly correct. Mars experienced dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr [5]. Cycles of repeated glaciation and deglaciation occurred because stellar insolation was low, and because CO2 outgassing could not keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. In order to deglaciate early Mars, substantial outgassing of molecular hydrogen from Mars' reduced crust and mantle was also required, as our own climate model is unable to do this without adding some greenhouse warming from H2 [6,7]. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation. References: [1] Pollack JB, Kasting JF, Richardson SM, Poliakoff K. 1987. Icarus 71: 203-24 [2] Halevy I, Head JW. 2014. Nature Geoscience 7: 865-8 [3] Segura TL, Toon OB, Colaprete A, Zahnle K. 2002. Science 298: 1977-80 [4] Urata RA, Toon OB. 2013. Icarus 226: 229-50 [5] Batalha NE, Kopparapu RK, Haqq-Misra JD, Kasting JF. submitted. Climate cycling on early Mars caused by the carbonate-silicate cycle. EPSL [6] Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Nature Geosci 7: 59-63 [7] Batalha N, Domagal-Goldman SD, Ramirez R, Kasting JF. 2015. Icarus 258: 337-49

  2. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  3. Mesocosm-Scale Experimental Quantification of Plant-Fungi Associations on Carbon Fluxes and Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Palmer, B.; Leake, J. R.; Banwart, S. A.; Beerling, D. J.

    2009-12-01

    The rise of land plants in the Paleozoic is classically implicated as driving lower atmospheric CO2 levels through enhanced weathering of Ca and Mg bearing silicate minerals. However, this view overlooks the fact that plants coevolved with associated mycorrhizal fungi over this time, with many of the weathering processes usually ascribed to plants actually being driven by the combined activities of roots and mycorrhizal fungi. Here we present initial results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant-driven carbon flux and mineral weathering at different soil depths under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. Four species of plants were chosen to address evolutionary trends in symbiotic mycorrhizal association and rooting depth on biologically driven silicate weathering under the different CO2 regimes. Gymnosperms were used to investigate potential differences in weathering capabilities of two fungal symbioses: Sequoia sempervirens and Metasequoia glyptostroboides (arbuscular mycorrhizal, AM) and Pinus sylvestris (ectomycorrhizal, EM), and the shallow rooted ancient fern, Osmunda regalis, used to provide a contrast to the three more deeply rooted trees. Plants were grown in a cylindrical mesocosm with four horizontal inserts at each depth. These inserts are a mesh-covered dual-core unit whereby an inner core containing silicate minerals can be rotated within an outer core. The mesh excludes roots from the cylinders allowing fungal-rock pairings to be examined at each depth. Each core contains either basalt or granite, each with severed (rotated cores) or intact (static cores) mycorrhizae. This system provides a unique opportunity to examine the ability of a plant to weather minerals with and without its symbiotic fungi. Preliminary results indicate marked differences in nutritional and water requirements, and response to elevated CO2 between the species. The bulk solution chemistries (p

  4. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    USGS Publications Warehouse

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  5. Chemical Weathering in the Zambesi Basin: Assesment of the Carbon Dioxyde Comsumption by the Karu Basalt Province

    NASA Astrophysics Data System (ADS)

    Seyler, P. T.; Viers, J.; Aries, S.; Fournier, P.

    2014-12-01

    The quantification of the role of weathering in the carbon cycle and its interaction with climate and tectonics at the geological time scale is one of the key questions of the geoscientists. The consumption of atmospheric CO2 by silicate weathering indisputably plays the central role in the long term carbon budget and consequently on mean global climate. Through the composition of major elements in river waters, CO2 consumption by the alteration of continental rocks can be estimated. The aim of this study is to estimate of the chemical weathering rate of the Zambesi basin and the impact of Karoo basalt province on chemical atmospheric consumption, evaluated from a database of major elements. The Karroo basalts outcrop erupted around 183 +/2 2 106 take place in the Upper and the Middle Zambezi, covering a surface of 9600 km2. The Zambesi Basin, located between 8° and 20° south latitude and between 16.5 and 36 east longitude, is the fourth largest in Africa. The catchment has a total area of some 1,281,000 km2, the mean annual temperature is 19,3°C and the annual rainfall varies from nearly 2 000 mm to 600 mm. During the sampling period, the annual runoff at Victoria Fall gauging Station ranged between 50 to 2000 m3/s ie 6.9 to 0.6 l/s/km2. The consumption rate of atmospheric CO2 associated with the chemical weathering was calculated from riverine HCO3- concentrations. During the weathering of volcanic rocks, all dissolved carbonates originate from atmospheric/sil CO2. Values of CO2 consumption rates are relatively high, about 0.024 1012 mol/yr, and are comparable to Deccan Traps consumption rates.

  6. Putting weathering into a landscape context: Variations in exhumation rates across the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.

    2015-04-01

    Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in

  7. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  8. Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers.

    PubMed

    Marçais, Jean; Gauvain, Alexandre; Labasque, Thierry; Abbott, Benjamin W; Pinay, Gilles; Aquilina, Luc; Chabaux, François; Viville, Daniel; de Dreuzy, Jean-Raynald

    2018-09-15

    Estimating intermediate water residence times (a few years to a century) in shallow aquifers is critical to quantifying groundwater vulnerability to nutrient loading and estimating realistic recovery timelines. While intermediate groundwater residence times are currently determined with atmospheric tracers such as chlorofluorocarbons (CFCs), these analyses are costly and would benefit from other tracer approaches to compensate for the decreasing resolution of CFC methods in the 5-20 years range. In this context, we developed a framework to assess the capacity of dissolved silica (DSi) to inform residence times in shallow aquifers. We calibrated silicate weathering rates with CFCs from multiple wells in five crystalline aquifers in Brittany and in the Vosges Mountains (France). DSi and CFCs were complementary in determining apparent weathering reactions and residence time distributions (RTDs) in shallow aquifers. Silicate weathering rates were surprisingly similar among Brittany aquifers, varying from 0.20 to 0.23 mg L -1  yr -1 with a coefficient of variation of 7%, except for the aquifer where significant groundwater abstraction occurred, where we observed a weathering rate of 0.31 mg L -1  yr -1 . The silicate weathering rate was lower for the aquifer in the Vosges Mountains (0.12 mg L -1  yr -1 ), potentially due to differences in climate and anthropogenic solute loading. Overall, these optimized silicate weathering rates are consistent with previously published studies with similar apparent ages range. The consistency in silicate weathering rates suggests that DSi could be a robust and cheap proxy of mean residence times for recent groundwater (5-100 years) at the regional scale. This methodology could allow quantification of seasonal groundwater contributions to streams, estimation of residence times in the unsaturated zone and improve assessment of aquifer vulnerability to anthropogenic pollution. Copyright © 2018 Elsevier B.V. All

  9. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  10. CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape

    USGS Publications Warehouse

    van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin

    2017-01-01

    Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.

  11. Impact of space weather on human heart rate during the years 2011-2013

    NASA Astrophysics Data System (ADS)

    Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.

    2017-08-01

    During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.

  12. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  13. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks.

    PubMed

    Torres, Mark A; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F; West, A Joshua

    2017-08-15

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO 2 , we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO 2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO 2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO 2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O 2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  14. The Cretaceous Okhotsk-Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs

    NASA Astrophysics Data System (ADS)

    Tikhomirov, P. L.; Kalinina, E. A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I. Yu.; Nakamura, E.

    2012-04-01

    The Cretaceous Okhotsk-Chukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5 × 105 km3 (the most conservative estimate) and over 106 km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published U-Pb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 106-98 Ma, 94-91 Ma, 89-87 Ma, 85.5-84 Ma, and 82-79 Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105 km2 and 2.5 × 105 km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6 × 10- 5 km3yr- 1 km- 1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6 × 10- 5 km3yr- 1 km- 1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic LIPs and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 89-87 and 85.5-84 Ma had higher rates of over 9.0 × 10- 5 km3yr- 1 km- 1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that

  15. Estimating 1 min rain rate distributions from numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Paulson, Kevin S.

    2017-01-01

    Internationally recognized prognostic models of rain fade on terrestrial and Earth-space EHF links rely fundamentally on distributions of 1 min rain rates. Currently, in Rec. ITU-R P.837-6, these distributions are generated using the Salonen-Poiares Baptista method where 1 min rain rate distributions are estimated from long-term average annual accumulations provided by numerical weather prediction (NWP). This paper investigates an alternative to this method based on the distribution of 6 h accumulations available from the same NWPs. Rain rate fields covering the UK, produced by the Nimrod network of radars, are integrated to estimate the accumulations provided by NWP, and these are linked to distributions of fine-scale rain rates. The proposed method makes better use of the available data. It is verified on 15 NWP regions spanning the UK, and the extension to other regions is discussed.

  16. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.

    2006-04-15

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changesmore » in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.« less

  17. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.D.; Maher, K.; Blum, A.E.

    2009-01-01

    The spatial and temporal changes in hydrology and pore water elemental and 87Sr/86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes (qh), based on Cl mass balances, vary from 0.06 to 0.22 m yr-1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO3 > HCO3 > SO4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past vegetational

  18. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon. (1) Weathering reactions in the volcanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banfield, J.F.; Veblen, D.R.; Jones, B.F.

    1991-10-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as themore » result of addition of elements released from adjacent reaction sites. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials transported to the lake and the solution will be described in part.« less

  19. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks

    PubMed Central

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.

    2017-01-01

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals. PMID:28760954

  20. The influence of herbivory and weather on the vital rates of two closely related cactus species.

    PubMed

    Sauby, Kristen E; Kilmer, John; Christman, Mary C; Holt, Robert D; Marsico, Travis D

    2017-09-01

    Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant-insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia ) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum , and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade-off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for O .  stricta . Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of O .  stricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size-dependent, this suggests that O .  stricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced

  1. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    PubMed

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  2. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective

  3. Spatial gradient of chemical weathering and its coupling with physical erosion in the soils of the Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter

    2015-04-01

    The production and denudation of soil material are controlled by chemical weathering and physical erosion which influence one another. Better understanding and quantification of this relationship is critical to understand biogeochemical cycles in the critical zone. The intense silicate weathering that is taking place in young mountain ranges is often cited to be a negative feedback that involves a long-term reduction of the atmospheric CO2 and the temperature cooling. However the possible (de)coupling between weathering and erosion is not fully understood for the moment and could reduce the effect of the feedback. This study is conducted in the eastern Betic Cordillera located in southeast Spain. The Betic Cordillera is composed by several mountains ranges or so-called Sierras that are oriented E-W to SE-NW and rise to 2000m.a.s.l. The Sierras differ in topographic setting, tectonic activity, and slightly in climate and vegetation. The mountain ranges located in the northwest, such as the Sierra Estancias, have the lowest uplift rates ( ~20-30 mm/kyr); while those in the southeast, such as the Sierra Cabrera, have the highest uplift rates ( >150mm/kyr). The sampling was realised into four small catchments located in three different Sierras. In each of them, two to three soil profiles were excavated on exposed ridgetops, and samples were taken by depth slices. The long-term denudation rate at the sites is inferred from in-situ 10Be CRN measurements. The chemical weathering intensity is constrained using a mass balance approach that is based on the concentration of immobile elements throughout the soil profile (CDF). Our results show that the soil depth decreases with an increase of the denudation rates. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. Higher chemical weathering intensities (CDFs) are observed in sites with lower denudation rates (and vice versa). The data suggest that chemical weathering intensities are strongly

  4. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  5. Constraints on cosmic silicates

    NASA Astrophysics Data System (ADS)

    Ossenkopf, V.; Henning, Th.; Mathis, J. S.

    1992-08-01

    Observational determinations of opacities of circumstellar silicates, relative to the peak value near 10 microns, are used to estimate the optical constants n and k, the real and imaginary parts of the index of refraction. Circumstellar dust is modified by processing within the interstellar medium. This leads to higher band strengths and a somewhat larger ratio of the opacities at the 18 and 10-micron peaks, compared with circumstellar silicates. By using an effective-medium theory, we calculate the effects of small spherical inclusions of various materials (various oxides, sulfides, carbides, amorphous carbon, and metallic iron) upon silicate opacities. Some of these can increase the absorption coefficient k in the 2-8 micron region appreciably, as is needed to reconcile laboratory silicate opacities with observations of both the interstellar medium and envelopes around late-type stars. We give tables of two sets of optical constants for warm oxygen-deficient and cool oxygen-rich silicates, representative for circumstellar and interstellar silicates. The required opacity in the 2-8 micron region is provided by iron and magnetite.

  6. Primary weathering rates, water transit times and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin

    2017-04-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)

  7. First report on Cretaceous paleoweathering rates in western Panthalassa: Evidence of global enhancement of continental weathering during OAE 2

    NASA Astrophysics Data System (ADS)

    Ohta, T.

    2013-12-01

    Mid-Cretaceous is characterized by intensified oceanic anoxia (Oceanic Anoxic Events: OAEs) that raised global deposition of organic black shales. Several models have been proposed to explain the cause of the OAEs in conjunction with Cretaceous global warmth, active volcanism, sea-level changes and others. For example, Weissert et al. (1998) proposed a mechanism called 'weathering hypothesis'. In this model, the cause of the OAEs is explained in a following chain reaction, (1) global warmth and increase in atmospheric CO2 enhanced weathering of continental crust, (2) enhanced land weathering led excessive influx of nutrients from continents to oceans, (3) eutrophication enhanced primary productivity, (4) the excessive primary producers consumed dissolved oceanic oxygen that finally led to the OAEs. Several studies, in fact, revealed a causal relation between enhanced weathering and OAEs in northern Tethys region. However, it is necessary to collect worldwide information to unravel the global response of weathering hypothesis as a cause of OAEs. For such reason, the present contribution conducted measurements of the degree of hinterland paleoweathering during OAEs in northern Japan, for the purpose to provide a first report on the relation between continental weathering and OAEs in open ocean, the western Panthalassa Ocean. Aptian to Campanian forearc basin mudstones (Yezo Group) were analyzed by XRF and the degree of hinterland weathering was evaluated by geochemical weathering index (W index; Ohta and Arai, 2007). The W values obtained for the Yezo Group are 30~50, which is equivalent to the W values of recent soils developed in temperate mid-latitude climate. The W values show a fluctuation pattern that is concordant with the Cretaceous paleotemperature changes. This match indicates that the change in paleotemperature governed the weathering rates of East Asian continental crust. In addition, hinterland weathering rates show instantaneous increase during the OAE

  8. The Themis-Beagle families: Investigation of space-weathering processes on primitive surfaces

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Perna, D.; Lantz, C.; Barucci, M.

    2014-07-01

    In the past 20 years, enormous progress has been reached in the study of space-weathering (SW) effects on silicates and silicate asteroids. The so-called ordinary chondrite paradox, that is, lack of asteroids similar to the ordinary chondrites, which represent 80 % of meteorite falls, has been solved. These meteorites are now clearly related to S-type asteroids, as proved also by the direct measurements of the NEAR and HAYABUSA missions on the near-Earth asteroids Eros and Itokawa. Spectral differences between S-type asteroids and ordinary chondrites are caused by space-weathering effects, which produce a darkening in the albedo, a reddening of the spectra, and diminish the silicate absorption bands on the asteroids surfaces, exposed to cosmic radiation and solar wind. On the other hand, our understanding of space-weathering effects on primitive asteroids is still poor. Only few laboratory experiments have been devoted to the investigation of SW effects on dark carbonaceous chondrites and on complex organic materials. Irradiation of transparent organic materials produces firstly redder and darker materials that upon further processing turn flatter-bluish and darker (Kanuchova et al. 2012; Moroz et al. 2004). The Themis family is a natural laboratory to study primitive asteroids and space-weathering effects. The Themis family is located between 3.05 and 3.24 au, beyond the snow line, and it is composed of primitive asteroids. Themis is one of the most statistically reliable families in the asteroid belt. First discovered by Hirayama (1918), it has been identified as a family in all subsequent works, and it has 550 members as determined by Zappalà et al. (1995) and more than 4000 as determined by Nesvorny et al. (2010). The family formed probably about 2.3 Gyr ago as a result of a large-scale catastrophic disruption event of a parent asteroid 400 km in diameter colliding with a 190-km projectile (Marzari et al. 1995). Several Themis family members show absorption

  9. Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald

    2014-06-01

    To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of

  10. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon)

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Marechal, Jean-Christophe; Riotte, Jean; Boeglin, Jean-Loup; Bedimo Bedimo, Jean-Pierre; Ndam Ngoupayou, Jules Remy; Nyeck, Brunot; Robain, Henri; Sekhar, M.; Audry, Stéphane; Viers, Jérôme

    2012-12-01

    The comparison between contemporary and long-term weathering has been carried out in the Small Experimental Watershed (SEW) of Nsimi, South Cameroon in order to quantify the export fluxes of major and trace elements and the residence time of the lateritic weathering cover. We focus on the hillside system composed of a thick lateritic weathering cover topped by a soil layer. This study is built on the recent improvements of the hillside hydrological functioning and on the analyses of major and trace elements. The mass balance calculation at the weathering horizon scale performed with the parent rock as reference indicates (i) strong depletion profiles for alkalis (Na, K, Rb) and alkaline earths (Mg, Ca, Sr, Ba), (ii) moderate depletion profiles for Si, P, Cd, Cu, Zn, Ni and Co, (iii) depletion/enrichment profiles for Al, Ga, Ge, Sn, Pb, LREE, HREE, Y, U, Fe, V, Cr, Mn. It is noteworthy that (i) Mn and Ce are not significantly redistributed according to oxidative processes as it is the case for Fe, V and Cr, and (ii) Ge is fractionated compared to silica with enrichment in Fe-rich horizons. The calculations performed for the topsoil with iron crust as parent material reference reveal that the degradation of the iron crust is accompanied by the loss of most of the constituting elements, among which are those specifically accumulated as the redox sensitive elements (Fe, V, Cr) and iron oxide related elements like Th. The overall current elemental fluxes from the hillside system at the springs and the seepage zones are extremely low due to the inert lateritic mineralogy. Ninety-four percent of the whole Na flux generated from the hillside corrected from atmospheric deposits (77 mol/ha/yr) represents the current weathering rates of plagioclase (oligoclase) in the system, the other remaining 6% may be attributed to the dissolution of hornblende. The silica hillside flux is 300 mol/ha/yr and can be mostly attributed to the plagioclase and kaolinite dissolution. Al and Ga

  11. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  12. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    NASA Astrophysics Data System (ADS)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  13. Space Weathering Products Found on the Surfaces of the Itokawa Dust Particles: A Summary of the Initial Analysis

    NASA Technical Reports Server (NTRS)

    Noguchi, T.; Kimura, M.; Hashimoto, T.; Konno, M.; Nakamura, T.; Ogami, T.; Ishida, H.; Sagae, R.; Tsujimoto, S.; Tsuchiyama, A,; hide

    2012-01-01

    Surfaces of airless bodies exposed to interplanetary space gradually have their structures, optical properties, chemical compositions, and mineralogy changed by solar wind implantation and sputtering, irradiation by galactic and solar cosmic rays, and micrometeorite bombardment. These alteration processes and the resultant optical changes are known as space weathering [1, 2, 3]. Our knowledge of space weathering has depended almost entirely on studies of the surface materials returned from the Moon and regolith breccia meteorites [1, 4, 5, 6] until the surface material of the asteroid Itokawa was returned to the Earth by the Hayabusa spacecraft [7]. Lunar soil studies show that space weathering darkens the albedo of lunar soil and regolith, reddens the slopes of their reflectance spectra, and attenuates the characteristic absorption bands of their reflectance spectra [1, 2, 3]. These changes are caused by vapor deposition of small (<40 nm) metallic Fe nanoparticles within the grain rims of lunar soils and agglutinates [5, 6, 8]. The initial analysis of the Itokawa dust particles revealed that 5 out of 10 particles have nanoparticle-bearing rims, whose structure varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles (npFe) exist in a thin (5-15 nm) surface layer (zone I) on olivine, low-Ca pyroxene, and plagioclase, suggestive of vapor deposition. Sulfur-free npFe exist deeper inside (<60 nm) ferromagnesian silicates (zone II). Their texture suggests formation by amorphization and in-situ reduction of Fe2+ in ferromagnesian silicates [7]. On the other hand, nanophase metallic iron (npFe0) in the lunar samples is embedded in amorphous silicate [5, 6, 8]. These textural differences indicate that the major formation mechanisms of the npFe0 are different between the Itokawa and the lunar samples. Here we report a summary of the initial analysis of space weathering of the Itokawa dust particles.

  14. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  15. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  16. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  17. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  18. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with the...

  19. From the surface to the deep critical zone: Linking soil carbon, fluid saturation and weathering rate

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer; Lawrence, Corey; Oster, Jessica; Rempe, Daniella; Dietrich, William

    2017-04-01

    Shallow soils from a wide range of ecosystems demonstrate a clear and consistent relationship between effective fluid saturation and the rate at which organic carbon is converted to CO2. While the underlying mechanisms contributing to this dependence are diverse, a consistent pattern of maximum CO2 production at intermediate soil moisture supports a generalized functional relationship, which may be incorporated into a quantitative reactive transport framework. A key result of this model development is a prediction of the extent to which the inorganic carbon content of water in biologically active soils varies as a function of hydrologic parameters (i.e. moisture content and residence time), and in turn influences weathering reactions. Deeper in the CZ, the consistency of this relationship and the influence of hydrologically - regulated CO2 production on the rates of water - rock interaction are largely unknown. Here, we use a novel reactive transport model incorporating this functional relationship to consider how variations in the reactive potential of water entering the vadose zone influences subsurface weathering rates. We leverage two examples of variably saturated natural systems to consider (1) CO2 production and associated weathering potential regulated by seasonal hydrologic shifts and (2) the preservation of soil carbon signatures in the deep CZ over millennial timescales. First, at the Eel River CZ Observatory in Northern California, USA, a novel Vadose Zone Monitoring System (VMS) installed in a 14 - 20 m thick unsaturated section offers an unprecedented view into the physical, chemical and biological behavior of the depth profile separating soils from groundwater. Based on soil moisture, gas and fluid phase samples, we demonstrate a predictive relationship between seasonal hydrologic variations and the location and magnitude of geochemical weathering rates. Second, an environmental monitoring project in the Blue Springs Cave, Sparta, TN, USA, provides

  20. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    PubMed

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (p<0.05). In the protection study, the intrinsic rate constant for calcium loss from enamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (p<0.0001). Calcium silicate can transform into HAP and can be deposited on acid eroded and sound enamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  1. The importance of terrestrial weathering for climate system modelling on extended timescales: a study with the UVic ESCM

    NASA Astrophysics Data System (ADS)

    Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence

    2016-04-01

    The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the

  2. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  3. Morbidity Rates during a Military Cold Weather Exercise: Empire Glacier 1980.

    DTIC Science & Technology

    1981-10-28

    stomach upset, or pain and hemorrhoids . Flu constituted 9.6% of the GI cases (although more appropriately might have been included with URI). The...COMPLAINTS Eleven-day Totals Ave./Day Rates* 1. Nausea (Upset Stomach) 33 (3.0) .34 2. Stomach Pain 26 (2.4) .27 3. Hemorrhoids 18 (1.6) .18 Flu...Reported that cold usually bothers him, that hemorrhoids are aggravated by the cold. Doesn’t care for cold weather in general. No classroom instruction and

  4. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.

  5. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  6. On the Relation of Silicates and SiO Maser in Evolved Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicatemore » emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.« less

  7. Weathering of Olivine during Interaction of Sulfate Aerosols with Mars Soil under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Golden, D. C.; Michalski, J. R.; Ming, D. W.

    2017-12-01

    Sulfur concentrations in the Mars soils are elevated above 1 wt% in nearly every location visited by landed spacecraft. This observation was first made by the Viking landers, and has been confirmed by subsequent missions. The wide distribution of sulfur in martian soils has been attributed to volcanic degassing, formation of sulfate aerosols, and later incorporation into martian soils during gravitational sedimentation. However, later discoveries of more concentrated sulfur bearing sediments by the Opportunity rover has led some to believe that sulfates may instead be a product of evaporation and aeolian redistribution. One question that has not been addressed is whether the modern surface conditions are too cold for weathering of volcanic materials by sulfate aerosols. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. Laboratory experiments were conducted to simulate weathering of olivine under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40°C. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment for olivine weathering despite the very low temperatures. The likelihood of substantial sulfur-rich volcanism on Mars and creation of abundant sulfate aerosols suggests that this process would have been important during formation of martian soils and sediments. Future work modeling sulfur release rates during volcanic eruptions and aerosol distribution over the surface will help understand how well this process

  8. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  9. Analytical Investigation of the Decrease in the Size of the Habitable Zone due to Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2016-12-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a Snowball state and a warm climate are only possible beyond this limit if the weathering rate in the Snowball climate is smaller than the CO2 outgassing rate (otherwise stable Snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  10. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  11. Chemical weathering outputs from the flood plain of the Ganga

    NASA Astrophysics Data System (ADS)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios <1. One sample of the Gomti river and seven small adjacent tributaries have elevated Na concentrations likely caused by dissolution of Na carbonate salts. The compositions of the carbonate and silicate components of the sediments were determined from sequential leaches of floodplain bedloads and these were used to partition the dissolved cation load between silicate and carbonate sources. The 87Sr/86Sr and Sr/Ca ratios of the carbonate

  12. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogerty, S.; Forrest, W.; Watson, D. M.

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less

  13. Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition

    NASA Astrophysics Data System (ADS)

    Holzheid, A.; Lodders, K.

    2001-06-01

    The solubility of Cu in silicate melts coexisting with liquid Cu(Fe) metal and liquid Cu(Fe) sulfide was determined experimentally at oxygen fugacities ranging from 10 -9.1 to 10 -13.6 bar and sulfur fugacities ranging from 10 -2.5 to 10 -6.3 bar at 1300°C. An iron oxide-free silicate of anorthite-diopside eutectic composition and a synthetic MgO-rich basaltic silicate (FeO-bearing) were used in the partitioning experiments. In S-containing systems, some of the metal reacted to metal sulfide. The silicates in the four systems investigated (Fe-free and S-free; Fe-containing and S-free; Fe-free and S-containing; Fe-containing and S-containing) had different colors depending on the dissolved Cu species and the presence of iron and/or sulfur. Irrespective of the presence of sulfur, the solubility of Cu in the silicate increases with increasing oxygen fugacity and metal/silicate partition coefficients for Cu decrease. Increasing the temperature from 1300°C to 1514°C increases the Cu solubility (decreases the metal/silicate partition coefficient) at an oxygen fugacity 0.5 log units below the iron-wüstite (IW) equilibrium in the Fe-free, S-free and Fe-containing, S-free systems. We infer the presence of monovalent Cu + ("CuO 0.5") in the silicate melt on the basis of the solubility of Cu as function of oxygen fugacity. Experiments containing iron yield a formal valence of ˜0.5 for Cu at very low oxygen fugacities, which is not observed in Fe-free systems. The low formal valence is explained by redox reactions between iron and copper in the silicate melts. There is no evidence for sulfidic dissolution of Cu in the silicates but sulfur has indirect effects on Cu partitioning. Iron metal/silicate partition coefficients depend on oxygen fugacity and on sulfur fugacity. Sulfidic dissolution of iron and oxide-sulfide exchange reactions with Cu cause a small increase in Cu metal/silicate partition coefficients. We derive an activity coefficient (γ CuO 0.5) of 10 ± 1 for

  14. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    soil formation rates was achieved for different depths of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a- 1 for A and Bw horizons (weathering class VI) to 0.04-0.36 mm a- 1 for the underlying saprolite (C and Cr layers; class V). By comparing these results with the corresponding erosion rates available in the literature for the study area, that range from < 0.01-0.05 to 0.10-0.21 mm a- 1, we suggest that the upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive processes.

  15. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  16. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  17. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    PubMed Central

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-01-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change. PMID:28303943

  18. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    NASA Astrophysics Data System (ADS)

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-03-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

  19. Geochemical mass-balance to study the relative weathering rates of various formations in a complex watershed of lower Himalayas

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Pallavi; Kar, Swagat; Chouhan, Ramesh

    2017-04-01

    Weathering of rocks is a major process and believed to have the potential to alter Earth's surface. Aglar, a watershed in Garhwal Lesser Himalayas is identified and various formations of this complex geology are studied to understand the weathering process. A stream passes through the fault that divides the watershed into two slopes which have different lithotectonic units. Paligar and Belgar are the two main tributaries of Aglar stream flowing along the slopes respectively and joining at the valley near Thatyur village, India. Rocks like quartzite and limestone are generally hard, massive and resistant to weathering. However, sedimentary rocks are vulnerable to weathering and erosion. On the other hand, phyllites and schists are characterized by flaky minerals which weather quickly and promote instability . Aglar has all of them. The weathering processes are studied first using the hydrochemistry of Aglar river through major cations (Ca2+, Mg2+, Na+, K+) and major anions (SO42-, HCO-3, Cl-, NO3-). The discharges at various sampling points are calculated using area - velocity method. The basic idea in describing the discharge of material in a river is to estimate the mass of the substances transported through a cross section of the river per second. Dominance of Ca2+, Mg2+ and HCO-3 indicates that carbonate weathering is the major chemical weathering process near Belgar river. Paligar river has lower conductivity values compared to Belgar river which illustrates lower ionic concentrations. Mass-balance calculations are found often skewed and suggest the role of subsurface groundwater flow to explain the uncharacterized load. Southern side of the watershed with higher percentage of forest cover is found to have higher chemical weathering rates compared to the other slope having relatively lesser vegetation. These higher rates demonstrate the higher stream discharge load in that slope.

  20. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  1. The significance of mid-latitude rivers for weathering rates and chemical fluxes: Evidence from northern Xinjiang rivers

    NASA Astrophysics Data System (ADS)

    Zhu, Bingqi; Yu, Jingjie; Qin, Xiaoguang; Rioual, Patrick; Liu, Ziting; Zhang, YiChi; Jiang, Fengqing; Mu, Yan; Li, Hongwei; Ren, Xiaozong; Xiong, Heigang

    2013-04-01

    signatures of dissolution of carbonates and evaporites and of continental playa deposits. Carbonates are the general predominant lithology undergoing dissolution particularly within the lesser arid areas. The pCO2 in the study rivers is out of equilibrium with respect to atmospheric pCO2, about up to ˜20 times supersaturated relative to the atmosphere but not to such an extent as the Amazon in the floodplain. A roughly positive relationship is observed between solute concentrations and the drought index (DI) for natural waters in the region, indicating a coupled mountain-basin climate has a direct effect. The relative contributions of end-member solute sources to the total dissolved cations from each watershed have been quantitatively estimated using dissolved load balance models, showing the results as evaporite dissolution > carbonate weathering > silicate weathering > atmospheric input for the whole catchment. The areal total dissolved fluxes range from 0.05 to 2.53 × 106 mol/km2/yr, 0.02-2.09 × 106 mol/km2/yr and 0.01-1.04 × 106 mol/km2/yr in the Yili, Zhungarer and Erlqis, respectively, comparable to those of Chinese and Siberia rivers draining sedimentary platforms, even though they are in drastically different climatic regimes. In general, the fluxes from rivers in sedimentary basins are comparable to those from orogenic zones, but are much higher than in the shield regions. The CO2 consumption by aluminosilicate weathering (0.2-284 × 103 mol/km2/yr) is much smaller than in active orogenic belts (19-1750 × 103 mol/km2/yr in similar latitudes and 143-1000 × 103 mol/km2/yr in the tropical basins), but comparable to those of the Chinese (7-106 × 103 mol/km2/yr) and Siberia (16-112 × 103 mol/km2/yr) rivers.

  2. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices

    NASA Astrophysics Data System (ADS)

    Guo, Yulong; Yang, Shouye; Su, Ni; Li, Chao; Yin, Ping; Wang, Zhongbo

    2018-04-01

    Although the proxies based on elemental geochemistry of siliciclastic sediments have been well developed to indicate the intensity of chemical weathering in various catchments, their geological indications and limitations, and especially how the differentiation of minerals and sediment grain size influences the applications of these proxies needs more clarification. This paper investigates the interactive effects of weathering, hydraulic sorting and sedimentary recycling on river sediment chemistry, and further validates the application of various weathering indices by measuring mineralogical and geochemical compositions of bank sediments and suspended particulate matters (SPMs) from five rivers in East China bearing various sizes, geologic settings and climatic regimes. For a specific river, the silicate weathering intensity registered in the fine SPMs is systematically stronger than that in the coarse-grained bank sediments. Most of the weathering indices not only reflect the integrated weathering history of various catchments but also depend on hydraulic sorting effect during sediment transport and depositional processes. The correlation between CIA (chemical index of alteration) and WIP (weathering index of Parker) offers an approach to predict the weathering trends of the fine SPMs, coarse bank sediments and recycled sediments under the influence of quartz dilution. To minimize the effects of hydrodynamic sorting and sedimentary recycling, we suggest that the fine sediments (e.g. SPMs and <2 μm fraction of bank sediments) in rivers can better reflect the average of present-day weathering crust in catchments and the weathered terrigenous materials into marginal seas and oceans.

  3. Polysilicate binding for silicate paints

    NASA Astrophysics Data System (ADS)

    Ivanovna, Loganina Valentina; Nikolaevna, Kislitsyna Svetlana; Bisengalievich, Mazhitov Yerkebulan

    2018-06-01

    It was suggested, that the polysilicate solutions obtained by mixing liquid glass and silicic acid sol as a binder in the manufacture of silicate paints. Information is provided on the structure and a property of the sodium polysilicate binder is presented. It has been found that the addition of silica powder to a liquid glass causes gelling in the course of time. It has been established that the introduction of the sol (increasing the silicate module) contributes to an increase in the fraction of high-polymer fractions of silicic anion, with the increase in the sol content of the polymer form of silica increasing. The research results the structure of sols and polysilicate solutions by the method of violation of total internal reflection. By the method of IR spectroscopy, the molybdate method established the presence of silica in the polysilicate binder polymeric varieties, which provides an increase in the stability of silicate coatings.

  4. Spectral evidence of size dependent space weathering processes on asteroid surfaces

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.; Bell, J. F.; Brown, R. H.; Burbine, T. H.; Piatek, J. L.; Reed, K. L.; Chaky, D. A.

    1993-01-01

    Most compositional characterizations of the minor planets are derived from analysis of visible and near-infrared reflectance spectra. However, such spectra are derived from light which has only interacted with a very thin surface layer. Although regolith processes are assumed to mix all near-surface lithologic units into this layer, it has been proposed that space weathering processes can alter this surface layer to obscure the spectral signature of the bedrock lithology. It has been proposed that these spectral alteration processes are much less pronounced on asteroid surfaces than on the lunar surface, but the possibility of major spectral alteration of asteroidal optical surfaces has been invoked to reconcile S-asteroids with ordinary chondrites. The reflectance spectra of a large subset of the S-asteroid population have been analyzed in a systematic investigation of the mineralogical diversity within the S-class. In this sample, absorption band depth is a strong function of asteroid diameter. The S-asteroid band depths are relatively constant for objects larger than 100 km and increase linearly by factor of two toward smaller sizes (approximately 40 km). Although the S-asteroid surface materials includes a diverse variety of silicate assemblages, ranging from dunites to basalts, all compositional subtypes of the S-asteroids conform to this trend. The A-, R-, and V-type asteroids which are primarily silicate assemblages (as opposed to the metal-silicate mixtures of most S-asteroids) follow a parallel but displaced trend. Some sort of textural or regolith equilibrium appears to have been attained in the optical surfaces of asteroids larger than about 100 km diameter but not on bodies below this size. The relationships between absorption band depth, spectral slope, surface albedo and body size provide an intriguing insight into the nature of the optical surfaces of the S-asteroids and space weathering on these objects.

  5. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  6. A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater

    NASA Astrophysics Data System (ADS)

    Cao, X.; Zhang, S. W.; Chu, D. Z.; Wu, N.; Ma, H. K.; Liu, Y.

    2017-08-01

    High quality and continuous in situ silicate data are required to investigate the mechanism of the biogeochemical cycles and the formation of red tide. There is an urgently growing need for autonomous in situ silicate instruments that perform determination on various platforms. However, due to the high reagents and power consumption, as well as high system complexity leading to low reliability and robustness, the performance of the commercially available silicate sensors is not satisfactory. With these problems, here we present a new generation of microfluidic continuous flow analysis silicate sensor with sufficient analytical performance and robustness, for in situ determination of soluble silicate in seawater. The reaction mechanism of this sensor is based on the reaction of silicate with ammonium molybdate to form a yellow silicomolybdate complex and further reduction to silicomoIybdenum blue by ascorbic acid. The minimum limit of detection was 45.1 nmol L-1, and the linear determination range of the sensor is 0-400 μmol L-1. The recovery rate of the actual water is between 98.1%-104.0%, and the analyzing cycle of the sensor is about 5 minutes. This sensor has the advantages of high accuracy, high integration, low water consumption, and strong anti-interference ability. It has been successfully applied to measuring the silicate in seawater in Jiaozhou Bay.

  7. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: Evidence from integrated carbon isotope and sandstone records of the western Tethys

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich Georg; Herrle, Jens Olaf; Weissert, Helmut

    2004-03-01

    In this study we investigate if a major perturbation of the Early Cretaceous carbon cycle was accompanied by altered weathering and erosion rates. The large Aptian carbon isotope anomaly records the response of the biosphere to widespread volcanic activity and probably resulting changes in atmospheric pCO2 levels. Elevated pCO2 levels should also result in an accelerated hydrological cycle and increased silicate weathering, creating a negative feedback loop removing CO2 from the atmosphere. We propose to interpret the widespread occurrence of quartz sandstones in the Tethys-Atlantic seaway as a result of altered weathering and erosion rates in the wake of the Aptian carbon cycle excursion. We challenge the traditional notion that these are 'flysch' deposits associated with Early Cretaceous orogenic movements in the western Tethys. We propose that these sandstones were most likely part of a large conveyor belt system, acting along the Iberian and European margin of the Tethys seaway. Using chemostratigraphic correlations, we show that the activity of this system was only short-lived and coeval with changes in coastal ecology and the Aptian carbon cycle perturbations. We tentatively relate the existence of this system to a transient climate regime, characterized by fluctuating pCO2 levels.

  8. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  9. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  10. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  11. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  12. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  13. Textural constraints on effusive silicic volcanism - Beyond the permeable foam model

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Anderson, Steven W.; Manley, Curtis R.

    1992-01-01

    The paper reports textural observations and presents isotopic evidence from active and recent silicic lava flows which show that at least some vesiculation occurs during surface advance of extrusions, after magma has reached the earth's surface. This view is in contrast to the widely promoted 'permeable foam' model, which states that all volatiles escape during ascent of the magma, and that all dense glassy material in lava flows forms from the collapse of pumiceous lava, i.e., that silicic lavas emerge as highly inflated foam flows. The permeable foam model also implies the unlikely requirement that explosive-to-effusive transitions be associated with an increase in the eruption rate. A more comprehensive model for the emplacement of silicic extrusions that allows for early gas loss during ascent, as well as late-stage vesiculation, is presented. The way in which the redistribution of volatiles during surface flow can increase explosive hazards from silicic lavas days, weeks, or months after the lava emerges from the event is discussed.

  14. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  15. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  16. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  17. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  18. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  19. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  20. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  1. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  2. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  3. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate...

  4. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  5. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  6. The null hypothesis: steady rates of erosion, weathering and sediment accumulation during Late Cenozoic mountain uplift and glaciation

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Jerolmack, D. J.

    2015-12-01

    At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.

  7. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  8. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  9. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  10. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  11. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy.

    PubMed

    Jurkić, Lela Munjas; Cepanec, Ivica; Pavelić, Sandra Kraljević; Pavelić, Krešimir

    2013-01-08

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  12. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  13. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    NASA Astrophysics Data System (ADS)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-07-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.

  14. Evolution of Weathering and Erosion in the South Atlantic during the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Gourlan, A. T.; Marlot, L.; Freslon, N.; Pucéat, E.; Pellenard, P.; Bayon, G.; Guiraud, M.; Chenot, É.; Bougeault, C.

    2016-12-01

    The Late Cretaceous period is marked by a long-term climatic cooling [1] and by major geodynamic changes, with modifications of the pole of rotation for the opening of the Atlantic [2]. The African continent underwent a major uplift event, that is most pronounced in its southern part [2,3]. These geodynamic changes may have led to modifications in weathering and erosion rates, that may have initiated or enhanced the recorded long-term cooling through CO2 drawdown linked to silicate weathering. In this study we aim to better constrain the changes in continental weathering and erosion linked to the uplift of South Africa, in order to clarify its possible link with the long-term climate evolution. We focused on DSDP site 364 in the Angola Basin, as a quite detailed stratigraphic framework exists for this site and as it was located near an area of Africa that should have encountered a significant uplift, although less intense than in southern Africa. We conducted about 100 analyses of clay mineral assemblages, that reflect evolution of humid/arid conditions on the nearby continent and can give insights on the respective importance of chemical weathering and physical erosion on the local sedimentation. The first mineralogical results highlight major changes in the hydric regime on the nearby continent, with an increase of aridity during the Campanian. In parallel, we tentatively used the isotopic composition of both Hf and Nd of the sediment clay fraction as a proxy of chemical weathering intensity on about 20 samples from site 364. Deviation from the clay array of the ɛHf and ɛNd values of clay-size sediments has been related to the intensity of chemical weathering [4]. This approach is here attempted for the first time to ancient environments. [1] Friedrich et al (2012) Geology 40, 107-110. [2] Guiraud & Bosworth (1997) Tectonophysics 282, 39-82. [3] Braun et al. (2014) J. Geophys. Res. 119, 6093-6112. [4] Bayon et al. (2016) EPSL 438, 25-36.

  15. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order

  16. Phospho-silicate and silicate layers modified by hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Brożek, A.; Handke, M.

    2005-06-01

    Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.

  17. Hydrological controls on Chemical weathering in the Jinsha River draining the southeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, Jun; Li, Siliang; Yue, Fujun; Ding, Hu

    2016-04-01

    The geochemistry of the riverine waters could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. As the headwater of Chanjiang (Yangtze) River, Jinsha River flows on the southestern Qinhai-Tibet Plateau at high altitute (from 1000m to 4600m) above the major areas of human impact and carries important information on this erosive region. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Jinsha River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and δ13CDIC) of the outlet of Jinsha River basin were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) quantifying rock weathering and associated CO2 consumption rates, and 3) exploring the impact of hydrological controls on chemical weathering of the Jinsha River Basin. The results show that the concentrations of Ca, Mg, HCO3 and NO3 are generally decreased during monsoon season, while that of Cl, Na, SO4, K are relative higher in monsoon season than in dry season, which may be mainly caused by hydrological condition, i.e., with increased runoff, more surficial evaporate dissolved water and salt lake water of the Basin flow into the river. Moreover, due to increased contribution of soil CO2and fast decomposition of organic matters, δ13CDIC in the high-flow period has more negative values than in low-flow period, and shows a negative relation with the concentration of DOC. An increasing of Ca concentrations was found with shift of the δ13CDIC values, positively, indicating the precipitation might be occured. Meanwhile, the dissolution of gypsum and anhydrite might enhance the calcium precipition. The forward model results show that the weathering rates of silicate and carbonate as well as that of

  18. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  19. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica - An analog of Martian weathering processes

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Mckay, D. S.; Wentworth, S. J.

    1983-01-01

    Weathering, diagenesis, and chemical alteration of a soil profile from the Dry Valleys of Antarctica are investigated as an analog to soil development within the Martian regolith. Soil samples from a soil pit one meter deep on Prospect Mesa, Wright Valley, are examined for their major element concentrations, water-soluble cations and anions, carbon, sulfur, and water concentrations, and related petrographic characteristics of weathering in a cold, dry environment. A petrographic study of the samples suggests that most silicate mineral and lithic fragments exhibit some degree of alteration. Chemical alteration occurs both in samples above and within the permanently frozen zone. The concentrations of water-soluble cations, for example, Na(+), K(+), Ca(2+), and anions, Cl(-), SO4(2-), NO3(-), are found to decrease significantly from the surface to the permanently frozen zone, suggesting a major movement of water-soluble species. It is also found that enrichments in secondary mineral abundances correlate with the water soluble ion concentrations. The formation of zeolites is seen throughout the soil column; these, it is thought, may be reservoirs for volatile storage within the regolith.

  20. Silicate-catalyzed chemical grouting compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1972-09-28

    Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less

  1. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  2. Light scattering and absorption by space weathered planetary bodies: Novel numerical solution

    NASA Astrophysics Data System (ADS)

    Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti; Muinonen, Karri

    2017-10-01

    Airless planetary bodies are exposed to space weathering, i.e., energetic electromagnetic and particle radiation, implantation and sputtering from solar wind particles, and micrometeorite bombardment.Space weathering is known to alter the physical and chemical composition of the surface of an airless body (C. Pieters et al., J. Geophys. Res. Planets, 121, 2016). From the light scattering perspective, one of the key effects is the production of nanophase iron (npFe0) near the exposed surfaces (B. Hapke, J. Geophys. Res., 106, E5, 2001). At visible and ultraviolet wavelengths these particles have a strong electromagnetic response which has a major impact on scattering and absorption features. Thus, to interpret the spectroscopic observations of space-weathered asteroids, the model should treat the contributions of the npFe0 particles rigorously.Our numerical approach is based on the hierarchical geometric optics (GO) and radiative transfer (RT). The modelled asteroid is assumed to consist of densely packed silicate grains with npFe0 inclusions. We employ our recently developed RT method for dense random media (K. Muinonen, et al., Radio Science, submitted, 2017) to compute the contributions of the npFe0 particles embedded in silicate grains. The dense media RT method requires computing interactions of the npFe0 particles in the volume element for which we use the exact fast superposition T-matrix method (J. Markkanen, and A.J. Yuffa, JQSRT 189, 2017). Reflections and refractions on the grain surface and propagation in the grain are addressed by the GO. Finally, the standard RT is applied to compute scattering by the entire asteroid.Our numerical method allows for a quantitative interpretation of the spectroscopic observations of space-weathered asteroids. In addition, it may be an important step towards more rigorous a thermophysical model of asteroids when coupled with the radiative and conductive heat transfer techniques.Acknowledgments. Research supported by

  3. A review of bioactive silicate ceramics.

    PubMed

    Wu, Chengtie; Chang, Jiang

    2013-06-01

    Silicate bioceramics, as a new family of biomaterials, have received significant attention in their application to hard tissue regeneration. Some silicate bioceramics have shown excellent apatite mineralization in simulated body fluids and their ionic products have been shown to enhance the proliferation, osteogenic differentiation and gene expression of stem cells. In this paper, we review the advances in the research of silicate system bioceramics, including preparation methods, mechanical strength, apatite mineralization, dissolution and in vitro and in vivo biological properties. The biological properties and the corresponding mechanism have been highlighted. A look forward to the application of silicate bioceramics to bone regeneration is further suggested.

  4. Looking through the Zircon Kaleidoscope: Durations, Rates, and Fluxes in Silicic Magmatic System

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Wotzlaw, J. F.

    2014-12-01

    The crystallization rate of zircon in a cooling magma depends on the cooling rate through the saturation interval in addition to compositional and kinetic factors. Repeated influx of hot magma over 10-20 ka leads to short-amplitude temperature oscillations, which are recorded by resorption/crystallization cycles of zircon. Plotting the number of dated zircons versus their high-precision U-Pb date results in curves that qualitatively relate to the evolution of magma temperature over time [1], [2]. The trace elemental, O and Hf isotopic composition of zircon gives indications about the degree of magma homogenization and thermal evolution. Zircons from systems with small volumes and magma fluxes record non-systematic chemical and Hf isotopic heterogeneity, suggesting crystallization in non-homogenized ephemeral magma batches. Such systems typically lead to small, mid-upper crustal plutons [3]. Zircons from large-volume crystal-poor rhyolites record initial heterogeneities and rapid amalgamation of smaller magma batches over 10 ka [4], while zircons from monotonous intermediates record magma evolution over several 100 ka with coherent fractionation trends suggesting homogenization and a coherent thermal evolution [2]. In both cases, volumes and flux rates were sufficient to produce large volumes of eruptible magma on very contrasting time scales. Zircon is therefore recording cyclic crystallization-rejuvenation processes during temperature fluctuations in intermediate to upper crustal magma reservoirs but may not relate to the physical pluton emplacement or eruption. We can quantify volumes, rates of magma influx, rates of cooling and crystallization, and the degree of convective homogenization from zircon data, and infer reservoir assembly and eruption trigger mechanisms. These parameters largely control the evolution of long-lived, low-flux silicic magmatic system typical for mid-to-upper crustal plutons, monotonous intermediates are characterized by intermediate

  5. Regolith formation rate from U-series nuclides: Implications from the study of a spheroidal weathering profile in the Rio Icacos watershed (Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Chabaux, F.; Blaes, E.; Stille, P.; di Chiara Roupert, R.; Pelt, E.; Dosseto, A.; Ma, L.; Buss, H. L.; Brantley, S. L.

    2013-01-01

    A 2 m-thick spheroidal weathering profile, developed on a quartz diorite in the Rio Icacos watershed (Luquillo Mountains, eastern Puerto Rico), was analyzed for major and trace element concentrations, Sr and Nd isotopic ratios and U-series nuclides (238U-234U-230Th-226Ra). In this profile a 40 cm thick soil horizon is overlying a 150 cm thick saprolite which is separated from the basal corestone by a ˜40 cm thick rindlet zone. The Sr and Nd isotopic variations along the whole profile imply that, in addition to geochemical fractionations associated to water-rock interactions, the geochemical budget of the profile is influenced by a significant accretion of atmospheric dusts. The mineralogical and geochemical variations along the profile also confirm that the weathering front does not progress continuously from the top to the base of the profile. The upper part of the profile is probably associated with a different weathering system (lateral weathering of upper corestones) than the lower part, which consists of the basal corestone, the associated rindlet system and the saprolite in contact with these rindlets. Consequently, the determination of weathering rates from 238U-234U-230Th-226Ra disequilibrium in a series of samples collected along a vertical depth profile can only be attempted for samples collected in the lower part of the profile, i.e. the rindlet zone and the lower saprolite. Similar propagation rates were derived for the rindlet system and the saprolite by using classical models involving loss and gain processes for all nuclides to interpret the variation of U-series nuclides in the rindlet-saprolite subsystem. The consistency of these weathering rates with average weathering and erosion rates derived via other methods for the whole watershed provides a new and independent argument that, in the Rio Icacos watershed, the weathering system has reached a geomorphologic steady-state. Our study also indicates that even in environments with differential

  6. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François

    2000-07-01

    The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.

  7. Transmission Line Ampacity Improvements of AltaLink Wind Plant Overhead Tie-Lines Using Weather-Based Dynamic Line Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu P.; Gentle, Jake P.; Hill, Porter

    Abstract—Overhead transmission lines (TLs) are conventionally given seasonal ratings based on conservative environmental assumptions. Such an approach often results in underutilization of the line ampacity as the worst conditions prevail only for a short period over a year/season. We presents dynamic line rating (DLR) as an enabling smart grid technology that adaptively computes ratings of TLs based on local weather conditions to utilize additional headroom of existing lines. In particular, general line ampacity state solver utilizes measured weather data for computing the real-time thermal rating of the TLs. The performance of the presented method is demonstrated from a field studymore » of DLR technology implementation on four TL segments at AltaLink, Canada. The performance is evaluated and quantified by comparing the existing static and proposed dynamic line ratings, and the potential benefits of DLR for enhanced transmission assets utilization. For the given line segments, the proposed DLR results in real-time ratings above the seasonal static ratings for most of the time; up to 95.1% of the time, with a mean increase of 72% over static rating.« less

  8. The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains

    NASA Astrophysics Data System (ADS)

    Gu, Lixin; Zhang, Bin; Hu, Sen; Noguchi, Takaaki; Hidaka, Hiroshi; Lin, Yangting

    2018-03-01

    Space weathering is an important process on the Moon and other airless celestial bodies. The most common space weathering effects are amorphization of the top surface of soil grains and formation of nanophase iron particles (npFe) within the partially amorphous rims. Hence, space weathering significantly affects optical properties of the surface of the Moon and other airless celestial bodies. Transmission electron microscope (TEM) analysis of Apollo 15 soil grains displays npFe (≤5 nm in size) embedded in the space-weathered rim (∼60 nm in thickness) of a pyroxene grain, consistent with previous studies. In contrast, submicron-sized fragments that adhere to the pyroxene grain show distinct space weathering features. Silicon oxide nanoparticles (npSiOx) were observed with npFe in a submicron-sized Mg-Fe silicate fragment. This is the first discovery of npSiOx as a product of space weathering. The npSiOx and the coexisting npFe are ∼10-25 nm in size, significantly larger than the typical npFe in the space weathered rim of the pyroxene grain. The coexisting npSiOx and npFe were probably formed directly in micrometeorite shock-induced melt, instead of in a solar-wind generated vapor deposit or irradiated rim. This new observation will shed light on space weathering processes on the Moon and airless celestial bodies.

  9. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This...

  10. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon Chorover, University of Arizona; Peggy O'€™Day, University of California, Merced; Karl Mueller, Penn State University

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of howmore » sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.« less

  11. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    PubMed Central

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  12. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  13. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  15. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  16. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  17. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  18. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  19. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  20. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  1. Tableting properties of silica aerogel and other silicates.

    PubMed

    Hentzschel, C M; Alnaief, M; Smirnova, I; Sakmann, A; Leopold, C S

    2012-04-01

    In solid oral dosage forms silicates are commonly used as glidants in low concentration. However, due to their large specific surface area, silicates may also be used as carrier materials for drugs. Moreover, silicates allow amorphisation of drugs by co-grinding or processing with supercritical fluids. The aim of this study was to investigate the physical and the tableting properties of Silica Aerogel (special type of silica with an extremely large specific surface area), Neusilin(®) US2 (magnesium aluminometasilicate), Florite(®) (calcium silicate) and Aerosil(®) 200 (colloidal silica). Powder blends of Avicel(®) PH102 (microcrystalline cellulose) and different amounts of the respective silicate were compacted and analyzed for their tabletability (tensile strength vs. compaction pressure) as well as their Heckel plot. With Neusilin(®) the tabletability appeared to be independent of the silicate concentration, whereas with Florite(®) an increasing silicate concentration led to a higher tensile strength. In contrast, the addition of Silica Aerogel and Aerosil(®) resulted in a decrease of the tensile strength. With Aerosil(®) a maximum tolerable concentration of 20% [w/w] was determined. Plastic deformation of all powder blends decreased with increasing silicate concentration. This effect was most pronounced with Aerosil(®) and least with Florite(®). Tablets with acceptable tensile strength were obtained with all plain silicates except for Aerosil(®). Therefore, these silicates may be used in tablet formulations, e.g. as carrier materials for liquid or amorphous drugs.

  2. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  3. Shock recovery of a magnesium-silicate spinelloid

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.

    2009-12-01

    Previously it was believed that some high pressure polymorphs (e.g. of framework silicates) form under shock via growth from shock-induced precursor microscopic melt zones. Since diffusion in the melt was assumed to control crystallization rates, absence of shock recovery of any of those minerals was attributed to the short duration of laboratory shock (0.1 to 1 microsecond) experiments. In contrast to laboratory experiments, grains of high pressure polymorphs of 1 - 100 micrometer diameter have been found in melt veins of shocked meteorites and were widely believed to have formed via diffusion-controlled growth that occurred over seconds to minute time scales. Recently we reported formation of wadsleyite from a shock-generated melt in a laboratory shock experiment by analysis of the recovery products [1]. The growth rate of wadsleyite crystals at the experimental temperature of 2000 to 3000 K was estimated to be several m/s suggesting that diffusion was not the dominant factor in this ultra-rapid crystal growth. Consequently, S6 shock events in chondrites may not always be related to long shock duration and large impactors. Here we report formation of another high-pressure magnesium silicate polymorph in a shock experiment. The starting materials for this 30 GPa shot was single-crystal synthetic forsterite in a NIST 1157 tool-steel chamber. The recovered material was analyzed by micro-Raman spectroscopy and by synchrotron-based micro-X ray diffraction. Diffraction experiments were conducted in Gandolfi-geometry at station B2, CHESS, using a MAR345 image plate detector and a primary beam of 25 keV energy. Melted regions of the sample contained a spinelloid isotypic to a magnesium-gallium germanate spinelloid synthesized at ambient pressure [2]. As in the previous study [1] we observe oxidation of iron from melted metal of the recovery chamber wall entrained by the silicate melt while silicon is partially reduced. The new high-pressure silicate may have formed at

  4. Effect of extreme storm-enhanced chemical weathering in a subtropical catchment, southeast China, during Typhoon Meranti (2016)

    NASA Astrophysics Data System (ADS)

    Su, N.; Yang, S.

    2017-12-01

    We used time-series major cations (Ca2+, Na+, Mg2+ and K+), inorganic nutrient species (nitrogen, phosphorus and silica), stable isotopes of hydrogen and oxygen of water (δD and δ18O) along with nitrogen (N) and oxygen (O) of nitrate (δ18O-NO3- and δ15N-NO3-) to understand the water chemistry variability and chemical weathering in the Mulanxi River, southeast China, during a typhoon-induced stormwater runoff on 13-19 September, 2016. Abrupt increase of water level, discharge and concentration of suspended particulate matter coincided with the intensive storm surge. A remarkable drop in the δD and δ18O isotopes, the concentration of major ions and nutrients was also observed during the heavy rainfall, a result of both rainout effect and resultant dilution by precipitation. The results from a simple three component mixing model showed the first 6 h of increases in stream discharge comprising over 70% event water. During typhoon-induced flooding, the dissolved silica flux ( 74% of the total) associated CO2 consumption by silicate weathering (28.7×103 mol km-2 in a 96 h storm) reflected a dominant contribution of terrestrial inputs from the watershed by surface runoffs. In contrast to normal conditions, water chemistry in the Mulanxi River underwent significant stable isotopic changes in increasing of δ18O-NO3- and decreasing of δ15N-NO3- corresponding to potential NO3-N sources under typhoon-enhanced silicate weathering. This is one of the major sticking points in using isotope techniques to identify the sources and mechanisms by which extreme weather events take place to induce more dynamic watershed-scale processes.

  5. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M [Albuquerque, NM; Reinhardt, Frederick W [Albuquerque, NM; Odinek, Judy G [Rio Rancho, NM

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  6. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    USGS Publications Warehouse

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  7. Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri

    2015-11-01

    Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse

  8. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    PubMed Central

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  9. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE PAGES

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; ...

    2017-02-04

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  10. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    PubMed Central

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; Moon, Juhyuk; Monteiro, Paulo J. M.

    2017-01-01

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C3S-HVFA system and presented results consistent with previous literature. PMID:28772490

  11. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  12. Weathering fluxes to the Gulf of Mexico from the Pliocene to Holocene based on radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Portier, A. M.; Martin, E. E.; Hemming, S. R.; Thierens, M. M.; Raymo, M. E.

    2014-12-01

    Chemical weathering of the continents plays a key role in the global carbon cycle and delivers solutes to the ocean. Past studies, documented using radiogenic isotopes of detrital and seawater samples, show the intensity of weathering varies with climate over a range of time scales.. We analyzed Pb and Nd isotopic values of seawater extracted from dispersed Fe-Mn oxides, <2μm (clay) and <63μm (silt) detrital fractions of Pliocene to Holocene sediment from Gulf of Mexico ODP Site 625B to evaluate long term variations in weathering fluxes for three time slices: the Pliocene/early Pleistocene, Mid Pleistocene Transition (MPT), and late Pleistocene/Holocene. We also examine short term glacial/interglacial variations. Little variation is seen in Nd isotopes of detrital fractions with age, suggesting little change in the average age of material delivered to the Gulf. Seawater Nd values become less radiogenic over the Pleistocene, consistent with observed changes in Caribbean seawater. Pb isotopes of silt fractions are also relatively constant through time, but clay fractions are more radiogenic at the MPT and dispersed Fe-Mn oxides trend to more radiogenic values in the late Pleistocene. Consequently, the Pb isotopes of dispersed Fe-Mn oxides tend to be less radiogenic than the detrital fractions in samples older than 2000 ka and more radiogenic than the detrital fractions, particularly clays, at the MPT. This may reflect greater incongruent silicate weathering during the MPT, a change in weathering conditions that could be consistent with the Regolith Hypothesis. Over glacial/interglacial timescales, dispersed Fe-Mn oxides Pb isotopes become more radiogenic than detrital fractions, and clay fractions become more radiogenic than silt fractions, during glacial periods. However, all fractions have similar values during interglacials. This pattern is distinct from previous studies that found enhanced incongruent silicate weathering during warm intervals, but is consistent

  13. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  14. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    PubMed

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  15. Effect of silicate ions on electrode overvoltage

    NASA Technical Reports Server (NTRS)

    Gras, J. M.; Seite, C.

    1979-01-01

    The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes.

  16. Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.

    PubMed

    Al-Nimry, Suhair S; Alkhamis, Khouloud A

    2018-04-01

    Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range < 63 μm (surface area 55.4 m 2 /g). The rate of degradation at moisture content < 3% was 0.4547 h -1 , almost two times higher than that (0.2594 h -1 ) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.

  17. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improvedmore » molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.« less

  18. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, P CO2, and reaction time; (ii)more » improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.« less

  19. Stabilization of Lithium Transition Metal Silicates in the Olivine Structure

    DOE PAGES

    Sun, Xiaoqi; Tripathi, Rajesh; Popov, Guerman; ...

    2017-07-28

    While olivine LiFePO 4 shows amongst the best electrochemical properties of Li-ion positive electrodes with respect to rate behavior owing to facile Li + migration pathways in the framework, replacing the [PO 4] 3- polyanion with a silicate [SO 4] 4- moitie in olivine is desirable. This would allow additional balancing alkali content and hence electron transfer, and increase the capacity. We demonstrate the first stabilization of a lithium transition-metal silicate (as a pure silicate) in the olivine structure type. Using LiInSiO 4 and LiScSiO 4 as the parent materials, transition metal (Mn, Fe, Co) substitutions on the In/Sc sitemore » were investigated by computational modelling via atomic scale simulation. Transition metal substitution was found to be only favourable for Co, a finding confirmed by the successful solid state synthesis of olivine LixInyCo 2-x-ySiO 4. Finally, the stabilization of the structure was achieved by entropy provided by cation disorder.« less

  20. Silicate calculi, a rare cause of kidney stones in children.

    PubMed

    Taşdemir, Mehmet; Fuçucuoğlu, Dilara; Özman, Oktay; Sever, Lale; Önal, Bülent; Bilge, Ilmay

    2017-02-01

    Urinary silicate calculi in humans are extremely rare. Reported cases of silicate calculi are mostly documented in adults and are commonly related to an excessive intake of magnesium trisilicate in food or drugs. Published studies on the presence of silicate calculi in children are scarce. Three cases of silicate kidney stones without prior silicate intake are reported. Two patients underwent surgical treatment, and the third patient was treated using conservative methods. Urinalysis revealed no underlying metabolic abnormalities. Analyses revealed that silicate was the major component of the stones. Siliceous deposits in urinary stones may be more common than anticipated, and the underlying pathophysiology remains to be clarified.

  1. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  2. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  3. Sampling the oxidative weathering products and the potentially acidic permafrost on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Large areas of Mars' surface are covered by oxidative weathering products containing ferric and sulfate ions having analogies to terrestrial gossans derived from sulfide mineralization associated with iron-rich basalts. Chemical weathering of such massive and disseminated pyrrhotite-pentlandite assemblages and host basaltic rocks in the Martian environment could have produced metastable gossaniferous phases (limonite containing poorly crystalline hydrated ferric sulfates and oxyhydroxides, clay silicates and opal). Underlying groundwater, now permafrost on Mars, may still be acidic due to incomplete buffering reactions by wall-rock alteration of unfractured host rock. Such acidic solutions stabilize temperature-sensitive complex ions and sols which flocculate to colloidal precipitates at elevated temperatures. Sampling procedures of Martian regolith will need to be designed bearing in mind that the frozen permafrost may be corrosive and be stabilizing unique complex ions and sols of Fe, Al, Mg, Ni and other minor elements.

  4. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  5. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  6. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron

  7. Weather Safety - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Safety Weather Safety This page weather safety. StormReady NOAA Weather Radio Emergency Managers Information Network U.S. Hazard Assmt

  8. Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xueqiang; Huang, Feifei; Gao, Song

    2015-11-15

    Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phononmore » energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.« less

  9. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  10. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    PubMed

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  11. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product. Magnesium...

  12. Genesis of IIICD Iron Meteorites: Evidence From Silicate Inclusions

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Keil, K.; Scott, E. R. D.; Haack, H.

    1992-07-01

    The IAB and IIICD iron meteorite groups exhibit much larger ranges in siderophile concentrations than other groups and commonly contain silicate inclusions. Extensive studies of metal in both groups and silicates in IAB irons have led to a variety of ideas to explain the genesis of these groups. Wasson et al. (1980) envision each meteorite forming in a separate impact melt pool. Kracher (1982, 1985) suggested that the siderophile trends might result from fractional crystallization of both metal and troilite in a S-saturated magma. A role for oxidation-reduction in these groups has been proposed by Scott and Bild (1974). Similarities in siderophile elemental trends indicate that IIICD metal has a similar origin, although data on silicate inclusions in IIICD irons are scarce (Ramdohr, 1973; Scott and Bild, 1974; Kracher and Kurat, 1977; Prinz et al., 1982; Clayton et al., 1983). We report the first detailed study of silicate inclusions in IIICD iron meteorites in an attempt to elucidate their history. We have studied the only silicate-bearing IIICD irons - Carlton, Dayton, and the recently reported Maltahohe. Silicate-graphite-phosphate inclusions comprise at most a few percent of the bulk meteorite, and silicates comprise <25 vol% of the inclusion. Silicate mineralogy and chemistry vary systematically with increasing M content of the metal. Maltahohe (10.7 wt% Ni) and Carlton (13.0%) contain olivine, pyroxene, and plagioclase, whereas Dayton (17.0%) contains pyroxene, plagioclase, and SiO2. Pyroxene becomes more FeO-rich from Maltahohe (FS(sub)7.8) to Carlton (Fs(sub)9.7) to Dayton (Fs(sub)11.6). Inverse FeO zoning in silicates and lower Fa than Fs indicate reduction in all three meteorites. Plagioclase compositions in IIICD (An(sub)1.1-4.9) are lower than IAB (An(sub)9.2-2l.5) and uncorrelated with Ni content. The abundances of associated phases also vary. Graphite comprises ~25 vol% of Maltahohe silicate inclusions, but only a few percent in Carlton, and is absent

  13. Areosynchronous weather imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  14. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  15. Dissolution of Olivine, Siderite, and Basalt at 80 Deg C in 0.1 M H2SO4 in a Flow Through Process: Insights into Acidic Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Hausrath, E. M.; Morris, R. V.; Niles, P. B.; Achilles, C. N.; Ross, D. K.; Cooper, B. L.; Gonzalex, C. P.; Mertzman, S. A.

    2012-01-01

    The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.

  16. Clinical Effects of a Dietary Antioxidant Silicate Supplement, Microhydrin((R)), on Cardiovascular Responses to Exercise.

    PubMed

    Purdy Lloyd, Kimberly L.; Wasmund, Wendy; Smith, Leonard; Raven, Peter B.

    2001-01-01

    Amorphous silicate minerals, often described as rock flour, were once common in natural water sources and abundant in glacial stream waters. Not only do the silica mineral particles bond water and other elements for transport; they also can be adsorbed with reduced hydrogen, which releases electrons, providing antioxidant or reducing potential to surrounding fluids. The purpose of this investigation was to examine the cardiovascular responses during exercise after consumption of a dietary silicate mineral antioxidant supplement, Microhydrin((R)) (Royal BodyCare, Inc., Irving, TX). A clinical trial incorporating a double-blind, placebo-controlled, crossover experimental design was employed. Subjects received either active agent or placebo, four capsules per day, for 7 days before the trial. The trial evaluated six exercise bicycle-trained subjects performing a 40-km bicycling time trial. Ratings of perceived exertion and measurements of oxygen uptake, heart rate, performance workload, and preexercise and postexercise blood lactate concentrations were obtained. Although there were no differences (P >/=.05) in work performed, heart rate, oxygen uptake, and ratings of perceived exertion during the time trial, the postexercise blood lactate concentrations were significantly lower (P silicate mineral supplement was used, compared with placebo. These data suggest a beneficial effect of Microhydrin on lactate metabolism.

  17. Geological carbon budget of the Mackenzie River Basin: New insight from the oxidation of rock-derived organic carbon

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Dellinger, M.; Galy, V.; Gaillardet, J.; Tipper, E.; Selby, D. S.; Ottley, C. J.; Burton, K. W.

    2016-12-01

    Erosion and weathering transfer carbon between the atmosphere and lithospheric storage, thereby operating to modify Earth's long-term climate. Over millions of years, atmospheric carbon dioxide (CO2) is sequestered during the weathering of silicate minerals by carbonic acid, coupled to carbonate formation, and following the erosion of biospheric organic carbon and its burial in sediments. However, erosion and weathering also act together to release CO2 from the lithosphere. Erosion enhances the rate of oxidative weathering of organic carbon in rocks (petrogenic OC, OCpetro), which is a major CO2 source over geological time. In addition, oxidation of sulfide minerals can produce sulfuric acid that weathers carbonate minerals and results in transient CO2 release. Although these sources and sinks of CO2 are well recognised, limited case studies exist where they have been measured alongside each other. Here we calculate the geological carbon budget during weathering and erosion in the Mackenzie River Basin, Canada. The silicate weathering rate, carbonate weathering rate by sulfuric acid and the sedimentary burial of biospheric organic carbon have been constrained by prior work. Closing the long-term CO2 budget therefore requires us to quantify the OCpetro oxidation rate. To do this, we use dissolved rhenium (Re) concentrations as a proxy for OCpetro weathering using samples collected from 2009 to 2013. We normalise dissolved river Re concentrations to the rock Re concentration ([Re]diss/[Re]rock) to assess the variability in oxidative weathering efficiency. We find [Re]diss/[Re]rock ratios are 2-4 times lower than those calculated for rapidly eroding mountain catchments (e.g. Taiwan), which is consistent with a lower physical erosion rate in the Mackenzie Basin. By making assumptions about the concurrent mobility of Re and CO2 during OCpetro weathering we quantify the OCpetro weathering rate and constrain the associated CO2 flux to be 0.3 tC km-2 yr-1. The transient CO

  18. Hydroecological Connections: Hyporheic Zone Weathering of Silicate Minerals Controls Diatom Biodiversity in Microbial Mats in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Dyson, I.; Esposito, R. M.; Gooseff, M. N.; Lyons, W. B.; Welch, K. A.

    2015-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. As part of the McMurdo Dry Valleys Long-Term Ecological research project, we have observed stream ecosystem response to a sustained 18 year cool period with low flows, which has been recently interrupted by three "flood events" during sunny, warm summers. Many of these streams contain thriving microbial mats comprised of cyanobacteria and endemic diatoms, the most diverse group of eukaryotic organisms in the valleys. Of the 45 diatom taxa, some common taxa are heavily silicified, Hantzschia amphioxys f. muelleri, while others are only lightly silicified. By comparing diatom communities in streams which flow every summer with those in streams that only flow during flood events, we found that hydrologic flow regime acts as a strong environmental filter on diatom community composition. Following the first flood event in 2001/02, mat biomass was two-fold lower due to scouring and recovered over several years, with lesser declines following the subsequent floods. In the longer streams, the diatom community composition remained stable through the flood events, whereas in two of the shorter streams, Green and Bowles Creeks, the diatom community shifted after the first flood event to a greater abundance of lightly silicified taxa. Water quality monitoring and reactive transport modeling have shown that rapid weathering of silicate minerals in the hyporheic zone accounts for the downstream increases in Si concentration which are observed in the longer streams. One mechanism driving this greater abundance of lightly silicified diatoms in shorter streams could be the greater dilution of the Si supply from hyporheic weathering in shorter streams under high flows. Given that the stream diatom community is well preserved in the 40

  19. The circumstellar dust envelopes of red giant stars. I - M giant stars with the 10-micron silicate emission band

    NASA Technical Reports Server (NTRS)

    Hashimoto, O.; Nakada, Y.; Onaka, T.; Kamijo, F.; Tanabe, T.

    1990-01-01

    Spherical dust envelope models of red giant stars are constructed by solving the radiative transfer equations of the generalized two-stream Eddington approximation. The IRAS observations of M giant stars which show the 10-micron silicate emission band in IRAS LRS spectra are explained by the models with the dirty silicate grains with K proportional to lambda exp -1.5 for lambda greather than 28 microns. Under the assumption of steady mass flow in the envelope, this model analysis gives the following conclusions: (1) the strength of the silicate emission peak at 10 microns is a good indicator of the mass loss rate of the star, (2) no stars with the 10-microns silicate emission feature are observed in the range of mass loss rate smaller than 7 x 10 to the -8th solar mass/yr, and (3) the characteristic time of the mass loss process of M stars does not exceed a few 10,000 years.

  20. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  1. Reagentless and calibrationless silicate measurement in oceanic waters.

    PubMed

    Giraud, William; Lesven, Ludovic; Jońca, Justyna; Barus, Carole; Gourdal, Margaux; Thouron, Danièle; Garçon, Véronique; Comtat, Maurice

    2012-08-15

    Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10(-6) mol L(-1). The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10(-6) cm(2) s(-1), consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10(-6) mol L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    iron-containing soda lime silicate glass, opal (a hydrated silicate glass), ROBAX glass ceramic, and others were single crystal (α-quartz) and...10 2.6. Opal (hydrated amorphous silica...Raman spectrum as a function of stress for opal (hydrated silica) glass. ................... 29 4.9. Raman spectrum as a function of stress for

  3. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  4. Coupling chemical weathering with soil production across soil-mantled landscapes

    USGS Publications Warehouse

    Burke, B.C.; Heimsath, A.M.; White, A.F.

    2007-01-01

    Soil-covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil-mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X-ray fluorescence spectroscopy, and for clay mineralogy by X-ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices - the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon-aluminium ratio - with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4.7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with

  5. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  6. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  7. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    quartz, Starphire soda lime silicate glass, hydrated Starphire, BOROFLOAT borosilicate glass, an iron-containing soda lime silicate glass, opal (a hydrated... Opal (hydrated amorphous silica). .............................................................................. 10 2.7. ROBAX glass ceramic...spectrum as a function of stress for BOROFLOAT borosilicate glass. .......... 29 4.8. Raman spectrum as a function of stress for opal (hydrated

  8. Weathering and erosion of the polar layered deposits on Mars

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.

    1990-01-01

    The Martial polar layered deposits are widely believed to be composed of water ice and silicates, but the relative amount of each component is unknown. The conventional wisdom among Mars researchers is that the deposits were formed by periodic variations in the deposition of dust and ice caused by climate changes over the last 10 to 100 million years. It is assumed here that water ice is an important constituent of the layered deposits, that the deposits were formed by eolian processes, and that the origin and evolution of the north and south polar deposits were similar. Weathering of the layered deposits by sublimation of water ice can account for the geologic relationships in the polar regions. The nonvolatile components of the layered deposits appears to consist mainly of bright red dust, with small amounts of dark dust or sand. Dark dust, perhaps similar to the magnetic material found at the Viking Lander sites, may perferentially form filamentary residue particles upon weathering of the deposits. Once eroded, these particles may saltate to form the dark dunes found in both polar regions.

  9. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  10. Charged particle space weathering rates at the Moon derived from ARTEMIS observations

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Farrell, W. M.; Halekas, J. S.

    2017-12-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the ARTEMIS spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface and convolve this flux with ion irradiation-induced vacancy production rates calculated using the Stopping Range of Ions in Matter (SRIM) model. From this, we calculate the formation timescales for amorphous rim production as a function of depth and compare to laboratory experiments and observations of lunar soil. Our analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains. We also present the hypothesis that ion beam-induced epitaxial crystallization is responsible for the discrepancy between observational and experimental results of the formation time of <100 nm amorphous rims.

  11. Impact of grain size and rock composition on simulated rock weathering

    NASA Astrophysics Data System (ADS)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  12. Silicate Emission in the TW Hydrae Association

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lynch, David K.; Russell, Ray W.

    2000-11-01

    The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.

  13. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  14. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  15. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    NASA Astrophysics Data System (ADS)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  16. Silicon isotopes fractionation in meteoric chemical weathering and hydrothermal alteration systems of volcanic rocks (Mayotte)

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre

    2017-04-01

    Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si

  17. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  18. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  19. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  20. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  1. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  2. Metal/Silicate Partitioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition

    NASA Technical Reports Server (NTRS)

    Bailey, Edward; Drake, Michael J.

    2004-01-01

    The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.

  3. Lattice thermal conductivity of silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  4. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  5. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  6. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  7. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis

    NASA Astrophysics Data System (ADS)

    Brimhall, George H.; Dietrich, William E.

    1987-03-01

    farther along the direction of ground water flow. Soil-forming processes in podzol chronosequences developed on sandy beach terraces of the Mendocino Coast of California involved soil column collapse of 60 percent by dissolution of silicate minerals in the albic horizon of Al and Fe leaching, and 70 percent dilation (expansion) in the overlying organic-rich layer by root growth. The amount of erosion based upon paleosurface reconstructions using the excess mass of Fe, Al, Pb, Ga, and Cu in the zone of supergene enrichment (spodic horizon) below the ground water table indicates that subsurface erosion by dissolutional collapse is three times that of surficial erosion. Finally, using published chemical data for Ti, Zr, and Cr on major bauxite deposits in Australia where erosion rates are thought to be low, we infer that there may have been major amounts of dissolutional collapse to explain the upwards increase of detrital zircon and rutile in weathering profiles.

  8. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. © 2011 Blackwell Publishing Ltd.

  9. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  10. Synthesis of non-siliceous mesoporous oxides.

    PubMed

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  11. On the neutralization of acid rock drainage by carbonate and silicate minerals

    NASA Astrophysics Data System (ADS)

    Sherlock, E. J.; Lawrence, R. W.; Poulin, R.

    1995-02-01

    The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.

  12. Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development

    PubMed Central

    Quegan, Shaun; Banwart, Steven A.

    2017-01-01

    Enhanced weathering (EW) aims to amplify a natural sink for CO2 by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2 into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas (GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidification in croplands and how the soil weathering CO2 sink is represented in models. Mathematical models capturing the dominant processes and human interventions governing cropland soil chemistry and GHG emissions neglect weathering, while most weathering models neglect agricultural processes. We discuss current approaches to modelling EW and highlight several classes of model having the potential to simulate EW in croplands. Finally, we argue for further integration of process knowledge in mathematical models to capture feedbacks affecting both longer-term CO2 consumption and crop growth and yields. PMID:28381633

  13. Space-Weathering on Mercury: Inferences Based on Comparison of MESSENGER Spectral Data and Experimental Space Weathering Data

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, J. J.; Blewett, D. T.; Lawrence, D. J.; Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Domingue, D. L.

    2009-12-01

    Production and accumulation of submicroscopic metallic iron (SMFe) is a principal mechanism by which surfaces of airless silicate bodies in the Solar System, exposed to the space weathering environment, experience spectral modification. Micrometeorite impact vaporization and solar-wind sputtering produce coatings of vapor-deposited SMFe. Both processes can be more intense on Mercury and, as a result, more efficient at creating melt and vapor. In addition, Ostwald ripening may cause SMFe particles to grow larger due to the high surface temperatures on Mercury (as great as 450°C). Spectral effects on the ultraviolet-visible-near-infrared continuum change with the amount and size of SMFe present. Thus, the physical properties and abundance of iron in Mercury’s regolith can be understood by comparing spectral data from controlled space-weathering experiments with spectra from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Knowledge of SMFe size and abundance may provide information on the space weathering conditions under which it was produced or subsequently modified. Reflectance spectra of laboratory-produced samples with varying SMFe grain sizes (average grain sizes of 8, 15, 35, and 40 nm) and iron compositions (from 0.005 to 3.8 wt% Fe as SMFe) are compared with MASCS disk-integrated reflectance from the first flyby of Mercury and will be compared with observations of spectral end members targeted for the third flyby. We compare spectra from 300 nm to 1400 nm wavelength, scaled to 1 at 700 nm, from the laboratory and MASCS. This comparison between laboratory and remote-sensing spectra reveals an excellent match with observations of Mercury for samples with an average iron metal grain size of 8 nm and 1.65 wt% FeO and 15 nm and 0.13 wt% Fe. These average grain sizes of the SMFe component are larger than the average grain size determined for lunar soil samples using transmission electron microscopy (3 nm in rims and 10-15 nm in

  14. Saprolite Formation Rates using U-series Isotopes in a Granodiorite Weathering Profile from Boulder Creek CZO (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Pelt, Eric; Chabaux, Francois; Mills, T. Joseph; Anderson, Suzanne P.; Foster, Melissa A.

    2015-04-01

    Timescales of weathering profile formation and evolution are important kinetic parameters linked to erosion, climatic, and biological processes within the critical zone. In order to understand the complex kinetics of landscape evolution, water and soil resources, along with climate change, these parameters have to be estimated for many different contexts. The Betasso catchment, within the Boulder Creek Critical Zone Observatory (BC-CZO) in Colorado, is a mountain catchment in Proterozoic granodiorite uplifted in the Laramide Orogeny ca. 50 Ma. In an exposure near the catchment divide, an approximately 1.5 m deep profile through soil and saprolite was sampled and analysed for bulk U-series disequilibria (238U-234U-230Th-226Ra) to estimate the profile weathering rate. The (234U/238U), (230Th/234U) and (226Ra/230Th) disequilibria through the entire profile are small but vary systematically with depth. In the deepest samples, values are close to equilibrium. Above this, values are progressively further from equilibrium with height in the profile, suggesting a continuous leaching of U and Ra compared to Th. The (234U/238U) disequilibria remain < 1 along the profile, suggesting no significant U addition from pore waters. Only the shallowest sample (~20 cm depth) highlights a 226Ra excess, likely resulting from vegetation cycling. In contrast, variations of Th content and (230Th/232Th) - (238U/232Th) activity ratios in the isochron diagram are huge, dividing the profile into distinct zones above and below 80 cm depth. Below 80 cm, the Th content gradually increases upward from 1.5 to 3.5 ppm suggesting a relative accumulation linked to chemical weathering. Above 80 cm, the Th content jumps to ~15 ppm with a similar increase of Th/Ti or Th/Zr ratios that clearly excludes the same process of relative accumulation. This strong shift is also observed in LREE concentrations, such as La, Ce and Nd, and in Sr isotopic composition, which suggests an external input of radiogenic

  15. The natural weathering of staurolite: crystal-surface textures, relative stability, and the rate-determining step

    Treesearch

    Michael A. Velbel; Charles L. Basso; Michael J. Zieg

    1996-01-01

    Mineral surface-textures on naturally weathered crystals of staurolite [monoclinic, pseudo-orthorhombic; Fe4Al18Si8O46(OH)2] indicate that staurolite weathering is generally interface-limited. Etch pits on naturally weathered staurolites are disk-shaped,...

  16. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers.

    PubMed

    Wu, Chang Mou; Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-05-09

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials.

  17. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland

    NASA Astrophysics Data System (ADS)

    Scribner, C. A.; Martin, E. E.; Martin, J. B.; Deuerling, K. M.; Collazo, D. F.; Marshall, A. T.

    2015-12-01

    Fine-grained sediments deposited by retreating glaciers weather faster than the global average and this weathering can impact the global carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial weathering of continental ice sheets, but little is known about weathering and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on weathering intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (∼7.5-8.0 ky inland to ∼10 ky at the coast) and water balance (-150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate weathering and an increase in the extent of weathering toward the coast. More extensive weathering near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (Δ87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep weathering gradient from inland to coastal watersheds reflects enhanced weathering compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The

  18. Water in silicate melts

    NASA Astrophysics Data System (ADS)

    McMillan, Paul; Stolper, Edward

    Water is one of the more important volatile species in magmas, both in terms of its abundance and its influence on the properties of a given magma. Many workers in the geological sciences have measured, modeled, and speculated on the interaction of water with silicate melts as a function of pressure. At the same time, glass and materials scientists have collected a considerable body of data on the effect of water on the properties of liquid and glassy silicates at 1 atmosphere (1.01325×105 N m-2) and below. A special session on “Solubility and Transport Properties of Water in Silicate Melts” was held during the 1983 AGU Spring Meeting, May 30-June 3, in Baltimore. The session had three main objectives: (1) review the present data base and discuss the status of current models in order to identify areas where further work is needed; (2) introduce interested geologists to the large body of work being carried out in the glass and materials sciences; and (3) consider static properties, such as thermodynamic relations, structure of hydrous melts, and dynamic properties including diffusion and viscosity. This report summarizes the major topics discussed. More detailed information may be found in the published abstracts (Eos, May 3, 1983, pp. 338-343).

  19. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  20. Can accurate kinetic laws be created to describe chemical weathering?

    NASA Astrophysics Data System (ADS)

    Schott, Jacques; Oelkers, Eric H.; Bénézeth, Pascale; Goddéris, Yves; François, Louis

    2012-11-01

    Knowledge of the mechanisms and rates of mineral dissolution and growth, especially close to equilibrium, is essential for describing the temporal and spatial evolution of natural processes like weathering and its impact on CO2 budget and climate. The Surface Complexation approach (SC) combined with Transition State Theory (TST) provides an efficient framework for describing mineral dissolution over wide ranges of solution composition, chemical affinity, and temperature. There has been a large debate for several years, however, about the comparative merits of SC/TS versus classical growth theories for describing mineral dissolution and growth at near-to-equilibrium conditions. This study considers recent results obtained in our laboratory on oxides, hydroxides, silicates, and carbonates on near-equilibrium dissolution and growth via the combination of complementary microscopic and macroscopic techniques including hydrothermal atomic force microscopy, hydrogen-electrode concentration cell, mixed flow and batch reactors. Results show that the dissolution and precipitation of hydroxides, kaolinite, and hydromagnesite powders of relatively high BET surface area closely follow SC/TST rate laws with a linear dependence of both dissolution and growth rates on fluid saturation state (Ω) even at very close to equilibrium conditions (|ΔG| < 500 J/mol). This occurs because sufficient reactive sites (e.g. at kink, steps, and edges) are available at the exposed faces for dissolution and/or growth, allowing reactions to proceed via the direct and reversible detachment/attachment of reactants at the surface. In contrast, for magnesite and quartz, which have low surface areas, fewer active sites are available for growth and dissolution. Such minerals exhibit rates dependencies on Ω at near equilibrium conditions ranging from linear to highly non-linear functions of Ω, depending on the treatment of the crystals before the reaction. It follows that the form of the f

  1. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.

    PubMed

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-09

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  2. Prevalence rates of health and welfare conditions in broiler chickens change with weather in a temperate climate.

    PubMed

    Part, Chérie E; Edwards, Phil; Hajat, Shakoor; Collins, Lisa M

    2016-09-01

    Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and -1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality.

  3. Prevalence rates of health and welfare conditions in broiler chickens change with weather in a temperate climate

    PubMed Central

    Edwards, Phil; Hajat, Shakoor

    2016-01-01

    Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and −1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality. PMID:27703686

  4. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers

    PubMed Central

    Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-01-01

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials. PMID:29747427

  5. Acceleration of chemical weathering related to intensive agriculture: evidence from groundwater dating

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Marçais, Jean; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Ben; Vergnaud, Virginie; Walter, Christian; Viville, Daniel; Chabaux, François; Pinay, Gilles

    2017-04-01

    Agricultural pollution is a matter of political and scientific concern throughout the world. Intensive agriculture can cause nutrient contamination of groundwater and surface water. Nutrient pollution causes eutrophication in freshwater and estuarine ecosystems. A secondary effect of agricultural intensification is river acidification. Oxidation of chemical fertilizers such as ammonium (NH4+) to nitrate (NO3-) produces H+ ions that cause leaching of cations from soil and deeper material to maintain charge balance. Monitoring of various rivers in Brittany (western France) revealed that agriculture intensification has led to increased cation export starting in the 1980s. From the cation ratios, we deduced that cation increase comes approximately equally from dissolution of carbonate added to soil (liming practices) and silicate dissolution. Cation export represented about 30% of the soil cation exchange potential. If compensated by liming, it may constitute a non-negligible source to atmospheric CO2 (Aquilina et al., 2012). We further investigated the potential for silicate dissolution through the use of groundwater dating in various sites of Brittany. Coupling chemical analyses to groundwater ages in a large range of aquifers and a large range of depths (down to 110m) allowed us to reconstruct a chronicle for the last 50 yrs of the cation concentrations of groundwater. It clearly shows a contemporaneous increase in sodium and nitrate and a decrease in calcium, with the most dramatic changes occurring during the 70s and 80s. Using groundwater dating, we were also able to determine a silica production geochronometer. A tight and linear relationship between silica concentration and groundwater age (Figure) was observed and allowed a production rate in groundwater to be determined. Except for short residence-times (Kerrien), the silica production rate for different granitic catchments was consistent, ranging from 0.3 to 0.4 mg.L-1.yr-1. To assess the role of

  6. The nature, fabrication, and applications of photosensitive, bulk, germano-silicate glass

    NASA Astrophysics Data System (ADS)

    Heaney, Alan Douglas

    2000-08-01

    The photosensitive nature of germano-silicate glass is widely used to create fiber-optic devices. This thesis examines the cause of photosensitivity in germano- silicate glass. The results of this research elucidate the role that germanium oxygen deficient defects play in the photosensitivity of hydrogen-loaded, germano-silicate glass. We find that defects are not vital to the photosensitivity of hydrogen-loaded, germano-silicate glass but they do enhance the effect. Quantitative measurements show that germanium oxygen deficient defects promote the formation of OH, GeH, and GeH2 when hydrogen-loaded, germano-silicate glass is exposed to ultraviolet light. A sol-gel process for fabricating germano-silicate glass in bulk samples has been developed. The sol-gel process produces high-quality, germano-silicate glass which can be tailored to contain defects or be relatively free of defects. Control over the glass defect concentration allows us to use sol-gel derived glass for comparative studies of the photosensitive process and for device applications. The unique properties of germano-silicate glass make it a likely choice for use in optical applications. To prove the feasibility of bulk devices, chirped-pulse amplification is demonstrated using gratings written in bulk germano-silicate glass.

  7. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system

    NASA Astrophysics Data System (ADS)

    Li, Junxia; DePaolo, Donald J.; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    To understand the characteristics of Ca isotope composition and fractionation in silicate-dominated Quaternary aquifer system, hydrochemical and isotope studies (87Sr/86Sr, 13CDIC and 44/40Ca) were conducted on groundwater, sediment and rock samples from the Datong basin, China. Along the groundwater flow path from the basin margin to the center, groundwater hydrochemical type evolves from Ca-HCO3 to Na-HCO3/Na-Cl type, which results from aluminosilicate hydrolysis, vertical mixing, cation exchange between CaX2 and NaX, and calcite/dolomite precipitation. These processes cause the decrease in groundwater Ca concentration and the associated modest fractionation of groundwater Ca isotopes along the flowpath. The groundwater δ44/40Ca value varies from -0.11 to 0.49‰. The elevated δ44/40Ca ratios in shallow groundwater are attributed to vertical mixing involving addition of irrigation water, which had the average δ44/40Ca ratio of 0.595‰. Chemical weathering of silicate minerals and carbonate generates depleted δ44/40Ca signatures in groundwater from Heng Mountain (east area) and Huanghua Uplift (west area), respectively. Along the groundwater flow path from Heng Mountain to central area of east area, cation exchange between CaX2 and NaX on clay mineral results in the enrichment of heavier Ca isotope in groundwater. All groundwater samples are oversaturated with respect to calcite and dolomite. The groundwater environment rich in organic matter promotes the precipitation of carbonate minerals via the biodegradation of organic carbon, thereby further promoting the elevation of groundwater δ44/40Ca ratios.

  8. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (I.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ˜1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ˜ 270 K, the ˜5-8 μm continuum emission is mostly from carbon dust of T ˜ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  9. Cometary crystalline silicate before and after perihelion passage II

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2014-01-01

    Crystalline silicate is often observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to have been born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough observational samples of OCs. Fortunately, we can observe comet C/2012 K1 (PanSTARRS) along with C/2013 A1 (Siding Spring) in this semester. In particular, the comet C/2012 K1 (PanSTARRS) is a bright and good target for this silicate peak feature study. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet.

  10. Comment on "The shape and composition of interstellar silicate grains"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS)more » amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007

  11. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; West, A. Joshua; Renforth, Phil; Köhler, Peter; De La Rocha, Christina L.; Wolf-Gladrow, Dieter A.; Dürr, Hans H.; Scheffran, Jürgen

    2013-04-01

    weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the terrestrial chemical cycles and land-ocean flux of major elements, although the extent remains difficult to quantify. When deployed on a grand scale, Enhanced Weathering (a form of mineral fertilization), the application of finely ground minerals over the land surface, could be used to remove CO2 from the atmosphere. The release of cations during the dissolution of such silicate minerals would convert dissolved CO2 to bicarbonate, increasing the alkalinity and pH of natural waters. Some products of mineral dissolution would precipitate in soils or be taken up by ecosystems, but a significant portion would be transported to the coastal zone and the open ocean, where the increase in alkalinity would partially counteract "ocean acidification" associated with the current marked increase in atmospheric CO2. Other elements released during this mineral dissolution, like Si, P, or K, could stimulate biological productivity, further helping to remove CO2 from the atmosphere. On land, the terrestrial carbon pool would likely increase in response to Enhanced Weathering in areas where ecosystem growth rates are currently limited by one of the nutrients that would be released during mineral dissolution. In the ocean, the biological carbon pumps (which export organic matter and CaCO3 to the deep ocean) may be altered by the resulting influx of nutrients and alkalinity to the ocean. This review merges current interdisciplinary knowledge about Enhanced Weathering, the processes involved, and the applicability as well as some of the consequences and risks of applying the method.

  12. From Nm-Scale Measurements Of Mineral Dissolution Rate To Overall Dissolution Rate Laws: A Case Study Based On Diopside

    NASA Astrophysics Data System (ADS)

    Daval, D.; Saldi, G.; Hellmann, R.; Knauss, K.

    2011-12-01

    While we expect conventional reactive transport simulations to provide reliable estimations of the evolution of fluid-rock interactions over time scales of centuries and even more, recent experimental studies showed that they could hardly be satisfactorily used on simplified systems (e.g. batch carbonation experiments on single minerals), on time scales of weeks [1]. Among the reasons for such inconsistencies is the nature of the rate laws used in the geochemical codes, which heavily relies on our description of the fundamental mechanisms involved during water(-CO2)-mineral reactions. Silicate dissolution constitutes a key step of GCS processes. Whereas the dissolution rate of silicate minerals has been extensively studied at far-from-equilibrium conditions, extrapolating such rates over a broad range of solution composition relevant for GCS has proven challenging. Regarding diopside, recent studies [2, 3] suggested that below 125 °C, an unexpected drop of the rate occurred for Gibbs free energies of reaction (ΔGr) as low as -76 kJ.mol-1, with severe consequences on our ability to predict the rate of complex processes such as carbonation reactions [3]. The mechanism responsible for such a drop remains unclear and therefore needs to be deciphered. An examination of our previous data [3] led us to envisage that two different, non-exclusive aspects were worth investigating: (i) the possible passivating ability of interfacial, nm-thick Si-rich layers developed on weathered silicate surface, and (ii) the stop of etch pits formation on crystal surface, each mechanism being found to be responsible for drops of olivine [1] and albite [4] dissolution rates, respectively. Our ongoing experiments aim at better constraining these two mechanisms, and determining in turn whether one of them could explain the above-mentioned drop of diopside dissolution rate. Classical flow-through experiments with controlled SiO2(aq) concentrations are combined with both ex situ AFM and VSI

  13. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  14. Ca isotopes reveal weak control of tectonic uplift on long-term climate change

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.

    2010-12-01

    Ca-Mg silicate weathering consumes atmospheric CO2 over geological timescales (≥106 yr) whereas carbonate weathering has no effect. High Ca fluxes from active orogens have been used to argue that mountain uplift is a disproportionately large CO2 sink. To test this hypothesis, it is essential to determine proportions of Ca from silicate versus carbonate weathering. High precision measurement of Ca isotopes (δ44/40Ca) provides a novel method to directly quantify Ca sources. To this end, we examined δ44/40Ca in rivers draining the Southern Alps of New Zealand. The Southern Alps have large tectonic and climatic gradients but nearly constant bedrock chemistry. West of the main topographic divide, uplift and precipitation rates are high, and steep, fast-flowing rivers drain schist. East of the divide, uplift and precipitation rates are low, and low-gradient, braided rivers drain either schist or greywacke. Both schist and greywacke contain up to 3% hydrothermal and metamorphic calcite. Glaciers feed several schist and greywacke catchments. Examined as δ44/40Ca versus Sr/Ca, values measured for carbonate and silicate end-members define two-component mixing envelopes. Rivers west of the divide plot within the envelope, ruling out isotopic fractionation as a factor for these streams. Several rivers east of the divide are 40Ca enriched relative to the envelope. In-situ fractionation of stream water Ca cannot explain this pattern because fractionation is expected to preferentially remove 40Ca. We measured δ42/44Ca ratios to test if chemical weathering preferentially releases 40Ca. When examined as δ40/44Ca versus δ42/44Ca, the data only display mass-dependent isotope effects. Ca in grass and the exchangeable pool of shallow soils is enriched in 40Ca relative to waters and bedrock. This Ca defines a third mixing end-member that contributes 15-30% of the Ca in rivers east of the divide. Evidence of the plant-fractionated signal likely reflects water residence times

  15. Weather-Corrected Performance Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierauf, T.; Growitz, A.; Kurtz, S.

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimatemore » expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.« less

  16. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  17. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  18. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  19. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  20. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  1. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl 2 . The CaCl 2 has been added to the calcium metasilicate composition (CaO·SiO 2 ). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl 2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. 29 Si MAS-NMR spectra showed the silicon being present mainly as a Q 2 silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl 2 content, the T g reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl 2 content. However, both linear regressions revealed a breakpoint at a CaCl 2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl 2 crystallized to wollastonite, whilst the compositions with CaCl 2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl 2 . In practice, the crystallization of CaCl 2 could not occur until the crystallization temperature fell below the melting point of CaCl 2 . The implications of the results along with the high chloride retention are discussed.

  2. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used tomore » estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.« less

  3. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  4. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G.; Allamandola, L. J. (Principal Investigator)

    1989-01-01

    We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc

  5. Space weathering and the color indexes of minor bodies in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni

    2012-09-01

    The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.

  6. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  7. Modeling studies investigating the causes of preferential depletion of silicic acid relative to nitrate during SERIES, a mesoscale iron enrichment in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Takeda, S.; Yoshie, N.; Boyd, P. W.; Yamanaka, Y.

    2006-10-01

    Numerical modeling experiments were conducted to examine the reasons for observed changes in the silicic acid ([Si(OH) 4]) to nitrate ([NO3-]) drawdown ratio after the onset of algal iron stress during SERIES. During phytoplankton blooms and immediately after them, cells encounter a range of iron stress (between iron-replete and iron-deplete) and therefore show a range of growth rates. For these reasons, the potential influence of phytoplankton growth rate, under conditions of algal iron stress, on silicic acid and nitrate depletion were investigated in numerical experiments by altering the timing of a shift in the [Si(OH) 4]: [NO3-] uptake ratio. These simulations suggested that the continued growth of iron-stressed phytoplankton at sub-maximum rates, with an elevated [Si(OH) 4]: [NO3-] uptake ratio, induced depletion of silicic acid in the surface water and resulted in simultaneous limitation of growth by both iron and silicic-acid supply. Therefore, bottom-up control played an important role in terminating the phytoplankton bloom in SERIES. In the model simulations, the enhancement of diatom silicification due to increased rates of biomass-normalized silicic-acid uptake, led to increases in the export flux of opal after the onset of algal iron-stress and, consequently, it stimulated the silica pump. The regulation of both the [Si(OH) 4]: [NO3-] uptake ratio and the growth rate of phytoplankton by iron supply are important factors that determine the relative consumption of silicic acid and nitrate upon iron stress, although the potential influence of a floristic shift in the diatom assemblage cannot be ruled out. These findings offer insights into the impact of iron fertilization, both artificial and natural, on the biogeochemical cycling of nutrients in high-nitrate, low-chlorophyll waters.

  8. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; An, Yongling; Zhai, Wei

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviationmore » in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.« less

  9. Space Weathering of Itokawa Particles: Implications for Regolith Evolution

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales.

  10. Properties of Tricalcium Silicate Sealers.

    PubMed

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  12. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  13. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  14. Strong climate and tectonic control on plagioclase weathering in granitic terrain

    USGS Publications Warehouse

    Rasmussen, C.; Brantley, S.; Richter, D.D.B.; Blum, A.; Dixon, J.; White, A.F.

    2011-01-01

    Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature <5??C that exhibited little Na depletion, and locations with physical erosion rates <20gm-2yr-1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69kJmol-1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136kJmol-1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss. ?? 2010 Elsevier B.V.

  15. The Precipitation Characteristics of ISCCP Tropical Weather States

    NASA Technical Reports Server (NTRS)

    Lee, Dongmin; Oreopoulos, Lazaros; Huffman, George J.; Rossow, William B.; Kang, In-Sik

    2011-01-01

    We examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35 deg S to 35 deg N) for a 10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 data set, but Global Precipitation Climatology Project daily data are also used for comparison. We find that the most convective weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropical zone of our study; yet, even this weather state appears to not precipitate about half the time. WS1 exhibits a modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states tend to be stronger when occurring before or after WS1. The relative contribution of the various weather states to total precipitation is different between ocean and land, with WS1 producing more intense precipitation on average over ocean than land. The results of this study, in addition to advancing our understanding of the current state of tropical precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically among different weather states in atmospheric models.

  16. The Effect of Specific Surface Area of Chitin-Metal Silicate Coprocessed Excipient on the Chemical Decomposition of Cefotaxime Sodium.

    PubMed

    Al-Nimry, Suhair S; Alkhamis, Khouloud A; Alzarieni, Kawthar Z

    2017-02-01

    Chitin-metal silicates are multifunctional excipients used in tablets. Previously, a correlation between the surface acidity of chitin-calcium and chitin-magnesium silicate and the chemical decomposition of cefotaxime sodium was found but not with chitin-aluminum silicate. This lack of correlation could be due to the catalytic effect of silica alumina or the difference in surface area of the excipients. The objective of this study was to investigate the effect of the specific surface area of the excipient on the chemical decomposition of cefotaxime sodium in the solid state. Chitin was purified and coprocessed with different metal silicates to prepare the excipients. The specific surface area was determined using gas adsorption. The chemical decomposition was studied at constant temperature and relative humidity. Also, the degradation in solution was studied. A correlation was found between the degradation rate constant and the surface area of chitin-aluminum and chitin-calcium silicate but not with chitin-magnesium silicate. This was due to the small average pore diameter of this excipient. Also, the degradation in solution was slower than in solid state. In conclusion, the stability of cefotaxime sodium was dependent on the surface area of the excipient in contact with the drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. UV irradiation-induced Raman spectra changes in lead silicate glasses

    NASA Astrophysics Data System (ADS)

    Jia, Hongzhi; Chen, Guanghui; Wang, Wencheng

    2006-12-01

    The Raman spectra for a series of lead silicate glasses with different PbO content before and after irradiation with different energy density by the frequency-quadrupled output of a Q-switched YAG laser (266 nm, 10 Hz repetition rate) were measured. The intensity of Pb-O band near 140 cm -1 in the Raman spectra decreases after UV irradiation and no new band appears in the Raman spectra. Exposed to the UV beam with high energy density (150 mJ/cm 2), although the total dose is smaller than the dose with low energy density (50 mJ/cm 2), the intensity of the 140 cm -1 band drops heavilier than exposed to the UV beam with low energy density. This shows that the UV irradiation can cause the broken of Pb-O bond in lead silicate glasses and the broken of Pb-O bond is related to the energy density of UV beam.

  18. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  19. Twelve testable hypotheses on the geobiology of weathering.

    PubMed

    Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K

    2011-03-01

    Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. © 2011 Blackwell Publishing Ltd.

  20. Equation of state of silicate liquids

    NASA Astrophysics Data System (ADS)

    Jing, Zhicheng

    Equation of state of silicate liquids is crucial to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and hence to explore the geophysical and geochemical consequences of melting. A comparison of compressional properties reveals fundamental differences in compressional mechanisms between silicate liquids and solids. Due to a liquid's ability to change structures, the compression of liquids is largely controlled by the entropic contribution to the free energy in addition to the internal energy contribution that is available to solids. In order to account for the entropic contribution, a new equation of state of silicate liquids is proposed based on the theory of hard-sphere mixtures. The equation of state is calibrated for SiO2-Al 2O3-FeO-MgO-CaO liquids and other systems. The new equation of state provides a unified explanation for the experimental observations on compressional properties of liquids including the bulk moduli of silicate liquids as well as the pressure dependence of Gruneisen parameter. The effect of chemical composition on melt density can be studied by the equation of state. Results show that FeO and H2O are the most important components in melts that control the melt density at high pressure due to their very different mean atomic masses from other melt components. Adding SiO2 can make a melt more compressible at high pressure due to its continuous change of coordination from 4-fold to 6-fold. The effect of 1-120 on melt density is further investigated by high-pressure experiments at the conditions of 9 to 15 GPa (corresponding to the depths of 300-500 km in the Earth) and 1900 °C to 2200 °C. The density of three dry melts and four hydrous melts with 2-7 wt% H2O was determined. Density data are analyzed by both the Birch-Mumaghan equation of state and the hard sphere equation of state. The partial molar volume of H2O is determined to be 8.8 cm3/mol at 14 GPa and 2173 K. The hypothesis

  1. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  2. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  3. Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Fornasier, S.; Baklouti, D.; Bourçois, J.; Godard, M.

    2017-03-01

    We present an experimental study on ion irradiation of carbonaceous chondrites, simulating solar wind irradiation on primitive asteroids, to better constrain the space weathering processes of low albedo objects. The irradiations were performed on pressed pellets of the CV Allende, CO Frontier Mountain 95002 and Lancé, CM Mighei, CI Alais, and ungrouped Tagish Lake meteorites, as well as on some silicate samples (olivine and diopside). We used 40keV He+ with fluences up to 6 × 1016 ions/cm2 corresponding to timescales of 103-104 years for an object in the Main Belt. Reflectance spectra were acquired ex situ before and after irradiations in the visible to mid-infrared range (0.4-16 μm). Several spectral modifications are observed. In the MIR range, we observe a shift of the phyllosilicates (near 3 and 10 μm) and silicates (near 10 μm) bands toward longer wavelength. In the visible-NIR range, spectral darkening and reddening are observed for some samples, while others show spectral brightening and blueing. Results are also compared with previous irradiation on ordinary and carbonaceous chondrites. We find that the spectral modifications in the visible range are correlated with the initial albedo/composition. We propose a model for space weathering effects on low albedo objects, showing that those with initial albedo between 5 and 9% shall not suffer SpWe effects in the visible range. These experiments provide new clues on spectroscopic features modifications within the visible-infrared ranges that could be detected in situ by future sample return missions (Hayabusa-2/JAXA and OSIRIS-REx/NASA).

  4. LIGHT NONAQUEOUS-PHASE LIQUID HYDROCARBON WEATHERING AT SOME JP-4 FUEL RELEASE SITES

    EPA Science Inventory

    A fuel weathering study was conducted for database entries to estimate natural light, nonaqueousphase
    liquid weathering and source-term reduction rates for use in natural attenuation models. A range of BTEX
    weathering rates from mobile LNAPL plumes at eight field sites with...

  5. Correction to the Dynamic Tensile Strength of Ice and Ice-Silicate Mixtures (Lange & Ahrens 1983)

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Ahrens, T. J.

    1999-03-01

    We present a correction to the Weibull parameters for ice and ice-silicate mixtures (Lange & Ahrens 1983). These parameters relate the dynamic tensile strength to the strain rate. These data are useful for continuum fracture models of ice.

  6. Coupling of physical erosion and chemical weathering after phases of intense human activity

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter W.

    2014-05-01

    Anthropogenic disturbance of natural vegetation profoundly alters the lateral and vertical fluxes of soil nutrients and particles at the land surface. Human-induced acceleration of soil erosion can thereby result in an imbalance between physical erosion, soil production and chemical weathering. The (de-)coupling between physical erosion and chemical weathering in ecosystems with strong anthropogenic disturbances is not yet fully understood, as earlier studies mostly focused on natural ecosystems. In this study, we explore the chemical weathering intensity for four study sites located in the Internal Zone of the Spanish Betic Cordillera. Most of the sites belong to the Nevado-Filabres complex, but are characterized by different rates of long-term exhumation, 10Be catchment-wide denudation and hill slope morphology. Denudation rates are generally low, but show large variation between the three sites (from 23 to 246 mm kyr-1). The magnitude of denudation rates is consistent with longer-term uplift rates derived from marine deposits, fission-track measurements and vertical fault slip rates. Two to three soil profiles were sampled per study site at exposed ridge tops. All soils overly fractured mica schist, and are very thin (< 60cm). In each soil profile, we sampled 5 depth slices, rock fragments and the (weathered) bedrock. In total, 38 soil and 20 rock samples were analyzed for their chemical composition. The chemical weathering intensity is constrained by the Chemical Depletion Fraction that is based on a chemical mass balance approach using Zr as an immobile element. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. We observe systematically higher chemical weathering intensities (CDFs) in sites with lower denudation rates (and vice versa), suggesting that weathering is supply-limited. Our measurements of soil elemental losses from 10 soil profiles suggest that the observed variation in chemical weathering is strongly associated

  7. Weathering of historical copper slags in dynamic experimental system with rhizosphere-like organic acids.

    PubMed

    Potysz, Anna; Kierczak, Jakub; Grybos, Malgorzata; Pędziwiatr, Artur; van Hullebusch, Eric D

    2018-06-01

    This study was undertaken to simulate experimentally the weathering of slags disposed nearby soil rhizosphere. The aim of the research was to differentiate the effect of pH and organics on slags dissolution as well as to indicate weathering sequence of phase components. The studied slags are mainly composed of Fe (34.5 wt%) and Si (17.9 wt%) and contain up to 3761 mg kg -1 of Cu and 3628 mg kg -1 of Zn. The main identified phases are fayalite and glass, whereas sulfides and metallic Cu are volumetrically minor. A 30 days long slag weathering experiment was carried out with artificial root exudates (43.7 mM) and demineralized water at initial pH = 3.5 and pH = 6.7. The highest metal release (up to 10.9% of Zn and 4.6% of Cu) was observed in ARE solution at initial pH 3.5. Dissolution of sulfides and fayalite was mainly driven by pH. Artificial root exudates enhance glass dissolution as compared to demineralized water regardless of initially fixed pH. Based on this study following weathering sequences are delineated: i) under ARE 3.5 conditions: silicates > glass > sulfides, ii) under DW 3.5 conditions: sulfides > silicates > glass, iii) under near-neutral conditions: sulfides > glass > silicates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Theoretical modeling of rhenium isotope fractionation, natural variations across a black shale weathering profile, and potential as a paleoredox proxy

    NASA Astrophysics Data System (ADS)

    Miller, Christian A.; Peucker-Ehrenbrink, Bernhard; Schauble, Edwin A.

    2015-11-01

    We present the first data documenting environmental variations in the isotope composition of Re, and the first theoretical models of equilibrium Re isotope fractionation factors. Variations of δ187Re at modern surface temperatures are predicted to be ‰ level for redox (ReVII ⇌ ReIV) and perrhenate thiolation reactions (ReVIIO4- ⇌ReVIIOXS4-X- ⇌ReVII S4-). Nuclear volume fractionations are calculated to be smaller than mass dependent effects. Values of δ187Re from New Albany Shale samples presented in this work and in a previous study show a range of 0.8‰ over a stratigraphic interval of ∼20 m. The magnitude of variation is consistent with theoretical predictions and may provide evidence for changing δ187Re of seawater in the geologic past. A -0.3‰ change in δ187Re across a 14 m horizontal black shale weathering profile is accompanied by a hundred-fold decrease in Re concentration and a 75% decrease in organic carbon associated with the transition from reducing to oxic weathering environment. We attribute decreasing δ187Re to the loss of organically bound Re component (δ187Re = -0.28‰). The Re isotope composition of the complementary detrital silicate fraction varies from -0.59 to -1.5‰, depending on the choice of silicate Re concentration.

  9. Effect of iron sulfides on space weathering: Lessons from the Itokawa particles and laboratory simulations

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sasaki, S.; Tsuchiyama, A.; Miyake, A.; Matsumoto, T.; Hirata, T.; Hiroi, T.

    2014-07-01

    Space weathering is the process invoked to explain the spectral mismatch between S-type asteroids and ordinary chondrites: darkening, spectral reddening, and attenuation of absorption bands in the reflectance spectra. These changes of optical properties of the surface of airless silicate bodies are explained by nanophase metallic iron (nanoFe) particles, which are formed on regolith particles by high-velocity dust impacts as well as irradiation of the solar-wind ions (Hapke 2001). Those nanoFe particles were discovered in lunar soils, Kapoeta meteorite, and regolith grains from the surface of S-type asteroid Itokawa. Experimental studies using a nano-second-pulse laser confirmed that nanoFe should control the spectral darkening and reddening. The observed reddening of S-type asteroid families is correlated with dynamical asteroid ages after family-forming disruption (Jedicke, et al. 2004). Still, experiments showed that the weathering degree should depend on the composition such as the olivine/pyroxene ratio (Hiroi and Sasaki 2001). In ordinary chondrites, iron sulfides, typically, troilite FeS is the main sulfur-bearing mineral. TEM observation of a dust grain of Itokawa showed the presence of not only iron, but also nanophase FeS particles, which are embedded within a vapor-deposited thin surface layer (thinner than 10-15 nm; Noguchi et al. 2011). One of the Itokawa grains is composed mainly of FeS (about 40 microns) with smaller olivine and pyroxene particles (Yada et al., 2014). On the other hand, the surface sulfur depletion of S-type asteroid Eros was explained by the same mechanism (high-velocity dust and solar-wind particle impacts) of space weathering (Loeffler et al. 2008). To examine the effect of FeS on the surface optical properties of silicate bodies, we conducted pulse-laser irradiation experiments on mixtures of olivine (and pyroxene) and FeS particles with typical sizes of 45--75 micron, for varying FeS fractions (0--0.2 by weight). We find that

  10. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  11. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; hide

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  12. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  13. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our

  14. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  15. Solute profiles in soils, weathering gradients and exchange equilibrium/disequilibrium

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.

    2008-01-01

    The spatial and temporal changes in hydrology and pore water elemental and 87/86Sr compositions were used to determine contemporary weathering rates in a 65 to 226 ky old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Cl-corrected Na, K and Si increased with depth denoting inputs from the weathering of plagioclase and K-feldspar. Solute 87/86Sr exhibited progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. Linear approximations to these weathering gradients were used to determine plagioclase weathering rates of between 0.38 and 8.9×10−15 moles m−2 s−1. The lack of corresponding weathering gradients for Ca and Sr indicated short-term equilibrium with the clay ion exchange pool which requires periodic resetting by natural perturbations to maintain continuity, in spite of soil composition changes reflecting the effects of long-term weathering.

  16. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  17. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  18. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  19. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  20. SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

    Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building typesmore » and the change in heating and cooling energy consumption caused by variations in weather is examined.« less

  1. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Gong, Xun; Knorr, Gregor; Pike, Jennifer; Hall, Ian R.

    2016-03-01

    Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.

  2. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  3. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  4. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  5. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  6. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  7. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  8. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  9. A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Giordano, D.; Dingwell, D. B.

    2005-12-01

    Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all

  10. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    PubMed Central

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  11. Hydrothermal Synthesis of Dicalcium Silicate Based Cement

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Chatterjee, A.

    2017-06-01

    It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.

  12. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  13. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  14. Formation of hydrous Mg-silicates at low temperatures: New insights from sepiolite precipitation experiments

    NASA Astrophysics Data System (ADS)

    Baldermann, Andre; Mavromatis, Vasileios; Dietzel, Martin

    2017-04-01

    The spatiotemporal changes in the distribution and abundance of hydrous Mg-silicates have been frequently used to reconstruct sedimentary facies in modern and past epicontinental seas and lakes, lacustrine settings and in marine environments; albeit the physicochemical conditions and the mineral-forming processes of hydrous Mg-silicates remain questionable. In this experimental study, sepiolite [Mg4Si6O15(OH)2ṡ6H2O] was precipitated from silica-doped seawater and silica-doped synthetic MgCl2-brines over a three months period at aqueous Si/Mg molar ratios ranging from 1:27.5 to 1:110, initial pH of 8.3 ± 0.03 at 25 ± 1°C. The evolution of the solution chemistry and solid-phase composition was monitored using UV-vis spectroscopy, ICP-OES, XRD, ATR-FTIR and TEM analysis. The reactive fluids were, at any time, undersaturated in respect to amorphous silica [SiO2ṡnH2O] and brucite [Mg(OH)2]; thus, a Mg-rich phyllosilicate with a modulated, sepiolite-like structure was the only precipitates in our experiments. The crystallites were poorly crystalline, fibrous (20 to 100 nm in length) and had a (MgO+Al2O3)/SiO2 ratio of 0.44 ± 0.02, which is almost equal to that of ideal and naturally-grown sepiolite. An increase in the intensity of the striking infrared lattice vibration at ˜1205 cm-1 is in accord with an elevated Si/Mg molar ratio of the reactive solutions. This feature results from the periodic inversion of the Si tetrahedra in the evolving 2:1 layer and subsequently denotes the formation of "polysome units" in sepiolite-palygorskite group minerals. For the first time, we determined the apparent growth rate of sepiolite to be 172 ± 16 × 10-6 up to 279 ± 29 × 10-6 mole L-1ṡday-1, which mainly depended on the evolution of pH of the reactive fluids. The presence of MgSO40 aquo-complexes seems to have insignificant influence on the precipitation rate of sepiolite. Our results demonstrate that hydrous Mg-silicates can form in most (peri)marine and diagenetic

  15. Extreme weather events and infectious disease outbreaks.

    PubMed

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  16. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  17. Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation

    NASA Astrophysics Data System (ADS)

    La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino

    2016-04-01

    Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration. This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

  18. Frost-weathering on Mars - Experimental evidence for peroxide formation

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Miller, K. J.; Harwood, W. S.

    1979-01-01

    The weathering of silicates by frost is investigated in relation to the formation of surface peroxides to which Viking biology experiment results have been attributed. Samples of the minerals olivine and pyroxene were exposed to water vapor at -11 to -22 C and resultant gas evolution and pH were monitored. Experiments reveal the formation of an acidic oxidant upon interaction of the mineral and H2O frost at subfreezing temperatures, which chemical indicators have suggested to be chemisorbed hydrogen peroxide. A model for the formation of chemisorbed peroxide based on the chemical reduction of the mineral by surface frost is proposed, and it is predicted that the perioxide would decay at high temperatures to H2O and adsorbed O, consistent with the long-term storage and sterilization behavior of the soil oxidants observed in the Viking Gas Exchange and Labeled Release experiments.

  19. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  20. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup

    NASA Astrophysics Data System (ADS)

    Donnadieu, Y.; GoddéRis, Y.; Pierrehumbert, R.; Dromart, G.; Fluteau, F.; Jacob, R.

    2006-11-01

    Large fluctuations in continental configuration occur throughout the Mesozoic. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulations have been done, because of the lack of a spatially resolved climate-carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea breakup. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO2 through continental silicate weathering with a spatial resolution of 7.5°long × 4.5°lat. Seven time slices have been simulated. We show that the breakup of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO2 consumption through silicate weathering. As a result, atmospheric CO2 falls from values above 3000 ppmv during the Triassic down to rather low levels during the Cretaceous (around 400 ppmv), resulting in a decrease in global mean annual continental temperatures from about 20°C to 10°C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Myr during the Middle-Late Triassic. In the super continent case, given the persistent aridity, the model generates high CO2 values to produce very warm continental temperatures. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence producing a CO2 drawdown and a fall in continental temperatures. Finally, another unexpected outcome is the pronounced fluctuation in carbonate accumulation simulated by the model in response to the Pangea breakup. These fluctuations are driven by changes in continental carbonate weathering flux. Accounting for the fluctuations in area available for

  1. A GEOCLIM Simulation Of Climatic And Biogeochemical Consequences Of Pangea Break Up

    NASA Astrophysics Data System (ADS)

    Donnadieu, Y.; Godderis, Y.; Pierrehumbert, R.; Dromart, G.; Jacob, R.

    2006-12-01

    Large fluctuations in continental configuration occur all along the Mesozoic times. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulation have been done given the lack of a spatially resolved climate- carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea break up. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO2 through continental silicate weathering with a spatial resolution of 7.5°long 4.5°lat. Seven time slices have been simulated. We show that the break up of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO2 consumption through silicate weathering. As a result, atmospheric CO2 falls from values above 3000 ppmv during the Triassic, down to rather low levels during the Cretaceous (around 400 ppmv), resulting in a decrease in continental temperatures from about 20°C to 10°C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Ma during the Middle-Late Triassic. In the super continent case, given the relative aridity that cannot be climatically overwhelmed, the model generates high CO2 values to produce very warm continental temperatures compensating for the lack of continental humidity. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence, producing a CO2 drawdown and a fall in continental temperatures. Finally, an other unexpected outcome is the pronounced fluctuations in carbonate accumulation simulated by the model in response to the Pangea break up. These fluctuations are driven by changes in continental carbonate

  2. Chemical Weathering on a Cold and Wet Ancient Mars: New Insights from a Glacial Mars Analog Site

    NASA Astrophysics Data System (ADS)

    Scudder, N.; Horgan, B. H. N.; Rutledge, A. M.; Rampe, E. B.

    2016-12-01

    If cold climates prevailed on ancient Mars, we should expect to see corroborating mineralogical evidence preserved in the geologic record. However, the extent to which the diverse alteration mineralogy observed on Mars can be explained by cold climate weathering is currently unknown, as the alteration phases that result from weathering by snow and ice are poorly understood. If cold climate weathering produces distinct alteration signatures, they may be a useful climate indicator on Mars. On Earth, poorly crystalline or short order silicates, such as allophane, tend to dominate in alpine and arctic soils where weathering mainly occurs through rapid seasonal melting of ice and snow. This mineralogy is distinct from the crystalline phyllosilicates that are common in more temperate climates. Thus, we hypothesize that high abundances of poorly crystalline material could indicate cold climate weathering. Here we report new results from a field campaign at the mafic and glaciated Three Sisters volcanic complex in Oregon, USA, to determine the mineralogy and chemistry of cold climate weathering in a Mars analog environment. We find that high abundances of poorly crystalline phases are generated in this environment and that these phases may be detectable using orbital spectroscopy. Ongoing chemical and mineralogical analyses of glacial till and sediments from glacier-fed lakes and streams will allow us to determine the specific distribution and composition of mineral phases in Mars-relevant glacial environments. Poorly crystalline phases have been detected on Mars: modeling of TES data suggests a regionally distributed allophane component, while MER and MSL results indicate up to 40-50% amorphous components in rocks and sediments at Gusev and Gale Craters. We hypothesize that these could be the result of weathering by ice and snow. However, it is not clear that more crystalline alteration phases observed elsewhere on Mars could be formed under a globally cold climate.

  3. Space weathering of asteroids: Lessons from Itokawa for future observations

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; HIroi, Takahiro

    2016-07-01

    Introduction Space weathering of surface silicate minerals is the main process that should control the change of brightness and color of airless silicate bodies such and the Moon, Mercury and asteroids. Spectra of S-type asteroids exhibit more overall depletion and reddening, and more weakening of absorption bands than spectra of ordinary chondrites. These spectral mismatches are explained by the space weathering, where the primary proven mechanism of such spectral change is production of nanophase metallic iron particles (npFe0) 1), which were confirmed in the amorphous rim of lunar soil grains 2,3). Vapor-deposition through at high-velocity dust particle impacts as well as implantation of intensive solar wind ions would be responsible for producing the space weathering rims bearing nano-iron particles (npFe0). Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change optical properties 4,5,6). Laser experiments showed that pyroxene would be weathered less than olivine, for pyroxene, pulse laser irradiation produced melt (amorphous) droplets containing npFe0, rather than vapour deposited rim that should provide stronger optical effect trough multiple scattering of incidental light. Itokawa Observed by Remote Sensing In November 2005, Japanese Asteroid Sample Return Mission HAYABUSA spacecraft rendezvoused S-type asteroid (25143) Itokawa. Optically, the surface of Itokawa is divided into brighter (and bluer) areas and darker (and redder) areas 7,8). In rough zones, dark boulder-rich surfaces usually superpose on bright materials. The near-infrared spectrometer (NIRS) confirmed previous disk-integrated results that suggested Itokawa's spectrum closely matched a weakly weathered LL5/6 chondrite 9). Although the surface is covered with rocks and is apparently lack of fine regolith, Itokawa's surface show darkening and reddening by space weathering. Experimental results suggest rocky meteorite fragments can be

  4. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  5. Prometheus Silicates/Sulfur dioxide/NIMS

    NASA Image and Video Library

    2000-05-18

    The Prometheus region of Jupiter moon Io was imaged by NASA Galileo spacecraft in 1999. The maps made from spectrometer data show the interplay between hot silicates on the surface and sulfur dioxide frost.

  6. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  7. Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record

    NASA Astrophysics Data System (ADS)

    Holness, Marian B.

    2018-06-01

    One of the outstanding problems in understanding the behavior of intermediate-to-silicic magmatic systems is the mechanism(s) by which large volumes of crystal-poor rhyolite can be extracted from crystal-rich mushy storage zones in the mid-deep crust. The mechanisms commonly invoked are hindered settling, micro-settling, and compaction. The concept of micro-settling involves extraction of grains from a crystal framework during Ostwald ripening and has been shown to be non-viable in the metallic systems for which it was originally proposed. Micro-settling is also likely to be insignificant in silicic mushes, because ripening rates are slow for quartz and plagioclase, contact areas between grains in a crystal mush are likely to be large, and abundant low-angle grain boundaries promote grain coalescence rather than ripening. Published calculations of melt segregation rates by hindered settling (Stokes settling in a crystal-rich system) neglect all but fluid dynamical interactions between particles. Because tabular silicate minerals are likely to form open, mechanically coherent, frameworks at porosities as high as 75%, settling of single crystals is only likely in very melt-rich systems. Gravitationally-driven viscous compaction requires deformation of crystals by either dissolution-reprecipitation or dislocation creep. There is, as yet, no reported microstructural evidence of extensive, syn-magmatic, internally-generated, viscous deformation in fully solidified silicic plutonic rocks. If subsequent directed searches do not reveal clear evidence for internally-generated buoyancy-driven melt segregation processes, it is likely that other factors, such as rejuvenation by magma replenishment, gas filter-pressing, or externally-imposed stress during regional deformation, are required to segregate large volumes of crystal-poor rhyolitic liquids from crustal mushy zones.

  8. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  9. The effect of thermal and organic additive in morphology of ceramic based silicate

    NASA Astrophysics Data System (ADS)

    Ginting, J.; Bangun, N.; Sembiring, H. Br; Putri, N. K.

    2017-04-01

    M-Silicate (M = Mg, Ca) has been prepared by exchange metal reaction from M-Chloride salts and sodium silicate. The resulting white solid of chloride salts then heated at 700, 800, 900 and 1000 °C. Due to increase the porosity of M-Silicate, 1,2-propanediol, oleic acid and glycerol were added, then formed M-silicates were heated at 800 °C. Then, obtained white solid M-Silicates were characterized by Scanning Electron Microscopy (SEM). SEM images show the variance of surface morphology when the temperature increases. The addition of organic compounds is involved in surface modification.

  10. Ensemble flare forecasting: using numerical weather prediction techniques to improve space weather operations

    NASA Astrophysics Data System (ADS)

    Murray, S.; Guerra, J. A.

    2017-12-01

    One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.

  11. Weather warnings predict fall-related injuries among older adults.

    PubMed

    Mondor, Luke; Charland, Katia; Verma, Aman; Buckeridge, David L

    2015-05-01

    weather predictions are a useful tool for informing public health planning and prevention strategies for non-injury health outcomes, but the association between winter weather warnings and fall-related injuries has not been assessed previously. to examine the association between fall-related injuries among older adults and government-issued winter weather warnings. using a dynamic cohort of individuals ≥65 years of age who lived in Montreal between 1998 and 2006, we identified all fall-related injuries from administrative data using a validated set of diagnostic and procedure codes. We compared rates of injuries on days with freezing rain or snowstorm warnings to rates observed on days without warnings. We also compared the incidence of injuries on winter days to non-winter days. All analyses were performed overall and stratified by age and sex. freezing rain alerts were associated with an increase in fall-related injuries (incidence rate ratio [IRR] = 1.20, 95% confidence interval [CI]: 1.08-1.32), particularly among males (IRR = 1.31, 95% CI: 1.10-1.56), and lower rates of injuries were associated with snowstorm alerts (IRR = 0.89, 95% CI: 0.80-0.99). The rate of fall-related injuries did not differ seasonally (IRR = 1.00, 95% CI: 0.97-1.03). official weather warnings are predictive of increases in fall-related injuries among older adults. Public health agencies should consider using these warnings to trigger initiation of injury prevention strategies in advance of inclement weather. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  13. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  14. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  15. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  16. Total lightning characteristics of recent hazardous weather events in Japan

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Ogawa, T.; Heckman, S.; Stock, M.; Liu, C.

    2017-12-01

    In recent years, the total lightning (IC + CG) activity have attracted a lot of attention to improve the quality of prediction of hazardous weather phenomena (hail, wind gusts, tornadoes, heavy precipitation). Sudden increases of the total lightning flash rate so-called lightning jump (LJ) preceding the hazardous weather, reported in several studies, are one of the promising precursors. Although, increases in the frequency and intensity of these extreme weather events were reported in Japan, relationship with these events with total lightning have not studied intensively yet. In this paper, we will demonstrate the recent results from Japanese total lightning detection network (JTLN) in relation with hazardous weather events occurred in Japan in the period of 2014-2016. Automatic thunderstorm cell tracking was carried out based on the very high spatial and temporal resolution X-band MP radar echo data (1 min and 250 m) to correlate with total lightning activity. Results obtained reveal promising because the flash rate of total lightning tends to increase about 10 40 minutes before the onset of the extreme weather events. We also present the differences in lightning characteristics of thunderstorm cells between hazardous weather events and non-hazardous weather events, which is a vital information to improve the prediction efficiency.

  17. Weathering processes in the Rio Icacos and Rio Mameyes watersheds in Eastern Puerto Rico: Chapter I in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Buss, Heather L.; White, Arthur F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Streams draining watersheds of the two dominant lithologies (quartz diorite and volcaniclastic rock) in the Luquillo Experimental Forest of eastern Puerto Rico have very high fluxes of bedrock weathering products. The Río Blanco quartz diorite in the Icacos watershed and the Fajardo volcaniclastic rocks in the Mameyes watershed have some of the fastest documented rates of chemical weathering of siliceous rocks in the world. Rapid weathering produces thick, highly leached saprolites in both watersheds that lie just below the soil and largely isolate subsurface biogeochemical and hydrologic processes from those in the soil. The quartz diorite bedrock in the Icacos watershed weathers spheroidally, leaving large, relatively unweathered corestones that are enveloped by slightly weathered rock layers called rindlets. The rindlets wrap around the corestones like an onionskin. Within the corestones, biotite oxidation is thought to induce the spheroidal fracturing that leads to development of rindlets; plagioclase in the rindlets dissolves, creating additional pore spaces. Near the rindlet-saprolite interface, the remaining plagioclase dissolves, hornblende dissolves to completion, and precipitation of kaolinite, gibbsite, and goethite becomes pervasive. In the saprolite, biotite weathers to kaolinite and quartz begins to dissolve. In the soil layer, both quartz and kaolinite dissolve. The volcaniclastic bedrock of the Mameyes watershed weathers even faster than the quartz diorite bedrock of the Icacos watershed, leaving thicker saprolites that are devoid of all primary minerals except quartz. The quartz content of volcaniclastic bedrock may help to control watershed geomorphology; high-quartz rocks form thick saprolites that blanket ridges. Hydrologic flow paths within the weathering profiles vary with total fluid flux, and they influence the chemistry of streams. Under low-flow conditions, the Río Icacos and its tributaries are fed by rainfall and by groundwater from

  18. Ozone trends and their relationship to characteristic weather patterns.

    PubMed

    Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros

    2015-01-01

    Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Classify days of observation over a 16-year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories.We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction between changes in prevailing weather

  19. Practical Weathering for Geology Students.

    ERIC Educational Resources Information Center

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  20. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Menguy, Nicolas; Guyot, François; Vanni, Christian; Gillet, Philippe

    2005-03-01

    The biogeochemical alteration of an Mg-Fe orthopyroxene, reacted for 70 yr under arid conditions in a desert environment, was studied by transmission electron microscopy. For this purpose, an electron transparent cross-section of the interface between a single microorganism, an orthopyroxene and nanometer-sized calcite crystals, was prepared with a focused ion beam system. X-ray energy dispersive spectrometry and electron energy loss spectroscopy allowed one to clearly distinguish the microorganism en route to fossilization from the nanometer-sized calcite crystals, showing the usefulness of such a protocol for identifying unambiguously traces of life in rocks. A 100-nm-deep depression was observed in the orthopyroxene close to the microorganism, suggesting an enhanced dissolution mediated by the microbe. However, an Al- and Si-rich amorphous altered layer restricted to the area just below the microorganism could be associated with decreased silicate dissolution rates at this location, suggesting complex effects of the microorganism on the silicate dissolution process. The close association observed between silicate dissolution and carbonate formation at the micrometer scale suggests that Urey-type CO 2 sequestration reactions could be mediated by microorganisms under arid conditions.

  1. Weathering effects on fuel moisture sticks: corrections and recommendations.

    Treesearch

    Donald A. Haines; John S. Frost

    1978-01-01

    Describes response to weathering of 100-gram (1/2-inch) fuel moisture sticks over 6-month fire season in the Northeast. Presents a chart for correcting weathered-stick values and gives replacement recommendations for those sticks used in the National Fire Danger Rating System.

  2. Simultaneous Production of Reduced Nitrogen Compounds and Hydrocarbons Using Amorphous Iron Silicate Smokes as a Catalyst

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hill, Hugh G. M.

    2001-01-01

    Amorphous iron silicates efficiently catalyze formation of hydrocarbons and ammonia under conditions similar to that found in the solar nebula. Preliminary data and rates will be discussed, and much further experimentation is required. Additional information is contained in the original extended abstract.

  3. Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses

    NASA Technical Reports Server (NTRS)

    Christy, John R.

    1991-01-01

    Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.

  4. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  5. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  6. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  7. Space Weathering in Olivine and the Mineralogy of (Some) M-Class Asteroids

    NASA Astrophysics Data System (ADS)

    Britt, Daniel; Kohout, Tomas; Schelling, Patrick; Consolmagno, Guy J.

    2014-11-01

    One aspect of space weathering of airless bodies is the production of nanophase iron (npFe0) from Fe bearing silicate minerals. The combined effects of low oxygen fugacity and solar-wind implanted H tend to result in strongly-reduced surfaces that can be chemically activated by heating due to micrometeorite impacts. The mineral kinetics of olivine makes it particularly vulnerable to reduction, decomposition, and npFe0 production. Kohout et al. has recently developed a new method of controlled npFe0 production on olivine powder grains that mimics the essential features of this weathering process and was developed to quantitatively evaluate spectral changes related to space weathering and presence of npFe0. Compared to fresh olivine the treated samples exhibit spectral characteristics of space weathering including spectral darkening, shallowing and attenuation of 1 µm olivine absorption band, and reddening. The attenuation of the 1 µm band significantly shrinks the band FWHM and shifts the much reduced band center to shorter wavelengths around 0.95 µm. These spectral changes are related to increasing amounts of npFe0 and the disruption of the crystal structure of the parent olivine. Significantly, the darkened, reddened, and band attenuated olivine spectra are a close match to a number of M-class asteroids. What is particularly interesting is the match with the weak absorption band near 0.95 µm seen in many M-class asteroids (i.e. 16 Psyche, 22 Kalliope, 55 Pandora to name a few). One of the major issues in asteroid science is the relative scarcity of olivine asteroids (the ”Great Dunite Shortage” coined by Bell et al in Asteroids II). One possibility worth further study is that asteroidal olivine may be hidden by the relative ease with which it weathers. The surface chemical and micrometeorite environment in the asteroid belt may produce over time a spectrum for an olivine-rich surface that is remarkably similar to that of an M-class asteroid.

  8. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore

  9. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction..., reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly... from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with...

  10. Water quality mapping and assessment, and weathering processes of selected aflaj in Oman.

    PubMed

    Ghrefat, Habes Ahmad; Jamarh, Ahmad; Al-Futaisi, Ahmed; Al-Abri, Badr

    2011-10-01

    There are more than 4,000 falaj (singular of a peculiar dug channel) distributed in different regions in Oman. The chemical characteristics of the water in 42 falaj were studied to evaluate the major ion chemistry; geochemical processes controlling water composition; and suitability of water for drinking, domestic, and irrigation uses. GIS-based maps indicate that the spatial distribution of chemical properties and concentrations vary within the same region and the different regions as well. The molar ratios of (Ca + Mg)/Total cations, (Na + K)/Total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO₃ + SO₄), and Na/Cl reveal that the water chemistry of the majority of aflaj are dominated by carbonate weathering and evaporite dissolution, with minor contribution of silicate weathering. The concentrations of most of the elements were less than the permissible limits of Omani standards and WHO guidelines for drinking water and domestic use and do not generally pose any health and environmental problems. Some aflaj in ASH Sharqiyah and Muscat regions can be used for irrigation with slight to severe restriction because of the high levels of electrical conductivity, total dissolved solids, chloride, and sodium absorption ratio.

  11. IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki

    2015-04-20

    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicatemore » would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.« less

  12. Search for Large Presolar Silicate Grains in the QUE 99177 CR Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2012-01-01

    Silicates are among the most abundant pre-solar grain type, and their diverse chemical and isotopic compos-tions preserve detailed constraints on their stellar origins, condensation conditions, and nucleosynthetic and interstellar processes. Yet, owing to their small sizes, relatively few grains have been measured for isotopic compositions besides O and Si, and their mineralogy is poorly characterized. The average grain size (approx 270 nm) limits the number of analyses that can be conducted on a given grain, and their identification among solar system silicates introduces contaminating signal. These difficulties can be overcome by identifying large presolar silicate grains. However, such grains are very rare and only two approx 1 micron grains have been discovered. We are conducting a dedicated search for large presolar silicates in size-separated QUE 99177 matrix material. This primitive meteorite has among the highest abundance of presolar silicates

  13. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less

  14. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  15. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  16. Multiscale understanding of tricalcium silicate hydration reactions.

    PubMed

    Cuesta, Ana; Zea-Garcia, Jesus D; Londono-Zuluaga, Diana; De la Torre, Angeles G; Santacruz, Isabel; Vallcorba, Oriol; Dapiaggi, Monica; Sanfélix, Susana G; Aranda, Miguel A G

    2018-06-04

    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca 11 Si 9 O 28 (OH) 2 . 8.5H 2 O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.

  17. Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow

    NASA Technical Reports Server (NTRS)

    Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

    1988-01-01

    This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

  18. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  19. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  20. PREFACE: 5th Baltic Conference on Silicate Materials

    NASA Astrophysics Data System (ADS)

    Mezinskis, G.; Bragina, L.; Colombo, P.; Frischat, G. H.; Grabis, J.; Greil, P.; Deja, J.; Kaminskas, R.; Kliava, J.; Medvids, A.; Nowak, I.; Siauciunas, R.; Valancius, Z.; Zalite, I.

    2011-12-01

    Logo This Volume of IOP Conference Series: Materials Science and Engineering presents a selection of the contributions to the 5th Baltic Conference on Silicate Materials (BaltSilica2011) held at Riga Technical University, Riga, Latvia from 23-25 May 2011. The conference was organized by Riga Technical University (Latvia) and Kaunas University of Technology (Lithuania). The series of Baltic conferences on silicate materials was started since 2004: the first conference was held in Riga, Latvia, 2004; the second conference was held in Kaunas, Lithuania 2005; the third was held again in Riga, Latvia, 2007, and the fourth was held in Kaunas, Lithuania 2009. BaltSilica 2011 was attended by around 50 participants from Latvia, Lithuania, Estonia, Germany, Poland, Italy, France, Ukraine and Russia. In comparison with previous silicate materials conferences, the broadening of participating countries is an indication of the interest of scientists, engineers and students to exchange research ideas, latest results, and to find new research topics for cooperation in the fields of silicate, high temperature materials, and inorganic nanomaterials. The scientific programme included 8 invited plenary lectures 23 oral presentations and 25 posters [1]. Scientific themes covered in the conference and in this special issue: Natural and Artificial Stone Materials; Traditional and New Ceramic and Glass-Like Materials; Nanoparticles and Nanomaterials. This volume consists of 23 selected proceeding papers. The Editor of this special issue is grateful to all the contributors to BaltSilica 2011. I am also very grateful to the scientific committee, the local organizing committee, the session chairs, the referees who refereed the submitted articles to this issue, and to students from the Department of Silicate, High Temperature and Inorganic Nanomaterials Technology of the Riga Technical University who ensured the smooth running of the conference. Particular thanks goes to eight plenary