Science.gov

Sample records for silicon controlled rectifier

  1. Effects of 22 MeV protons on single junction and silicon controlled rectifiers

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III

    1972-01-01

    The effects of 22-MeV protons on various types of silicon single junction and silicon controlled rectifiers were investigated. The results show that low-leakage devices and silicon controlled rectifiers are the most susceptable to radiation damage. There are also differences noted between single junction rectifiers of the same type made by different manufacturers, which emphasizes the need for better selection of devices used in spacecraft.

  2. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  3. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  4. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality, and 4-A turn-on and 150-V rectification. The high operating current was achieved despite severe device size limitations imposed by present-day SiC wafer defect densities. Further substantial increases in device performance can be expected when SiC wafer defect densities decrease as SiC wafer production technology matures.

  5. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    PubMed

    Lu, Shaohua; Boussaid, Farid

    2015-01-01

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier. PMID:26610492

  6. Aalborg Universitet Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage

    E-print Network

    Chaudhary, Sanjay

    Aalborg Universitet Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage-Nielsen, S. (2015). Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage. In Proceedings from vbn.aau.dk on: november 29, 2015 #12;Control of SiC Based Front-End Rectifier under Unbalanced

  7. Design, fabrication, and characterization of 4H-silicon carbide rectifiers for power switching applications

    NASA Astrophysics Data System (ADS)

    Sheridan, David Charles

    Silicon Carbide has received a substantial increase in research interest over the past few years as a base material system for high-frequency and high-power semiconductor devices. Of the over 1200 polytypes, 4H-SiC is the most attractive polytype for power devices due to its wide band gap (3.2eV), excellent thermal conductivity (4.9 W/cm·K), and high critical field strength (˜2 x 106 V/cm). Important for power devices, the 10x increase in critical field strength of SiC allows high voltage blocking layers to be fabricated significantly thinner than for comparable Si devices. For power rectifiers, this reduces device on-resistance, while maintaining the same high voltage blocking capability. In this work, 4H-SiC Schottky, pn, and junction barrier Schottky (JBS) rectifiers for use in high voltage switching applications have been designed, fabricated, and extensively characterized. First, a detailed review of 4H-SiC material parameters was performed and SiC models were implemented into a standard Si drift-diffusion numerical simulator. Using these models, a SiC simulation methodology was developed in order to enable predictive SiC device design. A wide variety of rectifier and edge termination designs were investigated and optimized with respect to breakdown efficiency, area consumption, resistance to interface charge, and fabrication practicality. Simulated termination methods include: field plates, floating guard rings, and a variety of junction termination extensions (JTE). Using the device simulation results, both Schottky and JBS rectifiers were fabricated with a novel self-aligned edge termination design, and fabricated with process elements developed at the Alabama Microelectronics Science and Technology Center facility. These rectifiers exhibited near-ideal forward characteristics and had blocking voltages in excess of 2.5kV. The SiC diodes were subjected to inductive switching tests, and were found to have superior reverse recovery characteristics compared to a similar Si diode. Finally, the performance of these SiC rectifiers were tested in inductive switching circuits and in high dose gamma radiation environments. In both cases, these devices were shown to be superior to their silicon counterparts. The details of this work was presented and published in the proceedings of the 45th International Meeting of the American Vacuum Society [1], the 1999 International Conference on Silicon Carbide and Related Materials [2, 3] and the 2000 European Conference on Silicon Carbide and Related Materials [4]. The expanded conference papers were published in the international journal. Solid-State Electronics [5, 6].

  8. Modelling a single phase voltage controlled rectifier using Laplace transforms

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  9. Transistor as a Rectifier

    E-print Network

    Raju Baddi

    2013-04-20

    Transistor is a three terminal semiconductor device normally used as an amplifier or as a switch. Here the alternating current (a.c) rectifying property of the transistor is considered. The ordinary silicon diode exhibits a voltage drop of ~0.6V across its terminals. In this article it is shown that the transistor can be used to build a diode or rectify low current a.c (~mA) with a voltage drop of ~0.03V. This voltage is ~20 times smaller than the silicon diode. This article gives the half-wave and full-wave transistor rectifier configurations along with some applications to justify their usefulness.

  10. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SILICON-CONTROLLED RECTIFIERS AND SCHOTTKY RECTIFIERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Ce...

  11. High-performance digital triggering system for phase-controlled rectifiers

    SciTech Connect

    Olsen, R.E.

    1983-01-01

    The larger power supplies used to power accelerator magnets are most commonly polyphase rectifiers using phase control. While this method is capable of handling impressive amounts of power, it suffers from one serious disadvantage, namely that of subharmonic ripple. Since the stability of the stored beam depends to a considerable extent on the regulation of the current in the bending magnets, subharmonic ripple, especially that of low frequency, can have a detrimental effect. At the NSLS, we have constructed a 12-pulse, phase control system using digital signal processing techniques that essentially eliminates subharmonic ripple.

  12. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-?m 3M2P standard CMOS process, occupying 0.18 mm(2) of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 ? load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  13. Design and evaluation of a cellular rectifier system with distributed control

    E-print Network

    Perreault, David J.

    This paper presents the design and experimental evaluation of a six-cell 6 kW cellular (parallel) rectifier system which operates at nearly unity power factor. The cellular rectifier system implements both distributed load ...

  14. Nanoscale Spin Seebeck Rectifier: Controlling Thermal Spin Transport across Insulating Magnetic Junctions with Localized Spin

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Fransson, Jonas; Zhu, Jian-Xin

    2014-06-01

    The spin Seebeck effect is studied across a charge insulating magnetic junction, in which thermal-spin conjugate transport is assisted by the exchange interactions between the localized spin in the center and electrons in metallic leads. We show that, in contrast with bulk spin Seebeck effect, the figure of merit of such nanoscale thermal-spin conversion can be infinite, leading to the ideal Carnot efficiency in the linear response regime. We also find that in the nonlinear spin Seebeck transport regime the device possesses the asymmetric and negative differential spin Seebeck effects. In the last, the situations with leaking electron tunneling are also discussed. This nanoscale thermal spin rectifier, by tuning the junction parameters, can act as a spin Seebeck diode, spin Seebeck transistor, and spin Seebeck switch, which could have substantial implications for flexible thermal and information control in molecular spin caloritronics.

  15. Nanoscale Spin Seebeck Rectifier: Controlling Thermal Spin Transport across Insulating Magnetic Junctions with Localized Spin

    E-print Network

    Jie Ren; Jonas Fransson; Jian-Xin Zhu

    2014-06-20

    The spin Seebeck effect is studied across a charge insulating magnetic junction, in which thermal-spin conjugate transport is assisted by the exchange interactions between the localized spin in the center and electrons in metallic leads. We show that, in contrast with bulk spin Seebeck effect, the figure of merit of such nanoscale thermal-spin conversion can be infinite, leading to the ideal Carnot efficiency in the linear response regime. We also find that in the nonlinear spin Seebeck transport regime, the device possesses the asymmetric and negative differential spin Seebeck effects. In the last, the situations with leaking electron tunneling are also discussed. This nanoscale thermal spin rectifier, by tuning the junction parameters, can act as a spin Seebeck diode, spin Seebeck transistor and spin Seebeck switch, which could have substantial implications for flexible thermal and information control in molecular spin caloritronics.

  16. Combinational logic for generating gate drive signals for phase control rectifiers

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Trimble, D. W. (inventors)

    1982-01-01

    Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.

  17. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.

    PubMed

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-01-01

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 ?m) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407

  18. Rectifier cabinet static breaker

    DOEpatents

    Costantino, Jr, Roger A. (Mifflin, PA); Gliebe, Ronald J. (Library, PA)

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  19. Controllable valley splitting in silicon quantum devices

    E-print Network

    Loss, Daniel

    ARTICLES Controllable valley splitting in silicon quantum devices SRIJIT GOSWAMI1 *, K. A. SLINKER1, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin will be threatened. In strained-silicon quantum wells, there are two such degenerate valleys13 , whose quantum

  20. Rectifying characteristic of Pt/TiOx/metal/Pt controlled by electronegativity

    NASA Astrophysics Data System (ADS)

    Zhong, Ni; Shima, Hisashi; Akinaga, Hiro

    2010-01-01

    Current voltage characteristic of the TiOx/metal interface has been studied by the systematic investigation on the top electrode (TE) material dependence of the carrier transport through the TiOx/metal interface. Rather than work function of TE (?M), electronegativity (?M) of TE plays a dominant role on current conduction and carrier transport of Pt/TiOx/metal (TE) devices. Pt/TiOx/metal (TE) exhibits rectifying property, if ?M of TE is high. On the other hands, a symmetric I-V curves were observed if ?M of TE is low. Plots of Schottky barrier at TiOx/metal (TE) interface versus ?M of TE provides an index of interface behavior S ?0.55, suggesting partial Fermi-level pinning at TiOx/metal interface.

  1. Inwardly rectifying Kir2.1 currents in human ?-cells control electrical activity: characterisation and mathematical modelling.

    PubMed

    Riz, Michela; Braun, Matthias; Wu, Xichen; Pedersen, Morten Gram

    2015-04-01

    Pancreatic ?-cells fire action potentials as do cardiac cells and neurons, and electrical activity plays a central role in glucose-stimulated insulin secretion, which is disturbed in diabetes. The inwardly rectifying Kir2.1 potassium channels (KCNJ2 gene) control cardiac electrical activity by stabilising the interspike interval. Loss-of-function abnormalities in cardiac Kir2.1 currents can lead to the long QT syndrome and alterations of cardiac excitability, and patients with some forms of long QT syndrome suffer from over-secretion of insulin, hyperinsulinemia and symptomatic hypoglycemia. The KCNJ2 gene is also expressed in human pancreatic islets, and we show that functional Kir2.1 currents are present in human ?-cells. We characterised the human Kir2.1 ?-cell current, and included it in a recent mathematical model of electrical activity in human ?-cells. Based on our simulations we propose that Kir2.1 currents control the interspike interval, and predict that blocking Kir2.1 channels increases the action potential frequency, which should augment the rate of insulin secretion. Vice versa, the model suggests that hyperactive Kir2.1 channels may lead to reduced insulin secretion. Our findings provide a putative link between increased insulin secretion and the long QT syndrome, and give novel insight into normal and disturbed ?-cell function. PMID:25727015

  2. Analysis, Design and Control of 1MW, High Power Factor and High Current Rectifier System

    E-print Network

    Noé, Reinhold

    with passive filter and DSTATCOM for low voltage, high current industrial dc loads. The considered process act (DSTATCOM) is used to provide variable reactive power compensation. Along with it an 11th harmonic passive of DSTATCOM. Design and control of system are carried out such that input power factor remains greater than 0

  3. Silicon-controlled-rectifier square-wave inverter with protection against commutation failure

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1971-01-01

    The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.

  4. Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1986-01-01

    A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.

  5. The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy

    PubMed Central

    McCloskey, Conor; Rada, Cara; Bailey, Elizabeth; McCavera, Samantha; van den Berg, Hugo A; Atia, Jolene; Rand, David A; Shmygol, Anatoly; Chan, Yi-Wah; Quenby, Siobhan; Brosens, Jan J; Vatish, Manu; Zhang, Jie; Denton, Jerod S; Taggart, Michael J; Kettleborough, Catherine; Tickle, David; Jerman, Jeff; Wright, Paul; Dale, Timothy; Kanumilli, Srinivasan; Trezise, Derek J; Thornton, Steve; Brown, Pamela; Catalano, Roberto; Lin, Nan; England, Sarah K; Blanks, Andrew M

    2014-01-01

    Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility. PMID:25056913

  6. Automatic Control of Silicon Melt Level

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  7. Coherent Control of Rydberg States in Silicon

    E-print Network

    Greenland, P T; van der Meer, A F G; Murdin, B N; Pidgeon, C R; Redlich, B; Vinh, N Q; Aeppli, G; 10.1038/nature09112

    2010-01-01

    We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.

  8. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  9. Noise Properties of Rectifying Nanopore

    SciTech Connect

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.

  10. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  11. Curvature Control of Silicon Microlens for THz Dielectric Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran

    2012-01-01

    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  12. Control of silicon nanoparticle size embedded in silicon oxynitride dielectric matrix

    SciTech Connect

    Ehrhardt, F.; Ferblantier, G.; Muller, D.; Slaoui, A.; Ulhaq-Bouillet, C.; Rinnert, H.

    2013-07-21

    In this study, silicon rich silicon oxynitride layers containing more than 15% nitrogen were deposited by electron cyclotron resonance assisted plasma enhanced vapor deposition in order to form silicon nanoparticles after a high temperature thermal annealing. The effect of the flows of the precursor gases on the composition and the structural properties of the layers was assessed by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and infrared spectroscopic measurements. The morphological and crystallinity properties were investigated by energy filtered transmission electron microscopy and Raman spectroscopy. We show that the excess of silicon in the silicon oxynitride layer controls the silicon nanoparticles size. On the other hand, the crystalline fraction of particles is found to be strongly correlated to the nanoparticle size. Finally, the photoluminescence measurements show that it is also possible to tune the photoluminescence peak position between 400 and 800 nm and its intensity by changing the silicon excess in the silicon rich silicon oxynitride matrix.

  13. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system. PMID:24807951

  14. Electrically controlled giant piezoresistance in silicon nanowires.

    PubMed

    Neuzil, Pavel; Wong, Chee Chung; Reboud, Julien

    2010-04-14

    Herein we demonstrate giant piezoresistance in silicon nanowires (NWs) by the modulation of an electric field-induced with an external electrical bias. Positive bias for a p-type device (negative for an n-type) partially depleted the NWs forming a pinch-off region, which resembled a funnel through which the electrical current squeezed. This region determined the total current flowing through the NWs. In this report, we combined the electrical biasing with the application of mechanical stress, which impacts the charge carriers' concentration, to achieve an electrically controlled giant piezoresistance in nanowires. This phenomenon was used to create a stress-gated field-effect transistor, exhibiting a maximum gauge factor of 5000, 2 orders of magnitude increase over bulk value. Giant piezoresistance can be tailored to create highly sensitive mechanical sensors operating in a discrete mode such as nanoelectromechanical switches. PMID:20192246

  15. Method of controlling defect orientation in silicon crystal ribbon growth

    NASA Technical Reports Server (NTRS)

    Leipold, M. H. (inventor)

    1978-01-01

    The orientation of twinning and other effects in silicon crystal ribbon growth is controlled by use of a starting seed crystal having a specific (110) crystallographic plane and (112) crystallographic growth direction.

  16. Cell culture on hydrophilicity-controlled silicon nitride surfaces.

    PubMed

    Masuda, Yuriko; Inami, Wataru; Miyakawa, Atsuo; Kawata, Yoshimasa

    2015-12-01

    Cell culture on silicon nitride membranes is required for atmospheric scanning electron microscopy, electron beam excitation assisted optical microscopy, and various biological sensors. Cell adhesion to silicon nitride membranes is typically weak, and cell proliferation is limited. We increased the adhesion force and proliferation of cultured HeLa cells by controlling the surface hydrophilicity of silicon nitride membranes. We covalently coupled carboxyl groups on silicon nitride membranes, and measured the contact angles of water droplets on the surfaces to evaluate the hydrophilicity. We cultured HeLa cells on the coated membranes and evaluated stretch of the cell. Cell migration and confluence were observed on the coated silicon nitride films. We also demonstrated preliminary observation result with direct electron beam excitation-assisted optical microscope. PMID:26415963

  17. Controllable deformation of silicon nanowires with strain up to 24%

    SciTech Connect

    Walavalkar, Sameer S.; Homyk, Andrew P.; Henry, M. David; Scherer, Axel

    2010-06-15

    Fabricated silicon nanostructures demonstrate mechanical properties unlike their macroscopic counterparts. Here we use a force mediating polymer to controllably and reversibly deform silicon nanowires. This technique is demonstrated on multiple nanowire configurations, which undergo deformation without noticeable macroscopic damage after the polymer is removed. Calculations estimate a maximum of nearly 24% strain induced in 30 nm diameter pillars. The use of an electron activated polymer allows retention of the strained configuration without any external input. As a further illustration of this technique, we demonstrate nanoscale tweezing by capturing 300 nm alumina beads using circular arrays of these silicon nanowires.

  18. Treatment to Control Adhesion of Silicone-Based Elastomers

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  19. Controlling the Sensing Properties of Silicon Nanowires via the Bonds Nearest to the Silicon Nanowire Surface.

    PubMed

    Halpern, Jeffrey Mark; Wang, Bin; Haick, Hossam

    2015-06-01

    Controlling the sensing properties of a silicon nanowire field effect transistor is dependent on the surface chemistry of the silicon nanowire. A standard silicon nanowire has a passive oxide layer (native oxide), which has trap states that cause sensing inaccuracies and desensitize the surface to nonpolar molecules. In this paper, we successfully modified the silicon nanowire surface with different nonoxide C3 alkyl groups, specifically, propyl (Si-CH2-CH2-CH3), propenyl (Si-CH?CH-CH3), and propynyl (Si-C?C-CH3) modifications. The effect of the near surface bond on the sensor sensitivity and stability was explored by comparing three C3 surface modifications. A reduction of trap-states led to greater sensor stability and accuracy. The propenyl-modified sensor was consistently the most stable and sensitive sensor, among the applied sensors. The propenyl- and propynyl-modified sensors consistently performed with the best accuracy in identifying specific analytes with similar polarity or similar molecular weights. A combination of features from different sensing surfaces led to the best rubric for specific analytes identification. These results indicate that nonoxide sensor surfaces are useful in identifying specific analytes and that a combination of sensors with different surfaces in a cross-reactive array can lead to specific analytes detection. PMID:25961907

  20. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    SciTech Connect

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling Xu, Liang; Luo, Kai-Wu

    2014-03-10

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

  1. Controlling dopant profiles in hyperdoped silicon by modifying dopant evaporation rates during pulsed laser melting

    E-print Network

    Recht, Daniel

    We describe a method to control the sub-surface dopant profile in “hyperdoped” silicon fabricated by ion implantation and pulsed laser melting. Dipping silicon ion implanted with sulfur into hydrofluoric acid prior to ...

  2. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2? phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter. PMID:26192100

  3. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  4. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    SciTech Connect

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340?K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  5. Characterization of Nanostructured Silicon Membranes for Control of Molecular Transport

    NASA Astrophysics Data System (ADS)

    Srijanto, Bernadeta; Retterer, Scott; Fowlkes, Jason; Doktycz, Mitchel

    2011-03-01

    Fabrication of nanoporous membranes for selective transport of molecular species requires precise engineering at the nanoscale. The membrane permeability can be tuned by controlling the physical structure and the surface chemistry of the pores. We use a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, to fabricate silicon membranes that are physically robust and have uniform pore sizes. Pore sizes are further reduced using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide onto the membrane surfaces. Integrating nanoporous membranes within a microfluidic network provides a platform for tailoring molecular exchange between microchannels, independent of hydrodynamic effects. In enzymatic reactions, for example, tuning the pores size will allow smaller enzymatic substrates to traverse the membrane at controlled rates while larger enzymes remain spatially separated. Our results from membrane cross-sectioning using focused ion beam milling show that pore sizes can be controlled at dimensions below 10nm. Functional characterization was performed by quantitative fluorescence microscopy to observe the selective transport of molecular species of different sizes.

  6. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    SciTech Connect

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  7. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOEpatents

    Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  8. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Semiconductor rectifier systems. 120.360 Section...Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  9. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section...Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  10. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section...Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  11. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section...Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  12. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section...Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  13. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section...Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  14. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section...Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  15. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Semiconductor rectifier systems. 120.360 Section...Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an...

  16. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-03-01

    In this work, micro- and nanoparticles of porous silicon (PSi) are demonstrated to act as effective carrier for the controlled delivery of acyclovir (ACV). PSi films prepared by electrochemical etching were fractured by ultrasonication to prepare micro- and nanoparticles. PSi native particles were thermally oxidized (TOPSi) and thermally hydrosilylated using undecylenic acid (UnPSi). PSi particles with three different surface chemistries were then loaded with ACV by physical adsorption and covalent attachment. Such particles were characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. In vitro ACV release experiments in phosphate buffered saline showed sustained release behaviour from both micro- and nanoparticles and order of release was found to be native PSi > TOPSi > UnPSi. Drug release kinetics study using Korsmeyer-Peppas model suggested a combination of both drug diffusion and Si scaffold erosion based drug release mechanisms.

  17. Gate-controlled resonant interband tunneling in silicon

    SciTech Connect

    Sedlmaier, S.; Bhuwalka, Krishna K.; Ludsteck, A.; Schmidt, M.; Schulze, J.; Hansch, W.; Eisele, I.

    2004-09-06

    We present gate-controlled resonant interband tunneling on silicon <111>. The investigated structure principally consists of a vertical, gated p-i-n diode grown by molecular beam epitaxy. We evaluated the surface tunnel current from a gate-induced two-dimensional electron channel into the quantized hole states of a degenerately doped {delta}p{sup +} layer. This current reveals a negative differential resistance due to resonant interband tunneling in the forward biased p-i-n diode at 200 K. Even at room temperature the influence of this tunnel mechanism is observed. The experimental results are in good agreement with simulated band diagrams and their dependence on the applied voltages.

  18. Creating New VLS Silicon Nanowire Contact Geometries by Controlling Catalyst Migration.

    PubMed

    Alam, Sardar B; Panciera, Federico; Hansen, Ole; Mølhave, Kristian; Ross, Frances M

    2015-10-14

    The formation of self-assembled contacts between vapor-liquid-solid grown silicon nanowires and flat silicon surfaces was imaged in situ using electron microscopy. By measuring the structural evolution of the contact formation process, we demonstrate how different contact geometries are created by adjusting the balance between silicon deposition and Au migration. We show that electromigration provides an efficient way of controlling the contact. The results point to novel device geometries achieved by direct nanowire growth on devices. PMID:26367351

  19. Polarity Control in Double-Gate, Gate-All-Around Vertically Stacked Silicon Nanowire FETs

    E-print Network

    De Micheli, Giovanni

    Polarity Control in Double-Gate, Gate-All-Around Vertically Stacked Silicon Nanowire FETs M. De stacked Double Gate (DG) Silicon Nanowire (SiNW) FETs, featuring two Gate-All-Around (GAA) electrodes (Fig of nanowires, without requiring complex transfer procedures of pre-grown nanowires on a final substrate

  20. Electric field control of donor pair diatomic molecules in silicon

    NASA Astrophysics Data System (ADS)

    Baena, Alejandra; Saraiva, Andre; Calderón, María J.; Koiller, Belita

    2015-03-01

    Single donors are well-established building blocks for engineering electronic properties of semiconductors, acting effectively as giant hydrogen atoms. Donor pairs, analogous to effective hydrogen molecules, were recently investigated in the strongly interacting regime in silicon. In this regime, electric field control renders timid results. Pairs that are more distant are more susceptible to external fields, and may harbour single electron charge control. Theoretically, the molecular quantum mechanics analogy between a donor pair and the H2 molecule in vacuum is not as straightforward as it may seem. A detailed understanding of the electronic structure of these molecular systems is a current challenge. We analyze the lowest energy states within effective mass theory, including central cell corrected donor potential effects and the conduction band multiplicity in Si. The spectrum of ionized donor pairs and its response to an external electric field will be presented. We contemplate possible advantages of heteropolar diatomic molecules, e.g, Sb -As pairs, as more efficient elements for such devices and applications.

  1. 3654 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 11, NOVEMBER 2014 Polarity-Controllable Silicon Nanowire Transistors

    E-print Network

    De Micheli, Giovanni

    -Controllable Silicon Nanowire Transistors With Dual Threshold Voltages Jian Zhang, Student Member, IEEE, Michele De) silicon nanowires enable an unprecedented electrostatic control on the semiconductor channel that can push propose a silicon nanowire tran- sistor with three independent GAA electrodes, demonstrating, within

  2. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect

    Loh, G. C.; Baillargeat, D.

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  3. AVERAGE DENSITIES AND LINEAR RECTIFIABILITY OF MEASURES

    E-print Network

    Mörters, Peter

    AVERAGE DENSITIES AND LINEAR RECTIFIABILITY OF MEASURES P. M ¨ ORTERS Abstract: We show that a measure on IR d is linearly rectifiable if and only if the lower 1­density is positive and finite Radon measure on IR d and ff â?? 0. The lower ff­density of ¯ at x is the number d ff (¯; x) = lim inf t#0

  4. Optical Control of Donor Spin Qubits in Silicon

    E-print Network

    M. J. Gullans; J. M. Taylor

    2015-10-26

    We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the goup-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon $\\Lambda$-transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective $\\Lambda$-transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons.

  5. Optical control of donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Gullans, M. J.; Taylor, J. M.

    2015-11-01

    We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, and Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the group-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon ? transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective ? transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons.

  6. Noise-compensating pulses for electrostatically controlled silicon spin qubits

    E-print Network

    Xin Wang; Fernando A. Calderon-Vargas; Muhed S. Rana; Jason P. Kestner; Edwin Barnes; Sankar Das Sarma

    2014-10-21

    We study the performance of SUPCODE---a family of dynamically correcting pulses designed to cancel simultaneously both Overhauser and charge noise for singlet-triplet spin qubits---adapted to silicon devices with electrostatic control. We consider both natural Si and isotope-enriched Si systems, and in each case we investigate the behavior of individual gates under static noise and perform randomized benchmarking to obtain the average gate error under realistic 1/f noise. We find that in most cases SUPCODE pulses offer roughly an order of magnitude reduction in gate error, and especially in the case of isotope-enriched Si, SUPCODE yields gate operations of very high fidelity. We also develop a version of SUPCODE that cancels the charge noise only, "$\\delta J$-SUPCODE", which is particularly beneficial for isotope-enriched Si devices where charge noise dominates Overhauser noise, offering a level of error reduction comparable to the original SUPCODE while yielding gate times that are 30% to 50% shorter. Our results show that the SUPCODE noise-compensating pulses provide a fast, simple, and effective approach to error suppression, bringing gate errors well below the quantum error correction threshold in principle.

  7. Noise-compensating pulses for electrostatically controlled silicon spin qubits

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Calderon-Vargas, F. A.; Rana, Muhed S.; Kestner, J. P.; Barnes, Edwin; Das Sarma, S.

    2014-10-01

    We study the performance of supcode—a family of dynamically correcting pulses designed to cancel simultaneously both Overhauser and charge noise for singlet-triplet spin qubits—adapted to silicon devices with electrostatic control. We consider both natural Si and isotope-enriched Si systems, and in each case we investigate the behavior of individual gates under static noise and perform randomized benchmarking to obtain the average gate error under realistic 1/f noise. We find that in most cases supcode pulses offer roughly an order of magnitude reduction in gate error, and especially in the case of isotope-enriched Si, supcode yields gate operations of very high fidelity. We also develop a version of supcode that cancels the charge noise only, "?J-supcode," which is particularly beneficial for isotope-enriched Si devices where charge noise dominates Overhauser noise, offering a level of error reduction comparable to the original supcode while yielding gate times that are 30%-50% shorter. Our results show that the supcode noise-compensating pulses provide a fast, simple, and effective approach to error suppression, bringing gate errors well below the quantum error correction threshold in principle.

  8. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  9. Vacuum-stripped silicone binder for thermal-control paint

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Rogers, F. O.

    1973-01-01

    Silicone elastomer is placed in evacuating system, heated to 160 C and held at this temperature for 24 hours. Elastomer is then cooled to room temperature in vacuum, producing upgraded, low outgassing polymer of increased molecular weight.

  10. Geometry control of recrystallized silicon wafers for solar applications

    E-print Network

    Ruggiero, Christopher W

    2009-01-01

    The cost of manufacturing crystalline silicon wafers for use in solar cells can be reduced by eliminating the waste streams caused by sawing ingots into individual wafers. Professor Emanuel Sachs has developed a new method ...

  11. Silicon-Wire Waveguide Based External Cavity Laser for Milliwatt-Order Output Power and Temperature Control Free Operation with Silicon Ring Modulator

    NASA Astrophysics Data System (ADS)

    Jeong, Seok-Hwan; Tanaka, Shinsuke; Sekiguchi, Shigeaki; Kurahashi, Teruo; Hatori, Nobuaki; Akiyama, Suguru; Usuki, Tatsuya; Yamamoto, Tsuyoshi; Akiyama, Tomoyuki; Tanaka, Yu; Morito, Ken

    2012-08-01

    We report a novel hybrid laser based on a silicon-wire external cavity filter. We characterize the hybrid silicon laser from the viewpoint of high output extraction efficiency and temperature control free operation with a silicon microring resonator. First, it is experimentally verified that output extraction efficiency of the laser is significantly improved by locating an optical coupler within the laser cavity. As a result, we show mW-order output power and wall-plug efficiency of ˜0.9%. In addition, we demonstrate that the operating window of the silicon microring modulator is adaptable to the oscillation wavelength of the hybrid silicon laser in regard to temperature change of a silicon substrate from 25 to 55 °C.

  12. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  13. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  14. Controls on silicon cycling in Southeast Asian rice production systems

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Marxen, Anika; Vetterlein, Doris; Jahn, Reinhold

    2013-04-01

    Recent research suggests that silicon (Si) is beneficial for rice plants, i.e., a sufficient Si supply improves their resistance against pests and pathogens and increases the uptake of essential nutrients. Despite its potential importance for rice yields, cycling of Si in rice production systems is poorly studied. We assess plant-available Si (Sipa; determined using acetate extraction) in topsoils (Ap+Arp horizons) and Si uptake by plants at 70 paddy fields managed by local farmers in contrasting regions of Vietnam and the Philippines. First results show that Sipa contents are considerably larger in Philippine (217 ± 100 mg Sipa kg-1 ) than in Vietnamese (32 ± 19 mg Sipa kg-1) paddy soils. Rice straw from the Philippines contains 8.6 ± 0.9 % Si, straw from Vietnam 5.0 ± 1.2 % Si. Laboratory experiments showed that Si is limiting the growth of rice plants in some of the Vietnamese soils. We assume that differences in geo-/ pedologic conditions between Vietnam and the Philippines explain the data. Large Sipa contents in the Philippine soils are due to recent rock formation by active volcanism, hence, by a large Sipa input due to mineral weathering in recent geologic history. In contrast, parent materials of the Vietnamese paddy soils derive from old and highly weathered land surfaces. Hence, our data suggest that geo-/pedologic conditions are the main control for the availability of Si in paddy soils. Currently, we examine the relevance of agricultural practices for small-scale differences in the availability of Si within regions. Inadequate practices, such as removal of rice straw from the fields, might deplete Sipa in paddy soils causing a decrease in rice yields in some regions of Vietnam. We investigate the role of phytoliths (amorphous Si bodies contained in rice straw) as source of Sipa in paddy soils. Our methods include laboratory experiments and the assessment of turnover times of phytoliths in paddy soils; first results will be presented and discussed at the EGU conference.

  15. A multipurpose transducer for a rectifier dc motor

    NASA Astrophysics Data System (ADS)

    Ryzhikov, E. D.; Salikov, L. M.

    1983-08-01

    The rotational speed of rectifier dc motors can be controlled over a wide range by using a pulsed tachometric transducer in which the pulse repetition rate does not change significantly with the rotational speed of the motor. It is shown that such a transducer can be implemented using a mag slip, a three-phase excitation winding with a stationary magnetic core, a signal winding, and a rotating magnetic circuit comprising a plate and a ring. Such a design makes it possible to obtain information on both the rpm and the position of the rotor by using a single signal core.

  16. Novel plasma control method in PECVD for preparing microcrystalline silicon

    SciTech Connect

    Nishimiya, T.; Kondo, M.; Matsuda, A.

    1997-07-01

    A novel plasma enhanced vapor deposition (PECVD) technique employing biased wall (BW) method has been developed for the enhanced growth rate of the hydrogenated microcrystalline silicon ({micro}c-Si:H) films. Using this method, the authors have achieved a growth rate of more than 6{angstrom}/sec for the formation of {micro}c-Si:H having an average grain size of 200{angstrom} at 350 C.

  17. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If...

  18. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If...

  19. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  20. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  1. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  2. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If...

  3. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If...

  4. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If...

  5. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  6. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  7. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that...

  8. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  9. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where...

  10. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.

  11. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.

  12. Controlling optical properties and surface morphology of dry etched porous silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.-K.; Roche, Philip J. R.; Hajj-Hassan, Mohamad; Kirk, Andrew G.; Mi, Zetian; Chodavarapu, Vamsy P.

    2011-01-01

    Porous silicon is a potentially useful substrate for fluorescence and scattering enhancement, with a large surface to volume ratio and thermal stability providing a potentially regenerable host matrix for sensor development. A simple process using XeF2 gas phase etching for creating porous silicon is explained. Moreover, how pores diameter can be controlled reproducibly with commensurate effects upon the silicon reflection and pore distribution is discussed. In previous work with this new system, it was clear that control on pore size and morphology was required and a systematic optimization of process conditions was performed to produce greater consistency of the result. The influence of the duration of the pre-etching processing in HF, concentration of the HF in the pre-etching process, and the XeF2 exposure time during the dry etching on surface morphology, pore size, and optical reflectance is explored.

  13. CONTROLLED MOLECULAR ADSORPTION ON SILICON: Laying a Foundation for Molecular Devices

    NASA Astrophysics Data System (ADS)

    Wolkow, Robert A.

    1999-10-01

    This review is about understanding and controlling organic molecular adsorption on silicon. The goal is to provide a microscopic picture of structure and bonding in covalently attached molecule-silicon surface systems. The bias here is that an unprecedented, detailed understanding of adsorbate-surface structures is required in order to gain the control necessary to incorporate organic function into existing technologies or, eventually, to make new molecule-scale devices. A discussion of recent studies of adsorbate structure is presented. This includes simple alkenes, polyenes, benzene, and carene adsorbed on Si(100). Also included is a discussion of wet chemical procedures for forming alkyl and alkoxy covalently functionalized silicon. These discussions are presented together with comments on the related issues of adsorption dynamics and nano-scale manipulation in an effort to point the way toward principles and procedures that will allow the hybrid properties of organic molecules and surfaces to be harnessed.

  14. Controlled modification of erbium lifetime in silicon dioxide with metallic Jiming Bao,a

    E-print Network

    Bao, Jiming

    energies. © 2007 American Institute of Physics. DOI: 10.1063/1.2785134 Erbium is a rare-earth elementControlled modification of erbium lifetime in silicon dioxide with metallic overlayers Jiming Bao energies in SiO2 films coated with different metals titanium and chromium . The lifetime shows a strong

  15. Fabrication and laser control of double-paddle silicon oscillators L. Haibergera

    E-print Network

    Schiller, Stephan

    Fabrication and laser control of double-paddle silicon oscillators L. Haibergera Institut für 18 March 2005 We describe a fabrication technique for double-paddle oscillators based solely on wet achieved is the highest demonstrated so far at room temperature. The fabrication procedure, not involving

  16. Controlling Dopant Profiles in Hyperdoped Silicon by Modifying Dopant Evaporation Rates During Pulsed Laser Melting

    SciTech Connect

    Recht, D.; Sullivan, J. T.; Reedy, R.; Buonassisi, T.; Aziz, M. J.

    2012-03-12

    We describe a method to control the sub-surface dopant profile in 'hyperdoped' silicon fabricated by ion implantation and pulsed laser melting. Dipping silicon ion implanted with sulfur into hydrofluoric acid prior to nanosecond pulsed laser melting leads to a tenfold increase in the rate of sulfur evaporation from the surface of the melt. This results in an 80% reduction of the near-surface dopant concentration, effectively embedding the hyperdoped region in a layer up to 180 nm beneath the surface. This method should facilitate the development of blocked impurity band devices.

  17. Surface photovoltage method for the quality control of silicon epitaxial layers on sapphire

    SciTech Connect

    Yaremchuk, A. F.; Starkov, A. V.; Zaikin, A. V.; Alekseev, A. V.; Sokolov, E. M.

    2014-12-15

    The surface photovoltage method is used to study “silicon-on-sapphire” epitaxial layers with a thickness of 0.3–0.6 ?m, which are used to fabricate p-channel MOS (metal—oxide-semiconductor) transistors with improved radiation hardness. It is shown that the manner in which the photoconductivity of the epitaxial layer decays after the end of a light pulse generated by a light-emitting diode (wavelength ?400 nm) strongly depends on the density of structural defects in the bulk of the structure. This enables control over how a “silicon-on-sapphire” structure is formed to provide the manufacturing of MOS structures with optimal operating characteristics.

  18. Controlling the intrinsic bending of hetero-epitaxial silicon carbide micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Ranjbar Kermany, Atieh; Iacopi, Francesca

    2015-10-01

    We introduce a simple methodology to predict and tailor the intrinsic bending of a cantilever made of a single thin film of hetero-epitaxial silicon carbide grown on silicon. The combination of our novel method for the depth profiling of residual stress with a few nm resolution with finite element modelling allows for the prediction of the bending behaviour with great accuracy. We also demonstrate experimentally that a silicon carbide cantilever made of one distinct film type can be engineered to obtain the desired degree of either upward, flat, or downward bending, by selecting the appropriate thickness and cantilever geometry. A precise control of cantilever bending is crucial for microelectrical mechanical system applications such as micro-actuators, micro-switches, and resonant sensors.

  19. Coherent control of single spins in silicon carbide at room temperature.

    PubMed

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology. PMID:25437256

  20. Energy-harvesting shock absorber with a mechanical motion rectifier

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  1. Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz

    NASA Technical Reports Server (NTRS)

    Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.

    2011-01-01

    A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.

  2. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  3. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  4. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  5. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  6. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  7. Development of high temperature gallium phosphide rectifiers

    NASA Technical Reports Server (NTRS)

    Craford, M. G.; Keune, D. L.

    1972-01-01

    Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.

  8. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles.

    PubMed

    Chen, Huan; Wang, Hui; Zhang, Xiao-Hong; Lee, Chun-Sing; Lee, Shuit-Tong

    2010-03-10

    Silicon nanowires (SiNWs) having curved structures may have unique advantages in device fabrication. However, no methods are available to prepare curved SiNWs controllably. In this work, we report the preparation of three types of single-crystal SiNWs with various turning angles via metal-assisted chemical etching using (111)-oriented silicon wafers near room temperature. The zigzag SiNWs are single crystals and can be p- or n-doped using corresponding Si wafer as substrate. The controlled growth direction is attributed to the preferred movement of Ag nanoparticles along 001 and other directions in Si wafer. Our results demonstrate that metal-assisted chemical etching may be a viable approach to fabricate SiNWs with desired turning angles by utilizing the various crystalline directions in a Si wafer. PMID:20104856

  9. High precision quantum control of single donor spins in silicon

    E-print Network

    Rajib Rahman; Cameron J. Wellard; Forrest R. Bradbury; Marta Prada; Jared H. Cole; Gerhard Klimeck; Lloyd C. L. Hollenberg

    2007-05-15

    The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurements. The TB electronic structure calculations included over 3 million atoms. In contrast to previous effective mass based results, the quadratic Stark coefficient obtained from both theories agrees closely with the experiments. This work represents the most sensitive and precise comparison between theory and experiment for single donor spin control. It is also shown that there is a significant linear Stark effect for an impurity near the interface, whereas, far from the interface, the quadratic Stark effect dominates. Such precise control of single donor spin states is required particularly in quantum computing applications of single donor electronics, which forms the driving motivation of this work.

  10. Neural induction suppresses early expression of the inward-rectifier K+ channel in the ascidian blastomere.

    PubMed Central

    Okamura, Y; Takahashi, K

    1993-01-01

    1. Early expression of ion channels following neural induction was examined in isolated, cleavage-arrested blastomeres from the ascidian embryo using a two-electrode voltage clamp. Currents were recorded from the isolated, cleavage-arrested blastomere, a4-2, after treatment with serine protease, subtilisin, which induces neural differentiation as consistently as cell contact. 2. The inward-rectifier K+ current increased at the late gastrula stage shortly after the sensitive period for neural induction both in the induced (protease-treated) and uninduced cells. Ca2+ channels, characteristic of epidermal-type differentiation, and delayed-rectifier K+ channels and differentiated-type Na+ channels, characteristic of neural-type differentiation appeared much later than the inward-rectifier K+ channels, at a time corresponding to the tail bud stage of the intact embryo. 3. When cells were treated with subtilisin during the critical period for neural induction, the increase in the inward-rectifier K+ current from the late gastrula stage to the neurula stage was about three times smaller (3.67 +/- 1.74 nA, mean +/- S.D., n = 14) than in untreated cells (11.25 +/- 3.10 nA, n = 26). The same changes in the inward-rectifier K+ channel were also observed in a4 2 blastomeres which were induced by cell contact with an A4-1 blastomere. However, when cells were treated with subtilisin after the critical period for neural induction, the amplitude of the inward-rectifier K+ current was the same as in untreated cells. Thus the expressed level of the inward-rectifier K+ channel was linked to the determination of neural or epidermal cell types. 4. There was no significant difference in the input capacitance of induced and uninduced cells, indicating that the difference in the amplitude of the inward-rectifier K+ currents derived from a difference in the channel density rather than a difference in cell surface area. 5. The expression of the inward-rectifier K+ channel at the late gastrula stage was sensitive to alpha-amanitin, a highly specific transcription inhibitor. In both induced and uninduced cells, injection of alpha-amanitin at the 32-cell stage reduced the current density of the inward-rectifier K+ channel to about 2 nA/nF, corresponding to 13% of that recorded from uninjected cells. By contrast, the expression of the fast-inactivating-type Na+ current, which transiently increased along with the inward-rectifier K+ channel, was resistant to alpha-amanitin injection. 6. The dose of alpha-amanitin injected was controlled by monitoring co-injected fluorescent dye, fura-2.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 6 Fig. 8 Fig. 11 PMID:8246182

  11. Quantum Entanglement and Spin Control in Silicon Nanocrystal

    PubMed Central

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure 29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of 29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of 29Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution. PACS numbers: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj PMID:23028884

  12. SLiM-cut thin silicon wafering with enhanced crack and stress control

    NASA Astrophysics Data System (ADS)

    Vaes, Jan; Masolin, Alex; Pesquera, Amaia; Dross, Frédéric

    2010-08-01

    The 'Stress induced LIft-off Method' (SLiM-Cut) is a kerf-free method for thin silicon fabrication, being developed at imec for photovoltaic applications [1]. This method makes particularly efficient use of bulk material, thus cutting down the Si cost. SLIM-Cut uses a metallic layer on top of thick silicon substrate. The bonding is achieved at high temperature. Quenching the assembly down to room temperature builds up stress inside the material. The system relaxes by propagating a crack parallel to the metal-silicon interface. The propagation of this crack over the entire surface allows the formation of a silicon foil. The choice of the stress inducing layer is of the utmost importance: (1) the interfacial strength has to be high enough for the crack to grow in the Si lattice, (2) the metal migration has to be limited in order not to compromise the PV conversion efficiency, and (3) the deposition method of the stressing layer should be compatible with PV cell processing. The focus is laid on the two main compromises of the technology today: the precise control of the stress applied to the substrate, and the metal-Si interface. Regarding the control of the stress applied, we have intentionally initiated the crack. Better control of the crack propagation was demonstrated. Tuning of the temperature becomes therefore possible and lift-off was achieved for temperature processing as low as 700°C. Although all crystal orientations (including <100>) have been successfully lifted-off, the choice of the crystal orientation influences strongly the final result. Regarding the metal-Si interface, a detail elemental study has enabled us to identify the composition of the interface layers responsible for good adhesion to the Si. This investigation is also the first step to the engineering of specific paste and cleaning solutions.

  13. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Laube, J. Gutsch, S.; Hiller, D.; Zacharias, M.; Bruns, M.; Kübel, C.; Weiss, C.

    2014-12-14

    This paper reports the growth of silicon nanocrystals (SiNCs) from SiH4–O{sub 2} plasma chemistry. The formation of an oxynitride was avoided by using O{sub 2} instead of the widely used N{sub 2}O as precursor. X-ray photoelectron spectroscopy is used to prove the absence of nitrogen in the layers and determine the film stoichiometry. It is shown that the Si rich film growth is achieved via non-equilibrium deposition that resembles a interphase clusters mixture model. Photoluminescence and Fourier transformed infrared spectroscopy are used to monitor the formation process of the SiNCs, to reveal that the phase separation is completed at lower temperatures as for SiNCs based on oxynitrides. Additionally, transmission electron microscopy proves that the SiNC sizes are well controllable by superlattice configuration, and as a result, the optical emission band of the Si nanocrystal can be tuned over a wide range.

  14. Functional expression of a vertebrate inwardly rectifying K+ channel in yeast.

    PubMed Central

    Tang, W; Ruknudin, A; Yang, W P; Shaw, S Y; Knickerbocker, A; Kurtz, S

    1995-01-01

    We describe the expression of gpIRK1, an inwardly rectifying K+ channel obtained from guinea pig cardiac cDNA. gpIRK1 is a homologue of the mouse IRK1 channel identified in macrophage cells. Expression of gpIRK1 in Xenopus oocytes produces inwardly rectifying K+ current, similar to the cardiac inward rectifier current IK1. This current is blocked by external Ba2+ and Cs+. Plasmids containing the gpIRK1 coding region under the transcriptional control of constitutive (PGK) or inducible (GAL) promoters were constructed for expression in Saccharomyces cerevisiae. Several observations suggest that gpIRK1 forms functional ion channels when expressed in yeast. gpIRK1 complements a trk1 delta trk2 delta strain, which is defective in potassium uptake. Expression of gpIRK1 in this mutant restores growth on low potassium media. Growth dependent on gpIRK1 is inhibited by external Cs+. The strain expressing gpIRK1 provides a versatile genetic system for studying the assembly and composition of inwardly rectifying K+ channels. Images PMID:8534918

  15. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  16. Average densities, tangent measures and rectifiability Peter Morters

    E-print Network

    Mörters, Peter

    Average densities, tangent measures and rectifiability Peter M¨orters Universit¨at Kaiserslautern and average densities of measures We consider a nonnegative, nonzero Radon measure ¯ on IR d and let ff â?? 0 to the notions of average densities and tangent measures. Many of the classical criteria for rectifiability

  17. Conditional Control of Donor Nuclear Spins in Silicon Using Stark Shifts

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Gary; Urdampilleta, Matias; Thewalt, Mike L. W.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Morton, John J. L.

    2014-10-01

    Electric fields can be used to tune donor spins in silicon using the Stark shift, whereby the donor electron wave function is displaced by an electric field, modifying the hyperfine coupling between the electron spin and the donor nuclear spin. We present a technique based on dynamic decoupling of the electron spin to accurately determine the Stark shift, and illustrate this using antimony donors in isotopically purified silicon-28. We then demonstrate two different methods to use a dc electric field combined with an applied resonant radio-frequency (rf) field to conditionally control donor nuclear spins. The first method combines an electric-field induced conditional phase gate with standard rf pulses, and the second one simply detunes the spins off resonance. Finally, we consider different strategies to reduce the effect of electric field inhomogeneities and obtain above 90% process fidelities.

  18. Lateral resistance reduction induced by light-controlled leak current in silicon-based Schottky junction

    NASA Astrophysics Data System (ADS)

    Wang, Shuan-Hu; Zhang, Xu; Zou, Lv-Kuan; Zhao, Jing; Wang, Wen-Xin; Sun, Ji-Rong

    2015-10-01

    Lateral resistance of silicon-based p-type and n-type Schottky junctions is investigated. After one electrode on a metallic film is irradiated, the differential lateral resistance of the system is dependent on the direction of the bias current: it keeps constant in one direction and decreases in the opposite direction. By systematically investigating the electrical potential changes in silicon and the junction, we propose a new mechanism based on light-controlled leak current. Our work provides an insight into the nature of this phenomenon and will facilitate the advanced design of switchable devices. Project supported by the National Basic Research Program of China (Grant No. 2011CB921801) and the National Natural Science Foundation of China (Grant No. 111374348).

  19. Photoluminescent logic gate controlled by the optical Kerr effect exhibited by porous silicon

    NASA Astrophysics Data System (ADS)

    de la Mora, M. B.; Torres-Torres, C.; Nava, R.; Trejo-Valdez, M.; Reyes-Esqueda, J. A.

    2014-07-01

    The magnitude of the third order optical susceptibility exhibited by porous silicon monolayers was measured by a non-degenerated vectorial two-wave interaction. Optical irradiations at 488 nm and 532 nm wavelengths were employed to carry out the nonlinear optical experiments. Compared to bulk silicon material, a noticeable enhancement in the third order nonlinear optical response was identified. Photoluminescence and photoconductive properties were evaluated for the two studied wavelengths. The photoluminescent logic gate function AND was experimentally demonstrated using as a control a reflective optical Kerr gate configuration. A perceptible contribution for the third order optical nonlinearities seems to be related to the optical Kerr effect originated by excited states population. A two-level model was considered in order to describe the observed optical behavior.

  20. Conditional control of donor nuclear spins in silicon using stark shifts.

    PubMed

    Wolfowicz, Gary; Urdampilleta, Matias; Thewalt, Mike L W; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Morton, John J L

    2014-10-10

    Electric fields can be used to tune donor spins in silicon using the Stark shift, whereby the donor electron wave function is displaced by an electric field, modifying the hyperfine coupling between the electron spin and the donor nuclear spin. We present a technique based on dynamic decoupling of the electron spin to accurately determine the Stark shift, and illustrate this using antimony donors in isotopically purified silicon-28. We then demonstrate two different methods to use a dc electric field combined with an applied resonant radio-frequency (rf) field to conditionally control donor nuclear spins. The first method combines an electric-field induced conditional phase gate with standard rf pulses, and the second one simply detunes the spins off resonance. Finally, we consider different strategies to reduce the effect of electric field inhomogeneities and obtain above 90% process fidelities. PMID:25375741

  1. Gate-controlled-diodes in silicon-on-sapphire: A computer simulation

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1974-01-01

    The computer simulation of the electrical behavior of a Gate-Controlled Diode (GCD) fabricated in Silicon-On-Sapphire (SOS) was described. A procedure for determining lifetime profiles from capacitance and reverse current measurements on the GCD was established. Chapter 1 discusses the SOS structure and points out the need of lifetime profiles to assist in device design for GCD's and bipolar transistors. Chapter 2 presents the one-dimensional analytical formula for electrostatic analysis of the SOS-GCD which are useful for data interpretation and setting boundary conditions on a simplified two-dimensional analysis. Chapter 3 gives the results of a two-dimensional analysis which treats the field as one-dimensional until the silicon film is depleted and the field penetrates the sapphire substrate. Chapter 4 describes a more complete two-dimensional model and gives results of programs implementing the model.

  2. Polypropylene vs silicone Ahmed valve with adjunctive mitomycin C in paediatric age group: a prospective controlled study

    PubMed Central

    El Sayed, Y; Awadein, A

    2013-01-01

    Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403

  3. Candidate locations for SPS rectifying antennas

    NASA Technical Reports Server (NTRS)

    Eberhardt, A. W.

    1977-01-01

    The feasibility of placing 120 Satellite Power System (SPS) rectifying antenna (rectenna) sites across the U.S. was studied. An initial attempt is made to put two land sites in each state using several land site selection criteria. When only 69 land sites are located, it is decided to put the remaining sites in the sea and sea site selection criteria are identified. An estimated projection of electrical demand distribution for the year 2000 is then used to determine the distribution of these sites along the Pacific, Atlantic, and Gulf Coasts. A methodology for distributing rectenna sites across the country and for fine-tuning exact locations is developed, and recommendations on rectenna design and operations are made.

  4. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  5. Improved quality control of silicon wafers using novel off-line air pocket image analysis

    NASA Astrophysics Data System (ADS)

    Valley, John F.; Sanna, M. Cristina

    2014-08-01

    Air pockets (APK) occur randomly in Czochralski (Cz) grown silicon (Si) crystals and may become included in wafers after slicing and polishing. Previously the only APK of interest were those that intersected the front surface of the wafer and therefore directly impacted device yield. However mobile and other electronics have placed new demands on wafers to be internally APK-free for reasons of thermal management and packaging yield. We present a novel, recently patented, APK image processing technique and demonstrate the use of that technique, off-line, to improve quality control during wafer manufacturing.

  6. Controlling the spectrum of photons generated on a silicon nanophotonic chip.

    PubMed

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  7. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    PubMed Central

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  8. Silicon-based nanoelectronic field-effect pH sensor with local gate control Yu Chen, Xihua Wang, Shyamsunder Erramilli, and Pritiraj Mohantya

    E-print Network

    Mohanty, Raj

    H sensor engineered from a functionalized silicon nanowire. With this nanofabricated pH sensor, the changeSilicon-based nanoelectronic field-effect pH sensor with local gate control Yu Chen, Xihua Wang on the nanowire sensor allows field-effect control of the surface charge on the nanowire by controlling

  9. Current self-complianced and self-rectifying resistive switching in Ag-electroded single Na-doped ZnO nanowires.

    PubMed

    Qi, Jing; Huang, Jian; Paul, Dennis; Ren, Jingjian; Chu, Sheng; Liu, Jianlin

    2013-04-01

    We demonstrate current self-complianced and self-rectifying bipolar resistive switching in an Ag-electroded Na-doped ZnO nanowire device. The resistive switching is controlled by the formation and rupture of an Ag nanoisland chain on the surface along the Na-doped ZnO nanowire. Na-doping plays important roles in both the self-compliance and self-rectifying properties. PMID:23456175

  10. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    NASA Astrophysics Data System (ADS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-02-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of -40 to 60?°C with an error of less than ±0.05?°C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55?°C with an error of less than 0.2?°C. The scale factor can be stabilized at 8.7?mV/°/s with a temperature coefficient of 33?ppm?°C-1. ZRO (zero rate output) instability is decreased from 1.10°/s (9.5?mV) to 0.08°/s (0.7?mV) when the temperature control system is implemented over an ambient temperature range of -40 to 60?°C.

  11. Improved performance alternator with fully integrated Switched-Mode Rectifier

    E-print Network

    Mesa, Armando

    2008-01-01

    The use of Power Electronic circuits has helped to advance the technology of automotive alternators. The use of a Switched-Mode Rectifier (SMR) allows the alternator to run at a load-matched condition, optimizing power and ...

  12. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Maximal rectification ratios for idealized bi-segment thermal rectifiers

    PubMed Central

    Shih, Tien-Mo; Gao, Zhaojing; Guo, Ziquan; Merlitz, Holger; Pagni, Patrick J.; Chen, Zhong

    2015-01-01

    Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (?) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal ?max/?min, where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers. PMID:26238970

  14. Simultaneous phosphorus and Si self-diffusion in extrinsic, isotopically controlled silicon heterostructures

    SciTech Connect

    Silvestri, Hughes H.; Bracht, Hartmut A.; Sharp, Ian D.; Hansen, John; Nylandsted-Larsen, Arne; Haller, Eugene E.

    2003-04-22

    We present experimental results of impurity and self-diffusion in an isotopically controlled silicon heterostructure extrinsically doped with phosphorus. As a consequence of extrinsic doping, the concentration of singly negatively charged native defects is enhanced and the role of these native defect charge states in the simultaneous phosphorus and Si self-diffusion can be determined. Multilayers of isotopically controlled {sup 28}Si and natural silicon enable simultaneous analysis of {sup 30}Si self-diffusion into the {sup 28}Si enriched layers and phosphorus diffusion throughout the multilayer structure. An amorphous 260 nm thick Si cap layer was deposited on top of the Si isotope heterostructure. The phosphorus ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer, preventing the generation of excess native defects and enabling the determination of the Si self-diffusion coefficient and the phosphorus diffusivity under equilibrium conditions. These samples were annealed at temperatures between 950 and 1100 C to study the diffusion. Detailed analysis of the diffusion process was performed on the basis of a P diffusion model which involves neutral and positively charged mobile P species and neutral and singly negatively charged self-interstitial.

  15. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1?K. It is shown that the phonon mean-free-path ? is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ?, even when the surface is fairly smooth, 5–10?nm rms, and the peak thermal wavelength is 0.6??m. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30?nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ?, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  16. Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.

    PubMed

    Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit

    2015-07-28

    The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ? ? 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process. PMID:26135844

  17. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  18. Silicon-based current-controlled reconfigurable magnetoresistance logic combined with non-volatile memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhong; Luo, Zhaochu

    2015-03-01

    Silicon-based complementary metal-oxide-semiconductor (CMOS) transistors have achieved great success. However, the traditional development pathway is approaching its fundamental limits. Magnetoelectronics logic, especially magnetic-field-based logic, shows promise for surpassing the development limits of CMOS logic. Existing proposals of magnetic-field-based logic are based on exotic semiconductors and difficult for further technological implementation. We proposed a kind of diode-assisted geometry-enhanced low-magnetic-field magnetoresistance (MR) mechanism. It couples p-n junction's nonlinear transport characteristic and Lorentz force by geometry, and shows extremely large low-magnetic-field MR (>120% at 0.15 T) Further, it is applied to experimentally demonstrate current-controlled reconfigurable MR logic on the silicon platform at room temperature. This logic device could perform Boolean logic AND, OR, NAND and NOR in one device. Combined with non-volatile magnetic memory, this logic architecture has the advantages of current-controlled reconfiguration, zero refresh consumption, instant-on performance and would bridge the processor-memory gap.

  19. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J. (Richland, WA)

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  20. Phosphoinositide regulation of inward rectifier potassium (Kir) channels

    PubMed Central

    Fürst, Oliver; Mondou, Benoit; D'Avanzo, Nazzareno

    2014-01-01

    Inward rectifier potassium (Kir) channels are integral membrane proteins charged with a key role in establishing the resting membrane potential of excitable cells through selective control of the permeation of K+ ions across cell membranes. In conjunction with secondary anionic phospholipids, members of this family are directly regulated by phosphoinositides (PIPs) in the absence of other proteins or downstream signaling pathways. Different Kir isoforms display distinct specificities for the activating PIPs but all eukaryotic Kir channels are activated by PI(4,5)P2. On the other hand, the bacterial KirBac1.1 channel is inhibited by PIPs. Recent crystal structures of eukaryotic Kir channels in apo and lipid bound forms reveal one specific binding site per subunit, formed at the interface of N- and C-terminal domains, just beyond the transmembrane segments and clearly involving some of the key residues previously identified as controlling PI(4,5)P2 sensitivity. Computational, biochemical, and biophysical approaches have attempted to address the energetic determinants of PIP binding and selectivity among Kir channel isoforms, as well as the conformational changes that trigger channel gating. Here we review our current understanding of the molecular determinants of PIP regulation of Kir channel activity, including in context with other lipid modulators, and provide further discussion on the key questions that remain to be answered. PMID:24409153

  1. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.

    PubMed

    Drechsler, Navina; Zheng, Yue; Bohner, Anne; Nobmann, Barbara; von Wirén, Nicolaus; Kunze, Reinhard; Rausch, Christine

    2015-12-01

    Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K(+) in the roots relies on the concomitant loading of counteranions, like nitrate (NO3 (-)). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3 (-)-dependent K(+) translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3 (-) nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K(+) under low NO3 (-) supply. Because the depolarization-activated Stelar K(+) Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K(+) in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3 (-) translocation might affect xylem loading and root-to-shoot K(+) translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3 (-) regimes revealed that both proteins contribute to K(+) translocation from root to shoot. SKOR activity dominates under high NO3 (-) and low K(+) supply, whereas NPF7.3/NRT1.5 is required under low NO3 (-) availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis. PMID:26508776

  2. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis1[OPEN

    PubMed Central

    Drechsler, Navina; Zheng, Yue; Nobmann, Barbara; Rausch, Christine

    2015-01-01

    Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K+ in the roots relies on the concomitant loading of counteranions, like nitrate (NO3?). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3?-dependent K+ translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3? nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K+ under low NO3? supply. Because the depolarization-activated Stelar K+ Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K+ in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3? translocation might affect xylem loading and root-to-shoot K+ translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3? regimes revealed that both proteins contribute to K+ translocation from root to shoot. SKOR activity dominates under high NO3? and low K+ supply, whereas NPF7.3/NRT1.5 is required under low NO3? availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis. PMID:26508776

  3. Strain and Electric Field Control of Hyperfine Interactions for Donor Spin Qubits in Silicon

    E-print Network

    Usman, Muhammad; Rahman, Rajib; Klimeck, Gerhard; Simmons, Michelle Y; Rogge, Sven; Hollenberg, Lloyd C L

    2015-01-01

    Control of hyperfine interactions is a fundamental requirement for quantum computing architecture schemes based on shallow donors in silicon. However, at present, there is lacking an atomistic approach including critical effects of central-cell corrections and non-static screening of the donor potential capable of describing the hyperfine interaction in the presence of both strain and electric fields in realistically sized devices. We establish and apply a theoretical framework, based on atomistic tight-binding theory, to quantitatively determine the strain and electric field dependent hyperfine couplings of donors. Our method is scalable to millions of atoms, and yet captures the strain effects with an accuracy level of DFT method. Excellent agreement with the available experimental data sets allow reliable investigation of the design space of multi-qubit architectures, based on both strain-only as well as hybrid (strain+field) control of qubits. The benefits of strain are uncovered by demonstrating that a h...

  4. Silicon spintronics

    NASA Astrophysics Data System (ADS)

    Jansen, Ron

    2012-05-01

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  5. Novel micropatterns mechanically control fibrotic reactions at the surface of silicone implants.

    PubMed

    Majd, Hicham; Scherer, Saja S; Boo, Stellar; Ramondetti, Silvio; Cambridge, Elizabeth; Raffoul, Wassim; Friedrich, Michael; Pittet, Brigitte; Pioletti, Dominique; Hinz, Boris; Pietramaggiori, Giorgio

    2015-06-01

    Over the past decade, various implantable devices have been developed to treat diseases that were previously difficult to manage such diabetes, chronic pain, and neurodegenerative disorders. However, translation of these novel technologies into clinical practice is often difficult because fibrotic encapsulation and/or rejection impairs device function after body implantation. Ideally, cells of the host tissue should perceive the surface of the implant being similar to the normal extracellular matrix. Here, we developed an innovative approach to provide implant surfaces with adhesive protein micropatterns. The patterns were designed to promote adhesion of fibroblasts and macrophages by simultaneously suppressing fibrogenic activation of both cell types. In a rat model, subcutaneously implanted silicone pads provided with the novel micropatterns caused 6-fold lower formation of inflammatory giant cells compared with clinical grade, uncoated, or collagen-coated silicone implants. We further show that micropatterning of implants resulted in 2-3-fold reduced numbers of pro-fibrotic myofibroblast by inhibiting their mechanical activation. Our novel approach allows controlled cell attachment to implant surfaces, representing a critical advance for enhanced biointegration of implantable medical devices. PMID:25907047

  6. A randomized controlled trial comparing nonoxynol-9 lubricated condoms with silicone lubricated condoms for prophylaxis

    PubMed Central

    Roddy, R. E.; Cordero, M.; Ryan, K. A.; Figueroa, J.

    1998-01-01

    OBJECTIVE: We tested the effect of nonoxynol-9 (N-9) in condom lubrication on the risk of acquiring STD and genital discomfort. METHODS: The study was a triple masked, randomised controlled trial comparing N-9 lubricated condoms with plain silicone lubricated condoms among Dominican female sex workers. RESULTS: Randomisation provided two groups (313 for N-9 and 322 for plain) similar in baseline characteristics, but extensive loss to follow up occurred (56 women in each group completed the 24 week follow up). Most vaginal acts with clients were protected with condoms (99% of vaginal sex) but fewer acts with non-clients were protected (43% of vaginal sex). No significant differences occurred in rates of cervical infections (N-9 = 3.4 per 100 person months v plain = 2.8), trichomoniasis (N-9 = 2.8 v plain = 3.6), or discomfort rates (N-9 = 0.82 v plain = 0.92). CONCLUSIONS: Plain silicone lubricated condoms are as effective as N-9 lubricated condoms, cost less, have longer expected shelf life, and therefore may be the better condom to provide. ????? PMID:9634323

  7. Reflectance control for multicrystalline-silicon photovoltaic modules using textured-dielectric coatings

    SciTech Connect

    Gee, J.M.; Tardy, H.L.; Hund, T.D.; Gordon, R.; Liang, H.

    1995-01-01

    The authors describe a new approach for controlling the reflectance of photovoltaic modules with planar-surface solar cells. The new approach uses an optically thick, dielectric coating with a large refractive index and a textured surface; this dielectric coating is deposited on the planar-surface solar cell. The textured-dielectric coating works optically with the module encapsulation to promote optical confinement of rays inside the module encapsulation structure, which reduces the net reflectance of the photovoltaic module. The advantage of this approach is that deposition of a textured-dielectric film may be less costly and less intrusive on the cell manufacturing process than texturing multicrystalline-silicon substrates. The authors present detailed optical models and experimental confirmation of the new approach.

  8. Isolation and Control of Spins in Silicon Carbide with Millisecond-Coherence Times

    NASA Astrophysics Data System (ADS)

    Christle, David J.; Falk, Abram L.; Andrich, Paolo; Klimov, Paul V.; Awschalom, David D.; Hassan, Jawad Ul; Son, Nguyen T.; Janzén, Erik; Ohshima, Takeshi

    2015-03-01

    The elimination of defects from silicon carbide (SiC) has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because the electronic states of SiC defects can have sharp optical and spin transitions, they are increasingly recognized as a valuable resource for quantum-information and nanoscale-sensing applications. We demonstrate that individual electronic spin states of the divacancy defect in highly purified monocrystalline 4H-SiC can be isolated and coherently controlled. This defect has analogous behavior to the prominent nitrogen-vacancy center in diamond, yet exists in a material amenable to modern growth and microfabrication techniques. We spectroscopically identify the different forms of divacancies, and show that divacancy spins exhibit an exceptionally long ensemble Hahn-echo coherence time that exceeds one millisecond. Funding by NSF, AFOSR MURI, and the Knut & Alice Wallenberg Foundation is gratefully acknowledged.

  9. Electrical control of interfacial trapping for magnetic tunnel transistor on silicon

    SciTech Connect

    Lu, Y. Lacour, D.; Lengaigne, G.; Le Gall, S.; Suire, S.; Montaigne, F.; Hehn, M.; Wu, M. W.

    2014-01-27

    We demonstrate an electrical control of an interfacial trapping effect for hot electrons injected in silicon by studying a magnetic tunnel transistor on wafer bonded Si substrate. Below 25?K, hot electrons are trapped at the Cu/Si interface, resulting in collector current suppression through scattering in both parallel and antiparallel magnetic configurations. Consequently, the magneto-current ratio strongly decreases from 300% at 27?K to 30% at 22?K. The application of a relatively small electric field (?333?V/cm) across the Cu/Si interface is enough to strip the trapped electrons and restore the magneto-current ratio at low temperature. We also present a model taking into account the effects of both electric field and temperature that closely reproduces the experimental results and allows extraction of the trapping binding energy (?1.6?meV)

  10. Through-Silicon-Via Design with Clustering Structure and Adaptive Through-Silicon-Via Control for Three-Dimentional Solid-State-Drive Boost Converter System

    NASA Astrophysics Data System (ADS)

    Johguchi, Koh; Hatanaka, Teruyoshi; Takeuchi, Ken

    2012-02-01

    This paper presents a through-silicon-via (TSV) design methodology for three-dimentional solid-state-drive (3D-SSD) system with the 20 V boost converter. Although TSV technologies give compact packaging and high performance compared to the conventional wire-bonding technology, the parasitic resistors and capacitors of TSVs may cause the performance degradation. Additionally, since the number of the activated NAND chip is dynamically changed as access patterns from real processor, the optimum design point for the boost converter is also moved according to the situation. Then, the clustering method with two different sizes of Cu-TSVs and the adaptive TSV number controlling technique for polycrystalline silicon TSVs are proposed to reduce the parasitic resistors and capacitors. With the cluster structure and Cu-TSVs, the performance of the proposed 3D-SSD is improved by ˜10%. Furthermore, the adaptive TSV number controller enhances the performance up to 2 times higher for poly-Si TSV case by reducing the parasitic elements due to TSVs.

  11. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus

    E-print Network

    Doiron, Brent

    Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior of a Ba2 -sensitive, inwardly rectifying potassium conductance (Kir). Variability in Kir maximal

  12. Controlling damping and quality factors of silicon microcantilevers by selective metallization

    NASA Astrophysics Data System (ADS)

    Sosale, Guruprasad; Das, Kaushik; Fréchette, Luc; Vengallatore, Srikar

    2011-10-01

    Ceramic microresonators coated with relatively thin metallic films are widely used for sensing, scanning probe microscopy, signal processing and vibration energy harvesting. The metallization improves optical reflectivity and electrical conductivity, but invariably degrades the quality factor (Q) of resonance by increasing the amount of energy dissipated during vibration. Developing strategies for controlling damping due to metallization is vital for the design of high-performance microresonators. This paper presents a strategy based on the insight that dissipation is a function of the deformation experienced by the thin film during oscillation. Therefore, damping can be controlled by patterning the metal in regions of low strain. A simple analytical model is developed to quantify the change in damping as a function of selective metallization along the length of a microcantilever. The predictions of this model are in good agreement with measurements of damping in single-crystal silicon microcantilevers that are partially coated on one surface with 100 nm thick aluminum films. Crucially, damping due to clamping, support and viscous losses is minimized in these structures to enable a careful comparison of theory with experiments. Coating 20% of the length of the beam starting from the tip has no significant impact on damping in either the first or the second mode of vibration. In contrast, placing the same size of metallization at the root leads to considerable dissipation; in the first mode, the damping due to this patch is ~60% of that caused by a full coat.

  13. Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

    SciTech Connect

    Razek, Sara Abdel; Swillam, Mohamed A.; Allam, Nageh K.

    2014-05-21

    Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H{sub 2}O{sub 2} electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650?nm and lengths from 8 to 18??m. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670?nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ?670?nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ?660?nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

  14. Implementation of Statistical Process Control: Evaluating the Mechanical Performance of a Candidate Silicone Elastomer Docking Seal

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    The National Aeronautics and Space Administration has been developing a novel docking system to meet the requirements of future exploration missions to low-Earth orbit and beyond. A dynamic gas pressure seal is located at the main interface between the active and passive mating components of the new docking system. This seal is designed to operate in the harsh space environment, but is also to perform within strict loading requirements while maintaining an acceptable level of leak rate. In this study, a candidate silicone elastomer seal was designed, and multiple subscale test articles were manufactured for evaluation purposes. The force required to fully compress each test article at room temperature was quantified and found to be below the maximum allowable load for the docking system. However, a significant amount of scatter was observed in the test results. Due to the stochastic nature of the mechanical performance of this candidate docking seal, a statistical process control technique was implemented to isolate unusual compression behavior from typical mechanical performance. The results of this statistical analysis indicated a lack of process control, suggesting a variation in the manufacturing phase of the process. Further investigation revealed that changes in the manufacturing molding process had occurred which may have influenced the mechanical performance of the seal. This knowledge improves the chance of this and future space seals to satisfy or exceed design specifications.

  15. Design, fabrication, and characterization of gallium nitride high power rectifiers

    NASA Astrophysics Data System (ADS)

    Baik, Kwang Hyeon

    The edge termination design, device modeling, fabrication and characterization of gallium nitride (GaN) high power diode rectifiers are reported in this dissertation. The important parameter sets of GaN materials and physical models are first reviewed and applied to the standard drift-diffusion device simulator MEDICI(TM). Theoretical calculations of GaN high power rectifiers have been made based on the breakdown voltage, the on-state resistance, the forward voltage drop, and reverse leakage currents. The breakdown analysis of the various edge terminations has been performed with impact ionization model. The field termination study shows that the use of an optimized SiO2 field plate edge termination can increase the reverse breakdown voltage of bulk GaN rectifiers by up to a factor of two compared to unterminated devices. The dielectric materials, thickness and ramp angle all influence the resulting breakdown voltage of the rectifier by determining where the maximum field strength occurs in the device structure. The key aspect in designing the field plate edge termination is to shift the region of the high field region away from the periphery of the rectifying contact. The junction termination study shows that the JTE produces the highest blocking voltages for vertical bulk GaN rectifiers, although the VB values are highly sensitive to the charge in the JTE layer. Guard-rings, field plates and planar junction were also examined in increasing VB over the value in unterminated rectifiers. Various bulk GaN p-i-n junction and Schottky rectifiers have been simulated as a function of temperature and analyzed in terms of their forward turn-on voltages and on-state resistances. GaN Schottky diodes with vertical and lateral geometries were fabricated on both conventional sapphire and free-standing GaN wafers. The typical on-state resistance of GaN Schottky diodes with lateral geometries was ˜2--3 mO · cm2, with reverse breakdown voltages at 25°C of 140--240V. Bulk GaN Schottky diodes with simple metal overlap edge termination show fast switching times, low on-state resistances and a low negative temperature coefficient of breakdown voltage. Pt Schottky rectifier arrays were fabricated on 200 mum thick, free-standing GaN layers even with the reduced dislocation density in these layers (˜105 cm-2) relative to conventional GaN on sapphire (>108 cm-2). We show that by interconnecting the output of many smaller rectifiers, we can achieve high total forward output current (161 A at 7.12 V), low forward turn-on voltage of ˜3 V. The potential for use of GaN bulk rectifiers in high power distribution and conversion remains high because of the rapid advances in material quality and processing technology that can be borrowed from the laser and light-emitting diode technology.

  16. Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy

    E-print Network

    Seideman, Tamar

    function, such as current-driven molecular machines [9], switches, or rectifiers [11]. Previous work hasQuantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption

  17. Strain and electric field control of hyperfine interactions for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Usman, M.; Hill, C. D.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L.

    2015-06-01

    Control of hyperfine interactions is a fundamental requirement for quantum computing architecture schemes based on shallow donors in silicon. However, at present, there is lacking an atomistic approach including critical effects of central-cell corrections and nonstatic screening of the donor potential capable of describing the hyperfine interaction in the presence of both strain and electric fields in realistically sized devices. We establish and apply a theoretical framework, based on atomistic tight-binding theory, to quantitatively determine the strain and electric-field-dependent hyperfine couplings of donors. Our method is scalable to millions of atoms, and yet captures the strain effects with an accuracy level of DFT method. Excellent agreement with the available experimental data sets allow reliable investigation of the design space of multiqubit architectures, based on both strain only as well as hybrid (strain + field) control of qubits. The benefits of strain are uncovered by demonstrating that a hybrid control of qubits based on (001) compressive strain and in-plane (100 or 010) fields results in higher gate fidelities and or faster gate operations, for all of the four donor species considered (P, As, Sb, and Bi). The comparison between different donor species in strained environments further highlights the trends of hyperfine shifts, providing predictions where no experimental data exists. While faster gate operations are realizable with in-plane fields for P, As, and Sb donors, only for the Bi donor, our calculations predict faster gate response in the presence of both in-plane and out-of-plane fields, truly benefiting from the proposed planar field control mechanism of the hyperfine interactions.

  18. Strain and Electric Field Control of Hyperfine Interactions for Donor Spin Qubits in Silicon

    E-print Network

    Muhammad Usman; Charles D. Hill; Rajib Rahman; Gerhard Klimeck; Michelle Y. Simmons; Sven Rogge; Lloyd C. L. Hollenberg

    2015-04-24

    Control of hyperfine interactions is a fundamental requirement for quantum computing architecture schemes based on shallow donors in silicon. However, at present, there is lacking an atomistic approach including critical effects of central-cell corrections and non-static screening of the donor potential capable of describing the hyperfine interaction in the presence of both strain and electric fields in realistically sized devices. We establish and apply a theoretical framework, based on atomistic tight-binding theory, to quantitatively determine the strain and electric field dependent hyperfine couplings of donors. Our method is scalable to millions of atoms, and yet captures the strain effects with an accuracy level of DFT method. Excellent agreement with the available experimental data sets allow reliable investigation of the design space of multi-qubit architectures, based on both strain-only as well as hybrid (strain+field) control of qubits. The benefits of strain are uncovered by demonstrating that a hybrid control of qubits based on (001) compressive strain and in-plane (100 or 010) fields results in higher gate fidelities and/or faster gate operations, for all of the four donor species considered (P, As, Sb, and Bi). The comparison between different donor species in strained environments further highlights the trends of hyperfine shifts, providing predictions where no experimental data exists. Whilst faster gate operations are realisable with in-plane fields for P, As, and Sb donors, only for the Bi donor, our calculations predict faster gate response in the presence of both in-plane and out-of-plane fields, truly benefiting from the proposed planar field control mechanism of the hyperfine interactions.

  19. Parameter Plane Synthesis and Performance Investigation of a Three-Phase Three-Level Bidirectional Rectifier

    NASA Astrophysics Data System (ADS)

    Bhat, Abdul Hamid; Langer, Nitin

    2014-12-01

    In this paper, parameter plane synthesis of a three-phase neutral-point clamped bidirectional rectifier has been performed. The converter involves one outer-loop PI voltage controller and two inner-loop PI current controllers for the closed-loop control. D-partition technique has been employed for the precise design of the voltage controller. An experimental prototype of the converter has been developed, and the experimental investigation of the converter performance in closed loop has been carried out. DSP DS1104 of dSPACE has been used for real-time implementation of the designed controller. The converter gives a very good performance in steady state and dynamic state (for rectification as well as inversion modes of operation) using the designed controller parameters.

  20. 125. JOB NO. LINE 5044, INTERNATIONAL RECTIFIER CORP., RACHELLE LABORATORIES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. JOB NO. LINE 5044, INTERNATIONAL RECTIFIER CORP., RACHELLE LABORATORIES, INC., LONG BEACH, CA, BY J.C. FULTON, SEPTEMBER 1982, LINE 5044, CLIFTON AND CO., ON FILE ENGINEERS DEPARTMENT, PORT OF LONG BEACH - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  1. Inward rectifiers and their regulation by endogenous polyamines

    PubMed Central

    Baronas, Victoria A.; Kurata, Harley T.

    2014-01-01

    Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family. PMID:25221519

  2. Antenna-coupled rectifying diode for IR detection

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideaki; Hara, Hitoshi; Kanbara, Nobuhiko; Onoe, Yasushi; Kishi, Naoki

    1996-09-01

    An antenna-coupled rectifying SChottky Barrier DIode (SBD) for IR detection is fabricated on Si by IC processes. Aluminum thin film antenna of 30 micrometers length and 1.5 micrometers width is formed on thermally grown SiO2 layer on Si. At the end of antenna, rectifying SBD of 0.03 micrometers diameter is formed by focused ion beam (FIB) milling technique. Ion current monitoring system with FIB largely reduced the size of milled hole, which is conventionally limited by ion beam waist diameter. IR radiation from CO2 laser of 10.6 micrometers in wavelength and 0.55 W in power is used for device evaluations. Signal dependence on incident angle of CO2 laser radiation and dependence on diode bias voltage are evaluated. We confirmed the rectifying operation of antenna- coupled SBD at IR region and experimentally obtained rectified voltage of 173 nV. The NEP is calculated to be 1.94 X 10-6 W/Hz-1/2.

  3. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor...

  4. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor...

  5. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  6. Optics to rectify CORONA panoramic photographs for map making

    NASA Astrophysics Data System (ADS)

    Hilbert, Robert S.

    2006-08-01

    In the 1960's, accurate maps of the United States were available to all, from the U.S. Government, but maps of the Soviet Union were not, and in fact were classified. Maps of the Soviet Union were needed by the U.S. Government, including for U.S. targeting of Soviet ICBM sites, and for negotiating the SALT ICBM disarmament treaty. Although mapping cameras were historically frame cameras with low distortion, the CORONA panoramic film coverage was used to identify any ICBM sites. If distortion-free photographs could be produced from this inherently distorted panoramic material, accurate maps could be produced that would be valuable. Use of the stereo photographs from CORONA, for developing accurate topographical maps, was the mission of Itek's Gamma Rectifier. Bob Shannon's department at Itek was responsible for designing the optics for the Gamma Rectifier. He assigned the design to the author. The optical requirements of this system are described along with the optical design solution, which allowed the inherent panoramic distortion of the original photographs to be "rectified" to a very high level of accuracy, in enlarged photographs. These rectifiers were used three shifts a day, for over a decade, and produced the most accurate maps of the earth's surface, that existed at that time. The results facilitated the success of the Strategic Arms Limitation Talks (SALT) Treaty signed by the US and the Soviet Union in 1972, which were verified by "national means of verification" (i.e. space reconnaissance).

  7. Inward rectifiers and their regulation by endogenous polyamines.

    PubMed

    Baronas, Victoria A; Kurata, Harley T

    2014-01-01

    Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family. PMID:25221519

  8. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 ?m) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ? potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the biocompatibility of the platform in vivo. PMID:26108253

  9. Silicon as Reducing Agent for Controlled Production of Plasmonic Copper Nanocomposite Glasses: A Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2015-11-01

    The use of silicon to produce metal nanocomposite phosphate glasses with plasmonic properties is proposed. It is demonstrated how the reducing properties of Si powder allow for producing Cu nanocomposite glasses in a controlled manner during heat treatment (HT). Cu/Si-codoped glasses were prepared in a 50BaO-50P2O5 matrix by a simple melt-quench method in ambient atmosphere. The worst-case scenario is considered by having the noble metal introduced in its higher oxidation state as copper(II) oxide, i.e., instead of using monovalent copper. Optical absorption and photoluminescence (PL) spectroscopy, including emission decay dynamics, were employed for characterization of the melt-quenched glass, and for investigating the influence of HT on material optical properties. Remarkably, increasing amounts of Si powder were observed to suppress and ultimately remove the Cu2+ visible absorption band in the CuO-containing glasses. Moreover, subsequent HT of the glass with the highest Si content resulted in progressive development of the surface plasmon resonance of Cu nanoparticles with increasing holding time. PL spectroscopy analysis is further employed towards elucidating the Cu2+ ? Cu+ ? Cu0 valence state changes likely occurring during the melting and subsequent thermal processing.

  10. Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching.

    PubMed

    Zhang, Shenli; Wang, Xinwei; Liu, Hong; Shen, Wenzhong

    2014-01-17

    Silicon nanowires (SiNWs) have long been considered a promising material due to their extraordinary electrical and optical properties. As a simple, highly efficient fabrication method for SiNWs, metal-assisted chemical etching (MACE) has been intensively studied over recent years. However, effective control by modulation of simple parameters is still a challenging topic and some key questions still remain in the mechanistic processes. In this work, a novel method to manipulate SiNWs with a light-modulated MACE process has been systematically investigated. Conic structures consisting of inclined and clustered SiNWs can be generated and effectively modified by the incident light while new patterns such as 'bamboo shoot' arrays can also be formed under certain conditions. More importantly, detailed study has revealed a new top-down 'diverting etching' model of the conic structures in this process, different from the previously proposed 'bending' model. As a consequence of this mechanism, preferential lateral mass transport of silver particles occurs. Evidence suggests a relationship of this phenomenon to the inhomogeneous distribution of the light-induced electron-hole pairs beneath the etching front. Study on the morphological change and related mechanism will hopefully open new routes to understand and modulate the formation of SiNWs and other nanostructures. PMID:24334462

  11. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  12. Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager.

    PubMed

    Budgell, G J; Zhang, Q; Trouncer, R J; Mackay, R I

    2005-11-01

    An amorphous silicon electronic portal imaging device (EPID) has been investigated to determine its usefulness and efficiency for performing linear accelerator quality control checks specific to step and shoot intensity modulated radiation therapy (IMRT). Several dosimetric parameters were measured using the EPID: dose linearity and segment to segment reproducibility of low dose segments, and delivery accuracy of fractions of monitor units. Results were compared to ion chamber measurements. Low dose beam flatness and symmetry were tested by overlaying low dose beam profiles onto the profile from a stable high-dose exposure and visually checking for differences. Beam flatness and symmetry were also calculated and plotted against dose. Start-up reproducibility was tested by overlaying profiles from twenty successive two monitor unit segments. A method for checking the MLC leaf calibration was also tested, designed to be used on a daily or weekly basis, which consisted of summing the images from a series of matched fields. Daily images were coregistered with, then subtracted from, a reference image. A threshold image showing dose differences corresponding to > 0.5 mm positional errors was generated and the number of pixels with such dose differences used as numerical parameter to which a tolerance can be applied. The EPID was found to be a sensitive relative dosemeter, able to resolve dose differences of 0.01 cGy. However, at low absolute doses a reproducible dosimetric nonlinearity of up to 7% due to image lag/ghosting effects was measured. It was concluded that although the EPID is suitable to measure segment to segment reproducibility and fractional monitor unit delivery accuracy, it is still less useful than an ion chamber as a tool for dosimetric checks. The symmetry/flatness test proved to be an efficient method of checking low dose profiles, much faster than any of the alternative methods. The MLC test was found to be extremely sensitive to sudden changes in MLC calibration but works best with a composite reference image consisting of an average of five successive days' images. When used in this way it proved an effective and efficient daily check of MLC calibration. Overall, the amorphous silicon EPID was found to be a suitable device for IMRT QC although it is not recommended for dosimetric tests. Automatic procedures for low monitor unit profile analysis and MLC leaf positioning yield considerable time-savings over traditional film techniques. PMID:16370416

  13. Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager

    SciTech Connect

    Budgell, G.J.; Zhang, Q.; Trouncer, R.J.; Mackay, R.I.

    2005-11-15

    An amorphous silicon electronic portal imaging device (EPID) has been investigated to determine its usefulness and efficiency for performing linear accelerator quality control checks specific to step and shoot intensity modulated radiation therapy (IMRT). Several dosimetric parameters were measured using the EPID: dose linearity and segment to segment reproducibility of low dose segments, and delivery accuracy of fractions of monitor units. Results were compared to ion chamber measurements. Low dose beam flatness and symmetry were tested by overlaying low dose beam profiles onto the profile from a stable high-dose exposure and visually checking for differences. Beam flatness and symmetry were also calculated and plotted against dose. Start-up reproducibility was tested by overlaying profiles from twenty successive two monitor unit segments. A method for checking the MLC leaf calibration was also tested, designed to be used on a daily or weekly basis, which consisted of summing the images from a series of matched fields. Daily images were co-registered with, then subtracted from, a reference image. A threshold image showing dose differences corresponding to >0.5 mm positional errors was generated and the number of pixels with such dose differences used as numerical parameter to which a tolerance can be applied. The EPID was found to be a sensitive relative dosemeter, able to resolve dose differences of 0.01 cGy. However, at low absolute doses a reproducible dosimetric nonlinearity of up to 7% due to image lag/ghosting effects was measured. It was concluded that although the EPID is suitable to measure segment to segment reproducibility and fractional monitor unit delivery accuracy, it is still less useful than an ion chamber as a tool for dosimetric checks. The symmetry/flatness test proved to be an efficient method of checking low dose profiles, much faster than any of the alternative methods. The MLC test was found to be extremely sensitive to sudden changes in MLC calibration but works best with a composite reference image consisting of an average of five successive days' images. When used in this way it proved an effective and efficient daily check of MLC calibration. Overall, the amorphous silicon EPID was found to be a suitable device for IMRT QC although it is not recommended for dosimetric tests. Automatic procedures for low monitor unit profile analysis and MLC leaf positioning yield considerable time-savings over traditional film techniques.

  14. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan; Campbell, Steven L; Miller , John M.

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  15. Silicon carbide process development for microengine applications : residual stress control and microfabrication

    E-print Network

    Choi, Dongwon, 1973-

    2004-01-01

    The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high speed at elevated temperatures (1300 to 1700 K). ...

  16. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Larkin, David J. (inventor); Powell, J. Anthony (inventor)

    1992-01-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  17. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (inventor)

    1991-01-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  18. The use of pressure and silicone in hypertrophic scar management in burns patients: a pilot randomized controlled trial.

    PubMed

    Harte, Daniel; Gordon, Jude; Shaw, Maxine; Stinson, May; Porter-Armstrong, Alison

    2009-01-01

    This pilot study investigates whether pressure and silicone therapy used simultaneously are more effective in treating multiple characteristics of hypertrophic scars than pressure alone. A pilot randomized controlled trial was conducted. Twenty-two participants with hypertrophic burn scars were randomized to receive Jobskin pressure garments and Mepiform silicone sheeting or Jobskin pressure garments alone. The Vancouver Scar Scale (VSS) was used to measure multiple scar characteristics at baseline, week 12, and week 24. No statistically significant difference was found in the rate of change of the VSS scores between the pressure therapy (PT) group and the pressure therapy and silicone group at week 12 or week 24; however, the mean scores of both groups reduced over 24 weeks. There were no statistically significant changes in the VSS subscores (scar height, vascularity, pliability, and pigmentation) from baseline to week 12 or week 24. A statistically significant relationship was observed between the VSS score and TBSA burned (<30%) in the PT group at baseline (P<.05), over 12 weeks (P<.05), and over 24 weeks (P<.05). Given the limitations of this study, especially the small sample size, further research is necessary before any firm conclusions can be drawn on this therapy approach. However, this pilot study has discussed the recurring issues in the research regarding these controversial treatments and has yielded potential for further investigation in a fully powered randomized controlled trial. PMID:19506491

  19. Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Zhiwei; Gao, Feng; Qu, Jianmin

    2013-02-01

    Solid state diffusion in a binary system, such as lithiation into crystalline silicon, often involves two symbiotic processes, namely, interfacial chemical reaction and bulk diffusion. Building upon our earlier work (Cui et al., 2012b, J. Mech. Phys. Solids, 60 (7), 1280-1295), we develop a mathematical framework in this study to investigate the interaction between bulk diffusion and interfacial chemical reaction in binary systems. The new model accounts for finite deformation kinematics and stress-diffusion interaction. It is applicable to arbitrary shape of the phase interface. As an example, the model is used to study the lithiation of a spherical silicon particle. It is found that a dimensionless parameter ?=kfeVmBR0/D0 plays a significant role in determining the kinetics of the lithiation process. This parameter, analogous to the Biot number in heat transfer, represents the ratio of the rate of interfacial chemical reaction and the rate of bulk diffusion. Smaller ? means slower interfacial reaction, which would result in higher and more uniform concentration of lithium in the lithiated region. Furthermore, for a given ?, the lithiation process is always controlled by the interfacial chemical reaction initially, until sufficient silicon has been lithiated so that the diffusion distance for lithium reaches a threshold value, beyond which bulk diffusion becomes the slower process and controls the overall lithiation kinetics.

  20. On the Controlling Mechanism of Preferential Orientation of Polycrystalline-Silicon Thin Films Grown by Aluminum-Induced Crystallization

    NASA Astrophysics Data System (ADS)

    Jung, Mina; Okada, Atsushi; Saito, Takanobu; Suemasu, Takashi; Usami, Noritaka

    2010-09-01

    We investigated the controlling mechanism of preferential orientation in polycrystalline silicon (poly-Si) on glass substrate by Al-induced crystallization using an in situ monitoring system and electron backscattered diffraction (EBSD) measurements. Poly-Si film with (111)-preferential orientation was obtained by the layer exchange of the initial amorphous silicon (a-Si)/Al/glass into Al/poly-Si/glass. Cross-sectional EBSD revealed that Al crystal grains are much smaller than those of Si, and randomly oriented without any epitaxial relationship between (111)-oriented Si despite the fact that (111)-oriented Si is believed to originate from epitaxial growth on ?-Al2O3/Al(111). This suggests that another mechanism such as minimization of surface energy affects the formation of (111)-oriented poly-Si.

  1. Rectifying behaviour of spin coated pn hetero-junction

    NASA Astrophysics Data System (ADS)

    Yogamalar, N. Rajeswari; Bose, A. Chandra

    2015-06-01

    Rectifying pn hetero- junction is fabricated with an acceptor p-type organic semiconductor namely tetra- chloro dihydroxy tetra-iodo fluorescein (Rose Bengal (RB)) followed by an inorganic n-type ZnO semiconductor on indium tin oxide (ITO) substrate. The n-type ZnO films are formed by unintentional doping and doping with aluminium (Al) and yttrium (Y) donors. The surface morphology and the distribution of grains are observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM). The current-voltage (I-V) characteristic of the rectifying diode is measured to characterize the junction properties. The I-V plots obtained from the hetero- junction with electric contact shows a diode characteristic different from that of an ideal behavior. The overall efficiency of the diode exhibits a greater dependency on the film crystallinity, carrier concentration, and reverse saturation current.

  2. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect

    Chinthavali, Madhu Sudhan; Onar, Omer C; Miller, John M; Tang, Lixin

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  3. An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2012-01-01

    We present an adaptive reconfigurable active voltage doubler (VD)/rectifier (REC) (VD/REC) in standard CMOS, which can adaptively change its topology to either a VD or a REC by sensing the output voltage, leading to more robust inductive power transmission over an extended range. Both active VD and REC modes provide much lower dropout voltage and far better power conversion efficiency (PCE) compared to their passive counterparts by adopting offset-controlled high-speed comparators that drive the rectifying switches at proper times in the high-frequency band. We have fabricated the active VD/REC in a 0.5-µm 3-metal 2-poly CMOS process, occupying 0.585 mm(2) of chip area. In an exemplar setup, VD/REC extended the power transmission range by 33% (from 6 to 8 cm) in relative coil distance and 41.5% (from 53° to 75°) in relative coil orientation compared to using the REC alone. While providing 3.1-V dc output across a 500-? load from 2.15- (VD) and 3.7-V (REC) peak ac inputs at 13.56 MHz, VD/REC achieved measured PCEs of 70% and 77%, respectively. PMID:24633369

  4. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 k?. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device. PMID:25600671

  5. Microcomputer controlled soft start of motor

    NASA Astrophysics Data System (ADS)

    Gao, Miao; Wang, Yanpeng; Li, Shian

    2005-12-01

    Improving the starting characteristics of a motor is an important part of the motor control. An intelligent soft starting technique was adopted in the starter and used in the present study because of its many advantages compared with conventional starting processes. The core of the soft starter was a single chip (Atmel 8098), its soul was the software and its control object was a Silicon Controlled Rectifier (SCR). The starter achieved not only current-limit starting, but also closed-loop control with a stator current detection circuit. In conclusion, as a result of digital control, starting characteristic can be conveniently chosen according to the load. In addition the starter is of small size, and starting is smooth and reliable due to current feedback.

  6. High reliability megawatt transformer/rectifier

    NASA Technical Reports Server (NTRS)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.

  7. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.

    PubMed

    Kim, Han-Jung; Lee, Su-Han; Lee, Jihye; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Joo-Yun; Jeong, Jun-Ho; Choi, Dae-Geun

    2015-06-01

    In order to improve their performance for various applications, a facile method for the wafer-scale fabrication of micro/nano-patterned vertical silicon (Si) structures such as silicon nanowires (SiNWs), silicon nanorods (SiNRs), and porous silicon (p-Si) was developed. The method is based on the combination of lithography techniques (photolithography, thermal nano-imprint lithography, nanosphere lithography) and wet chemical etching (electro-chemical etching, metal-assisted chemical etching) processes. Micro-patterned p-Si with various pore diameters from 30 nm to 1.2 um were fabricated via electro-chemical etching. Micro/nano-patterned Si microstructures, nanorods, and nanowires were also successfully fabricated by changing the thickness of the metal layer of 5 nm or 20 nm in the metal-assisted chemical etching process. This study also investigated the effect of the etching time and patterning on the etched SiNWs length. This method provides advantages of simplicity, speed, large-scale production, easy size and shape manipulation, and low cost. PMID:26369075

  8. Performance Analysis of Rectifier in NH3-H2O Absorprtion Heat Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    It is necessary to have rectifier in NH3-H20 absorption cycle in order to remove steam from ammonia and steam mixed vapor that is regenerated in generator. Although many studies have made to investigate the performance of rectifier using various fluids experimentally, few theoretical analysis has made without any constant from experimental data. In this study in order to investigate the characteristic of rectifying process, experimental and analytical approach was made concerning plate-type rectifier. In the experiment, the effect of vapor flow rate and NH3 mass concentration of solution on rectifying performance were investigated. And in the analysis the model of heat and mass transfer was proposed considering the distribution of mass concentration in boundary layer. As a result it was found that NH3 mass concentration at rectifier outlet slightly decreased as vapor flow rate increased and that the model could predict NH3 mass concentration in outlet vapor for various concentration in solution.

  9. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit. PMID:24921379

  10. Self-Vth-Cancellation High-Efficiency CMOS Rectifier Circuit for UHF RFIDs

    NASA Astrophysics Data System (ADS)

    Kotani, Koji; Ito, Takashi

    A high-efficiency CMOS rectifier circuit for UHF RFID applications was developed. The rectifier utilizes a self-Vth-cancellation (SVC) scheme in which the threshold voltage of MOSFETs is cancelled by applying gate bias voltage generated from the output voltage of the rectifier itself. A very simple circuit configuration and zero power dissipation characteristics in biasing enable excellent power conversion efficiency (PCE), especially under small RF input power conditions. At higher RF input power conditions, the PCE of the rectifier automatically decreases. This is the built-in self-power-regulation function. The proposed SVC CMOS rectifier was fabricated with a 0.35-µm CMOS process and the measured performance was compared with those of conventional nMOS, pMOS, and CMOS rectifiers and other types of Vth cancellation rectifiers as well. The SVC CMOS rectifier achieves 32% of PCE at the -10dBm RF input power condition. This PCE is larger than rectifiers reported to date under this condition.

  11. Rectified momentum transport for a kicked Bose-Einstein Condensate

    E-print Network

    Mark Sadgrove; Munekazu Horikoshi; Tetsuo Sekimura; Ken'ichi Nakagawa

    2007-06-12

    We report the experimental observation of rectified momentum transport for a Bose-Einstein Condensate kicked at the Talbot time (quantum resonance) by an optical standing wave. Atoms are initially prepared in a superposition of the 0 and -2*hbar*kl momentum states using an optical pi/2 pulse. By changing the relative phase of the superposed states, a momentum current in either direction along the standing wave may be produced. We offer an interpretation based on matter wave interference, showing that the observed effect is uniquely quantum.

  12. Controlled release of indomethacin from alginate-poloxamer-silicon carbide composites decrease in-vitro inflammation.

    PubMed

    Díaz-Rodríguez, P; Landin, M

    2015-03-01

    Composites of biomorphic silicon carbides (bioSiCs) and hydrogels are proposed in order to obtain materials able to load and release poor soluble drugs with application in bone pathologies therapy. Hydrogels composed by alginate and poloxamer were loaded with indomethacin, incorporated into the ceramics and crosslinked. The indomethacin release profile is dependent on the microstructure of the bioSiC selected. The loaded oak and sapelli bioSiCs composites have adequate release profiles to promote the decreasing of the secretion of pro-inflammatory cytokines in LPS stimulated macrophages, showing stronger anti-inflammatory effects than pine bioSiC composites. The released indomethacin is able to modulate the degradation of chondrocytes extracellular matrix and promote the formation of new collagen by osteoarthritic chondrocytes. Particles derived from mechanical wear of biomorphic silicon carbides do not show high toxicity, being similar to the zirconia particles. PMID:25596416

  13. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H. (San Jose, CA)

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  14. Controlled release of theophylline from poly(vinyl alcohol) hydrogels/porous silicon nanostructured systems

    NASA Astrophysics Data System (ADS)

    Cervantes-Rincón, N.; Medellín-Rodríguez, F. J.; Escobar-Barrios, V. A.; Palestino, G.

    2013-03-01

    In this research, hybrid hydrogels of poly (vinyl alcohol)/ porous silicon (PSi)/theophylline were synthesized by the freezing and thawing method. We evaluated the influence of the synthesis parameters of the poly (vinyl alcohol) (PVA) hydrogels in relation to their ability to swell and drug released. The parameters studied (using an experimental design developed in Minitab 16) were the polymer concentration, the freezing temperature and the number of freezing/thawing (f/t) cycles. Nanostructured porous silicon particles (NsPSi) and theophylline were added within the polymer matrix to increase the drug charge and the polymer mechanical strength. The hybrid hydrogels were characterized by Infrared Spectroscopy Fourier Transform (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC), drug delivery kinetics were engineered according to the desired drug release schedule.

  15. Silicon nanocrystals in SiN{sub x}/SiO{sub 2} hetero-superlattices: The loss of size control after thermal annealing

    SciTech Connect

    Zelenina, A. Zacharias, M.; Sarikov, A.; Zhigunov, D. M.; Weiss, C.; Zakharov, N.; Werner, P.; López-Conesa, L.; Peiró, F.

    2014-06-28

    Superlattices containing 3?nm thick silicon rich silicon nitride sublayers and 3?nm and 10?nm thick SiO{sub 2} barriers were prepared by plasma enhanced chemical vapor deposition. Despite the as-prepared samples represented a well-kept multilayer structure with smooth interfaces, the high temperature annealing resulted in the total destruction of multilayer structure in the samples containing 3?nm SiO{sub 2} barriers. Energy-filtered transmission electron microscopy images of these samples indicated a silicon nanoclusters formation with sizes of 2.5–12.5?nm, which were randomly distributed within the structure. Although in the sample with 10?nm SiO{sub 2} barriers some fragments of the multilayer structure could be still observed after thermal annealing, nevertheless, the formation of large nanocrystals with diameters up to 10?nm was confirmed by dark field transmission electron microscopy. Thus, in contrast to the previously published results, the expected size control of silicon nanocrystals was lost. According to the FTIR results, the thermal annealing of SiN{sub x}/SiO{sub 2} superlattices led to the formation of silicon nanocrystals in mostly oxynitride matrix. Annealed samples demonstrated a photoluminescence peak at 885?nm related to the luminescence of silicon nanocrystals, as confirmed by time-resolved photoluminescence measurements. The loss of nanocrystals size control is discussed in terms of the migration of oxygen atoms from the SiO{sub 2} barriers into the silicon rich silicon nitride sublayers. A thermodynamic mechanism responsible for this process is proposed. According to this mechanism, the driving force for the oxygen migration is the gain in the configuration entropy related to the relative arrangements of oxygen and nitrogen atoms.

  16. Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing

    SciTech Connect

    Doshi, P.; Rohatgi, A.; Ropp, M.; Chen, Z.; Ruby, D.; Meier, D.L.

    1995-01-01

    Silicon solar cell efficiencies of 17.1%, 16.4%, 14.8%, and 14.9% have been achieved on FZ, Cz, multicrystalline (mc-Si), and dendritic web (DW) silicon, respectively, using simplified, cost-effective rapid thermal processing (RTP). These represent the highest reported efficiencies for solar cells processed with simultaneous front and back diffusion with no conventional high-temperature furnace steps. Appropriate diffusion temperature coupled with the added in-situ anneal resulted in suitable minority-carrier lifetime and diffusion profiles for high-efficiency cells. The cooling rate associated with the in-situ anneal can improve the lifetime and lower the reverse saturation current density (J{sub 0}), however, this effect is material and base resistivity specific. PECVD antireflection (AR) coatings provided low reflectance and efficient front surface and bulk defect passivation. Conventional cells fabricated on FZ silicon by furnace diffusions and oxidations gave an efficiency of 18.8% due to greater short wavelength response and lower J{sub 0}.

  17. Silicone metalization

    DOEpatents

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  18. Silicone metalization

    DOEpatents

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  19. Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease

    PubMed Central

    Lüscher, Christian; Slesinger, Paul A.

    2010-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to the activation of many G-protein coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on their subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death that may be important in the pathophysiology of human diseases such as epilepsy, Down’s syndrome, Parkinson’s disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target for treating these health problems. PMID:20389305

  20. Microscopic control of $^{29}$Si nuclear spins near phosphorus donors in silicon

    E-print Network

    Järvinen, J; Ahokas, J; Sheludyakov, S; Vainio, O; Lehtonen, L; Vasiliev, S; Fujii, Y; Mitsudo, S; Mizusaki, T; Gwak, M; Lee, SangGap; Lee, Soonchil; Vlasenko, L

    2014-01-01

    Dynamic nuclear polarization of $^{29}$Si nuclei in resolved lattice sites near the phosphorus donors in natural silicon of has been created using the Overhauser and solid effects. Polarization has been observed as a pattern of well separated holes and peaks in the electron spin resonance line of the donor. The Overhauser effect in ESR hole burning experiments was used to manipulate the polarization of $^{29}$Si spins at ultra low (100-500 mK) temperatures and in high magnetic field of 4.6 T. Extremely narrow holes of 15 mG width were created after several seconds of pumping.

  1. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules.

    PubMed

    Adam, Tijjani; Hashim, U

    2015-05-15

    The study demonstrates the development of a liquid-based gate-control silicon nanowire biosensor for detection of specific single-stranded DNA (ssDNA) molecules. The sensor was fabricated using conventional photolithography coupled with an inductively coupled plasma dry etching process. Prior to the application of DNA to the device, its linear response to pH was confirmed by serial dilution from pH 2 to pH 14. Then, the sensor surface was silanized and directly aminated with (3-aminopropyl) triethoxysilane to create a molecular binding chemistry for biofunctionalization. The resulting Si?O?Si? components were functionalized with receptor ssDNA, which interacted with the targeted ssDNA to create a field across the silicon nanowire and increase the current. The sensor shows selectivity for the target ssDNA in a linear range from target ssDNA concentrations of 100 pM to 25 nM. With its excellent detection capabilities, this sensor platform is promising for detection of specific biomarkers and other targeted proteins. PMID:25453738

  2. High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy

    SciTech Connect

    Maroufi, Mohammad Fowler, Anthony G. Bazaei, Ali Moheimani, S. O. Reza

    2015-02-15

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10??m. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics of the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20??m × 20??m. The maximum scan rate demonstrated is 1?kHz.

  3. Big Piece approximations of Uniformly rectifiable sets Simon Bortz (MU Math)

    E-print Network

    Pivovarov, Peter

    Big Piece approximations of Uniformly rectifiable sets Simon Bortz (MU Math) Abstract This talk scheme (known by some as "extrapolation of Carleson measures") we may obtain certain big piece approximations of uniformly rectifiable sets, in particular we obtain that UR sets of co-dimension 1 have big

  4. Efficiency Optimization for a Power Factor Correction (PFC) Rectifier with Gallium Nitride

    E-print Network

    Paderborn, Universität

    Efficiency Optimization for a Power Factor Correction (PFC) Rectifier with Gallium Nitride factor correction (PFC) rectifier with a Gallium Nitride (GaN) transistor is optimized considering Recently, with wide bandgap semiconductors based on gallium nitride (GaN) a new type of power transistor

  5. Evaluation of SiC MOSFETs for a High Efficiency Three-Phase Buck Rectifier

    E-print Network

    Tolbert, Leon M.

    Evaluation of SiC MOSFETs for a High Efficiency Three-Phase Buck Rectifier Fan Xu, Ben Guo, Leon M, 33 A SiC MOSFET and a 1200 V, 60 A SiC schottky barrier diode (SBD). The switching characteristics is calculated full load. The results show that the SiC based buck rectifier can obtain low power loss

  6. Self-rectifying electron beam melter for pendant-drop containerless processing

    NASA Technical Reports Server (NTRS)

    Pyun, D. S.; Collings, E. W.

    1993-01-01

    A self-rectifying electron beam melting technique is described. Utilizing an ac power supply, in contrast to the more usual dc supply, the in situ self-rectifying approach offers a simple and very inexpensive means of producing metallic pendant drops for use in containerless melt-processing experiments.

  7. 27 CFR 1.21 - Domestic producers, rectifiers, blenders, and warehousemen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Domestic producers, rectifiers, blenders, and warehousemen. 1.21 Section 1.21 Alcohol, Tobacco Products and Firearms ALCOHOL AND... BOTTLING OF DISTILLED SPIRITS Basic Permits When Required § 1.21 Domestic producers, rectifiers,...

  8. Light trapping and reflection control in a crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Campbell, Patrick Ross

    1990-07-01

    The crystalline silicone (xSi) solar cell has become a competitive supplier of electrical power in remote applications. More widespread use can only be expected with a dramatic reduction in unit cost and further improvement in energy conversion efficiency. The new generation of thin film xSi cells, designed to minimize consumption of expensive hyperpure silicon and with potential for particularly high open-circuit voltage, may be limited in its capacity to absorp the red end of the spectrum. Techniques aimed at improving absorption by extending the pathlength (light trapping) and reducing back surface absorption of these weakly absorbed wavelengths are examined. Ways of reducing top surface reflection, of relevance at all wavelengths, are also studied. Some early light trapping schemes are noted and used to identify the main processes of ray scatter. A review and development of light trapping in the idealized randomizing cell is presented, later used in the analysis of real cell designs. The (111) orientations exposed by an anisotropic etch of a (100) xSi surface are examined for their light trapping properties, as well as their capacity to reduce reflection from the top surface. Combining tilted (111) top surface facets under an encapsulant with a planar back surface reflector is studied for it superior properties in both respects.

  9. A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier

    NASA Astrophysics Data System (ADS)

    Jinpeng, Shen; Bo, Wang; Shan, Liu; Xin'an, Wang; Zhengkun, Ruan; Shoucheng, Li

    2013-09-01

    This paper presents a passive UHF RFID tag with a dynamic-Vth-cancellation (DVC) rectifier. In the rectifier, the threshold voltages of MOSFETs are cancelled by applying gate bias voltages, which are dynamically changed according to the states of the MOSFETs. The DVC rectifier enables both low ON-resistance and small reverse leakage of the MOSFETs, resulting in high power conversion efficiency (PCE). An area-efficient demodulator with a novel average detector is also designed, which takes advantage of the rectifier's first stage as the envelope detector. The whole tag chip is implemented in a 0.18 ?m CMOS process with a die size of 880 × 950 ?m2. Measurement results show that the rectifier achieves a maximum PCE of 53.7% with 80 k? resistor load.

  10. Semiconductor-metal phase transition of vanadium dioxide nanostructures on silicon substrate: Applications for thermal control of spacecraft

    SciTech Connect

    Leahu, G. L. Li Voti, R. Larciprete, M. C. Belardini, A. Mura, F. Sibilia, C.; Bertolotti, M.; Fratoddi, I.

    2014-06-19

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO2) film deposited on silicon wafer. The VO2 phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO2 which has been explained by applying the Maxwell Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices to be applied for the thermal control of spacecraft. We have also applied the photothermal radiometry in order to study the changes in the modulated emissivity induced by laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide based structures.

  11. Semiconductor-metal phase transition of vanadium dioxide nanostructures on silicon substrate: Applications for thermal control of spacecraft

    NASA Astrophysics Data System (ADS)

    Leahu, G. L.; Li Voti, R.; Larciprete, M. C.; Belardini, A.; Mura, F.; Fratoddi, I.; Sibilia, C.; Bertolotti, M.

    2014-06-01

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO2) film deposited on silicon wafer. The VO2 phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO2 which has been explained by applying the Maxwell Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices to be applied for the thermal control of spacecraft. We have also applied the photothermal radiometry in order to study the changes in the modulated emissivity induced by laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide based structures.

  12. Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina

    E-print Network

    Newman, Eric A.

    Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice, California 91125 The inwardly rectifying potassium channel Kir4.1 has been sug- gested to underlie retina. Key words: Mu¨ ller cell; inwardly rectifying potassium channel; Kir4.1; retina; null mouse; glia

  13. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    PubMed Central

    Lee, Seok Woo; Lee, Hyun-Wook; Ryu, Ill; Nix, William D.; Gao, Huajian; Cui, Yi

    2015-01-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high-performance Li-ion batteries. PMID:26112834

  14. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction.

    PubMed

    Lee, Seok Woo; Lee, Hyun-Wook; Ryu, Ill; Nix, William D; Gao, Huajian; Cui, Yi

    2015-01-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high-performance Li-ion batteries. PMID:26112834

  15. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    NASA Astrophysics Data System (ADS)

    Lee, Seok Woo; Lee, Hyun-Wook; Ryu, Ill; Nix, William D.; Gao, Huajian; Cui, Yi

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high-performance Li-ion batteries.

  16. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  17. Strained-Silicon on Silicon and Strained-Silicon on Silicon-Germanium on Silicon by Relaxed

    E-print Network

    Strained-Silicon on Silicon and Strained-Silicon on Silicon-Germanium on Silicon by Relaxed Buffer platforms: strained-silicon on silicon SSOS and strained-silicon on silicon-germanium on silicon SGOS . SSOS substrate has an epitaxially defined, strained- silicon layer directly on silicon wafer without

  18. Controls on the silicon isotope distribution in the ocean: New diagnostics from a data-constrained model

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; Brzezinski, Mark A.

    2015-03-01

    The global distributions of the silicon isotopes within silicic acid are estimated by adding isotope fractionation to an optimized, data-constrained model of the oceanic silicon cycle that is embedded in a data-assimilated steady circulation. Including fractionation during opal dissolution improves the model's ability to capture the approximately linear relation between isotope ratio, ?30Si, and inverse silicic acid concentration observed in the deep Atlantic. To quantify the importance of hydrographic control on the isotope distribution, ?30Si is partitioned into contributions from preformed and regenerated silicic acid, further partitioned according to euphotic zone origin. We find that the large-scale features of the isotope distribution in the Atlantic basin are dominated by preformed silicic acid, with regenerated silicic acid being important for setting vertical gradients. In the Pacific and Indian Oceans, preformed and regenerated silicic acid make roughly equally important contributions to the pattern of the isotope ratio, with gradients of the preformed and regenerated contributions tending to cancel each other in the deep Pacific. The Southern Ocean euphotic zone is the primary origin of both the preformed and regenerated contributions to ?30Si. Nearly the entire preformed part of ?30Si is of Southern Ocean and North Atlantic origin. The regenerated part of ?30Si in the Atlantic basin also has a contribution of Central Atlantic (˜40°S-40°N) origin that is comparable in magnitude to the North Atlantic contribution. In other basins, the Central Pacific and Indian Ocean are the second largest contributors to the regenerated part of ?30Si.

  19. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    SciTech Connect

    Lee, Seok Woo; Lee, Hyun-Wook; Ryu, Ill; Nix, William D.; Gao, Huajian; Cui, Yi; /Stanford U., Materials Sci. Dept. /SLAC

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.

  20. Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization.

    PubMed

    Cui, Wei; Xia, Zhouhui; Wu, Shan; Chen, Fengjiao; Li, Yanguang; Sun, Baoquan

    2015-11-25

    Silicon (Si) is an important material in photoelectrochemical (PEC) water splitting because of its good light-harvesting capability as well as excellent charge-transport properties. However, the shallow valence band edge of Si hinders its PEC performance for water oxidation. Generally, thanks to their deep valence band edge, metal oxides are incorporated with Si to improve the performance, but they also decrease the transportation of carriers in the electrode. Here, we integrated a ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] layer with Si to increase the photovoltage as well as the saturated current density. Because of the prominent ferroelectric property from P(VDF-TrFE), the Schottky barrier between Si and the electrolyte can be facially tuned by manipulating the poling direction of the ferroelectric domains. The photovoltage is improved from 460 to 540 mV with a forward-poled P(VDF-TrFE) layer, while the current density increased from 5.8 to 12.4 mA/cm(2) at 1.23 V bias versus reversible hydrogen electrode. PMID:25844486

  1. Hierarchical porous silicon carbide with controlled micropores and mesopores for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon

    2015-05-01

    Three-dimensional hierarchical micro and mesoporous silicon carbide spheres (MMPSiC) are prepared by the template method and carbonization reaction via the aerosol spray drying method. The mesopores are generated by the self-assembly of the structure-directing agents, whereas the micropores are derived from the partial evaporation of Si atoms during carbonization. To investigate the effect of mesopore size on electrochemical performance, three types of MMPSiC with different mesopore size were fabricated by using three different structure directing agents (cetyltriethylammonium bromide (CTAB), Polyethylene glycol hexadecyl ether (Brij56), and Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123)). The MMPSiC electrode prepared with Brij56 exhibits the highest charge storage capacity with a specific capacitance of 253.7 F g-1 at a scan rate of 5 mV s-1 and 87.9% rate performance from 5 to 500 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The outstanding electrochemical performance might be because of the ideal mesopore size, which effectively reduces the resistant pathways for ion diffusion in the pores and provides a large accessible surface area for ion transport/charge storage. These encouraging results demonstrate that the MMPSiC prepared with Brij56 is a promising candidate for high performance electrode materials for supercapacitors.

  2. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    PubMed Central

    Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18??m TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18??m TSMC CMOS technology. PMID:24782680

  3. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18? ?m TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 ?m TSMC CMOS technology. PMID:24782680

  4. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Misra, Soumyadeep; Yu, Linwei; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-10-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  5. Controlled nucleation and growth process for large grained polycrystalline silicon photovoltaics

    E-print Network

    Danforth, Stephen C.

    1982-01-01

    Research has been conducted to develop a new means of producing large grained polycrystlline thin films for photovoltaic applications. The process is one of growth of controlled crystalline nuclei in an a-Si film. For this ...

  6. High-current variable-voltage rectifiers: state of the art topologies

    E-print Network

    Noé, Reinhold

    furnaces and plasma torches require high-current (several kA) power supplies at low-voltage levels (few hundreds of volts). In this study, conventional rectifier topologies (diode- and thyristor-based multi

  7. Theoretical and experimental study of 2.45 GHz rectifying antennas 

    E-print Network

    McSpadden, James Oliver

    1993-01-01

    This thesis presents a study on 2.45 GHz rectifying antennas (rectennas). The rectenna is a major component in a microwave power transmission system. The main feature is the conversion efficiency from microwave power to ...

  8. Switched-capacitor step-down rectifier for low-voltage power conversion

    E-print Network

    Li, Wei

    This paper presents a switched-capacitor rectifier that provides step down voltage conversion from an ac input voltage to a dc output. Coupled with current-drive source, low-loss and high step-down rectification is realized. ...

  9. Remote Electrical Stimulation by Means of Implanted Rectifiers

    PubMed Central

    Ivorra, Antoni

    2011-01-01

    Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants – batteries and inductive couplers – comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 µm) deliverable by injection are easily conceivable. PMID:21850274

  10. Finite element modeling of electrically rectified piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  11. Mitigating impact of rectified RF sheath potential on the ELMs

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Xu, Xueqiao; Xia, Tianyang

    2014-10-01

    Here we report on the BOUT++ simulation results for the mitigating impact of rectified RF sheath potential on the peeling-ballooning modes. The limiter and the RF wave antenna are placed at the outer middle plane in the scrape-off-layer (SOL) in shift-circle geometry. The external shear flow is induced by the limiter and the RF wave. Besides this, the sheath boundary conditions are imposed on the perturbed potential and parallel current. From the three-field simulations, it is found that the energy loss is suppressed by the external shear flow in the nonlinear phase. The external shear flow due to the RF wave leads to a broad turbulence spectrum. The wider spectrum leads to a weaker turbulence transport and results in a smaller energy loss. The perturbed electric potential and the parallel current near the sheath region are also suppressed locally due to the sheath boundary condition. Based on this work, this effect of limiter will also be applied in six-field which includes more physics effects. The effect of sheath boundary conditions on the thermal conductivities and heat flux will be studied. This work was performed for USDOE by LLNL under DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022 and the China Natural Science Foundation under Contract No. 10721505. LLNL-ABS-657008.

  12. Design and test of a 2.25-MW transformer rectifier assembly

    NASA Technical Reports Server (NTRS)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  13. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices. PMID:26618751

  14. Intravitreal controlled release of dexamethasone from engineered microparticles of porous silicon dioxide.

    PubMed

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2014-12-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterification Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and free drug level at 2-week was 107.23 ± 10.54 ng/mL that is well above the therapeutic level but only around 20% level of dexamethasone released from OZURDEX(®) (dexamethasone intravitreal implant) in a rabbit eye model. In conclusion, dexamethasone is able to covalently load to the pSiO2 particles and provide sustained drug release for at least 3 months in vitro. Intravitreal injection of these particles were well tolerated in rabbit eyes and free drug level in vitreous at 2-week was well above the therapeutic level. PMID:25446320

  15. Intravitreal Controlled Release of Dexamethasone from Engineered Microparticles of Porous Silicon Dioxide

    PubMed Central

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R.; Cheng, Lingyun

    2014-01-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterificaion Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and free drug level at 2-week was 107.23+/?10.54 ng/mL that is well above the therapeutic level but only around 20% level of dexamethasone released from OZURDEX ® (dexamethasone intravitreal implant) in a rabbit eye model. In conclusion, dexamethasone is able to covalently load to the pSiO2 particles and provide sustained drug release for at least 3 months in vitro. Intravitreal injection of these particles were well tolerated in rabbit eyes and free drug level in vitreous at 2-week was well above the therapeutic level. PMID:25446320

  16. Controlled aluminum-induced crystallization of an amorphous silicon thin film by using an oxide-layer diffusion barrier

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Hyun; Kwak, Hyunmin; Kwon, Myeung Hoi

    2014-03-01

    Aluminum-induced crystallization (AIC) of amorphous silicon with an Al2O3 diffusion barrier was investigated for controlling Si crystallization and preventing layer exchange during the annealing process. An Al2O3 layer was deposited between the a-Si and the Al films (a-Si/Al2O3/Al/Glass) and was blasted with an air spray gun with alumina beads to form diffusion channels between the Si and the Al layers. During the annealing process, small grain Si x Al seeds were formed at the channels. Then, the Al2O3 diffusion barrier was restructured to close the channels and prevent further diffusion of Al atoms into the a-Si layer. A polycrystalline Si film with (111), (220) and (311) crystallization peaks in the X-ray diffraction pattern was formed by annealing at 560 °C in a conventional furnace. That film showed a p-type semiconducting behavior with good crystallinity and a large grain size of up to 14.8 µm. No layer conversion occurred between the Si and the Al layers, which had been the fundamental obstacle to the applications in the crystallization of a-Si films by using the AIC method.

  17. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    NASA Astrophysics Data System (ADS)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  18. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  19. Iodine 125 Brachytherapy With Vitrectomy and Silicone Oil in the Treatment of Uveal Melanoma: 1-to-1 Matched Case-Control Series

    SciTech Connect

    McCannel, Tara A. McCannel, Colin A.

    2014-06-01

    Purpose: We initially reported the radiation-attenuating effect of silicone oil 1000 centistokes for iodine 125. The purpose of this report was to compare the clinical outcomes in case patients who had iodine 125 brachytherapy with vitrectomy and silicone oil 1000 centistokes with the outcomes in matched control patients who underwent brachytherapy alone. Methods and Materials: Consecutive patients with uveal melanoma who were treated with iodine 125 plaque brachytherapy and vitrectomy with silicone oil with minimum 1-year follow-up were included. Control patients who underwent brachytherapy alone were matched for tumor size, location, and sex. Baseline patient and tumor characteristics and tumor response to radiation, final visual acuity, macular status, central macular thickness by ocular coherence tomography (OCT), cataract progression, and metastasis at last follow-up visit were compared. Surgical complications were also determined. Results: Twenty case patients met the inclusion criteria. The average follow-up time was 22.1 months in case patients and 19.4 months in control patients. The final logMAR vision was 0.81 in case patients and 1.1 in control patients (P=.071); 8 case patients and 16 control patients had abnormal macular findings (P=.011); and the average central macular thickness by OCT was 293.2 ?m in case patients and 408.5 ?m in control patients (P=.016). Eleven case patients (55%) and 1 control patient (5%) had required cataract surgery at last follow-up (P=.002). Four patients in the case group and 1 patient in the control group experienced metastasis (P=.18). Among the cases, intraoperative retinal tear occurred in 3 patients; total serous retinal detachment and macular hole developed in 1 case patient each. There was no case of rhegmatogenous retinal detachment, treatment failure, or local tumor dissemination in case patients or control patients. Conclusions: With up to 3 years of clinical follow-up, silicone oil during brachytherapy for the treatment of uveal melanoma resulted in fewer abnormal maculas, lower central macular thickness on OCT, and a trend toward better final visual acuity in comparison with matched control patients who underwent brachytherapy alone.

  20. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  1. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  2. Characteristics of degenerately doped silicon for spectral control in thermophotovoltaic systems

    SciTech Connect

    Ehsani, H.; Bhat, I.; Borrego, J.; Gutmann, R.; Brown, E.; Dzeindziel, R.; Freeman, M.; Choudhury, N.

    1995-07-01

    Heavily doped Si was investigated for use as spectral control filter in thermal photovoltaic (TPV) system. These filters should reflect radiation at 4 {micro}m and above and transmit radiation at 2 {micro}m and below. Two approaches have been used for introducing impurities into Si to achieve high doping concentration. One was the diffusion technique, using spin-on dopants. The plasma wavelength ({lambda}{sub p}) of these filters could be adjusted by controlling the diffusion conditions. The minimum plasma wavelength achieved was 4.8 {micro}m. In addition, a significant amount of absorption was observed for the wavelength 2 {micro}m and below. The second approach was doping by ion implantation followed by thermal annealing with a capped layer of doped glass. Implantation with high dosage of B and As followed by high temperature annealing (> 1,000 C) resulted in a plasma wavelength that could be controlled between 3.5 and 6 {micro}m. The high temperature annealing (> 1,000 C) that was necessary to activate the dopant atoms and to heal the implantation damage, also caused significant absorption at 2 {micro}m. For phosphorus implanted Si, a moderate temperature (800--900 C) was sufficient to activate most of the phosphorus and to heal the implantation damage. The position of the plasma turn-on wavelength for an implantation dose of 2 {times} 10{sup 16} cm{sup {minus}2} of P was at 2.9 {micro}m. The absorption at 2 {micro}m was less than 20% and the reflection at 5 {micro}m was about 70%.

  3. Commissioning of the control and data acquisition electronics for the CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.M.; Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.; Bailey, M.W.; Kruse, M.C.; Castro, A.

    1991-11-01

    The SVX data acquisition system includes three components: a Fastbus Sequencer, an SVX Rabbit Crate Controller and a Digitizer. These modules are integrated into the CDF DAQ system and operate the readout chips. The results of the extensive functional tests of the SVX modules are reported. We discuss the stability of the Sequencers, systematic differences between them and methods of synchronization with the Tevatron beam crossings. The Digitizer ADC calibration procedure run on the microsequencer is described. The microsequencer code used for data taking and SVX chip calibration modes is described. Measurements of the SVX data scan time are discussed.

  4. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.

    PubMed

    Oh, Jihun; Yuan, Hao-Chih; Branz, Howard M

    2012-11-01

    Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured 'black-silicon' cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers. PMID:23023643

  5. A refined cellular automaton model to rectify impractical vehicular movement behavior

    NASA Astrophysics Data System (ADS)

    Lan, Lawrence W.; Chiou, Yu-Chiun; Lin, Zih-Shin; Hsu, Chih-Cheng

    2009-09-01

    When implementing cellular automata (CA) into a traffic simulation, one common defect yet to be rectified is the abrupt deceleration when vehicles encounter stationary obstacles or traffic jams. To be more in line with real world vehicular movement, this paper proposes a piecewise-linear movement to replace the conventional particle-hopping movement adopted in most previous CA models. Upon this adjustment and coupled with refined cell system, a new CA model is developed using the rationale of Forbes’ et al. car-following concept. The proposed CA model is validated on a two-lane freeway mainline context. It shows that this model can fix the unrealistic deceleration behaviors, and thus can reflect genuine driver behavior in the real world. The model is also capable of revealing Kerner’s three-phase traffic patterns and phase transitions among them. Furthermore, the proposed CA model is applied to simulate a highway work zone wherein traffic efficiency (maximum flow rates) and safety (speed deviations) impacted by various control schemes are tested.

  6. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 ?s and 510 ?s, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 ?s per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  7. Structural and Magnetic Properties of Zinc and Silicon Oxides Doped Cu Ferrite for Temperature Controller Devices

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Ahmed, E. M.; Hemeda, O. M.

    2015-10-01

    The effects of Si+4 and Zn+2 substitutions on the structural and magnetic properties of Cu1-xZnx+ySiyFe2-2yO4 ferrites prepared by double sintering ceramic technique have been investigated. From X-ray diffraction analysis, it was found that substitution of Zn and Si enhanced sintering process and crystallization. The XRD peaks increase by increasing Zn and Si content. On the other hand, the initial permeability decreases sharply at Curie temperature for all samples, which makes Zn/Si co-doped CuFe2O4 spinel ferrites a very promising candidate for magnetic switches, magnetic temperature transducers (MTT), and for fabrication of temperature sensitive controller devices. The important change of Curie temperature of CuFe2O4 compound occurs by simply controlling the content of Zn and Si within CuFe2O4 and results in obtaining magnetic materials with desired Curie temperature. Magnetic hysteresis loop measurements show that the samples have soft magnetic character.

  8. Crystal Structure of the Eukaryotic Strong Inward-Rectifier K[superscript +] Channel Kir2.2 at 3.1 Å Resolution

    SciTech Connect

    Tao, Xiao; Avalos, Jose L.; Chen, Jiayun; MacKinnon, Roderick

    2010-03-29

    Inward-rectifier potassium (K{sup +}) channels conduct K{sup +} ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb{sup +}), strontium (Sr{sup 2+}), and europium (Eu{sup 3+}) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K{sup +} channel family.

  9. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  10. Silicon Control of Strontium and Cesium Partitioning in Hydroxide-Weathered Sediments

    SciTech Connect

    Chorover, Jon; Choi, Sunkyung; Rotenberg, P.; Serne, R. Jeffrey; Rivera, Nelson; Strepka, Caleb R.; Thompson, Aaron; Mueller, Karl T.; O'Day, Peggy A.

    2008-04-15

    Cation partitioning in an aqueous soil suspension depends on the coupling of reaction time, sorbate amount and mineral weathering reactions. These factors were varied in sediment suspension experiments to identify geochemical processes that affect migration of Sr2+ and Cs+ introduced to the subsurface by caustic high level radioactive waste (HLRW). Three glacio-fluvial and lacustrine sediments from the Hanford Site were subjected to hyperalkaline (pH > 13), Na–Al–NO3–OH solution conditions within a gradient field of (i) sorptive concentration (10-5–10-3 M) and (ii) reaction time (0–365 d). Strontium uptake (qSr) exceeded that of cesium at nearly all reaction times. Sorbent affinity for both Cs+ and Sr2+ increased with clay plus silt content at early times, but a prolonged slow uptake process was observed over the course of sediment weathering that erased the texture effect for Sr2+; all sediments showed similar mass normalized uptake after several months of reaction time. Strontium became progressively recalcitrant to desorption after 92 d, with accumulation and aging of neoformed aluminosilicates. Formation of Cs+ and Sr2+-containing cancrinite and sodalite was observed after 183 d by SEM and synchrotron u-XRF and u-XRD. EXAFS data showed ncorporation of Sr2+ into both feldspathoid and SrCO3(s) coordination environments after one year. Adsorption was predominant at early times and low sorbate amount, whereas recipitation, controlled largely by sediment Si release, became increasingly important at longer times and higher sorbate amount. Kinetics of contaminant desorption at pH 8 from one year-weathered sediments showed significant dependence on background cation (Ca2+ versus K+) composition. Results of this study indicate that co-precipitation and ion exchange in neoformed aluminosilicates may be an important mechanism controlling Sr2+ and Cs+ mobility in siliceous sediments impacted by hyperalkaline HLRW.

  11. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography.

    PubMed

    Munshi, A M; Dheeraj, D L; Fauske, V T; Kim, D C; Huh, J; Reinertsen, J F; Ahtapodov, L; Lee, K D; Heidari, B; van Helvoort, A T J; Fimland, B O; Weman, H

    2014-02-12

    We report on the epitaxial growth of large-area position-controlled self-catalyzed GaAs nanowires (NWs) directly on Si by molecular beam epitaxy (MBE). Nanohole patterns are defined in a SiO2 mask on 2 in. Si wafers using nanoimprint lithography (NIL) for the growth of positioned GaAs NWs. To optimize the yield of vertical NWs the MBE growth parameter space is tuned, including Ga predeposition time, Ga and As fluxes, growth temperature, and annealing treatment prior to NW growth. In addition, a non-negligible radial growth is observed with increasing growth time and is found to be independent of the As species (i.e., As2 or As4) and the growth temperatures studied. Cross-sectional transmission electron microscopy analysis of the GaAs NW/Si substrate heterointerface reveals an epitaxial growth where NW base fills the oxide hole opening and eventually extends over the oxide mask. These findings have important implications for NW-based device designs with axial and radial p-n junctions. Finally, NIL positioned GaAs/AlGaAs core-shell heterostructured NWs are grown on Si to study the optical properties of the NWs. Room-temperature photoluminescence spectroscopy of ensembles of as-grown core-shell NWs reveals uniform and high optical quality, as required for the subsequent device applications. The combination of NIL and MBE thereby demonstrates the successful heterogeneous integration of highly uniform GaAs NWs on Si, important for fabricating high throughput, large-area position-controlled NW arrays for various optoelectronic device applications. PMID:24467394

  12. Automotive Power Generation and Control

    E-print Network

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  13. D0 Silicon Upgrade: Control Dewar Venturi Calibration Explanation for Toshiba

    SciTech Connect

    Kuwazaki, Andrew; /Fermilab

    1997-01-24

    This document is intended to explain the calibration data for the venturi, FE-3253H, which is installed in the control dewar. Further, this document will help explain how to use the venturi to make mass flow measurements during typical operating conditions. The purpose of the calibration data enclosed from the Colorado Engineering Experiment Station Inc. is to experimentally show that the venturi follows the flow equation which is enclosed as Eq. 7-36 on page 155, from the Applied Fluid Dynamics Handbook. The calibration data serves to show that the Subsonic Venturi, Serial Number 611980-18, produces results predicted by the compressible subsonic flow mass flow rate equation above and to experimentally determine the discharge coefficient C. Colorado Engineering Experiment Station Inc. ran tests at 15 independent differential pressures to conclude that use of this venturi will perform according to the mass flow rate equation. In order to verify the results from the Colorado Engineering Experiment Station Inc. we have provided you with a step-by-step procedure using the values they have chosen.

  14. A Novel Approach of Daunorubicin Application on Formation of Proliferative Retinopathy Using a Porous Silicon Controlled Delivery System: Pharmacodynamics

    PubMed Central

    Hou, Huiyuan; Huffman, Kristyn; Rios, Sandy; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2015-01-01

    Purpose. Proliferative vitreoretinopathy (PVR) is the most common cause of poor visual outcomes in association with retinal detachment surgeries and ocular trauma. Daunorubicin (DNR) has shown the strongest efficacy in proliferation inhibition in vitro. However, clinical studies have shown only mild effect owing to limitations of narrow therapeutic window and short vitreous half-life. Methods. Three milligrams of DNR-loaded particles were intravitreally injected into 18 pigmented rabbits, and vitreous samples were collected up to 84 days for analysis. Thirty-seven rabbits were used for a dose-escalation (1, 3, 6 mg) safety and efficacy study in a rabbit PVR model using a pretreatment design. Results. Loading efficiency of DNR was 108.55 ± 12 ?g per 1 mg particles. Eighty-four days of follow-up did not reveal any adverse reaction. Pharmacokinetic analysis demonstrated a vitreous half-life of 29 days with a maximum DNR concentration of 178 ng/mL and a minimum concentration of 29 ng/mL at day 84. Daunorubicin-loaded porous silicon (pSi) particles were dosed 8 to 9 weeks before PVR induction, and PVR severity score was dose dependent (Spearman ? = ?0.25, P = 0.0005). Proliferative vitreoretinopathy with tractional retinal detachment was 88% in the control group, 63% in the low-dose group, 14% in the medium-dose group, and 0% in the high-dose group (Cochran-Armitage Trend Test, Z = 8.99, ? = ?0.67, P < 0.0001). Conclusions. Daunorubicin-loaded pSi particles can safely reside in the vitreous for at least 3 months. The pSi-based delivery expanded the therapeutic window of DNR by a factor of 862 and drove down the minimum effective concentration by a factor of 175. PMID:25829415

  15. Direct Production of Silicones From Sand

    SciTech Connect

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  16. Gravity-Feed Growth of Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Cullen, G. W.

    1982-01-01

    In inverted Stepanov apparatus, silicon is melted in vee-shaped crucible that has long narrow slot at bottom of vee. Molten silicon flows from slot at a rate controlled by fluid pressure. As it emerges, it cools and solidifies to form a continuous ribbon. To eliminate surface-tension effects, crucible walls are made of a material that liquid silicon does not wet.

  17. Isolated two-stage passive PFC rectifier for the Radioisotope Stirling Generator

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Montalban, G.; Sanchis-Kilders, E.; Ferreres, A.

    This paper describes an isolated, passive power factor correction rectifier devised for low-voltage, large-inductance, single-phase alternator, like the one used in the Radioisotope Stirling Generator. The power converter splits into two independent stages, the front-end rectifier corrects the power factor by adding a series capacitor in the AC line. Further, the rectifier, thanks to the alternator inductance, behaves as a constant-current source that powers a current-fed, zero voltage and zero current switching push-pull stage. This approach takes advantage of all parasitic elements to increase power density while keeping simple and reliable. Full description and analysis is given as well as the design procedure, simulation and experimental results.

  18. Theoretical study on the rectifying performance of organoimido derivatives of hexamolybdates.

    PubMed

    Wen, Shizheng; Yang, Guochun; Yan, Likai; Li, Haibin; Su, Zhongmin

    2013-02-25

    We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non-equilibrium Green's function. Asymmetric current-voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron-transport direction in our studied system is different from that of the organic D-bridge-A system. The results show that the studied organic-inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes. PMID:23303530

  19. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  20. Semiconductor-to-metal Transition Control in Novel Vanadium Dioxide/Silicon and Vanadium Dioxide/Sapphire Epitaxial Thin Film Heterostructures for Device Applications

    NASA Astrophysics Data System (ADS)

    Gupta, Alok

    Novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide an exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using yttria-stabilized zirconia (YSZ) template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly, YSZ can be grown epitaxially on silicon substrates even if the native oxide is not etched completely prior to deposition. I have used this approach to integrate VO2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. The detailed x-ray diffraction, transmission electron microscopy (TEM), electrical characterization results for the deposited films will be presented. In the framework on domain matching epitaxy, epitaxial growth of VO2 (tetragonal crystal structure at growth temperature) on both tetragonal and cubic YSZ has been explained. Our detailed phi-scan X-ray diffraction measurements corroborate our understanding of the epitaxial growth and in-plane atomic arrangements at the interface. It was observed that the transition characteristics (sharpness, over which electrical and optical property changes are completed, amplitude, transition temperature, and hysteresis) are a strong function of microstructure, strain, and stoichiometry. We have shown that by choosing the right template layer, strain in the VO2 thin films can be fully relaxed and near-bulk VO2 transition temperatures can be achieved. We have demonstrated this by using NiO as a buffer layer on Al2O3 (0001) substrate. We have also used swift heavy ion irradiation to induce controlled modifications in the semiconductor-to-metal transition characteristics of VO2 single-crystal thin films with varying ion fluences. At very high energies of ions (200 MeV), the electronic stopping (˜2009 eV/A) dominates over nuclear stopping (˜16 eV/A). Under these extreme electronic excitation conditions caused by electronic stopping and the passage of swift heavy ions through the entire thickness of the film, we expect creation of certain unique type of defects and disordered regions. Detailed characterization using X-ray diffraction, Raman spectroscopy, infra-red transmission spectroscopy, x-ray photoelectron spectroscopy (XPS), and electrical measurements were performed to investigate the characteristics and role of these defects on structural, optical, and electrical properties of VO2 thin films. XPS andelectrical resistivity measurements suggest that the ion-irradiation induces localized defect states which appear to correlate well with the creation of disordered regions in the VO2 thin films. The high energy heavy ion-irradiation changes the transition characteristics drastically from a first-order to a second-order transition (electronic -- Mott type). The low temperature conductance data for these ion-irradiated films fits well with the quasi-amorphous model for resistivity of VO2 where ion-irradiation is believed to

  1. Simple evaporation controller for thin-film deposition from a resistively heated boat

    NASA Technical Reports Server (NTRS)

    Scofield, John H.; Bajuk, Lou; Mohler, William

    1990-01-01

    A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.

  2. Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium

    PubMed Central

    1994-01-01

    Inward-rectifier K channel: using macroscopic voltage clamp and single- channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conductance of intact cells. The current- voltage relationship of BLM in intact cells of isolated epithelia, mounted in miniature Ussing chambers (bathed on apical and basolateral sides in normal amphibian Ringer solution), showed pronounced inward rectification which was K(+)-dependent and inhibited by Ba2+, H+, and quinidine. A 15-pS Kir channel was the only type of K(+)-selective channel found in BLM in cell-attached membrane patches bathed in physiological solutions. Although the channel behaves as an inward rectifier, it conducts outward current (K+ exit from the cell) with a very high open probability (Po = 0.74-1.0) at membrane potentials less negative than the Nernst potential for K+. The Kir channel was transformed to a pure inward rectifier (no outward current) in cell- attached membranes when the patch pipette contained 120 mM KCl Ringer solution (normal NaCl Ringer in bath). Inward rectification is caused by Mg2+ block of outward current and the single-channel current-voltage relation was linear when Mg2+ was removed from the cytosolic side. Whole-cell current-voltage relations of isolated principal cells were also inwardly rectified. Power density spectra of ensemble current noise could be fit by a single Lorentzian function, which displayed a K dependence indicative of spontaneously fluctuating Kir channels. Conclusions: under physiological ionic gradients, a 15-pS inward- rectifier K+ channel generates the resting BLM conductance in principal cells and recycles potassium in parallel with the Na+/K+ ATPase pump. PMID:8057079

  3. Revisiting the Rectifier: New Observations of Covariance Between Terrestrial Carbon Cycling and Boundary Layer Depth (Invited)

    NASA Astrophysics Data System (ADS)

    Denning, S.; McGrath-Spangler, E. L.

    2013-12-01

    Covariance between land-surface carbon fluxes and vertical mixing in the atmosphere is among the strongest determinants of the spatial distribution of atmospheric CO2 in the lower troposphere. Differences in the magnitude of this "CO2 rectifier effect" among different tracer transport models has been shown to explain most of the variability in estimates of terrestrial carbon sinks over the northern (vs tropical) continents. We present a new analysis of the magnitude of the CO2 rectifier using a climatology of PBL depth estimated using vertical profiles of LIDAR backscatter from the CALIPSO satellite. Millions of separate soundings of PBL depth were matched with hourly estimates of photosynthesis and ecosystem respiration from the Simple Biosphere Model (SiB3) at the same locations and times over more than 6 years. Strong covariance between net carbon flux and atmospheric mixing were observed over the northern continents, especially over Boreal Asia. Negative covariance is observed over monsoon regions, which is especially strong over India. Covariance of net carbon flux with the reciprocal of PBL depth has the units of CO2 tendency (ppm per month), and can be expressed as rectifier forcing. Satellite sampling of this quantity reveals spatially-coherent patterns as strong as +/- 10 ppm per month over Siberia and India. We computed rectifier forcing with NASA's Modern Era Reanalysis (MERRA) for the same locations and times sampled by CALIPSO from 2006-2012. Comparison of the MERRA and CALIPSO data reveal that the spatial patterns and magnitudes are similar over the northern continents, but much weaker in MERRA than CALIPSO over the tropics. Using MERRA to compute the rectifier effect for SiB fluxes in GEOS-Chem allows us to establish a quantitative relationship between rectifier forcing and response that is evaluated against the CALIPSO boundary layer data. We propose a framework for model intercomparison and evaluation that can leverage the rich new data set.

  4. Maxwell's demon, rectifiers, and the second law: Computer simulation of Smoluchowski's trapdoor

    SciTech Connect

    Skordos, P.A. Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusetts 02139 ); Zurek, W.H. Santa Fe Institute, Santa Fe )

    1992-10-01

    An automated version of Maxwell's demon inspired by Smoluchowski's ideas of 1912 is simulated numerically. Two gas chambers of equal volume are connected via an opening that is covered by a trapdoor. The trapdoor can open to the left but not to the right, and is intended to rectify naturally occurring fluctuations in density between the two chambers. The simulation results confirm that though the trapdoor behaves as a rectifier when large density differences are imposed by external means, it cannot extract useful work from the thermal motion of the molecules when left on its own.

  5. Transport of particles and microorganisms in microfluidic channels using rectified ac electro-osmotic flow

    PubMed Central

    Wu, Wen-I; Selvaganapathy, P. Ravi; Ching, Chan Y.

    2011-01-01

    A new method is demonstrated to transport particles, cells, and other microorganisms using rectified ac electro-osmotic flows in open microchannels. The rectified flow is obtained by synchronous zeta potential modulation with the driving potential in the microchannel. Experiments were conducted to transport both neutral, charged particles, and microorganisms of various sizes. A maximum speed of 50 ?m?s was obtained for 8 ?m polystyrene beads, without any electrolysis, using a symmetrical square waveform driving electric field of 5 V?mm at 10 Hz and a 360 V gate potential with its polarity synchronized with the driving potential (phase lag=0°). PMID:21522497

  6. Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications

    SciTech Connect

    Mark A. Johnson

    2012-06-29

    Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

  7. Conformational changes underlying pore dilation in the cytoplasmic domain of mammalian inward rectifier K+ channels.

    PubMed

    Inanobe, Atsushi; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2013-01-01

    The cytoplasmic domain of inward rectifier K(+) (Kir) channels associates with cytoplasmic ligands and undergoes conformational change to control the gate present in its transmembrane domain. Ligand-operated activation appears to cause dilation of the pore at the cytoplasmic domain. However, it is still unclear how the cytoplasmic domain supports pore dilation and how alterations to this domain affect channel activity. In the present study, we focused on 2 spatially adjacent residues, i.e., Glu236 and Met313, of the G protein-gated Kir channel subunit Kir3.2. In the closed state, these pore-facing residues are present on adjacent ?D and ?H strands, respectively. We mutated both residues, expressed them with the m2-muscarinic receptor in Xenopus oocytes, and measured the acetylcholine-dependent K(+) currents. The dose-response curves of the Glu236 mutants tended to be shifted to the right. In comparison, the slopes of the concentration-dependent curves were reduced and the single-channel properties were altered in the Met313 mutants. The introduction of arginine at position 236 conferred constitutive activity and caused a leftward shift in the conductance-voltage relationship. The crystal structure of the cytoplasmic domain of the mutant showed that the arginine contacts the main chains of the ?H and ?I strands of the adjacent subunit. Because the ?H strand forms a ? sheet with the ?I and ?D strands, the immobilization of the pore-forming ? sheet appears to confer unique properties to the mutant. These results suggest that the G protein association triggers pore dilation at the cytoplasmic domain in functional channels, and the pore-constituting structural elements contribute differently to these conformational changes. PMID:24244570

  8. Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization.

    PubMed

    Cataldi, Mauro; Panuccio, Gabriella; Cavaccini, Anna; D'Antuono, Margherita; Taglialatela, Maurizio; Avoli, Massimo

    2011-03-01

    Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization. PMID:21144855

  9. Improving point registration in dental cephalograms by two-stage rectified point translation transform

    NASA Astrophysics Data System (ADS)

    Tam, W. K.; Lee, H. J.

    2012-02-01

    Cephalometric analysis requires to detect landmarks on cephalograms. Current registration techniques, such as that use scale-invariant feature descriptor (SIFT), perform poorly on cephalograms. We proposed to improve the registration technique for detecting the landmarks on cephalograms. The results were compared with the landmark identified by dental professionals. Twenty digital cephalograms were collected from a dental clinic. Twenty orthodontic landmarks were identified by dental professionals on each image; one of them was used as a template image. We automatically locate the landmarks using a two stages approach, the global registration of the interest points between two images and a local registration of the landmarks. In the first stage, SIFT was employed to establish point-to-point matching pairs. The matched points on the input image were treated as a set of translation transforms from the original template image. The consistence of the translation was controlled by applying a rectification factor defined in this study. In the second stage, we localized the search within the suspected regions around the landmarks derived by the translations in the first stage. Local registrations were rectified and fine-tuned until the translations close to the identified landmarks were obtained. Our method could detect all the landmarks with error distances less than the 2mm standard set forth by previous researcher. By improving the consistence of the translations, the performance of registration between two images was greatly improved. This method can be used as an initial step to locate the regions around the landmarks for improving detection in the future work.

  10. 27 CFR 1.21 - Domestic producers, rectifiers, blenders, and warehousemen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Domestic producers, rectifiers, blenders, and warehousemen. 1.21 Section 1.21 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BASIC PERMIT REQUIREMENTS UNDER...

  11. AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves

    E-print Network

    AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves valve system. Individual valves are based on a flexible membrane with a slit. Bubble-free palladium As a second novelty, we suppress the generation of bubbles by employing palladium electrodes that can store

  12. Blind Image Quality Assessment using Semi-supervised Rectifier Networks Huixuan Tang

    E-print Network

    Toronto, University of

    and machine learning to model perceptual image quality. Such methods first extract hand-crafted features fromBlind Image Quality Assessment using Semi-supervised Rectifier Networks Huixuan Tang University human provided quality scores with machine learning to learn a measure. The biggest hurdles

  13. A Novel Cl Inward-Rectifying Current in the Plasma Membrane of the Calcifying Marine Phytoplankton

    E-print Network

    Taylor, Alison

    as much as 40% of annual global carbon assimilation. Ion and nutrient transport across the plasma membraneA Novel Cl Inward-Rectifying Current in the Plasma Membrane of the Calcifying Marine Phytoplankton properties and dominant ionic conductances in the plasma membrane of the calcifying marine phytoplankton

  14. Characterizations of rectifiable metric measure spaces Sean Li, University of Chicago

    E-print Network

    Toro, Tatiana

    Characterizations of rectifiable metric measure spaces Sean Li, University of Chicago October 7, 2014 C-401 -1:30pm Lipschitz differentiability spaces were introduced by Cheeger as a class of metric measure spaces for which a vast generalization of Rademacher's theorem holds. Such spaces come with a set

  15. Inwardly rectifying K(+) current and differentiation of human placental cytotrophoblast cells in culture.

    PubMed

    Clarson, L H; Greenwood, S L; Mylona, P; Sibley, C P

    2001-04-01

    Ion transport is important for driving nutrient transport across the syncytiotrophoblast and yet is poorly understood. We have examined K(+)currents under basal conditions in cultured cytotrophoblast cells, at various stages of differentiation, using the whole cell patch clamp technique. Cytotrophoblast cells were isolated from human term placenta and maintained in culture for up to 3 days. Cells were studied at four stages of progressive morphological differentiation: (i) mononuclear cells, (ii) mononuclear cells in aggregates, (iii) small multinucleate cells and (iv) large multinucleate syncytiotrophoblast-like cells. In the conditions of whole cell recording the only K(+) selective current identified in all cell types was a strong inwardly rectifying current which was sensitive to Ba(2+) and Cs(+). This current was unaffected by intracellular ATP whereas intracellular GTPgammas caused either run down of the current or activated a linear current. The characteristics of the current described are consistent with those of the inwardly rectifying K(+) channel Kir2.1. The inwardly rectifying K(+) current was observed in three out of 19 (16 per cent ) mononuclear cells, seven out of 21 (33 per cent ) mononuclear aggregates, eight out of 21 (38 per cent ) small multinucleate cells and 16 out of 19 (84 per cent ) large multinucleate cells. This inwardly rectifying K(+) current is likely to have an important role in determining net K(+) diffusion across the syncytiotrophoblast cell membrane, perhaps increasing in importance as the cells terminally differentiate. PMID:11286569

  16. Self-Rectifying Effect in Resistive Switching Memory Using Amorphous InGaZnO

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kwon, Hyeon-Min; Kim, Myeong-Ho; Lee, Seung-Ryul; Kim, Young-Bae; Choi, Duck-Kyun

    2014-05-01

    Resistance random access memory (ReRAM) has received attention as next-generation memory because of its excellent operating properties and high density integration capability as a crossbar array. However, the application of the existing ReRAM as a crossbar array may lead to crosstalk between adjacent cells due to its symmetric I- V characteristics. In this study, the self-rectifying effect of contact between amorphous In-Ga-Zn-O (a-IGZO) and TaO x was examined in a Pt/a-IGZO/TaO x /Al2O3/W structure. The experimental results show not only self-rectifying behavior but also forming-free characteristics. During the deposition of a-IGZO on the TaO x , an oxygen-rich TaO x interfacial layer was formed. The rectifying effect was observed regardless of the interface formation and is believed to be associated with Schottky contact formation between a-IGZO and TaO x . The current level remained unchanged despite repeated DC sweep cycles. The low resistance state/high resistance state ratio was about 101 at a read voltage of -0.5 V, and the rectifying ratio was about 103 at ±2 V.

  17. Phase-Rectified Signal Averaging to Evaluate ANS Development in Premature Infants

    E-print Network

    -Stationary Signals. Abstract: Aim: Heart Rate Variability (HRV) is determined by the autonomic nervous system (ANS aims to assess the utility and the advantages of HRV analysis by means of phase-rectified signal with traditional HRV parameters. The results of slope and AD/DC in both types of analysis are promising

  18. A Single-phase Rectifier With Ripple-power Decoupling and Application to LED Lighting 

    E-print Network

    Tian, Bo

    2015-05-12

    In recent years, Light-Emitting-Diode (LED) is widely used in lighting applications for its high efficacy and high reliability. However, the rectifier, which is required by the LEDs to convert the AC power from the grid into DC power, suffers from...

  19. A Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters*

    E-print Network

    Hurst, Paul J.

    -electrode disk-shaped piezoelectric generator. By using quarter- circle shaped electrodes, similar piezoelectric transducers are bilateral devices, the generated electrical waveforms will be in quadratureA Full-Wave Rectifier for Interfacing with Multi-Phase Piezoelectric Energy Harvesters* N. J

  20. Study of Microstructure and Transient, Instantaneous Current in Different Excitations During Silicon Micromachining

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. V.; Jain, V. K.; Misra, K. A.

    2012-09-01

    Study of transient, instantaneous current during silicon micromachining using electrochemical spark process is carried out. Voltage excitation of three kinds namely, dc, Half wave rectified and ac are used to carve the micro channels. The transient and instantaneous process current is measured online and analyzed for each excitation. Micromachining and the surface topography results are presented. The transient current reveals the mechanism of the spark formation and explains the inherent process stages.

  1. Morphology control of gallium nitride grown on silicon nanoporous pillar array: From cone-strings to nanowires

    NASA Astrophysics Data System (ADS)

    Han, Chang Bao; He, Chuan; Li, Xin Jian

    2012-07-01

    Fascicle arrays of gallium nitride (GaN) nanostructures were grown on silicon nanoporous pillar array (Si-NPA) by a reactive chemical vapor deposition method. Through adjusting the distance between the gallium source and Si-NPA substrate, the morphology of GaN nanostructures was tuned from cone-strings, cone-strings plus nanowires to nanowires, accompanied with the average diameter changed from ˜800 nm to ˜13 nm. Both the cone-strings and the nanowires were found growing along [0001] direction. These results indicate that Ga concentration is a key factor in determining both the morphology and the average diameter of GaN nanostructures. The growing process of the GaN nanostructures was explained under the frame of vapor-liquid-solid deposition mechanism. Our method might be expanded to the growth of other compound semiconductor nanostructures on patterned silicon substrates for constructing functional nanodevices.

  2. Silicon isotope fractionation during FZ growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Morishita, Y.; Satoh, H.

    2003-01-01

    We have carried out evaporation and crystal growth experiments, and precisely determined silicon isotopic ratios for the run products of the experiments using the ims-1270 SIMS with multicollectors at the Geological Survey of Japan. The silicon isotope fractionation factor between vapor and melt under vacuum was determined to be 0.9821 at a temperature of 1680 °C, while that under 10 5 Pa of Ar was 0.9947. The SIMS microanalysis revealed isotopic zoning in a single silicon crystal which was produced during its growth. It is inferred that the silicon isotopic ratios in a silicon crystal during the floating zone growth were controlled by the growth conditions such as the growth and rotation rates as well as the fractionation factor between the crystal and its melt.

  3. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. Hydrogen-silicon carbide interactions

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Jacobson, Nathan S.; Misra, Ajay K.; Humphrey, Donald L.

    1989-01-01

    A study of the thermochemistry and kinetics of hydrogen environmental attack of silicon carbide was conducted for temperatures in the range from 1100 C to 1400 C. Thermodynamic maps based on the parameters of pressure and oxygen/moisture content were constructed. With increasing moisture levels, four distinct regions of attack were identified. Each region is defined by the thermodynamically stable solid phases. The theoretically stable solid phases of Region 1 are silicon carbide and silicon. Experimental evidence is provided to support this thermodynamic prediction. Silicon carbide is the single stable solid phase in Region 2. Active attack of the silicon carbide in this region occurs by the formation of gases of SiO, CO, CH4, SiH4, and SiH. Analysis of the kinetics of reaction for Region 2 at 1300 C show the attack of the silicon carbide to be controlled by gas phase diffusion of H2O to the sample. Silicon carbide and silica are the stable phases common to Regions 3 and 4. These two regions are characterized by the passive oxidation of silicon carbide and formation of a protective silica layer.

  5. Reducing the pump power of optically controlled terahertz metamaterial via tailoring the resistance of the silicon gap region

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Zhou, Zhiqiang; Yao, Hongbing; Fu, Yonghong; Ren, Naifei

    2015-10-01

    Optically tunable metamaterials provide an ultrafast and active manipulation of terahertz wave. We demonstrate a strategy to alleviate the tradeoff between the requirement of low optical pump power and the achievement of significant resonance modulation in the photoexcited metamaterials. We have shown that the resonance strength of split-ring resonator metamaterial is determined by the resistance of its silicon gaps. By reducing the resistance through geometry adjustment of the gap region, the needed photoconductivity and hence the pump power can be substantially reduced without deteriorating the resonance tuning effect. The presented design rule may offer an avenue to realize low-power optically tunable terahertz devices.

  6. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system

    NASA Astrophysics Data System (ADS)

    Caillard, L.; Sattayaporn, S.; Lamic-Humblot, A.-F.; Casale, S.; Campbell, P.; Chabal, Y. J.; Pluchery, O.

    2015-02-01

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ˜16 nm), ascorbic acid (diameter ˜9 nm), or NaBH4 (Natan synthesis, diameter ˜7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ˜80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  7. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    PubMed

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ?16 nm), ascorbic acid (diameter ?9 nm), or NaBH4 (Natan synthesis, diameter ?7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ?80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains. PMID:25611611

  8. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    NASA Astrophysics Data System (ADS)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might r

  9. Aviram-Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps

    NASA Astrophysics Data System (ADS)

    Agapito, Luis A.; Gayles, Jacob; Wolowiec, Christian; Kioussis, Nicholas

    2012-04-01

    We demonstrate that biological molecules such as Watson-Crick DNA base pairs can behave as biological Aviram-Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab initio non-equilibrium Green’s function (NEGF) theory to determine the electrical response of graphene—base-pair—graphene junctions. The results show an asymmetric (rectifying) current-voltage response for the cytosine-guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the thymine-adenine case. We propose applying the asymmetry of the current-voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps.

  10. Composition Change Characteristics of R407C by a Packed Column Rectifier

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Katoh, Yohei; Obayashi, Tomoyoshi; Hirata, Yushi

    The composition separation of R407C is used to improve performance of air conditioners and heat pump water heater units. Therefore, it is important to grasp a separation performance of a packed column rectifier and make a useful nondimensional equation of mass transfer coefficients for design of the rectifier. The experiments were carried out to investigate an influence of the vapor velocity on the separation performance, and an overall mass transfer coefficient of gas side was measured. The nondimensional equation for the mass transfer coefficients was made based on the measured data. The influence of the refrigerant charge and the packed height on the separation performance was evaluated with the experiments and calculated results with the equation. The calculated results agreed with the experimental results.

  11. Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities

    PubMed Central

    Bhave, Gautam; Lonergan, Daniel; Chauder, Brian A; Denton, Jerod S

    2010-01-01

    Inward rectifier potassium (Kir) channels have been postulated as therapeutic targets for several common disorders including hypertension, cardiac arrhythmias and pain. With few exceptions, however, the small-molecule pharmacology of this family is limited to nonselective cardiovascular and neurologic drugs with off-target activity toward inward rectifiers. Consequently, the actual therapeutic potential and ‘drugability’ of most Kir channels has not yet been determined experimentally. The purpose of this review is to provide a comprehensive summary of publicly disclosed Kir channel small-molecule modulators and highlight recent targeted drug-discovery efforts toward Kir1.1 and Kir2.1. The review concludes with a brief speculation on how the field of Kir channel pharmacology will develop over the coming years and a discussion of the increasingly important role academic laboratories will play in this progress. PMID:20543968

  12. Hydrogen Sulfide Regulates Inward-Rectifying K+ Channels in Conjunction with Stomatal Closure1[OPEN

    PubMed Central

    Papanatsiou, Maria; Scuffi, Denisse; Blatt, Michael R.; García-Mata, Carlos

    2015-01-01

    Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K+ channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K+ channels. PMID:25770153

  13. A new high performance AC to DC rectifier with input power factor correction and harmonic reduction capacity 

    E-print Network

    Martinez, Roberto

    1994-01-01

    Many conventional switching power supplies in data processing equipment and low power motor drive systems operate by rectifying the input ac line voltage and filtering it with large electrolytic capacitors. Because this ...

  14. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Some hypotheses to explain both of these features are advanced and the possible implications for solar cell performance are touched upon. The multiple ribbon growth system has shown a number of flaws with respect to the reliability of the basic furnace design. These definitely need to be rectified before any significant demonstration of multiple ribbon growth can proceed. The cartridges, however, have performed quite well. The work on 3" cartridge design and automatic controls has proceeded nearly on schedule and the report contains a detailed description of the approach and the equipment to be used for automatic control of ribbon growth.

  15. Waveguide-Ring Resonator Coupler with Class-F Rectifier for 2-D Waveguide Power Transmission

    E-print Network

    Shinoda, Hiroyuki

    Bm in a 2.4-GHz band. Index Terms--RF-dc converter, two-dimensional waveguide, waveguide-ring resonator 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan Email: Akihito Noda@ipc.i.u-tokyo.ac.jp; shino@alab.t.u-tokyo.ac.jp Abstract--In this paper we demonstrate a high-efficiency dc power extraction using a rectifying coupler

  16. Inward Rectifier Potassiwn Channels Cloning, Expression and Structure~FunctionStudies

    E-print Network

    Tucker, Stephen J.

    . ADEU1AN, PhD SUMMARY A PeR-based cloning strategy was used to identitY novel subunits of the two-transmembrane domain inward rectifier potassium channel family from rat brain, heart, and skelet.a..l muscle. When-dependent block by extemal cesium were detected. Two other members of this family (Kir5. I and Kir3.4) did

  17. Decrease in an Inwardly Rectifying Potassium Conductance in Mouse Mammary Secretory Cells after Forced Weaning

    PubMed Central

    Kamikawa, Akihiro; Sugimoto, Shota; Ichii, Osamu; Kondoh, Daisuke

    2015-01-01

    Mammary glands are physiologically active in female mammals only during nursing. Immediately after weaning, most lactation-related genes are downregulated and milk production ceases. In our previous study, we have detected an inwardly rectifying potassium channel (Kir) 2.1-like current in mammary secretory (MS) cells freshly isolated from lactating mice. This current is highly sensitive to external Ba2+. The potassium permeability of the Kir channels may contribute to the secretion and/or preservation of ions in milk. We hypothesized that the functions of the Kir channels in MS cells are regulated after weaning. To test this hypothesis, we examined the effect of forced weaning on the Ba2+-sensitive Kir current and Kir2.1 expression in the mouse mammary glands. Twenty-four hours after weaning, the lumina of mammary acini were histologically enlarged by milk accumulation. The whole-cell patch-clamp analyses showed that the Ba2+-sensitive Kir current in the post-weaning MS cells was smaller than in the lactating MS cells. The inward conductances of the current in the lactating and post-weaning cells were 4.25 ± 0.77 and 0.93 ± 0.34 nS, respectively. Furthermore, real-time PCR and Western blot analyses showed that Kir2.1 mRNA and protein expression decreased in the post-weaning mammary gland (mRNA, 90% reduction; protein, 47% reduction). Moreover, the local milk accumulation caused by teat sealing decreased Kir conductance in MS cells (2.74 ± 0.45 and 0.36 ± 0.27 nS for control and sealed mammary glands, respectively). This was concomitant with the reduction in the Kir2.1 mRNA expression. Our results suggest that milk stasis after weaning immediately decreases the Kir conductance in MS cells. This decrease in the Kir conductance may be partly caused by the reduction in the Kir2.1 mRNA and protein expression. These alterations during the post-weaning period may be involved in the cessation of ion secretion and/or preservation in the milk. PMID:26484867

  18. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869?MHz) and exhibits favorable impedance matching over a broad input power range (?40 to ?10?dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8?mV is achieved for a multi-tone input power of ?10?dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860?MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  19. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump.

    PubMed

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2?m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200??m and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump. PMID:24404051

  20. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xu, X. Q.; Myra, J. R.; D'Ippolito, D. A.

    2014-11-01

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  1. ?1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs.

    PubMed

    Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong

    2015-01-01

    ?1-Adrenoceptor autoantibodies (?1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of ?1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of ?1-AAs on I K and APD and further explore the mechanisms of ?1-AA-mediated ventricular arrhythmias. ?1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 ?mol/L ?1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 ?mol/L, ?1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 ?mol/L, ?1-AAs significantly prolonged APD90 and APD50. Moreover, ?1-AAs (0.001, 0.01, 0.1 ?mol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high ?1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients. PMID:24894912

  2. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    SciTech Connect

    Gui, B.; Xu, X. Q.; Myra, J. R.; D'Ippolito, D. A.

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  3. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869?MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10?dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8?mV is achieved for a multi-tone input power of -10?dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860?MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  4. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump

    PubMed Central

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2?m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200??m and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump. PMID:24404051

  5. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    NASA Astrophysics Data System (ADS)

    Agosto, William N.

    1993-03-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  6. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  7. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  8. In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor.

    PubMed

    Li, Zetang; Zhang, Xu; Li, Guanghe

    2014-03-28

    A PVDF-ZnO nanowires (NWs) hybrid generator (PZHG) was designed. A simple, cost effective method to produce the PVDF ? phase by nano force is introduced. With the ZnO NWs growing, the in situ nano extension force promotes the phase change. A theoretical analysis of the ZnO NWs acting as a self-rectifier of the nano generator is established. The ZnO NWs acted as a self-adjustment diode to control the current output of the PZHG by piezo-electric and semi-conductive effects. Based on the self-controllability of the piezoelectric output, three kinds of finger touching are distinguished by the output performances of the PZHG, which is applicable to an LCD touch pad. PMID:24515250

  9. Starting Material Silicon substrate

    E-print Network

    Healy, Kevin Edward

    Starting Material Silicon substrate 150 mm, p-type, , 36-63 ohm-cm Attila Horvath 2005 #12;Pad Oxidation and Nitride Deposition Silicon substrate Pad oxide = 250A Silicon nitride = 2200A Attila Horvath 2005 #12;N-Well Photo and Nitride Etch Silicon substrate Pad oxide Silicon nitride Photo resist Attila

  10. Role of slow delayed rectifying potassium current in dynamics of repolarization and electrical memory in swine ventricles.

    PubMed

    Jing, Linyuan; Brownson, Kathleen; Patwardhan, Abhijit

    2014-05-01

    Dynamics of repolarization, quantified as restitution and electrical memory, impact conduction stability. Relatively less is known about role of slow delayed rectifying potassium current, I(Ks), in dynamics of repolarization and memory compared to the rapidly activating current I(Kr). Trans-membrane potentials were recorded from right ventricular tissues from pigs during reduction (chromanol 293B) and increases in I(Ks) (mefenamic acid). A novel pacing protocol was used to explicitly control diastolic intervals to quantify memory. Restitution hysteresis, a consequence of memory, increased after chromanol 293B (loop thickness and area increased 27 and 38 %) and decreased after mefenamic acid (52 and 53 %). Standard and dynamic restitutions showed an increase in average slope after chromanol 293B and a decrease after mefenamic acid. Increase in slope and memory are hypothesized to have opposite effects on electrical stability; therefore, these results suggest that reduction and enhancement of I(Ks) likely also have offsetting components that affect stability. PMID:24682806

  11. Polytype control by activity ratio of silicon to carbon during SiC solution growth using multicomponent solvents

    NASA Astrophysics Data System (ADS)

    Horio, Atsushi; Harada, Shunta; Koike, Daiki; Murayama, Kenta; Aoyagi, Kenta; Sakai, Takenobu; Tagawa, Miho; Ujihara, Toru

    2016-01-01

    We report on the relationship between grown polytypes and the activity ratio of silicon to carbon during SiC solution growth using multicomponent solvents. From the thermodynamic calculation as well as crystallization experiments, we revealed that a high activity ratio (aSi/aC) in the solution leads to the growth of low-hexagonality polytypes, and low aSi/aC results in the growth of high-hexagonality polytypes. 4H-SiC is stable when aSi/aC is relatively low (?101 > aSi/aC), 3C-SiC is stable when aSi/aC is relatively high (?104 < aSi/aC), and 6H-SiC is stable in the intermediate aSi/aC range (?102 < aSi/aC < ?103). From these results, the Cr–Si solvent at high temperatures is expected to be suitable for 4H-SiC growth, and Sc–Si and Fe–Si solvents at relatively low temperatures are expected to be suitable for 3C-SiC growth.

  12. Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications

    PubMed Central

    Um, Han-Don; Kim, Namwoo; Lee, Kangmin; Hwang, Inchan; Hoon Seo, Ji; Yu, Young J.; Duane, Peter; Wober, Munib; Seo, Kwanyong

    2015-01-01

    A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2??m, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7?mV, a short-circuit current density of 33.2?mA/cm2, and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells. PMID:26060095

  13. High-voltage 4H-SiC trench MOS barrier Schottky rectifier with low forward voltage drop using enhanced sidewall layer

    NASA Astrophysics Data System (ADS)

    Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo

    2015-12-01

    In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL–TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL–TMBS rectifier compared with the performance of a conventional TMBS rectifier.

  14. Silicon economics

    NASA Astrophysics Data System (ADS)

    Hogan, James; Chatila, Ahmad R.; Bruggeman, Bert; Boksha, Victor V.

    2003-06-01

    We base our considerations on our previous analyses of microlithography costs, semiconductor industry, and the needs in design/equipment/process infrastructure. We identify and describe two major investment trends, which seem promising for semiconductor industry. First, into true Design-For-Manufacturing platforms and integration; and second, into Next Generation Computing (atom and molecular-based, bio- and DNA=based; some of it - combined with silicon platform and technology, such as neuroelectronic engineering).

  15. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  16. Making silicon stronger.

    SciTech Connect

    Boyce, Brad Lee

    2010-11-01

    Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

  17. Silicon Micromachined Microlens Array for THz Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a smooth curvature. The measured height of the silicon microlens is about 280 microns. In this case, the original height of the photoresist was 210 microns. The change was due to the etching selectivity of 1.33 between photoresist and silicon. The measured surface roughness of the silicon microlens shows the peak-to-peak surface roughness of less than 0.5 microns, which is adequate in THz frequency. For example, the surface roughness should be less than 7 microns at 600 GHz range. The SEM (scanning electron microscope) image of the microlens confirms the smooth surface. The beam pattern at 550 GHz shows good directivity.

  18. Asymmetric Die Grows Purer Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.; Chalmers, B.; Surek, T.

    1983-01-01

    Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.

  19. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    PubMed

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353

  20. Functional Role of CLC-2 Chloride Inward Rectifier Channels in Cardiac Sinoatrial Nodal Pacemaker Cells

    PubMed Central

    Huang, Z. Maggie; Prasad, Chaithra; Britton, Fiona C.; Ye, Linda L.; Hatton, William J.; Duan, Dayue

    2009-01-01

    A novel Cl? inward rectifier channel (Cl,ir) encoded by ClC-2, a member of the ClC voltage-gated Cl? channel gene superfamily, has been recently discovered in cardiac myocytes of several species. However, the physiological role of Cl,ir channels in the heart remains unknown. In this study we tested the hypothesis that Cl,ir channels may play an important role in cardiac pacemaker activity. In isolated guinea-pig sinoatrial node (SAN) cells, Cl,ir current was activated by hyperpolarization and hypotonic cell swelling. RT-PCR and immunohistological analyses confirmed the molecular expression of ClC-2 in guinea-pig SAN cells. Hypotonic stress increased the diastolic depolarization slope and decreased the maximum diastolic potential, action potential amplitude, APD50, APD90, and the cycle-length of the SAN cells. These effects were largely reversed by intracellular dialysis of anti-ClC-2 antibody, which significantly inhibited Cl,ir current but not other pacemaker currents, including the hyperpolarization-activated non-selective cationic “funny” current (If), the L-type Ca2+ currents (ICa,L), the slowly-activating delayed rectifier IKs and the volume-regulated outwardly-rectifying Cl? current (ICl,vol). Telemetry electrocardiograph studies in conscious ClC-2 knockout (Clcn2?/?) mice revealed a decreased chronotropic response to acute exercise stress when compared to their age-matched Clcn2+/+ and Clcn2+/? littermates. Targeted inactivation of ClC-2 does not alter intrinsic heart rate but prevented the positive chronotropic effect of acute exercise stress through a sympathetic regulation of ClC-2 channels. These results provide compelling evidence that ClC-2-encoded endogenous Cl,ir channels may play an important role in the regulation of cardiac pacemaker activity, which may become more prominent under stressed or pathological conditions. PMID:19376127

  1. An outwardly rectifying chloride channel in BeWo choriocarcinoma cell line.

    PubMed

    Marino, G I; Assef, Y A; Kotsias, B A

    2010-12-01

    In this study, an outwardly rectifying chloride channel was characterized in the trophoblastic cell line BeWo, a human hormone-synthesizing cell which displays many biochemical and morphological properties similar to those reported for the human cytotrophoblast. Ion channel activity was recorded in the cell attached and inside-out configurations with standard patch-clamp technology. In most of the BeWo cells studied, the channel under symmetrical N-methyl-d-glucamine (NMDG-Cl) concentration (Na(+) free solution) in both sides of the membrane exhibited spontaneous activity, an outwardly rectifying current/voltage relationship and single-channel conductances of 15 pS and 48 pS for inwards and outwards currents, respectively. The channel has a low permeability for gluconate with a relative permeability P(gluconate)/P(Cl) of 0.23, and a higher permeability to I(-). The open probability (Po) of the channel exhibited dependence with the applied membrane potential with greater activity at positive pulses. The channel activity was inhibited by the sulphonylurea hypoglycemic agent glibenclamide (50 ?M) or by diphenylamine-2-carboxylate (DPC, 500 ?M) added to the cytoplasmic side of the patch whereas conductances remained unchanged. The blockade with glibenclamide and DPC was independent of the applied membrane potential. All these results are characteristic of the outwardly rectifying Cl channel (ORCC) found in other types of cells. Neither Po, conductances nor reversal potential (Er) values were affected by the absence of intracellular Ca(2+), suggesting that the channel is not sensitive to Ca(2+). PMID:20970187

  2. Rotation Driven by Rectified RF-sheath Potentials and Spatial Dispersion

    SciTech Connect

    Hellsten, T.

    2009-11-26

    Plasma rotation is of interest for improving confinement and stabilising plasma. Effects from fast particles with broad orbits can only partly explain the changes in the rotation profiles during ICRH. The effect on wave-particle interaction of a finite poloidal mode number is discussed and two new RF-mechanisms are proposed: Co-current torque caused by sputtering by rectified RF-sheath potentials and transport of momentum due to spatial dispersion. The latter effect affects the RF-current drive, in particular, in conjunction with mode conversion.

  3. (99m)Tc-HMDP scintigraphy rectifies wrong diagnosis of AL amyloidosis.

    PubMed

    Galat, Arnault; Van Der Gucht, Axel; Colombat, Magali; Attias, David; Itti, Emmanuel; Meignan, Michel; Lebras, Fabien; Molinier-Frenkel, Valérie; Benhaiem, Nicole; Guellich, Aziz; Rosso, Jean; Damy, Thibaud

    2015-08-01

    A 71-year-old African man without history of cardiac disease was referred to our center for dyspnea. Transthoracic echocardiogram and cardiac MRI were suggestive of cardiac amyloidosis (CA). The diagnosis of the light-chain cardiac amyloidosis (AL-CA) was made after a first endomyocardial biopsy. Accordingly chemotherapy was started. Systematic 99mTc-HMDP scintigraphy showed moderate cardiac uptake (visual score of 2), unusual for AL-CA, and permitted to rectify the diagnosis. Hereditary transthyretin cardiac amyloidosis was confirmed by a second endomyocardial biopsy with a positive Congo-red and anti-transthyretin antibody stainings, mass spectrometry and genetic analysis (Val122Ile mutation). PMID:26002815

  4. Rectifying performance and negative differential behavior in graphite—chain—carbon nanotube junctions

    SciTech Connect

    Qiu, Ming; Li, Jiangfan; Liew, K. M.; Yuan, Chris

    2014-01-13

    In this paper, the (5, 5) capped carbon nanotubes (CNTs) in contact with different lengths of sp monoatomic chains grown on the surface of graphite substrate are fabricated and its electronic transport properties sandwiched between CNT and graphite electrodes are investigated. The first-principles calculations based on nonequilibrium Green's function in combination with density-functional theory show that their rectifying performance and negative differential resistance behavior are observed under very low biases and obviously are enhanced when the length increases. From our analysis, the charge transfer, transmission spectra, projected density of states and evolutions of molecular orbitals are responsible for these phenomena.

  5. Riesz $s$-equilibrium measures on $d$-rectifiable sets as $s$ approaches $d$

    E-print Network

    M. T. Calef; D. P. Hardin

    2008-08-28

    Let $A$ be a compact set in ${\\mathbb R}^p$ of Hausdorff dimension $d$. For $s\\in(0,d)$, the Riesz $s$-equilibrium measure $\\mu^s$ is the unique Borel probability measure with support in $A$ that minimizes $$ I_s(\\mu):=\\iint\\frac{1}{|x-y|^s}d\\mu(y)d\\mu(x)$$ over all such probability measures. If $A$ is strongly $({\\mathcal H}^d, d)$-rectifiable, then $\\mu^s$ converges in the weak-star topology to normalized $d$-dimensional Hausdorff measure restricted to $A$ as $s$ approaches $d$ from below.

  6. New clean power rectifier systems for utility interface of static converters

    NASA Astrophysics Data System (ADS)

    Lee, Bang Sup

    Large harmonics, poor power factor and high total harmonic distortion (THD) in the utility interface are common problems when nonlinear loads such as adjustable speed drives (ASD) and power supplies are connected to electric utilities in large numbers. In response to these concerns, this dissertation proposes several robust three phase rectifier topologies which draw near sinusoidal currents from the utility at unity power factor. A low kVA 12-pulse rectifier system is first proposed, which results in cancellation of 5,7 harmonic currents in the utility line. The polyphase transformer in the proposed 12-pulse system is rated at 82% smaller than that in the conventional system. This contributes to lower cost, weight and volume. A 24-pulse rectifier system is then introduced. In this system harmonics up to 23sprd are cancelled in the utility line currents. A unique tapped interphase transformer with two additional diodes is shown to extend the 12-pulse operation to 24-pulse from the input current standpoint. The system is fully analyzed taking into consideration the impedance mismatches and pre-existing voltage distortion in the utility. These inequalities are shown to result in unequal current sharing among the rectifiers. In order to improve performance and promote equal current sharing, the two diodes in the interphase transformer are replaced with SCR's. In the third study, a new active interphase transformer (IPT) is introduced to draw high quality line currents (<1% THD) from the input utility. A current Isbx is injected into the secondary winding of the IPT to shape the input utility line current Isba. The exact shape of Isbx is calculated mathematically and is shown to be near triangular in shape. A low kVA two switch PWM inverter is employed to inject a triangular shaped current Isbx in response to load condition. A US patent is pending on this approach and the technology has been licensed to a leading US power supply manufacturer. All of the above approaches have been analyzed along with specific design examples to facilitate comparison. Finally, experimental results on a 208V, 10kVA laboratory proto-type and a 460V, 400kVA industrial proto-type are discussed.

  7. Silicon limitation on primary production and its destiny in Jiaozhou Bay, China. V: Silicon deficit process

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Gao, Zhenhui; Wang, Peigang; Sun, Peiyan; Liu, Shuang

    2005-06-01

    Silicon is a necessary nutrient for diatoms, silicon uptake in diatom reproduction decreased seawater silicon content. This paper clarified the characteristics of silicon transferring in the sea, which plays an important role in phytoplankton growth, zooplankton graze and marine ecosystem. Analysis revealed that silicate is supplied by terrestrial sources, through plankton uptake, death, and eventually deposits to the sea bottom, and cannot diffuse upward. This is a general silicon deficit process. Many global marine waters showed the same silicon transfer route: land?silicon biogeochemical process?sea bottom. River flow brings abundant silicate into marine waters, silicate concentration in the waters decreased in the distance away from the river estuaries. In discussion of silicon characteristics and its transfer route, it was considred that the main factor controlling the mechanism of diatom and non-diatom red tides occurrence is silicon, and the changes in silicon source. Human activities, such as sea-route cutting by building embankment and dam, and silicon supplement by the sea, such as sandstorm, rainstorm and storm tide, have largely impaired the earth ecosystem and hugely threatened the human existence. It is suggested in this paper that man should resume the original face of the Si input into the sea to keep natural ecosystem in sustainable pattern.

  8. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  9. Control and expression of -NH2, -SH, -COOH and SiO2 on the surface of silicon carbide quantum dots

    NASA Astrophysics Data System (ADS)

    Mwania, Munuve; Aguirre-Medel, Susana; Kroll, Peter

    2015-03-01

    We present simple protocols for reliably tailoring the surfaces of zinc blende silicon carbide quantum dots (?-SiC QDs). The SiC QDs are synthesized via photo-assisted electrochemical corrosion of bulk powders at different temperatures and time scales. After washing the residual acid and resuspending in H2O, the surfaces of SiC QDs were controllably coated with four different functional groups, specifically -NH2, -SH, and -COOH and -SiO2. We began by covalently attaching primary amines (-NH2) to the QD surface. The amine terminations were then converted to amine/thiolate (-NH2/SH) and amine/carboxylate (-NH2/COOH) functional groups. SiO2 shells around SiC QDs (to create SiC@SiO2nano-structures) were grown using a TEOS-mediated Stöber method. The presence of amine and thiol groups was confirmed by fluoresceamine assay test, X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). While a negative fluoresceamine assay test confirmed the replacement of amine groups by thiol groups, the thiolation of the surface was also confirmed through Ellman's assay, XPS and FTIR. The presence of the SiO2 shells was examined using transmission electron microscopy and XPS. Our results open up possibilities to manipulate SiC QDs for various applications.

  10. Suprachiasmatic nucleus function and circadian entrainment are modulated by G protein-coupled inwardly rectifying (GIRK) channels

    PubMed Central

    Hablitz, L M; Molzof, H E; Paul, J R; Johnson, R L; Gamble, K L

    2014-01-01

    Abstract G protein signalling within the central circadian oscillator, the suprachiasmatic nucleus (SCN), is essential for conveying time-of-day information. We sought to determine whether G protein-coupled inwardly rectifying potassium channels (GIRKs) modulate SCN physiology and circadian behaviour. We show that GIRK current and GIRK2 protein expression are greater during the day. Pharmacological inhibition of GIRKs and genetic loss of GIRK2 depolarized the day-time resting membrane potential of SCN neurons compared to controls. Behaviourally, GIRK2 knockout (KO) mice failed to shorten free running period in response to wheel access in constant darkness and entrained more rapidly to a 6 h advance of a 12 h:12 h light–dark (LD) cycle than wild-type (WT) littermate controls. We next examined whether these effects were due to disrupted signalling of neuropeptide Y (NPY), which is known to mediate non-photic phase shifts, attenuate photic phase shifts and activate GIRKs. Indeed, GIRK2 KO SCN slices had significantly fewer silent cells in response to NPY, likely contributing to the absence of NPY-induced phase advances of PER2::LUC rhythms in organotypic SCN cultures from GIRK2 KO mice. Finally, GIRK channel activation is sufficient to cause a non-photic-like phase advance of PER2::LUC rhythms on a Per2Luc+/? background. These results suggest that rhythmic regulation of GIRK2 protein and channel function in the SCN contributes to day-time resting membrane potential, providing a mechanism for the fine tuning responses to non-photic and photic stimuli. Further investigation could provide insight into disorders with circadian disruption comorbidities such as epilepsy and addiction, in which GIRK channels have been implicated. PMID:25217379

  11. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  12. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity?

    NASA Astrophysics Data System (ADS)

    Negro, Francesco; Keenan, Kevin; Farina, Dario

    2015-06-01

    Objective. The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. Approach. We provide a full mathematical description of the power spectrum of the rectified EMG signal and the influence of the average shape of the motor unit action potentials on it. We also provide a validation of these theoretical results with both simulated and experimental EMG signals. Main results. Simulations using an advanced computational model and experimental results demonstrated the accuracy of the theoretical derivations on the effect of rectification on the EMG spectrum. These derivations proved that rectification is beneficial when assessing the strength of low-frequency (delta and alpha bands) common synaptic inputs to the motor neurons, when the duration of the action potentials is short, and when the level of cancellation is relatively low. On the other hand, rectification may distort the estimation of common synaptic inputs when studying higher frequencies (beta and gamma), in a way dependent on the duration of the action potentials, and may introduce peaks in the coherence function that do not correspond to physiological shared inputs. Significance. This study clarifies the conditions when rectifying the surface EMG is appropriate for studying neural connectivity.

  13. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-01

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs. PMID:26070022

  14. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  15. Vibrations Would Induce Flow In Molten Silicon

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Morrison, A. D.

    1988-01-01

    Flow patterns and velocities controlled to improve cystals. According to proposal, intense sound used to induce flow in molten silicon to increase quality of crystals grown in shallow-melt Czochralski process.

  16. Silicon Web Process Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1978-01-01

    Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.

  17. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex

    NASA Astrophysics Data System (ADS)

    Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Fan, Joline M.; Kaufman, Matthew T.; Churchland, Mark M.; Rivera-Alvidrez, Zuley; Cunningham, John P.; Ryu, Stephen I.; Shenoy, Krishna V.

    2011-08-01

    Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.

  18. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  19. Dual Mode Inverter Control Test Verification

    SciTech Connect

    Bailey, J.M.

    2001-04-25

    Permanent Magnet Motors with either sinusoidal back emf (permanent magnet synchronous motor [PMSM]) or trapezoidal back emf (brushless dc motor [BDCM]) do not have the ability to alter the air gap flux density (field weakening). Since the back emf increases with speed, the system must be designed to operate with the voltage obtained at its highest speed. Oak Ridge National Laboratory's (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) has developed a dual mode inverter controller (DMIC) that overcomes this disadvantage. This report summarizes the results of tests to verify its operation. The standard PEEMRC 75 kW hard-switched inverter was modified to implement the field weakening procedure (silicon controlled rectifier enabled phase advance). A 49.5 hp motor rated at 2800 rpm was derated to a base of 400 rpm and 7.5 hp. The load developed by a Kahn Industries hydraulic dynamometer, was measured with a MCRT9-02TS Himmelstein and Company torque meter. At the base conditions a current of 212 amperes produced the 7.5 hp. Tests were run at 400, 1215, and 2424 rpm. In each run, the current was no greater than 214 amperes. The horsepower obtained in the three runs were 7.5, 9.3, and 8.12. These results verified the basic operation of the DMIC in producing a Constant Power Speed Ratios (CPSR) of six.

  20. Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid-liquid interfaces.

    PubMed

    Cai, Jinhua; Chen, Haihui; Huang, Jiangen; Wang, Jingxia; Tian, Dongliang; Dong, Huanli; Jiang, Lei

    2014-04-21

    Two meso-tetraphenylporphyrin (H2TPP) derivatives with different central metal ions, namely ZnTPP, CuTPP, were synthesized, and characterized by a series of spectroscopic methods. Their self-assembly behaviors in mixed solvents without surfactant were systematically investigated. The morphology of the thus produced nanoarchitectures could be efficiently controlled. Nanoslices can be manufactured when a volume of cyclohexane is involved, octahedrons can be produced when a mixed solvent of chloroform and isopropanol is employed, while four-leaf clover-shaped structures can be produced with a large volume of methanol injected. The nanostructures have been characterized by electronic absorption, scanning electron microscopy (SEM) and photoelectric conversion techniques. The internal structures of the nanostructures are well described by XRD. The nanostructures exhibit a power conversion under illumination intensity of 2.3 mW cm(-2). The present result appears to represent an effort toward controlling the morphology of self-assembled nanostructures of porphyrin derivatives via synthesis through introduction of metal-ligand and solvent interaction. Nevertheless, the fundamental study will be helpful to understand photoinduced energy/charge transport in an organic interface and this might also serve as promising building blocks for nanoscale power sources for potential application in solar energy technologies and organic electronics and optoelectronics. PMID:24647426

  1. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  2. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  3. Position control of PbS quantum dot using nanohole on silicon substrate processed by scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Mukai, Kohki; Hirota, Akinobu; Nakashima, Seisuke

    2015-04-01

    We report a method of processing of nanometer-size holes using an oxide mask drawn by scanning probe microscopy (SPM), and show that a nanohole can be used for the position control of a single colloidal quantum dot. An apertureless mask process was developed for the formation of nanometer-wide holes. The process conditions used to obtain a large slope angle at the edge of the oxide mask and high Si/oxide selectivity during dry etching were investigated to make a nanohole sufficiently deep to trap quantum dots. SPM observation suggested that a 6 nm PbS quantum dot was trapped by the smallest nanohole with a width of 10 × 18 nm2 and a depth of 5 nm.

  4. Multi-Ion Distributions in the Cytoplasmic Domain of Inward Rectifier Potassium Channels

    PubMed Central

    Robertson, J.L.; Palmer, L.G.; Roux, B.

    2012-01-01

    Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K+) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K+ and intracellular blockers—magnesium (Mg2+) or polyamines—that simultaneously occupy the permeation pathway. In addition to the transmembrane pore, Kirs possess a large cytoplasmic domain (CD) that provides a favorable electronegative environment for cations. Electrophysiological experiments have shown that the CD is a key regulator of both conductance and rectification. In this study, we calculate and compare averaged equilibrium probability densities of K+ and Cl? in open-pore models of the CDs of a weak (Kir1.1-ROMK) and a strong (Kir2.1-IRK) rectifier through explicit-solvent molecular-dynamics simulations in ?1 M KCl. The CD of both channels concentrates K+ ions greater than threefold inside the cytoplasmic pore while IRK shows an additional K+ accumulation region near the cytoplasmic entrance. Simulations carried out with Mg2+ or spermine (SPM4+) show that these ions interact with pore-lining residues, shielding the surface charge and reducing K+ in both channels. The results also show that SPM4+ behaves differently inside these two channels. Although SPM4+ remains inside the CD of ROMK, it diffuses around the entire volume of the pore. In contrast, this polyatomic cation finds long-lived conformational states inside the IRK pore, interacting with residues E224, D259, and E299. The strong rectifier CD is also capable of sequestering an additional SPM4+ at the cytoplasmic entrance near a cluster of negative residues D249, D274, E275, and D276. Although understanding the actual mechanism of rectification blockade will require high-resolution structural information of the blocked state, these simulations provide insight into how sequence variation in the CD can affect the multi-ion distributions that underlie the mechanisms of conduction, rectification affinity, and kinetics. PMID:22947859

  5. Tailored Electrical Driving as a Means of Controlling Heat Distribution and Convection Patterns in Joule-Heated Waste Glass Melters

    SciTech Connect

    Fort, James A.; Lessor, Delbert L.

    2004-01-01

    The ability to control melter convection patterns may provide a means of mitigating gas layer buildup under the cold cap, enhancing the heat transfer to the batch, and possible accelerating batch reactions, thereby increasing melt rate and glass throughput. Other operational benefits could result from such control. Convective patterns in an electrically heated melter are dominated by the distribution of Joule heat and thermal boundary conditions for a given melter design and geometry. We believe that control of electrical driving, in particular control of the interaction of electrical fields connected to distinct electrode pairs, can be used to vary the distribution of Joule heat generation. The under-investigated aspect of electrical driving control is the effect of waveform “overlap” of the driving voltages, the “overlap” in the case of harmonic driving being determined by the relative phase. For electrical driving using waveforms chopped by Silicon Controlled Rectifiers (SCRs), the chopping influences the "overlap." This control can provide a means of controlling melt convection. The objective of the present investigation is to test that hypothesis, verifying that such control can be observed for a numerical model of a simple melter geometry.

  6. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiNx coupled junction

    NASA Astrophysics Data System (ADS)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun

    2015-08-01

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiNx). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiNx junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm2 on-current density measured at -7 V; lower than 7.3 × 10-9 A/cm2 off-current density; 2.53 ideality factor; and high rectifying ratio of 108-109. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiNx/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  7. Perceived Harm of Online Drug-Encouraging Messages: Third-Person Effect and Adolescents' Support for Rectifying Measures

    ERIC Educational Resources Information Center

    Leung, Wan Chi; Lo, Ven-Hwei

    2015-01-01

    This study examines third-person perceptions (TPP) of two types of online messages--antisocial messages that encourage drug abuse and prosocial messages in the youth anti-drug campaign--and their relationship with support for three types of rectifying measures: restrictive, corrective, and promotional. A survey of 778 secondary school students…

  8. 612 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 26, NO. 2, FEBRUARY 2011 Self-Contained Resonant Rectifier for Piezoelectric

    E-print Network

    could be useful in in- creasing the output power of piezoelectric generators (PZG) that convert conversion, synchronous detection. I. INTRODUCTION PIEZOELECTRIC (PZ) elements can be used to generate Rectifier for Piezoelectric Sources Under Variable Mechanical Excitation Natan Krihely, Student Member, IEEE

  9. Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates.

    PubMed

    Kang, J H; Gao, Q; Parkinson, P; Joyce, H J; Tan, H H; Kim, Y; Guo, Y; Xu, H; Zou, J; Jagadish, C

    2012-10-19

    Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the <111> direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH(3) (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700 ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. PMID:23018759

  10. Effect of guide vanes on the performance of a variable chord self-rectifying air turbine

    NASA Astrophysics Data System (ADS)

    Govardhan, M.; Dhanasekaran, T. S.

    1998-12-01

    Wells turbine is a self rectifying air flow turbine capable of converting pneumatic power of the periodically reversing air stream in Oscillating Water Column into mechanical energy. One of the principal reasons for the low efficiency of the Wells turbine is its lower tangential force compared to its axial force. Guide vanes before and after the rotor suggest a means to improve the tangential force, hence its efficiency. Experimental investigations are carried out on the Wells turbine with a variable chord (VACR) blade rotor fitted with inlet and outlet guide vanes to understand the aerodynamics especially improvement in efficiency and starting characteristics. Numerical simulation has been made to clarify the unsteady characteristics of the turbine with guide vanes. Studies are done at various flow coefficients covering the entire range of flow coefficients over which the turbine is operable. The efficiency, starting characteristics of the Wells turbine has improved when compared with the turbine without guide vanes.

  11. Performance Analysis of Rectifier in NH3-H2O Absorption Heat Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atushi; Ozaki, Eiichi; Nakao, Kazushige

    Characteristic of stripping section of packed-tower type rectifierwas presentedin previous paper. In order to improve NH3 concentration inrefrigerant vapor, enriching section is considered effective. Refrigerant vapor from stripping section of rectifier and reflux solution from partial condenser flow into this section, and the proportion of solution flow rate to vapor flow rate of enriching section called reflux ratio is much smaller than that of stripping section. So the effect of reflux ratio on rectification process might be larger. In this paper the effect of reflux flow rate and NH3 concentration in reflux solution is investigated experimentally. As a result, it was derived that the performance of enriching section was mainly decided by reflux ratio. Then the effect of rectification performance on heat rate of partial condenser and evaporator was evaluated using the experimental result of enriching section performance.

  12. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near ?25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  13. Identification of inwardly rectifying potassium channels in bovine retinal and choroidal endothelial cells.

    PubMed

    Eschke, Dagmar; Richter, Maik; Brylla, Elke; Lewerenz, Anne; Spanel-Borowski, Katharina; Nieber, Karen

    2002-01-01

    Ion channels were studied using the whole-cell patch clamp technique in bovine retinal and choroidal microvascular endothelial cells (MVEC) cultured under the same conditions. The two types of MVEC expressed inward currents at hyperpolarizing voltage steps and showed small outward currents at depolarizing steps. The extrapolated reversal potentials of the inward currents were near to the potassium equilibrium potential. Cs(+) and the K(+) channel blocker TEA reduced the amplitudes of the currents indicating the selectivity and permeability for potassium. This was confirmed by changes of outside K(+) concentration shifting the I-V curves to the right. RT-PCR studies revealed the presence of mRNA of Kir2.1, an inwardly rectifying K(+) channel, in retinal and choroidal MVEC. The profile of the small outward currents is related to the Kv family but not identical with the Kv1.4 subtype. PMID:12483021

  14. Development of a Rectifying Interface for a Hybrid Pulse-Tube/Reverse-Brayton Cryocooler

    NASA Astrophysics Data System (ADS)

    Diab, A. K.; Nellis, G. F.; Maddocks, J. R.; Yarbrough, S.

    2004-06-01

    A hybrid cryogenic refrigeration cycle that combines a turbomachine-based, reverse-Brayton lower stage with a pulse-tube upper stage avoids the inherent losses associated with a regenerator at low temperature and therefore has the potential for high performance. One of the key technical issues relative to the successful development of this cryocooler is the integration of an oscillating flow regenerative system with a continuous flow recuperative system. This integration requires a rectifying interface composed of check valves and buffer volumes operating at cryogenic temperature. This paper describes the effect of the interface performance on the system-level performance. The resulting performance targets are translated into component-level requirements and used to optimize the check valve geometry. Test results from experiments with the interface integrated with a pulse-tube are presented and compared to model predictions. The implications of the results relative to the design of a prototype, hybrid cryocooler are discussed.

  15. Nootropic agent vinpocetine blocks delayed rectified potassium currents more strongly than high-threshold calcium currents.

    PubMed

    Bukanova YuV; Solntseva, E I

    1998-01-01

    A two-microelectrode potential clamping method was used on isolated common snail neurons to measure high-threshold Ca2+ and delayed rectified K+ currents. Addition of the nootropic agent vinpocetine (VPC) to the bathing solution rapidly and reversibly inhibited both types of current. The effects of VPC were dose-dependent and were independent of the test stimulus voltage. Maximum blockade of the Ca2+ current averaged 27% at a VPC concentration of 600 microM. Maximum blockade of the K+ current averaged 76% at a VPC concentration of 30 microM. It is concluded that K+ channels are more likely targets of VPC than Ca2+ channels. PMID:9604212

  16. Computational Design of Intrinsic Molecular Rectifiers Based on Asymmetric Functionalization of N-Phenylbenzamide.

    PubMed

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F A; Brudvig, Gary W; Crabtree, Robert H; Schmuttenmaer, Charles A; Batista, Victor S

    2015-12-01

    We report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findings are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions. PMID:26642992

  17. Broadband THz detection and homodyne mixing using GaAs high-electron-mobility transistor rectifiers

    NASA Astrophysics Data System (ADS)

    Preu, S.; Regensburger, S.; Kim, S.; Mittendorff, M.; Winnerl, S.; Malzer, S.; Lu, H.; Burke, P. G.; Gossard, A. C.; Weber, H. B.; Sherwin, M. S.

    2013-10-01

    We report on Terahertz (THz) detectors based on III-V high-electron-mobility field-effect transistors (FET). The detection results from a rectification process that is still highly efficient far above frequencies where the transistor provides gain. Several detector layouts have been optimized for specific applications at room temperature: we show a broadband detector layout, where the rectifying FET is coupled to a broadband logarithmic-periodic antenna. Another layout is optimized for mixing of two orthogonal THz beams at 370 GHz or, alternatively, 570 GHz. A third version uses a large array of FETs with very low access resistance allowing for detection of very short high-power THz pulses. We reached a time resolution of 20 ps.

  18. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  19. Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells

    SciTech Connect

    Sontheimer, Tobias; Scherf, Simone; Klimm, Carola; Becker, Christiane; Rech, Bernd

    2011-09-15

    The kinetics of crystal nucleation in high-rate electron beam evaporated amorphous Si for polycrystalline thin film solar cells was systematically studied on SiN and selected ZnO:Al-coated glass substrates with dissimilar surface topographies by employing Raman spectroscopy, transmission electron microscopy, and optical microscopy. The influence of the surface topography of the substrate and the disorder of the deposited amorphous Si could be correlated to the respective characteristics of the transient and steady state regime of the nucleation rate. The steady state nucleation rate I{sub ss}, its corresponding activation energy E{sub Iss}, and consequently the size of the grains in the crystallized Si were found to be governed by the interplay between the surface roughness and the deposition temperature. The steady state nucleation rate I{sub ss} increased gradually upon increasing the substrate roughness, while lowering the deposition temperature of the amorphous Si on rough textures resulted in a decline of I{sub ss}. The time-lag {tau}, which represents a distinctive parameter for the transient regime, was only slightly affected by the substrate topography. The deposition temperature, however, had a significant influence on {tau}, with {tau} increasing by a factor of 8 upon lowering the deposition temperature from 300 to 200 deg. C for all substrate topographies. These characteristics could be correlated with the increasing structural disorder of the deposited a-Si upon decreasing the deposition temperature. Based on this analysis, we could determine design rules for the controlled preparation of large-grained poly-Si in minimized processing time on any of the used substrate types by individually adjusting the deposition temperature and implementing nucleation layers.

  20. Mechanisms rectifying the annual mean response of tropical Atlantic rainfall to precessional forcing

    NASA Astrophysics Data System (ADS)

    Tigchelaar, Michelle; Timmermann, Axel

    2015-09-01

    Numerous reconstructions of tropical hydroclimate in the Pleistocene display substantial variability on precessional timescales. Precessionally-induced insolation variations, with a mean period of {˜ }21{,}000 years, affect the strength of the seasonal cycle, but not annual mean insolation. The existence of variations in annual mean climate on precessional timescales therefore hints at the existence of nonlinear mechanisms that rectify the zero annual mean forcing into a non-zero annual mean response. The aim of this study is to identify these nonlinear rectification mechanisms. The traditional view of precessionally-forced precipitation changes is that tropical precipitation increases with summer insolation. By comparing two simulations with an earth system model (CESM1.0.3) we find that this paradigm is true for continental but not for oceanic changes in precipitation. Focusing on the Atlantic intertropical convergence zone (ITCZ), we find that the continental temperature and precipitation response to precessional forcing are key rectifiers of annual mean precipitation over the ocean. A boundary layer response to temperature changes over northern Africa affects the meridional position of the ITCZ over the North Atlantic in boreal spring and summer, but not in fall and winter. Over the equatorial and South Atlantic, the intensity of precipitation is strongly impacted by diabatic forcing from the continents through an adjustment of the full troposphere. Although the top of atmosphere insolation forcing is seasonally symmetric, continental precipitation changes are largest in boreal summer, thus skewing the annual mean response. These results show that it is important to take into account the seasonality of climatic forcings, even when studying annual mean climate change.

  1. Graphene as transparent and current spreading electrode in silicon solar cell

    NASA Astrophysics Data System (ADS)

    Behura, Sanjay K.; Mahala, Pramila; Nayak, Sasmita; Jani, Omkar

    2014-11-01

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  2. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    SciTech Connect

    Garrison, Sean

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  3. Determination of traces of silicone defoamer in fruit juices by solvent extraction/atomic absorption spectroscopy.

    PubMed

    Gooch, E G

    1993-01-01

    Silicone defoamers are used to control foam during the processing of fruit juices. Residual silicones in fruit juices can be separated from the naturally occurring siliceous materials in fruit products and selectively recovered by solvent extraction, after suitable pretreatment. The recovered silicone is measured by atomic absorption spectroscopy. Silicone concentrations as low as about 1 ppm can be measured. The juices are accurately spiked for recovery studies by the addition of silicone dispersed in D-sorbitol. PMID:8318853

  4. Formation of iron disilicide on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, ?-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The ?-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski <111> silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed ?-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  5. Bond Testing for Effects of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Plaia, James; Evans, Kurt

    2005-01-01

    In 2003 ATK Thiokol discovered that the smocks and coveralls worn by its operations personnel for safety and contamination control were themselves contaminated with a silicone defoamer and a silicone oil. As a growing list of items have been identified as having this form of contamination, it was desirable to devise a test method to determine if the contamination level detected could cause subsequent processing concerns. The smocks and coveralls could potentially contact bonding surfaces during processing so the test method focused on dry transfer of the silicone from the clothing to the bonding surface.

  6. Use of Silicon Detectors in Medical Physics

    SciTech Connect

    Montano Zetina, Luis Manuel

    2006-09-25

    In this document I will review the characteristics and applications of silicon detectors in Medical Physics. I will cover the activities done by some research mexican groups working with silicon detectors (Silicon Strip and PIN detectors) as devices for digital imaging supported by some Monte Carlo simulations and X-ray units parameters valuation devices for quality control. In the end I will give some perspectives on the future of these scientific activities as important contributions in the development of the area of Medical Physics around the world.

  7. Advanced silicon photonic modulators

    E-print Network

    Sorace, Cheryl M

    2010-01-01

    Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

  8. Silicon Baroreceptors: Modeling Cardiovascular

    E-print Network

    Lazzaro, John

    Silicon Baroreceptors: Modeling Cardiovascular Pressure Transduction in Analog VLSI John Lazzaro of the baroreceptors in the carotid vessel. Inspired by re- cent work in silicon models of the cochlea [3

  9. Magnetic and electric hotspots with silicon nanodimers.

    PubMed

    Bakker, Reuben M; Permyakov, Dmitry; Yu, Ye Feng; Markovich, Dmitry; Paniagua-Domínguez, Ramón; Gonzaga, Leonard; Samusev, Anton; Kivshar, Yuri; Luk'yanchuk, Boris; Kuznetsov, Arseniy I

    2015-03-11

    The study of the resonant behavior of silicon nanostructures provides a new route for achieving efficient control of both electric and magnetic components of light. We demonstrate experimentally and numerically that enhancement of localized electric and magnetic fields can be achieved in a silicon nanodimer. For the first time, we experimentally observe hotspots of the magnetic field at visible wavelengths for light polarized across the nanodimer's primary axis, using near-field scanning optical microscopy. PMID:25686205

  10. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C. (Sunnyvale, CA); Elwell, Dennis (Palo Alto, CA); Feigelson, Robert S. (Saratoga, CA)

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  11. Affordable Fabrication and Properties of Silicon Carbide-Based Interpenetrating Phase Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1998-01-01

    An affordable processing technique for the fabrication of silicon carbide-based interpenetrating phase composites (IPCs) is presented. This process consists of the production of microporous carbon preforms and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture for which methods to control pore volume and pore size have been established. The process gives good control of microstructure and morphology of silicon carbide-based composite materials. Room and high temperature mechanical properties (flexural strength, compressive strength, and flexural creep) of low and high silicon-silicon carbide composites will be discussed.

  12. Advanced SEM/EDS Analysis using Stage Control and an annular Silicon Drift Detector: Applications in Impact Studies from Centimetre below Micrometre Scale

    NASA Astrophysics Data System (ADS)

    Salge, Tobias; Berlin, Jana; Terborg, Ralf; Howard, Kieren; Newsom, Horton; Wozniakiewicz, Penny; Price, Mark; Burchell, Mark; Cole, Mike; Kearsley, Anton

    2013-04-01

    Introduction: Imaging of ever smaller structures, in situ within large samples, requires low electron beam energy (HV<6 kV) to enhance spatial resolution, and therefore also the use of low energy X-ray lines for element analysis. To separate significantly overlapping peaks e.g. N-K (392 eV) and Ti-Ll (395 eV), the incorporation of line deconvolution algorithms in energy dispersive X-ray software is of crucial importance. Methods: Without adequate X-ray count statistics, deconvolution is unlikely to be effective. We therefore used an annular Silicon Drift Detector (SDD), the Bruker XFlash® 5060F which is placed between the pole piece and sample. High take-off angle and collection of X-rays from four different directions allow data collection across samples with substantial surface topography. Automated stage control and spectrum imaging allow large data sets to be acquired within a short time. Applications: (A) Large area, high resolution images (with tiling or stitching of neighbouring areas) is useful for understanding processes in the formation of tektites [1], revealing flow textures and layering, without destructive section preparation. Coalescence textures formed during the transition from melt to solid, surface pitting produced by micro-impact collisions in the impact plume, and surface etching by chemical attack in the impact plume, or later weathering, can all be revealed. (B) Spectrum imaging of the matrix in the impact melt breccia of the Chicxulub impact crater (Yaxcopoil-1 borehole, Unit 5 861.72 m) reveals secondary mineral formation, such as NaCl (<500 nm) and Fe-Ti-oxides (<150 nm) associated with garnet resorption. It documents the role of multiple episodes of precipitation of Mg-rich phyllosilicates as well as the formation and dissolution of accessory minerals in a relatively high temperature (>300°C) hydrothermal event [2]. (C) In experimental hypervelocity impact craters, spectrum images readily find locations of projectile residue throughout all the complex topography. The very high count rate at even low beam energy and current reveals inhomogeneous compositions and textures below micrometre scale [3]. These results help us understand preservation and modification of structure and composition in the fine-grained cometary dust aggregates which made aluminium foil craters on the Stardust spacecraft during its encounter with comet Wild 2. Acknowledgements: International Continental Scientific Drilling Program and the Museum of Natural History Berlin for providing samples. References: [1] K.T. Howard 2011. Geological Society of London: 573-591. [2] M. Nelson et al. 2012. GCA 86: 1-20. [3] A. T. Kearsley et al. 2013. Submitted to LPSC #1910.

  13. Fabrication and Performance of Silicon-Embedded Permanent-Magnet Microgenerators

    E-print Network

    Herrault, Florian

    This paper focuses on the design, fabrication, and characterization of silicon-packaged permanent-magnet (PM) microgenerators. The use of silicon packaging favors fine control on shape and dimensions in batch fabrication ...

  14. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect

    Martin U. Pralle; James E. Carey

    2010-07-31

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  15. A randomised controlled trial of the effectiveness of soft silicone multi-layered foam dressings in the prevention of sacral and heel pressure ulcers in trauma and critically ill patients: the border trial.

    PubMed

    Santamaria, Nick; Gerdtz, Marie; Sage, Sarah; McCann, Jane; Freeman, Amy; Vassiliou, Theresa; De Vincentis, Stephanie; Ng, Ai Wei; Manias, Elizabeth; Liu, Wei; Knott, Jonathan

    2015-06-01

    The prevention of hospital acquired pressure ulcers in critically ill patients remains a significant clinical challenge. The aim of this trial was to investigate the effectiveness of multi-layered soft silicone foam dressings in preventing intensive care unit (ICU) pressure ulcers when applied in the emergency department to 440 trauma and critically ill patients. Intervention group patients (n = 219) had Mepilex(®) Border Sacrum and Mepilex(®) Heel dressings applied in the emergency department and maintained throughout their ICU stay. Results revealed that there were significantly fewer patients with pressure ulcers in the intervention group compared to the control group (5 versus 20, P = 0·001). This represented a 10% difference in incidence between the groups (3·1% versus 13·1%) and a number needed to treat of ten patients to prevent one pressure ulcer. Overall there were fewer sacral (2 versus 8, P = 0·05) and heel pressure ulcers (5 versus 19, P = 0·002) and pressure injuries overall (7 versus 27, P = 0·002) in interventions than in controls. The time to injury survival analysis indicated that intervention group patients had a hazard ratio of 0·19 (P = 0·002) compared to control group patients. We conclude that multi-layered soft silicone foam dressings are effective in preventing pressure ulcers in critically ill patients when applied in the emergency department prior to ICU transfer. PMID:23711244

  16. Interactions of external K+ and internal blockers in a weak inward-rectifier K+ channel

    PubMed Central

    Yang, Lei; Edvinsson, Johan

    2012-01-01

    We investigated the effects of changing extracellular K+ concentrations on block of the weak inward-rectifier K+ channel Kir1.1b (ROMK2) by the three intracellular cations Mg2+, Na+, and TEA+. Single-channel currents were monitored in inside-out patches made from Xenopus laevis oocytes expressing the channels. With 110 mM K+ in the inside (cytoplasmic) solution and 11 mM K+ in the outside (extracellular) solution, these three cations blocked K+ currents with a range of apparent affinities (Ki (0) = 1.6 mM for Mg2+, 160 mM for Na+, and 1.8 mM for TEA+) but with similar voltage dependence (z? = 0.58 for Mg2+, 0.71 for Na+, and 0.61 for TEA+) despite having different valences. When external K+ was increased to 110 mM, the apparent affinity of all three blockers was decreased approximately threefold with no significant change in the voltage dependence of block. The possibility that the transmembrane cavity is the site of block was explored by making mutations at the N152 residue, a position previously shown to affect rectification in Kir channels. N152D increased the affinity for block by Mg2+ but not for Na+ or TEA+. In contrast, the N152Y mutation increased the affinity for block by TEA+ but not for Na+ or Mg2+. Replacing the C terminus of the channel with that of the strong inward-rectifier Kir2.1 increased the affinity of block by Mg2+ but had a small effect on that by Na+. TEA+ block was enhanced and had a larger voltage dependence. We used an eight-state kinetic model to simulate these results. The effects of voltage and external K+ could be explained by a model in which the blockers occupy a site, presumably in the transmembrane cavity, at a position that is largely unaffected by changes in the electric field. The effects of voltage and extracellular K+ are explained by shifts in the occupancy of sites within the selectivity filter by K+ ions. PMID:23109715

  17. Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory

    PubMed Central

    2014-01-01

    We reported that the resistive switching of Ag/In-Ga-Zn-O/Pt cells exhibited self-rectifying performance at low-resistance state (LRS). The self-rectifying behavior with reliability was dynamic at elevated temperature from 303 to 393 K. The Schottky barrier originated from the interface between Ag electrode and In-Ga-Zn-O films, identified by replacing Ag electrode with Cu and Ti metals. The reverse current at 1.2 V of LRS is strongly suppressed and more than three orders of magnitude lower than the forward current. The Schottky barrier height was calculated as approximately 0.32 eV, and the electron injection process and resistive switching mechanism were discussed. PMID:25294977

  18. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  19. RECTIFIED ASTEROID ALBEDOS AND DIAMETERS FROM IRAS AND MSX PHOTOMETRY CATALOGS

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.ed

    2010-10-15

    Rectified diameters and albedo estimates of 1517 main-belt asteroids selected from IRAS and the Mid-Course Space Experiment asteroid photometry catalogs are derived from updated infrared thermal models, the Standard Thermal Model and the Near-Earth Asteroid Thermal Model (NEATM), and Monte Carlo simulations, using new Minor Planet Center compilations of absolute magnitudes (H values) constrained by occultation- and radar-derived parameters. The NEATM approach produces a more robust estimate of albedos and diameters, yielding albedos of p{sub v} (NEATM mean) =0.081 {+-} 0.064. The asteroid beaming parameter ({eta}) for the selected asteroids has a mean value of 1.07 {+-} 0.27, and the smooth distribution of {eta} suggests that this parameter is independent of asteroid properties such as composition. No trends in {eta} due to size-dependent rotation rates are evident. Comparison of derived values of {eta} as a function of taxonomic type indicates that the beaming parameter values for S- and C-type asteroids are identical within the standard deviation of the population of beaming parameters.

  20. Localization of PIP2 activation gate in inward rectifier K+ channels.

    PubMed

    Xiao, Jun; Zhen, Xiao-guang; Yang, Jian

    2003-08-01

    Ion channels respond to changes in transmembrane voltage or ligand concentration by opening or closing an activation gate. In voltage-gated K+ channels, this gate has been localized to an intracellular bundle crossing. Here we examined whether this bundle crossing, or the more internal cytoplasmic pore, acts as a gate for PIP2 activation of inward rectifier K+ (Kir) channels expressed in Xenopus laevis oocytes. We studied the open/closed state-dependence of the accessibility of intracellular cationic modifiers to a position (residue Ile176 in the TM2 helix of Kir2.1) more external to the bundle crossing. Cd2+ blocked I176C mutant channels much more weakly in the closed state than in the open state, but Ag+ and sulfhydryl-specific methanethiosulfonate reagents modified the channels with similar rates in both states. These results suggest that the TM2 helices undergo conformation changes upon PIP2 binding/unbinding, but neither they nor the cytoplasmic pore close fully to form a physical gate for K+ conduction. PMID:12858177

  1. First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Soubhik; Wasey, A. H. M. Abdul; Thapa, Ranjit; Das, G. P.

    2015-08-01

    We have studied using density functional theory and non-equilibrium Green's function based approach, the electronic structures of 555-777 divacancy (DV) defected armchair edged graphene nanoribbons (AGNR) as well as the transport properties of AGNR based two-terminal devices constructed with one defected electrode and one N doped electrode. Introduction of 555-777 DV defect into AGNR results in shifting of the ? and ?? bands towards the higher energy value indicating a downward shift of the Fermi level. Formation of a potential barrier, analogous to that of conventional p-n junction, has been observed across the junction of defected and N-doped AGNR. The two terminal devices show diode like property with high rectifying efficiency for a wide range of bias voltages. The devices also show robust negative differential resistance with very high peak-to-valley ratio. Shift of the electrode energy states and modification of the transmission function with applied bias have been analyzed, in order to gain an insight into the nonlinear and asymmetric behavior of the current-voltage characteristics. Variation of the transport properties on the width of the ribbons has also been discussed.

  2. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties.

    PubMed

    Shuai, Yao; Ou, Xin; Luo, Wenbo; Mücklich, Arndt; Bürger, Danilo; Zhou, Shengqiang; Wu, Chuangui; Chen, Yuanfu; Zhang, Wanli; Helm, Manfred; Mikolajick, Thomas; Schmidt, Oliver G; Schmidt, Heidemarie

    2013-01-01

    This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600°C. The current-voltage (I-V) curves indicate that resistive switching can only be achieved in Au/BiFeO3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits. PMID:23860408

  3. Cystic fibrosis gene expression is not correlated with rectifying Cl sup minus channels

    SciTech Connect

    Ward, C.L.; Krouse, M.E.; Kopito, R.R.; Wine, J.J. ); Gruenert, D.C. )

    1991-06-15

    Cystic fibrosis (CF) involves a profound reduction of Cl{sup {minus}} permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl{sup {minus}} channel (ORDIC channel) has been proposed to account for the Cl{sup {minus}} conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR might be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, the authors surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density the authors found no correlation.

  4. Characterization of an inward rectifying cationic channel in onion guard cell vacuoles

    SciTech Connect

    Amodeo, G.; Zeiger, E.; Escobar, A. )

    1993-05-01

    Ion channels modulate the large ion fluxes across the guard cell plasma membrane and tonoplast that are required for stomatal movement. In contrast to the well known ion channels at the plasma membrane, those at the guard cell tonoplast have not been described. We used patch clamping with guard cell protoplasts (GCP) from Allium cepa cotyledons to study channels from isolated tonoplast patches. The GCPs, obtained after a brief digestion time, released their vacuoles when exposed to an osmotic shock in the presence of EGTA. In inside-out patches bathed in symmetrical solutions (200 mM KCl as predominant ion) a 207[plus minus]1.6 pS channel was the most frequently observed. The channel was activated at negative potential and showed a very large rectification in the open probability in the absence of divalent cations in the vacuolar side. Replacement of monovalent ions in the bath solution gave a sequence of selectivity: Na[sup +]>K[sup +]>Rb[sup +]>Cs[sup +]. Both conduction and gating were investigated at the single channel level. Pulse protocols were achieved for the kinetic analysis of the activation and deactivation of the ionic channel. Records at different potentials were averaged to generate the ensemble profile of the macroscopic conductance. The analysis showed that this channel has at least one closed state and two open states. We suggest that this predominant inward rectifying cationic channel has an important role in the modulation of fluxes between the vacuole and cytosol of guard cells.

  5. Effect of UV exposure on rectifying behavior of polyaniline/ZnO heterojunction

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Khare, Neeraj

    2013-12-01

    P-type polyaniline (PANI)/n-type ZnO based heterojunction is fabricated and the effect of continuous ultraviolet (UV) exposure on its current-voltage (I-V) characteristics is investigated. The I-V characteristics of PANI/ZnO showed diode-like behavior under dark condition and its ideality factor and barrier height were obtained as 1.54 and 1.35 eV, respectively. For immediate UV exposure the diode showed photo-characteristics, however, during continuous UV exposure diode characteristics started to change with exposure time. After sufficient exposure time characteristics became stable and the ideality factor and barrier height after UV exposure were obtained as 7.94 and 0.92 eV, respectively. It is proposed that the permanent physical changes in PANI film during UV exposure are responsible to change the rectifying behavior. It is found that after 10 min of continuous exposure the PANI film stabilizes and the PANI/ZnO junction shows stable characteristics.

  6. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    SciTech Connect

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li Zhang Yun

    2008-07-04

    Extracellular acidic pH-activated chloride channel I{sub Cl,acid}, has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I{sub Cl,acid} in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I{sub Cl,acid} revealed that EC{sub 50} is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl{sup -} channel inhibitor DIDS (100 {mu}M). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I{sub Cl,acid} would play a role in regulation of EC function under these pathological conditions.

  7. Organization of silicon nanocrystals by localized electrochemical etching

    SciTech Connect

    Ayari-Kanoun, Asma; Drouin, Dominique; Beauvais, Jacques; Lysenko, Vladimir; Nychyporuk, Tetyana; Souifi, Abdelkader

    2009-10-12

    An approach to form a monolayer of organized silicon nanocrystals on a monocrystalline Si wafer is reported. Ordered arrays of nanoholes in a silicon nitride layer were obtained by combining electron beam lithography and plasma etching. Then, a short electrochemical etching current pulse led to formation of a single Si nanocrystal per each nanohole. As a result, high quality silicon nanocrystal arrays were formed with well controlled and reproducible morphologies. In future, this approach can be used to fabricate single electron devices.

  8. A Steep Dependence of Inward-Rectifying Potassium Channels on Cytosolic Free Calcium Concentration Increase Evoked by Hyperpolarization in Guard Cells1

    PubMed Central

    Grabov, Alexander; Blatt, Michael R.

    1999-01-01

    Inactivation of inward-rectifying K+ channels (IK,in) by a rise in cytosolic free [Ca2+] ([Ca2+]i) is a key event leading to solute loss from guard cells and stomatal closure. However, [Ca2+]i action on IK,in has never been quantified, nor are its origins well understood. We used membrane voltage to manipulate [Ca2+]i (A. Grabov and M.R. Blatt [1998] Proc Natl Acad Sci USA 95: 4778–4783) while recording IK,in under a voltage clamp and [Ca2+]i by Fura-2 fluorescence ratiophotometry. IK,in inactivation correlated positively with [Ca2+]i and indicated a Ki of 329 ± 31 nm with cooperative binding of four Ca2+ ions per channel. IK,in was promoted by the Ca2+ channel antagonists Gd3+ and calcicludine, both of which suppressed the [Ca2+]i rise, but the [Ca2+]i rise was unaffected by the K+ channel blocker Cs+. We also found that ryanodine, an antagonist of intracellular Ca2+ channels that mediate Ca2+-induced Ca2+ release, blocked the [Ca2+]i rise, and Mn2+ quenching of Fura-2 fluorescence showed that membrane hyperpolarization triggered divalent release from intracellular stores. These and additional results point to a high signal gain in [Ca2+]i control of IK,in and to roles for discrete Ca2+ flux pathways in feedback control of the K+ channels by membrane voltage. PMID:9880370

  9. Silicon carbide and silicon carbide:germanium heterostructure bipolar transistors

    E-print Network

    Kolodzey, James

    Silicon carbide and silicon carbide:germanium heterostructure bipolar transistors K. J. Roe,a) G HBTs based on silicon carbide SiC and a silicon carbide:germanium SiC:Ge alloy. The SiC:Ge base alloy: 10.1063/1.1358851 Silicon carbide has garnered considerable attention as a promising material for use

  10. AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION

    E-print Network

    Deng, Xunming

    AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION Aarohi Vijh 1 fabricated one and two cell, amorphous silicon based mini-modules encapsulated with a modern silicone. This yellowing upon exposure to UV light is a characteristic of most carbon-based polymers. Silicon

  11. Silicon quantum dots embedded in amorphous SiC matrix for third-generation solar cells: Microstructure control by RF discharge power

    NASA Astrophysics Data System (ADS)

    Cheng, Qijin; Levchenko, Igor; Song, Denyuan; Xu, Shuyan; Ostrikov, Kostya Ken

    2015-04-01

    A low-frequency (460 kHz), low-pressure, thermally non-equilibrium, high-density inductively coupled plasma (ICP) has been used to synthesize a novel, advanced photovoltaic material suitable for fabrication of third-generation solar cells. Silicon quantum dots (SQDs) embedded in an amorphous silicon carbide matrix were prepared at a very low substrate temperature of approximately 200°C without any hydrogen dilution. The effect of the radio-frequency (RF) power of the plasma discharge on the morphology and structure of the embedded quantum dots was studied. A brief discussion on the possible mechanisms of the quantum dot formation in the ICP is presented. This study is relevant to third-generation photovoltaic solar cells.

  12. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  13. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  14. Joining of silicon nitrides using oxynitride glasses

    SciTech Connect

    O`Brien, M.H.

    1993-03-01

    This report presents a study on commercial silicon nitrides that were successfully joined using oxynitride glasses. Sintered silicon nitride was joined by either closed or glass-filled joints. Glass-filled joints were successfully used on hot-pressed silicon nitrides and were comparable in fast fracture strength to unjoined silicon nitrides up to approximately 1000C. Above that temperature, strengths decreased rapidly and glass flow failure began. The study observed that time-dependent failure currently limits the service temperatures of glass-filled joints. Creep failure occurred in excess of 1000C. Between 900 and 1000C, slow crack growth failure was observed. Cavitation (or viscous deformation) was the rate-controlling mechanism of slow crack growth.

  15. Nanocrystalline silicon/amorphous silicon dioxide superlattices

    SciTech Connect

    Fauchet, P.M.; Tsybeskov, L.; Zacharias, M.; Hirschman, K.

    1998-12-31

    Thin layers made of densely packed silicon nanocrystals sandwiched between amorphous silicon dioxide layers have been manufactured and characterized. An amorphous silicon/amorphous silicon dioxide superlattice is first grown by CVD or RF sputtering. The a-Si layers are recrystallized in a two-step procedure (nucleation + growth) for form layers of nearly identical nanocrystals whose diameter is given by the initial a-Si layer thickness. The recrystallization is monitored using a variety of techniques, including TEM, X-Ray, Raman, and luminescence spectroscopies. When the a-Si layer thickness decreases (from 25 nm to 2.5 nm) or the a-SiO{sub 2} layer thickness increases (from 1.5 nm to 6 nm), the recrystallization temperature increases dramatically compared to that of a single a-Si film. The removal of the a-Si tissue present between the nanocrystals, the passivation of the nanocrystals, and their doping are discussed.

  16. Characteristics of silicon etching by silicon chloride ions

    SciTech Connect

    Ito, Tomoko; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Kang, Song-Yun

    2013-05-15

    Plasmas generated from halogen-containing gases, such as Cl{sub 2} or HBr, have been widely used in gate etching processes for semiconductor chip manufacturing. Such plasmas may contain silicon halide ions formed by the ionization of etching products that enter the plasma. In this study, to illustrate Si etching by such silicon halide ions, the sputtering yield of Si by SiCl{sub x}{sup +} (with x = 1 or 3) ions has been obtained as a function of the incident ion energy by using a mass-selected ion beam injection system. It has been found that, at sufficiently low energy, the incidence of SiCl{sup +} ions leads to the deposition of Si which may affect profile control in microelectronic device fabrication processes.

  17. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  18. Silicon rich nitride for silicon based laser devices

    E-print Network

    Yi, Jae Hyung

    2008-01-01

    Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light ...

  19. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  20. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M. (Livermore, CA)

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  1. Tritium in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; O`Leary, S.K.; Gaspari, F.; Zukotynski, S.; Kherani, N.P.; Shmadya, W.

    1996-12-31

    Preliminary results on infrared and luminescence measurements of tritium incorporated amorphous silicon are reported. Tritium is an unstable isotope that readily substitutes hydrogen in the amorphous silicon network. Due to its greater mass, bonded tritium is found to introduce new stretching modes in the infrared spectrum. Inelastic collisions between the beta particles, produced as a result of tritium decay, and the amorphous silicon network, results in the generation of excess electron-hole pairs. Radiative recombination of these carriers is observed.

  2. Method of forming silicon structures with selectable optical characteristics

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (inventor); Schowalter, Leo (inventor)

    1993-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers or phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  3. Translation and manipulation of silicon nanomembranes using holographic optical tweezers

    PubMed Central

    2011-01-01

    We demonstrate the use of holographic optical tweezers for trapping and manipulating silicon nanomembranes. These macroscopic free-standing sheets of single-crystalline silicon are attractive for use in next-generation flexible electronics. We achieve three-dimensional control by attaching a functionalized silica bead to the silicon surface, enabling non-contact trapping and manipulation of planar structures with high aspect ratios (high lateral size to thickness). Using as few as one trap and trapping powers as low as several hundred milliwatts, silicon nanomembranes can be rotated and translated in a solution over large distances. PMID:21867504

  4. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb

    PubMed Central

    Borin, Mirta; Fogli Iseppe, Alex; Pignatelli, Angela; Belluzzi, Ottorino

    2014-01-01

    Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons and the apical dendrites of projection neurons; they are autorhythmic and are the target of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of their position, suggesting a critical role in the sensory processing, their properties -and consequently their function- remain elusive. The current mediated by inward rectifier potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated current (Ih) by showing full activation in <10 ms, no inactivation, suppression by Ba2+ in a typical voltage-dependent manner (IC50 208 ?M) and reversal potential nearly coincident with EK. Ba2+ (2 mM) induces a large depolarization of DA-PG cells, paralleled by an increase of the input resistance, leading to a block of the spontaneous activity, but the Kir current is not an essential component of the pacemaker machinery. The Kir current is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the activation of several metabotropic receptors known to be present on these cells, showing that the current can be modulated by a multiplicity of pathways, whose activation in some case increases the amplitude of the current, as can be observed with agonists of D2, muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it can be observed with agonists of ?1 noradrenergic, 5-HT and histamine receptors. These characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG cell function, making them potentially capable to reconfigure the bulbar network to allow a better flexibility. PMID:25152712

  5. Apolipoprotein E4 suppresses delayed-rectifier potassium channels in membrane patches excised from hippocampal neurons.

    PubMed

    Qin, Ying; Qi, Jin-Shun; Qiao, Jian-Tian

    2006-02-01

    Recent studies show a clear association between Alzheimer's disease (AD) and the apolipoprotein E epsilon 4 allele (APOE4). The mechanisms underlying apoE4-mediated detrimental effects have not been well-clarified. The present study investigates possible effects of apoE4 on the delayed-rectifier potassium (IK) channels in inside-out membrane patches excised from rat hippocampal neurons. Acute application of apoE4 (0.5 microM) to the inside of the membrane patches markedly and reversibly suppressed the single IK channel activities. The average open probability and open frequency of IK channels decreased by (92.6+/-7.1)% and (88.6+/-3.2)%, respectively. The mean open time of IK channels decreased by (81.6+/-6.7)%, and the mean closed-time of them increased by 6.9+/-1.9 fold. Meanwhile, the mean current amplitude of IK channels was not significantly affected. In contrast, application of apolipoprotein A (apoA, 0.5 microM), another member of apolipoprotein family with similar molecular weight and amino acid sequence to apoE4, did not exhibit any effects on IK currents. These results indicate that apoE4 molecules can rapidly suppress the activities of IK channels in hippocampal neurons when they act on the inner side of the neuronal membrane. We propose that the overproduction of apoE4 in neurons may suppress normal IK channel activities and thus be responsible for the late-developed neuronal damages related to the pathogenesis of AD. PMID:16270302

  6. Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy.

    PubMed Central

    Henderson, R M; Schneider, S; Li, Q; Hornby, D; White, S J; Oberleithner, H

    1996-01-01

    The inwardly rectifying K+ channel ROMK1 has been implicated as being significant in K+ secretion in the distal nephron. ROMK1 has been shown by immunocytochemistry to be expressed in relevant nephron segments. The development of the atomic force microscope has made possible the production of high resolution images of small particles, including a variety of biological macromolecules. Recently, a fusion protein of glutathione S-transferase (GST) and ROMK1 (ROMK1-GST) has been used to produce a polyclonal antibody for immunolocalization of ROMK1. We have used atomic force microscopy to examine ROMK1-GST and the native ROMK1 polypeptide cleaved from GST. Imaging was conducted with the proteins in physiological solutions attached to mica. ROMK1-GST appears in images as a particle composed of two units of similar size. Analyses of images indicate that the two units have volumes of approximately 118 nm3, which is close to the theoretical volume of a globular protein of approximately 65 kDa (the molecular mass of ROMK1-GST). Native GST exists as a dimer, and the images obtained here are consistent with the ROMK1-GST fusion protein's existence as a heterodimer. In experiments on ROMK1 in aqueous solution, single molecules appear to aggregate, but contact to the mica was maintained. Addition of ATP to the solution produced a change in height of the aggregates. This change (which was reversible) suggests that ATP induces a structural change in the ROMK1 protein. The data show that atomic force microscopy is a useful tool for examination of purified protein molecules under near-physiological conditions, and furthermore, that structural alterations in the proteins may be continuously investigated. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710944

  7. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  8. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A. (Albuquerque, NM); Seager, Carleton H. (Albuquerque, NM)

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  9. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  10. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  11. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  12. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  13. Method for forming silicon on a glass substrate

    DOEpatents

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  14. Dependence of inverse-spin Hall effect and spin-rectified voltage on tantalum thickness in Ta/CoFeB bilayer structure

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-01-19

    Ta-layer thickness (t{sub Ta}) dependence of the measured DC voltage V from the inverse-spin Hall effect (ISHE) in Ta/CoFeB bilayer structure is experimentally investigated using the ferromagnetic resonance in the TE{sub 011} resonant cavity. The ISHE signals excluding the spin-rectified effect (SRE) were separated from the fitted curve of V against t{sub Ta}. For t{sub Ta}????{sub Ta} (Ta-spin diffusion length?=?2.7?nm), the deviation in ISHE voltage V{sub ISH} between the experimental and theoretical values is significantly increased because of the large SRE contribution, which also results in a large deviation in the spin Hall angle ?{sub SH} (from 10% to 40%). However, when t{sub Ta} ? ?{sub Ta}, the V{sub ISH} values are consistent with theoretical values because the SRE terms become negligible, which subsequently improves the accuracy of the obtained ?{sub SH} within 4% deviation. The results will provide an outline for an accurate estimation of the ?{sub SH} for materials with small ? value, which would be useful for utilizing the spin Hall effect in a 3-terminal spintronic devices in which magnetization can be controlled by in-plane current.

  15. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOEpatents

    Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  16. Self-Checking Ripple-Carry Adder with Ambipolar Silicon NanoWire FET

    E-print Network

    De Micheli, Giovanni

    Self-Checking Ripple-Carry Adder with Ambipolar Silicon NanoWire FET Ogun Turkyilmaz, Fabien and aggressive technologies such as ambipolar Silicon NanoWire (SiNW), addressing fault-tolerance is necessary channel control properties and limited fabrication complexity. Among 1D devices, Silicon Nanowires (Si

  17. Sub-bandgap luminescence centers in silicon created by self-ion implantation and thermal annealing

    E-print Network

    Bao, Jiming

    the fabrication of silicon-based light emitters to be compatible with current silicon technology. Plastic de, espe- cially plastic deformation, are not compatible with current silicon technology. In the DSB- contained region cannot be well controlled, and carriers have to be tunneled through oxide barrier, which

  18. A case history on an innovative solution for VOC and air toxics control designed for a medical prosthetic manufacturer of silicon breast implants

    SciTech Connect

    Quan-Handley, P.

    1997-12-31

    The case history presented here is based on the selection, design, installation, testing in, and continuous operation of a recuperative type thermal oxidation system with a built on heat exchanger unit (with a thermal efficiency of 85%) and ancillary ventilation/exhaust collection system designed for McGhan Medical Corporation (McGhan), a medical prosthetic manufacturer of silicon breast implants, located in Santa Barbara, California. There is now available three (3) consecutive years of emissions source test data which verify the achievement of the overall equipment VOC destruction removal efficiency (DRE) initially projected at 98.5% or 10 ppmv.

  19. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  20. Silicon Biomineralization on the Earth

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Das, S.

    2010-12-01

    Silicon biomineralization in nature occurs as either ‘biologically controlled biomineralization’; where silicon is precipitated to serve some physiological purpose; or as ‘biologically induced biomineralization’; where mineralization occurs as a byproduct of cell’s metabolic activity or through its interactions with the environment. In biologically controlled mineralization, there is an overwhelming control of the microorganism on nucleation and mineral growth stage. There is delineation of space (as intracellular silica deposition vesicle (SDV)) for the locus of mineralization, which is sealed off from the external environment. Then silicate is sequestered and transferred to the mineralization site by energy driven (energy may be derived from photosynthesis or from glucose metabolism) pump mechanism in presence of specific transporter protein. In biologically induced biomineralization, first, there is silicon nucleation, which leads to the spontaneous growth of some critical nuclei which are resistant to rapid dissolution. Then growth of these silicon nuclei (if the ions are same) or precipitation over the nuclei (if the ions are different) occurs. Ultimately the initial amorphous phase is converted into a crystalline phase. Silicon deposition may also occur due to Ostwald ripening. If silica concentration is more than the solubility of amorphous silica (at 100oC ~ 380 mg L-1), monomeric silica [Si(OH)4] is formed which is converted into oligomers (dimers, trimers and tetramers) by polymerization. Ultimately large polymers of silanol (-Si-OH-) and siloxane (-Si-O-Si-) are formed. Silicification then occurs by hydrogen bonding with neutrally charged polysaccharides, by cation bridging with the cell wall or by direct electrostatic interactions with cationic amino groups present in protein-rich biofilms. Diatoms are the world’s largest contributor to biomineralization of silicon. Diatom silicon transporters (SITs) are membrane associated proteins that directly transport silicic acid. Specific transport enzymes then promote silicification in a supersaturated state of silicon, thus increasing the rate of silicification within diatoms to about 106 times the abiological formation rate. There are five SIT genes - cfSIT1-5 having 10 transmembrane segments, one intracellular N terminus, and one intracellular C-terminal coiled-coil motif in Cylindrotheca fusiformis. SIT genes of other diatoms are very similar, although the coiled-coil motif may be absent. Slicon transporter gene of rice has also been described recently. SDV membrane or the Silicalemma contains different proteins and when external silica is low they are increased in amount. Different types of polypeptides known as silaffins and long-chain polyamines (LCPA) are found in embedded proteins of silica matrix after dissolving it with hydrofluoric acid from purified frustules of diatoms. Silaffins 1A, 1B, 2, 1H, 1L, and LCPA can promote rapid precipitation of silica. Some native silaffins (Nat Sil-1A and 2), which are regulatory molecules of LCPA, are also obtained after treatment of frustules with ammonium fluoride. It is very difficult to explain the exact reasons for this silicification. Probably it was developed in a more silica rich hydrosphere during the Cambrian period.

  1. Silicon Auditory Processors Computer Peripherals

    E-print Network

    Lazzaro, John

    Silicon Auditory Processors as Computer Peripherals John Lazzaro, John Wawrzynek CS Division UC describe an alternative output method for silicon auditory models, suitable for direct interface to digital

  2. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48?hours. Further, the size of the cancer cells reduces by 76% from 24 to 48?hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  3. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    NASA Astrophysics Data System (ADS)

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-07-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48?hours. Further, the size of the cancer cells reduces by 76% from 24 to 48?hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy.

  4. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  5. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  6. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  7. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  8. Optical properties of silicon inverse opals

    NASA Astrophysics Data System (ADS)

    Wei, Hong

    Silicon inverse opals are artificial structures in which nearly monodisperse, close-packed air bubbles are embedded in a silicon matrix. If properly tailored, this structure can exhibit a photonic band gap (PBG) in the near infrared spectral region. The PBG can block light propagation in any direction, allowing the control of light flow in the material. Silicon inverse opals can be fabricated by infiltrating amorphous silicon into silica colloidal crystals and then etching away the silica. In this thesis, the structural defects of silica colloidal crystals and the optical properties of silicon inverse opals are studied. First, by using laser-scanning confocal microscopy, the concentration and distribution of stacking faults and vacancies were quantified in silica colloidal crystals. It's shown that silica colloidal crystals show strong tendency toward face-center-cubic structure with the vacancy density as small as 5 x 10-4. Second, by combining optical microscopy and Fourier Transform Infrared (FTIR) spectroscopy, the transmission and reflection spectra of silicon inverse opals along the [111] direction were measured. Combined with the calculation of transmission and reflection spectra by Transfer Matrix Methods, it is concluded that the strong light attenuation in silicon inverse opals is due to the enhanced absorption (>600%) in silicon materials. Third, by using optical pump-probe techniques, the photo-induced ultra-fast reflection changes in silicon inverse opals were examined. The pump-generated free carriers cause the reflection in the band gap region to change after ˜0.5 ps. For the first few ps, the main effect is a decrease in reflectivity due to nonlinear absorption. After ˜5 ps, this effect disappears and an unexpected blue spectral shift is seen in the photonic band gap. The refractive index decreases due to optically-induced strain born the thermal expansion mismatch between silicon and its native oxide. Finally, by infiltrating silicon inverse opals with PbSe semiconductor nanocrystals, the modification of photoluminescence of species embedded inside a PBG structure was explored. Although a strong attenuation of the photoluminescence of PbSe semiconductor nanocrystals is observed in the PBG wavelength, direct measurement of the photoluminescence decay rate as affected by the PBG is not successful. Higher performance infrared detector is required.

  9. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries

    PubMed Central

    Jin, Xin; Zhang, Qianlong; Lu, Ping; Yu, Xiufeng; Zhong, Weiwei; Zheng, Xiaodong; Cui, Ningren; Jiang, Chun; Zhu, Daling

    2015-01-01

    Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-?-S and choleratoxin suggested that currents weren’t determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems. PMID:26700160

  10. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function.

    PubMed

    Wu, Yipin; Baum, Michel; Huang, Chou-Long; Rodan, Aylin R

    2015-10-01

    Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K(+) flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K(+) channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K(+) flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K(+) flux by ?50%. Knockdown of any of the three inwardly rectifying K(+) channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na(+)/K(+)-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K(+) flux, and 75% of transepithelial K(+) transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na(+)/K(+)-ATPase-dependent pathways. PMID:26224687

  11. Modulation of staurosporine-activated volume-sensitive outwardly rectifying Cl? channel by PI3K/Akt in cardiomyocytes.

    PubMed

    Liu, Yan; Wang, Bo; Zhang, Wei-Wei; Liu, Jia-Ni; Shen, Ming-Zhi; Ding, Ming-Ge; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Chloride (Cl?) channels participate in the regulation of cardiac function in response to stress although the underlying regulatory mechanism remains poorly understood. This study was designed to examine the impact of the pro-apoptotic stimulus staurosporine (STS) on the volume-sensitive outwardly rectifying Cl? current (I(Cl,Vol)) in cardiomyocytes and possible regulatory mechanism involved with a focus on phosphatidylinositol-3 kinase (PI3K)/Akt. Primary cultured rat neonatal cardiomyocytes were subjected to hypotonic and isotonic environment in the presence or absence of STS prior to whole-cell voltage-clamp evaluation of Cl? current. Whole-cell recordings revealed that STS activated an outwardly rectifying Cl? current with phenotypic properties reminiscent of I(Cl,Vol). These currents were outwardly rectifying with a time-dependent inactivation at positive potentials and were sensitive to 4,4'-diisothiocya-natostilbene- 2,2'- disulfonicacid (DIDS), a non-selective Cl? channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl)oxybutyric acid (DCPIB), a selective VSOR Cl? channel blocker. DIDS and DCPIB inhibited I(Cl,Vol) by 92.6% ± 7.3% and 78.4% ± 5.5%, respectively. Our data further revealed that the PI3K inhibitor LY294002 facilitated the current with the peak amplitude of 19.54 ± 2.70 pA/pF. To the contrary, insulin partially inhibited the current amplitude with the peak current amplitude of 15.4 ± 2.13 pA/pF. Taken together, our data depicted staurosporine is capable of activating I(Cl,Vol) channel in cardiomyocytes via possibly a PI3K/Akt-dependent mechanism. PMID:23323619

  12. Silicon-based Quantum Computing

    NASA Astrophysics Data System (ADS)

    Clark, Robert

    2002-03-01

    The Australian Centre for Quantum Computer Technology has as a central focus the construction of few-qubit silicon-based solid state devices for test, by a reliable, reproducable and potentially scalable fabrication route. A description will be given of the fabrication approaches underway, with progress to date. Three principal objectives are within reach: 1. The ability to dope silicon with phosphorus in an atomically-precise array, using STM-lithography and Si-MBE overgrowth. 2. The construction of few-donor QC devices using single-ion implantation through nanofabricated apertures, with on-chip detection, self-aligned control gates and single electron transistor (SET) readout devices. 3. A high frequency experiment, using rf-SETs, to measure the coherent electron transfer between two buried phosphorus donor atoms constituting a nanostructured H_2^+ molecule encapsulated in silicon. This work is being carried out in collaboration with Los Alamos National Laboratory and is funded by the Australian Research Council, the Australian Government, the US Army Research Office, National Security Agency and Advanced Research and Development Activity.

  13. Silicone-containing composition

    DOEpatents

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  14. Hexagonal Silicon Realized.

    PubMed

    Hauge, Håkon Ikaros T; Verheijen, Marcel A; Conesa-Boj, Sonia; Etzelstorfer, Tanja; Watzinger, Marc; Kriegner, Dominik; Zardo, Ilaria; Fasolato, Claudia; Capitani, Francesco; Postorino, Paolo; Kölling, Sebastian; Li, Ang; Assali, Simone; Stangl, Julian; Bakkers, Erik P A M

    2015-09-01

    Silicon, arguably the most important technological semiconductor, is predicted to exhibit a range of new and interesting properties when grown in the hexagonal crystal structure. To obtain pure hexagonal silicon is a great challenge because it naturally crystallizes in the cubic structure. Here, we demonstrate the fabrication of pure and stable hexagonal silicon evidenced by structural characterization. In our approach, we transfer the hexagonal crystal structure from a template hexagonal gallium phosphide nanowire to an epitaxially grown silicon shell, such that hexagonal silicon is formed. The typical ABABAB... stacking of the hexagonal structure is shown by aberration-corrected imaging in transmission electron microscopy. In addition, X-ray diffraction measurements show the high crystalline purity of the material. We show that this material is stable up to 9 GPa pressure. With this development, we open the way for exploring its optical, electrical, superconducting, and mechanical properties. PMID:26230363

  15. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart.

    PubMed

    Hassinen, Minna; Haverinen, Jaakko; Hardy, Matt E; Shiels, Holly A; Vornanen, Matti

    2015-12-01

    Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7?±?1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50?=?3.8 ?M) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9?±?1.5 and 6.3?±?1.5 %) and the atrium (28.9?±?2.9 and 64.7?±?3.0 %). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50?=?1.8 ?M) and drKir2.1a the least sensitive channel (IC50?=?132 ?M). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances. PMID:25991088

  16. SILICON/SILICON-GERMANIUM HETEROSTRUCTURE TUNNEL DIODES Sajid Kabeer

    E-print Network

    SILICON/SILICON-GERMANIUM HETEROSTRUCTURE TUNNEL DIODES Abstract by Sajid Kabeer Esaki interband tunneling diodes have been demonstrated for the first time in the silicon/silicon-germanium system using in a hot wall reactor at the University of Lund, Sweden. Two germanium contents were explored, 13.6% Ge

  17. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  18. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kova?evi?, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  19. Properties of the delayed rectifier potassium current in porcine sino-atrial node cells

    PubMed Central

    Ono, Kyoichi; Shibata, Shigehiro; Iijima, Toshihiko

    2000-01-01

    Whole-cell currents were recorded in single, spontaneously active cells dissociated from porcine sino-atrial node, and the conductance and gating properties of the delayed rectifier K+ current (IK) were investigated. The isolated cells exhibited spontaneous action potentials at a rate of 80.5 ± 5.4 min?1 (mean ± s.e.m., n = 11). Under Ca2+ current block, depolarization from ?40 mV to various potentials activated a time-dependent outward current (IK). The activation curve of IK showed a half-activation potential (V½) of 20.5 ± 2.1 mV and a slope factor (S) of 16.4 ± 1.2 mV (n = 8). As the duration of the depolarizing pulse to either +10 or +60 mV was prolonged, the amplitude of the tail current increased in proportion to that of the activated outward current during depolarization. E4031 (2–5 ?M), a selective blocker for the rapidly activating component of IK (IK,r), hardly affected IK, but chromanol 293B, a selective blocker for the slowly activating component (IK,s), inhibited IK with an IC50 of 8.79 ?M. The reversal potential of IK was ?75.2 ± 2.3 mV with 5.4 mM external and 150 mM internal K+. The time courses of activation and deactivation of IK were fitted by the sum of two exponential functions at various potentials. The relationship between the time constants and membrane potential showed a bell-shaped curve with a peak at around ?10 mV for both fast and slow components. The results indicate that in porcine sino-atrial node cells IK is largely derived from IK,s and that IK,s plays a functional role in the slow diastolic depolarization. IK,s may, in part, account for the relatively slower heart rate of pigs than that of rabbit in which IK,r is a functionally dominant component of IK.

  20. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Yu, Conrad M. (Antioch, CA); Raley, Norman F. (Danville, CA)

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  1. In situ-grown hexagonal silicon nanocrystals in silicon carbide-based films

    PubMed Central

    2012-01-01

    Silicon nanocrystals (Si-NCs) were grown in situ in carbide-based film using a plasma-enhanced chemical vapor deposition method. High-resolution transmission electron microscopy indicates that these nanocrystallites were embedded in an amorphous silicon carbide-based matrix. Electron diffraction pattern analyses revealed that the crystallites have a hexagonal-wurtzite silicon phase structure. The peak position of the photoluminescence can be controlled within a wavelength of 500 to 650 nm by adjusting the flow rate of the silane gas. We suggest that this phenomenon is attributed to the quantum confinement effect of hexagonal Si-NCs in silicon carbide-based film with a change in the sizes and emission states of the NCs. PMID:23171576

  2. Invited poster: GINSENG: Performance Control in Wireless Sensor Networks

    E-print Network

    Sreenan, Cormac J.

    Invited poster: GINSENG: Performance Control in Wireless Sensor Networks J. Brown, U. Roedig, T. O, Germany Abstract--The goal of the GINSENG project is a performance- controlled sensor network suitable performance constantly and collect data in order to detect, diagnose and rectify problems. The GINSENG system

  3. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  4. Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

    NASA Astrophysics Data System (ADS)

    Recht, Daniel

    This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold.

  5. Optical actuation of silicon cantilevers: modelling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Jiang, Fei; Keating, Adrian; Martyuink, Mariusz; Silva, Dilusha; Faraone, Lorenzo; Dell, John M.

    2013-05-01

    This paper reports on the modeling and experimental investigation of optical excitation of silicon cantilevers. In this work, the silicon cantilevers fabricated have dimensions with width of 15 ?m, thickness of 0.26 ?m, and variable length from 50 to 120 ?m. In order to investigate the effect of the laser modulation frequency and position on the temperature at the anchor edge and displacements at the tip of cantilevers, a transient thermal ANSYS simulation and a steady-state static thermal mechanical ANSYS simulation were undertaken using a structure consisting of silicon device layer, SiO2 sacrificial layer and silicon substrate. The dynamic properties of silicon cantilevers were undertaken by a series of experiments. The period optical driving signal with controlled modulation amplitude was provided by a 405 nm diode laser with a 2.9 ?W/?m2 laser power and variable frequencies. The laser spot was located through the longitude direction of silicon cantilevers. In factor, simulation results well matched with experimental observation, including: 1) for untreated silicon cantilevers, the maximum of displacement is observed when the laser beam was located half a diameter way from the anchor on the silicon suspended cantilever side; 2) for the both cantilevers, maximum displacement occurs when the optical actuation frequency is equal to the resonant frequency of cantilevers. Understanding the optical excitation on silicon cantilevers, as waveguides, can potentially increase sensing detection sensitivity (ratio of transmission to cantilever deflection).

  6. Quantum Theory and the Silicon Revolution. Resources in Technology.

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    1995-01-01

    This learning activity describes silicon as one of the most plentiful materials on earth, demonstrating how it supplies the building blocks for electronic devices such as transistors, integrated circuits, and microprocessors. It includes a design brief on control technology. (JOW)

  7. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  8. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Davis, J. R., Jr.; Rohatgi, A.; Hopkins, R. H.; Blais, P. D.; Rai-Choudhury, P.; Mccormick, J. R.; Mollenkopf, H. C.

    1980-01-01

    The paper investigates the effects of metallic impurities on the performance of silicon solar cells. Czochralski and polycrystalline ingots were employed with boron and phosphorus as primary dopants and with controlled additions of secondary impurities. The data obtained from over 200 crystals indicate that impurity-induced performance loss is primarily due to a reduction of the base diffusion length. Based on this observation, a model is developed which predicts cell performance as a function of secondary impurity concentrations. The model calculations are in good agreement with experimental values except for Cu, Ni, Fe, and to a lesser degree, carbon, which at higher concentrations degrade the cell by junction defect mechanisms.

  9. Silicone Contamination Camera for Developed for Shuttle Payloads

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On many shuttle missions, silicone contamination from unknown sources from within or external to the shuttle payload bay has been a chronic problem plaguing experiment payloads. There is currently a wide range of silicone usage on the shuttle. Silicones are used to coat the shuttle tiles to enhance their ability to shed rain, and over 100 kg of RTV 560 silicone is used to seal white tiles to the shuttle surfaces. Silicones are also used in electronic components, potting compounds, and thermal control blankets. Efforts to date to identify and eliminate the sources of silicone contamination have not been highly successful and have created much controversy. To identify the sources of silicone contamination on the space shuttle, the NASA Lewis Research Center developed a contamination camera. This specially designed pinhole camera utilizes low-Earth-orbit atomic oxygen to develop a picture that identifies sources of silicone contamination on shuttle-launched payloads. The volatile silicone species travel through the aperture of the pinhole camera, and since volatile silicone species lose their hydrocarbon functionalities under atomic oxygen attack, the silicone adheres to the substrate as SiO_x. This glassy deposit should be spatially arranged in the image of the sources of silicone contamination. To view the contamination image, one can use ultrasensitive thickness measurement techniques, such as scanning variable-angle ellipsometry, to map the surface topography of the camera's substrate. The demonstration of a functional contamination camera would resolve the controversial debate concerning the amount and location of contamination sources, would allow corrective actions to be taken, and would demonstrate a useful tool for contamination documentation on future shuttle payloads, with near negligible effect on cost and weight.

  10. Taming the silicon dragon.

    PubMed

    Stevens, F; Pion, P D

    1996-05-01

    This article is an introduction to how computers work. Although many can begin to use this tool without any formal knowledge of its components or how they work together, only a functional understanding of these aspects can really unleash the power and capabilities available and allow you to proceed without fear that some mysterious force will come up and "eat the data" or somehow cause some other damage to the system. Through an inspection of the terminology, anatomical dissection, and physiology of our imagined "silicon dragon," we can appreciate the qualities of the beast, dispell our fears, and take real control of this potentially awesome tool. Although the basic information is perforce, quite technical in nature, the article is meant both to be readable and also provide a reference for terms and concepts mentioned both elsewhere in this issue, as well as generally. It is especially useful to be refreshed on these terms and concepts when considering an initial purchase or upgrade of computer equipment. PMID:8898565

  11. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  12. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 ?m), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-?/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. PMID:24476361

  13. Silicon for photonics

    NASA Astrophysics Data System (ADS)

    Kimerling, Lionel C.

    1997-04-01

    The path for silicon materials development has been charted. By the year 2010 we will have fabricated integrated circuit chips contained 109 transistor with 40 angstrom thick gate oxides and 1000 angstrom minimum feature sizes running at 4GHz clock speeds. It is conceivable that incremental advances on the current chip architecture will satisfy the required materials and process improvements. The interconnection problem is the only challenge without a proposed solution. The signal propagation delay between devices is now longer than the individual device gate delay. The resistance and capacitance associated with fine line Al interconnects limit speed and increase power consumption and crosstalk. High power line drivers are limited by the reliability constraint of electromigration. There is no current paradigm for 4GHz electronic clock distribution. Optical interconnection can remove the electronic transmission bandwidth limit. The main challenge is development of a silicon-compatible, microphotonic technology. Rare earth doping has provided a means of sharp- line electroluminescence from silicon at (lambda) equals 1.54 micrometers . Silicons high index of refraction and low absorption in the near infrared yield an ideal optical waveguide. As with microelectronics, the silicon/silicon-dioxide materials system allows high levels of integration and functionality. The applications of silicon materials to light emission, optical waveguides, photonic switching and photon detection are reviewed. These developments are discussed in the context of systems applications to communications and computation.

  14. Correlation analysis between the delayed rectifier potassium channel KCNE1 (G38S) polymorphism and atrial fibrillation among the senior Uygur population in Xinjiang.

    PubMed

    Wugeti, N; Yu-Jun, G; Juan, S; Mahemuti, A

    2015-01-01

    Current resources to support genetic screening among the Uygur population in Xinjiang territory for atrial fibrillation (AF) have not been well established and large-scale epidemiological analyses are needed. Using patients from the Xinjiang Uygur population as subjects, and the delayed rectifier potassium channel KCNE1 and its associated polymorphism G38S (rs1805127) as the candidate gene, we analyzed the correlation between the G38S polymorphism and AF among the senior Uygur population in Xinjiang Province. Peripheral blood from AF Uygur patients (patient group) or non-AF Uygur patients (control group) from Xinjiang territory was collected (70 patients each). DNA was purified and tested by polymerase chain reaction-restriction fragment length polymorphism for the genotype and allelic distribution of KCNE1 (G38S). Correlation analysis between AF and multiple health-related factors was performed by logistic regression. Among patients with the KCNE1 G38S polymorphism, the genotypes AA, AG, and GG were present at frequencies of 17.14, 27.14, and 55.71%, respectively, in the patient group, compared with 24.29, 50, and 25.71%, respectively, in the control group. The difference between these two groups was shown to be statistically significant (P < 0.05), and the frequency of the G allele was significantly higher in the patient group (P < 0.05). Logistic regression showed that the GG genotype is correlated with the incidence of AF in Uygur seniors (P < 0.05). The incidence of AF among the senior Uygur population in Xinjiang territory was correlated with the KCNE1 (G38S) polymorphism, which may be an independent risk factor for Uygur AF patients. PMID:26662381

  15. Simplified ZrTiO x -based RRAM cell structure with rectifying characteristics by integrating Ni/n?+?-Si diode

    PubMed Central

    2014-01-01

    A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n+-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n+-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 103 and a resistance ratio larger than 103 between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 104 s and robust endurance of 105 cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology. PMID:24936165

  16. Keppen-Lubinsky Syndrome Is Caused by Mutations in the Inwardly Rectifying K+ Channel Encoded by KCNJ6

    PubMed Central

    Masotti, Andrea; Uva, Paolo; Davis-Keppen, Laura; Basel-Vanagaite, Lina; Cohen, Lior; Pisaneschi, Elisa; Celluzzi, Antonella; Bencivenga, Paola; Fang, Mingyan; Tian, Mingyu; Xu, Xun; Cappa, Marco; Dallapiccola, Bruno

    2015-01-01

    Keppen-Lubinsky syndrome (KPLBS) is a rare disease mainly characterized by severe developmental delay and intellectual disability, microcephaly, large prominent eyes, a narrow nasal bridge, a tented upper lip, a high palate, an open mouth, tightly adherent skin, an aged appearance, and severe generalized lipodystrophy. We sequenced the exomes of three unrelated individuals affected by KPLBS and found de novo heterozygous mutations in KCNJ6 (GIRK2), which encodes an inwardly rectifying potassium channel and maps to the Down syndrome critical region between DIRK1A and DSCR4. In particular, two individuals shared an in-frame heterozygous deletion of three nucleotides (c.455_457del) leading to the loss of one amino acid (p.Thr152del). The third individual was heterozygous for a missense mutation (c.460G>A) which introduces an amino acid change from glycine to serine (p.Gly154Ser). In agreement with animal models, the present data suggest that these mutations severely impair the correct functioning of this potassium channel. Overall, these results establish KPLBS as a channelopathy and suggest that KCNJ6 (GIRK2) could also be a candidate gene for other lipodystrophies. We hope that these results will prompt investigations in this unexplored class of inwardly rectifying K+ channels. PMID:25620207

  17. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    NASA Astrophysics Data System (ADS)

    Yae, Shinji; Morii, Yuma; Fukumuro, Naoki; Matsuda, Hitoshi

    2012-06-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium.

  18. Etching Silicon Films With Xenon Difluoride

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.

    1986-01-01

    Microscopic circuit structures prepared for probing. Xenon difluoride removes relatively large amounts of silicon from integratedcircuit or solar-cell structures while leaving SiO2, Si3N4, Al2O3, and other compounds intact. In Etching Apparatus, solid XeF2 sublimated in vacuum, then allowed to flow over sample at controlled rate and pressure. Wafer etched from back to expose SiO2 and Al layers for spectroscopic analysis of SiO2/Al interface. Using XeF2 technique, silicon wafer with oxide layer reduced in thickness from standard 300 micrometer to as little as 10 nanometer without adversely affecting oxide.

  19. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  20. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  1. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ?550?K, with the corresponding free-carrier density adjusted between ?10{sup 11?}cm{sup ?3} and ?10{sup 17?}cm{sup ?3}. This “hot-silicon”-based terahertz attenuator works most effectively at 450–550?K (corresponding to a DC voltage variation of only ?7?V) and completely shields terahertz radiation above 550?K in a frequency range of 0.1–2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  2. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  3. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  4. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery. PMID:21869999

  5. Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  6. Silicon MOS inductor

    DOEpatents

    Balberg, Isaac (Princeton, NJ)

    1981-01-01

    A device made of amorphous silicon which exhibits inductive properties at certain voltage biases and in certain frequency ranges in described. Devices of the type described can be made in integrated circuit form.

  7. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40?µm, a diameter of 15?mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  8. Silicon microfabricated beam expander

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  9. Silicon sheet surface studies

    NASA Astrophysics Data System (ADS)

    Danyluk, S.

    1985-06-01

    Results of the program are presented on developing an understanding of the basic mechanisms of abrasion and wear of silicon and on the nondestructive measurement of residual stresses in sheet silicon. Experiments were conducted at various temperatures and in the presence of various fluids. In abrasive wear, it was shown that dislocations, microtwins, and cracks are generated beneath the contact surface. Residual stresses in ribbon by the edge defined film growth process were measured by use of a shadow moire interferometry technique.

  10. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  11. Stability and rheology of dispersions of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1987-01-01

    The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.

  12. One dimensional silicon nanostructures prepared by oxidized porous silicon under heat treatment

    NASA Astrophysics Data System (ADS)

    Vendamani, V. S.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2014-11-01

    One dimensional high aspect ratio Si nanostructures were prepared by using oxidized sponge like nanostructured porous silicon (pSi) as a seed material. This can be considered as a complementary technique to synthesize silicon nanowires such as vapour-liquid-solid method (VLS). One dimensional silicon nanostructures were fabricated by subjecting pSi to heat treatment without metal assistance. It is shown that the aspect ratio can be tuned by controlling the concentration of oxygen (SiO2) and the porosity of the seed material (pSi). The atomic percentage of oxygen incorporated into pSi was estimated by Energy Dispersive X-ray Spectroscopy (EDS). Field Emission Scanning Electron Microscope (FESEM) confirms unambiguously the formation of silicon nanowires. The broad peak observed around 490 cm-1 in Raman spectra further confirms the formation of Si NWs. At higher oxygen concentration, narrower (?20 nm) and longer (?1 ?m) silicon nanowires have been achieved. The observed change in photoluminescence (PL) peak position towards lower wavelength as a function of the aspect ratio of Si NWs is in good agreement with quantum confinement effects. This work demonstrates a new oxide assisted method to prepare high aspect ratio silicon nanowires without using any metal catalysts.

  13. Incorporation of capsaicin in silicone coatings for enhanced antifouling performance

    NASA Astrophysics Data System (ADS)

    Reddy Jaggari, Karunakar; Zhang Newby, Bi-Min

    2002-03-01

    Successful use of capsaicin as insect and animal repellant propelled us to use it as a possible antifouling agent. Its non-toxic, non-biocidal, non-leaching properties make it a viable alternative to organotin compounds. In order to optimize the anti-fouling performance of the coating, silicone, the most effective foul-release marine coating, was chosen as the carrier. We have incorporated capsaicin into silicone coating, by both bulk entrapment and surface immobilization. Contact angle measurements on capsaicin-incorporated silicone exhibited an increase in wettability, owing to the presence of capsaicin. FTIR study further confirmed the incorporation of capsaicin in silicone. Bacterial attachment studies were conducted using lake Erie water. While bacteria liberally inhabited the control coating, their presence on the capsaicin-incorporated coating was found to be minimal. These preliminary studies indicate that capsaicin incorporated silicone could be a viable environment friendly alternative to currently used antifouling coatings.

  14. Evaluation of Silicone as an Artificial Lubricant in Osteoarthrotic Joints

    PubMed Central

    Wright, V.; Haslock, D. I.; Dowson, D.; Seller, P. C.; Reeves, B.

    1971-01-01

    Silicone 300 has been evaluated as an artificial lubricant in osteoarthrotic joints by means of a pilot study in five inpatients and a control trial of 25 outpatients with 40 osteoarthrotic knees. Sequential analysis showed a significant benefit from saline compared with silicone at one week follow-up and no significant difference at one month. Measurement of stiffness with a knee arthrograph showed no difference in reduction of stiffness between the two substances. In a study of 18 rabbits there was no evidence that silicone was retained in the joint cavity for longer than 48 hours. There was a failure of clearance of iodinated serum albumin for as long as three to four days after the injection of silicone, suggesting some obstruction to lymphatic outflow. Experimentally produced cartilaginous defects did not heal quicker with the injection of silicone into the joint. PMID:5575973

  15. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  16. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  17. Silicon monoxide clusters: the favorable precursors for forming silicon nanostructures.

    PubMed

    Zhang, R Q; Zhao, M W; Lee, S T

    2004-08-27

    Using density-functional calculations, we show that the energetically favorable configurations of silicon monoxide clusters (SiO)n for n> or =5 facilitate the nucleation and growth of silicon nanostructures as the clusters contain sp3 silicon cores surrounded by silicon oxide sheaths. The frontier orbitals of (SiO)n clusters are localized to a significant degree on the silicon atoms on the surface, providing high reactivity for further stacking with other clusters. The oxygen atoms in the formed larger clusters prefer to migrate from the centers to the exterior surfaces, leading to the growth of sp3 silicon cores. PMID:15447112

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M. (Albuquerque, NM)

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  19. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  20. Fabrication and Modification of Nanoporous Silicon Particles

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.

  1. G protein-gated inwardly rectifying potassium (KIR3) channels play a primary role in the antinociceptive effect of oxycodone, but not morphine, at supraspinal sites

    PubMed Central

    Nakamura, Atsushi; Fujita, Masahide; Ono, Hiroko; Hongo, Yoshie; Kanbara, Tomoe; Ogawa, Koichi; Morioka, Yasuhide; Nishiyori, Atsushi; Shibasaki, Masahiro; Mori, Tomohisa; Suzuki, Tsutomu; Sakaguchi, Gaku; Kato, Akira; Hasegawa, Minoru

    2014-01-01

    BACKGROUND AND PURPOSE Oxycodone and morphine are ?-opioid receptor agonists prescribed to control moderate-to-severe pain. Previous studies suggested that these opioids exhibit different analgesic profiles. We hypothesized that distinct mechanisms mediate the differential effects of these two opioids and investigated the role of G protein-gated inwardly rectifying potassium (KIR3 also known as GIRK) channels in their antinociceptive effects. EXPERIMENTAL APPROACH Opioid-induced antinociceptive effects were assessed in mice, using the tail-flick test, by i.c.v. and intrathecal (i.t.) administration of morphine and oxycodone, alone and following inhibition of KIR3.1 channels with tertiapin-Q (30 pmol per mouse, i.c.v. and i.t.) and KIR3.1-specific siRNA. The antinociceptive effects of oxycodone and morphine were also examined after tertiapin-Q administration in the mouse femur bone cancer and neuropathic pain models. KEY RESULTS The antinociceptive effects of oxycodone, after both i.c.v. and i.t. administrations, were markedly attenuated by KIR3.1 channel inhibition. In contrast, the antinociceptive effects of i.c.v. morphine were unaffected, whereas those induced by i.t. morphine were attenuated, by KIR3.1 channel inhibition. In the two chronic pain models, the antinociceptive effects of s.c. oxycodone, but not morphine, were inhibited by supraspinal administration of tertiapin-Q. CONCLUSION AND IMPLICATIONS These results demonstrate that KIR3.1 channels play a primary role in the antinociceptive effects of oxycodone, but not those of morphine, at supraspinal sites and suggest that supraspinal KIR3.1 channels are responsible for the unique analgesic profile of oxycodone. PMID:24117458

  2. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction cells are also considered for possible higher frequency ZPE transduction. Diode arrays of self-assembled molecular rectifiers or preferably, nano-sized cylindrical diodes are shown to reasonably provide for rectification of electron fluctuations from thermal and non-thermal ZPE sources to create an alternative energy DC electrical generator in the picowatt per diode range.

  3. INTERNATIONAL CONFERENCE ON EXOTIC FORMS OF SILICON

    E-print Network

    INTERNATIONAL CONFERENCE ON EXOTIC FORMS OF SILICON Renewable Energy Materials Research Science and Engineering Center TITLES "New structures in silicon induced by indentation" Jodie Bradby "Silicon quantum Silicon Clathrates" Susan Kauzlarich "Synthesis of Metastable Semiconducting Alloys: Thermodynamics

  4. Porous silicon-based biosensor for pathogen detection.

    PubMed

    Mathew, Finny P; Alocilja, Evangelyn C

    2005-02-15

    A porous silicon-based biosensor for rapid detection of bacteria was fabricated. Silicon (0.01 ohmcm, p-type) was anodized electrochemically in an electrochemical Teflon cell containing ethanoic hydrofluoric acid solution to produce sponge-like porous layer of silicon. Anodizing conditions of 5 mA/cm2 for 85 min proved best for biosensor fabrication. A single-tube chemiluminescence-based assay, previously developed, was adapted to the biosensor for detection of Escherichia coli. Porous silicon chips were functionalized with a dioxetane-Polymyxin B (cell wall permeabilizer) mixture by diffusion and adsorption on to the porous surface. The reaction of beta-galactosidase enzyme from E. coli with the dioxetane substrate generated light at 530 nm. Light emission for the porous silicon biosensor chip with E. coli was significantly greater than that of the control and planar silicon chip with E. coli (P<0.01). Sensitivity of the porous silicon biosensor was determined to be 101-102 colony forming units (CFU) of E. coli. The porous silicon-based biosensor was fabricated and functionalized to successfully detect E. coli and has potential applications in food and environmental testing. PMID:15626624

  5. Thiolated silicone oil: synthesis, gelling and mucoadhesive properties.

    PubMed

    Partenhauser, Alexandra; Laffleur, Flavia; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2015-04-01

    The aim of this study was the development of novel thiolated silicone oils and their evaluation with regard to gelling and mucoadhesive properties. A thiol coupling of 220 ± 14 and 127 ± 33 ?mol/g polymer for 3-mercaptopropionic acid (MPA)- and cysteine-coupled silicone oil was determined, respectively. The dynamic viscosity of MPA-silicone raised significantly (p<0.000001) after oxidation with iodine to a maximum of 523-fold within 1h. During tensile studies, MPA-silicone showed both the highest results for total work of adhesion (TWA) and maximum detachment force (MDF) with a 3.8- and 3.4-fold increase, respectively, compared to the control. As far as the residence time on small intestinal mucosa is concerned, both silicone conjugates were detectable in almost the same quantities for up to 8h with 56.9 ± 3.3 and 47.8 ± 8.9% of the initially applied conjugated silicone oil. Thiolated silicone oils can be regarded superior in comparison to commonly used silicone oils due to a prolonged retention time in the small intestine as site of action. Gelling and mucoadhesive features are advantageous for antiflatulent as well as mucoprotective biomaterials. Thus, these novel thiomers seem promising for an upgrade of currently available products for the treatment of dyspepsia, reflux oesophagitis and even inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. PMID:25660565

  6. Thermal properties of D0 Run IIb silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and hybrid substrates mounted directly to the silicon sensor surfaces is evaluated for heat transfer characteristics and thermal deflections. In order to control leakage current noise in the silicon it is necessary to maintain the silicon in Layer 2 (R {approx} 100mm) at or below +5C. The current cooling system using 30% ethylene glycol in water can deliver coolant to the inlet of the silicon tracker at a temperature of -8C to -10C. This paper also investigates some alternative coolant options for Run IIB. While these are not required for the outer layers of silicon, they may be needed for L0, which sits at R {approx} 15mm. In this case the silicon must be kept at or below -5C, very near the lower limit for delivery of 30% glycol/water coolant. However, for the inner layers the electronics will be mounted independently from the silicon so the local heat flux is greatly reduced. This paper does not consider the cooling issues for the inner layers.

  7. Graphene nanoplatelet-reinforced silicone for the valvular prosthesis application.

    PubMed

    Lordeus, Makensley; Estrada, Angie; Stewart, Danique; Dua, Rupak; Zhang, Cheng; Agarwal, Arvind; Ramaswamy, Sharan

    2015-01-01

    Newly developed elastomer heart valves have been shown to better re-create the flow physics of native heart valves, resulting in preferable hemodynamic responses. This emergence has been motivated in part by the recent introduction of percutaneous valve approaches in the clinic. Unfortunately, elastomers such as silicone are prone to structural failure, which drastically limits their applicability the development of a valve prosthesis. To produce a mechanically more robust silicone substrate, we reinforced it with graphene nanoplatelets (GNPs). The nanoplatelets were introduced into a two-part silicone mixture and allowed to cure. Cytotoxicity and hemocompatibility tests revealed that the incorporation of GNPs did not adversely affect cell proliferation or augment adhesion of platelets on the surface of the composite materials. Static mechanical characterization by loading in the tensile direction subsequently showed no observable effect when graphene was utilized. However, cyclic tensile testing (0.05 Hz) demonstrated that silicone samples containing 250 mg graphene/L of uncured silicone significantly improved (p<0.05) material fatigue properties compared with silicone-only controls. This finding suggests that for the silicone-graphene composite, static loads were principally transferred onto the matrix. On the other hand, in cyclic loading conditions, the GNPs were recruited effectively to delay failure of the bulk material. We conclude that application of GNPs to extend silicone durability is useful and warrants further evaluation at the trileaflet valve configuration. PMID:25955009

  8. High-power flip-chip-bonded silicon hybrid laser for temperature-control-free operation with micro-ring resonator-based modulator

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Jeong, S.-H.; Akiyama, T.; Sekiguchi, S.; Kurahashi, T.; Tanaka, Y.; Morito, K.

    2013-02-01

    A silicon (Si)-based, large-scale optical I/O chip will be a key device for a large-bandwidth, low-cost optical interconnection employed in future high-performance computing systems. For these Si optical I/O chips, a significant improvement in energy cost is strongly expected, hence, the use of micro ring-resonator (RR) based modulator is assumed to be a promising approach. In order to handle a narrow and temperature-dependent operation bandwidth of the RR-based modulator, we have proposed a novel Si transmitter that uses a cascaded RR MZ modulator and RR-based Si hybrid laser. The RR-based Si hybrid laser is an external cavity laser integrating an InP SOA and a Si mirror chip comprising a RR and DBR mirror. The SOA is flip-chip bonded to the Si mirror chip utilizing a precise flip-chip bonding technology. The fabricated Si hybrid laser exhibited a low threshold current of 9.4mA, a high output power of <15 mW, and a large wall-plug efficiency of 7.6% at 20°C. In addition, the device maintained a stable single longitudinal mode lasing and a low RIN level of <-130 dB/Hz for 20-60°C. We also fabricated an integrated Si transmitter combining a cascaded RR MZ modulator and RR-based Si hybrid laser. The 20-RR cascaded MZ modulator exhibited a 1-nm operation bandwidth using multiple low-Q RRs. The modulator was driven with 10Gbps PRBS signal. For a temperature range between 25 and 60°C, the lasing wavelength exhibited a red-shift of 2.5 nm, nevertheless, we confirmed clear eye openings without adjusting the operating wavelength of the modulator.

  9. An FPGA-Based Silicon Neuronal Network with Selectable Excitability Silicon Neurons

    PubMed Central

    Li, Jing; Katori, Yuichi; Kohno, Takashi

    2012-01-01

    This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability of silicon neurons and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with 256 full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs. PMID:23269911

  10. Ultrasonics and Optics Would Control Shot Size

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    Feedback system assures production of silicon shot of uniform size. Breakup of silicon stream into drops is controlled, in part, by varying frequency of vibrations imparted to stream by ultrasonic transducer. Drop size monitored by photodetector. Control method particularly advantageous in that constant size is maintained even while other process variables are changed deliberately or inadvertently. Applicable to materials other than silicon.

  11. Optical properties of nanostructured silicon-rich silicon dioxide

    E-print Network

    Stolfi, Michael Anthony

    2006-01-01

    We have conducted a study of the optical properties of sputtered silicon-rich silicon dioxide (SRO) thin films with specific application for the fabrication of erbium-doped waveguide amplifiers and lasers, polarization ...

  12. Surface Plasmon and Geometry Enhanced Asymmetric Rectifying Tunneling Diodes Kwangsik Choi, Geunmin Ryu, Filiz Yesilkoy, Athanasios Chryssis, Mario Dagenais, Neil Goldsman and Martin

    E-print Network

    Dagenais, Mario

    Surface Plasmon and Geometry Enhanced Asymmetric Rectifying Tunneling Diodes Kwangsik Choi, Geunmin Another scheme for obtaining high efficiency rectification employs surface plasmon resonances (SPRs) in nanoscale optical antennas. This is the emphasis of the work reported here. Surface plasmon (SP) waves can

  13. A Rectifier-Free Piezoelectric Energy Harvester Circuit Dongwon Kwon, Student Member, IEEE, and Gabriel A. Rincn-Mora, Senior Member, IEEE

    E-print Network

    Rincon-Mora, Gabriel A.

    1 A Rectifier-Free Piezoelectric Energy Harvester Circuit Dongwon Kwon, Student Member, IEEE, and Gabriel A. Rincón-Mora, Senior Member, IEEE Georgia Tech Analog, Power, and Energy IC Research E are undeniable, micro-scale integration constrains energy and power to the point lifetime and functionality fall

  14. Correlation between the electron-phonon coupling and rectifying performance for poly(3-hexylthiophene)/n-type Si devices

    SciTech Connect

    Lin, Yow-Jon Chin, Yi-Min

    2014-11-07

    A correlation between the electron-phonon coupling and rectifying performance is identified for poly(3-hexylthiophene) (P3HT)/n-type Si devices and an analysis using the temperature-dependent Hall-effect characteristics is presented. The carrier mobility in the P3HT film exhibits strong temperature dependence, indicating the dominance of tunneling. However, the incorporation of titanium oxide (TiO{sub 2}) nanoparticles into P3HT leads to the dominance of hopping. The results demonstrate that the incorporation of TiO{sub 2} nanoparticles into P3HT influences the electrical property of P3HT/n-type Si devices by the electron-phonon coupling modification and the increased spacing between molecules that serve to enhance the carrier mobility in P3HT.

  15. Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic ‘Inward Rectifier’ (NirBac) channels

    PubMed Central

    Zubcevic, Lejla; Wang, Shizhen; Bavro, Vassiliy N.; Lee, Sun-Joo; Nichols, Colin G.; Tucker, Stephen J.

    2015-01-01

    Potassium channels exhibit a modular design with distinct structural and functional domains; in particular, a highly conserved pore-loop sequence that determines their ionic selectivity. We now report the functional characterisation of a novel group of functionally non-selective members of the prokaryotic ‘inward rectifier’ subfamily of K+ channels. These channels share all the key structural domains of eukaryotic and prokaryotic Kir/KirBac channels, but instead possess unique pore-loop selectivity filter sequences unrelated to any other known ionic selectivity filter. The strikingly unusual architecture of these ‘NirBac’ channels defines a new family of functionally non-selective ion channels, and also provides important insights into the modular design of ion channels, as well as the evolution of ionic selectivity within this superfamily of tetrameric cation channels. PMID:26470642

  16. Phase-rectified signal averaging for the detection of quasi-periodicities and the prediction of cardiovascular risk

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Bauer, Axel; Schumann, Aicko Y.; Barthel, Petra; Schneider, Raphael; Malik, Marek; Schmidt, Georg

    2007-03-01

    We present the phase-rectified signal averaging (PRSA) method as an efficient technique for the study of quasi-periodic oscillations in noisy, nonstationary signals. It allows the assessment of system dynamics despite phase resetting and noise and in relation with either increases or decreases of the considered signal. We employ the method to study the quasi-periodicities of the human heart rate based on long-term ECG recordings. The center deflection of the PRSA curve characterizes the average capacity of the heart to decelerate (or accelerate) the cardiac rhythm. It can be measured by a central wavelet coefficient which we denote as deceleration capacity (DC). We find that decreased DC is a more precise predictor of mortality in survivors of heart attack than left ventricular ejection fraction, the current "gold standard" risk predictor. In addition, we discuss the dependence of the DC parameter on age and on diabetes.

  17. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices

    SciTech Connect

    Liu, Shuai; Liu, Shu-Liang; Liu, Ling-Zhi; Liu, Yi-Chen; Long, Yun-Ze; Zhang, Hong-Di; Zhang, Jun-Cheng; Han, Wen-Peng

    2014-01-27

    Ce-doped p-type ZnO nanofibers were synthesized by electrospinning and followed calcinations. The surface morphology, elementary composition, and crystal structure of the nanofibers were investigated. The field effect curve confirms that the resultant Ce-doped ZnO nanofibers are p-type semiconductor. A p-n heterojunction device consisting of Ce-doped p-type ZnO nanofibers and n-type indium tin oxide (ITO) thin film was fabricated on a piece of quartz substrate. The current-voltage (I-V) characteristic of the p-n heterojunction device shows typical rectifying diode behavior. The turn-on voltage appears at about 7?V under the forward bias and the reverse current is impassable.

  18. Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture.

    PubMed

    Christen, Jennifer Blain; Andreou, Andreas G

    2006-01-01

    We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment. PMID:17946517

  19. Macroporous silicon for high-capacitance devices using metal electrodes

    PubMed Central

    2014-01-01

    In this paper, high-capacity energy storage devices based on macroporous silicon are demonstrated. Small footprint devices with large specific capacitances up to 100 nF/mm2, and an absolute capacitance above 15 ?F, have been successfully fabricated using standard microelectronics and MEMS techniques. The fabricated devices are suitable for high-density system integration. The use of 3-D silicon structures allows achieving a large surface to volume ratio. The macroporous silicon structures are fabricated by electrochemical etching of silicon. This technique allows creating large structures of tubes with either straight or modulated radial profiles in depth. Furthermore, a very large aspect ratio is possible with this fabrication method. Macroporous silicon grown this way permits well-controlled structure definition with excellent repeatability and surface quality. Additionally, structure geometry can be accurately controlled to meet designer specifications. Macroporous silicon is used as one of the electrodes over which a silicon dioxide insulating layer is grown. Several insulator thicknesses have been tested. The second capacitor electrode is a solid nickel filling of the pores prepared by electroplating in a low-temperature industry standard process. The use of high-conductivity materials allows reaching small equivalent series resistance near 1 ?. Thanks to these improvements, the presented devices are capable of operating up to 10 kHz. PACS 84.32.Tt; 81.15.Pq; 81.05.Rm PMID:25242906

  20. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    PubMed Central

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (IK) dose-dependently in rat hippocampal neurons. The IC50 value for inhibition of IK was 41.9±2.3 µM (Hill coefficient?=?1.81±0.13, n?=?6), whereas that for inhibition of IA was 307.9±38.5 µM (Hill coefficient?=?1.37±0.08, n?=?6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing IK than IA. Moreover, the inhibition of IK by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on IK, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(?) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited IK. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of IK , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734