Science.gov

Sample records for silicon controlled rectifier

  1. Automatic method of measuring silicon-controlled-rectifier holding current

    NASA Technical Reports Server (NTRS)

    Maslowski, E. A.

    1972-01-01

    Development of automated silicon controlled rectifier circuit for measuring minimum anode current required to maintain rectifiers in conducting state is discussed. Components of circuit are described and principles of operation are explained. Illustration of circuit is provided.

  2. Effects of 22 MeV protons on single junction and silicon controlled rectifiers

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III

    1972-01-01

    The effects of 22-MeV protons on various types of silicon single junction and silicon controlled rectifiers were investigated. The results show that low-leakage devices and silicon controlled rectifiers are the most susceptable to radiation damage. There are also differences noted between single junction rectifiers of the same type made by different manufacturers, which emphasizes the need for better selection of devices used in spacecraft.

  3. Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load

    NASA Astrophysics Data System (ADS)

    Chang, Chris; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to be sustainable only for a specific range of RC values depending on the SCR's intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.

  4. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  5. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  6. Design considerations and experimental analysis for silicon carbide power rectifiers

    NASA Astrophysics Data System (ADS)

    Khemka, V.; Patel, R.; Chow, T. P.; Gutmann, R. J.

    1999-10-01

    In this paper we present the investigation of properties of silicon carbide power rectifiers, in particular Schottky, PiN and advanced hybrid power rectifiers such as the trench MOS barrier Schottky rectifier. Analysis of the forward, reverse and switching experimental characteristics are presented and these silicon carbide rectifiers are compared to silicon devices. Silicon carbide Schottky rectifiers are attractive for applications requiring blocking voltage in excess of 100 V as the use of Si is precluded by its large specific on-resistance. Analysis of power dissipation indicates that silicon carbide Schottky rectifiers offer significant improvement over silicon counterparts. Silicon carbide junction rectifiers, on the other hand, are superior to silicon counterparts only for blocking voltage greater than 2000 V. Performance of acceptor (boron) and donor (phosphorus) implanted experimental silicon carbide junction rectifiers are presented and compared. Some of the recent developments in silicon carbide rectifiers have been described and compared with theory and our experimental results. The well established silicon rectifiers theory are often inadequate to describe the characteristics of the experimental silicon carbide junction rectifiers and appropriate generalization of these theories are presented. Experimental trench MOS barrier Schottky rectifiers (TMBS) have demonstrated significant improvement in leakage current compared to planar Schottky devices. Performance of current state-of-the-art silicon carbide rectifiers are far from theoretical predictions. Availability of high-quality silicon carbide crystals is crucial to successful realization of these performance projections.

  7. High holding voltage segmentation stacking silicon-controlled-rectifier structure with field implant as body ties blocking layer

    NASA Astrophysics Data System (ADS)

    Yen, Shiang-Shiou; Cheng, Chun-Hu; Lan, Yu-Pin; Chiu, Yu-Chien; Fan, Chia-Chi; Hsu, Hsiao-Hsuan; Chang, Shao-Chin; Jiang, Zhe-Wei; Hung, Li-Yue; Tsai, Chi-Chung; Chang, Chun-Yen

    2016-04-01

    High electrostatic discharge (ESD) protection robustness and good transient-induced latchup immunity are two important issues for high voltage integrate circuit application. In this study, we report a high-voltage-n-type-field (HVNF) implantation to act as the body ties blocking layer in segmented topology silicon-controlled-rectifier (SCR) structure in 0.11 µm 32 V high voltage process. This body ties blocking layer eliminate the elevated triggered voltage in segmented technique. Using a large resistance as shunt resistor in resistor assisted triggered SCRs stacking structure, the double snapback phenomenon is eliminate. The series SCR could be decoupled a sufficient voltage drop to turned-on when a very low current flow through the shunt resistor. The holding voltage and the failure current of 22 V and 3.4 A are achieved in the best condition of segmented topology SCR stacking structure, respectively. It improves the latchup immunity at high voltage ICs application. On the other hand, the triggered voltage almost keep the same value which is identical to SCR single cell without using segmented topology.

  8. PWM control techniques for rectifier filter minimization

    SciTech Connect

    Ziogas, P.D.; Kang, Y-G; Stefanovic, V.R.

    1985-09-01

    Minimization of input/output filters is an essential step towards manufacturing compact low-cost static power supplies. Three PWM control techniques that yield substantial filter size reduction for three-phase (self-commutated) rectifiers are presented and analyzed. Filters required by typical line-commutated rectifiers are used as the basis for comparison. Moreover, it is shown that in addition to filter minimization two of the proposed three control techniques improve substantially the rectifier total input power factor.

  9. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  10. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality

  11. Apparatus for controlling the firing of rectifiers in polyphase rectifying circuits

    DOEpatents

    Yarema, R.J.

    1979-09-18

    A polyphase rectifier is controlled with precision by a circuit that filters and shifts a reference signal associated with each phase and that starts a ramp signal at a zero crossing of the shifted reference signal. The difference between the ramp signal and an external trigger signal is used to generate a pulse that switches power rectifiers into conduction. The circuit reduces effects of variations that introduce subharmonics into a rectified signal and it can be used for constant or time-varying external trigger signals.

  12. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    PubMed

    Lu, Shaohua; Boussaid, Farid

    2015-01-01

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier. PMID:26610492

  13. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    PubMed Central

    Lu, Shaohua; Boussaid, Farid

    2015-01-01

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier. PMID:26610492

  14. Analysis of junction-barrier-controlled Schottky (JBS) rectifier characteristics

    NASA Astrophysics Data System (ADS)

    Baliga, B. Jayant

    1985-11-01

    This paper provides analytical solutions for the forward conduction and reverse leakage characteristics of junction-barrier-controlled Schottky (JBS) rectifiers. Good agreement between the calculated output characteristics using these solutions and experimental measurements on devices fabricated with different junction depths and Schottky barrier heights is observed. These equations are valuable for the analysis and design of JBS power rectifiers.

  15. Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa

    2016-01-01

    It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality. PMID:27504240

  16. Design, fabrication, and characterization of 4H-silicon carbide rectifiers for power switching applications

    NASA Astrophysics Data System (ADS)

    Sheridan, David Charles

    Silicon Carbide has received a substantial increase in research interest over the past few years as a base material system for high-frequency and high-power semiconductor devices. Of the over 1200 polytypes, 4H-SiC is the most attractive polytype for power devices due to its wide band gap (3.2eV), excellent thermal conductivity (4.9 W/cm·K), and high critical field strength (˜2 x 106 V/cm). Important for power devices, the 10x increase in critical field strength of SiC allows high voltage blocking layers to be fabricated significantly thinner than for comparable Si devices. For power rectifiers, this reduces device on-resistance, while maintaining the same high voltage blocking capability. In this work, 4H-SiC Schottky, pn, and junction barrier Schottky (JBS) rectifiers for use in high voltage switching applications have been designed, fabricated, and extensively characterized. First, a detailed review of 4H-SiC material parameters was performed and SiC models were implemented into a standard Si drift-diffusion numerical simulator. Using these models, a SiC simulation methodology was developed in order to enable predictive SiC device design. A wide variety of rectifier and edge termination designs were investigated and optimized with respect to breakdown efficiency, area consumption, resistance to interface charge, and fabrication practicality. Simulated termination methods include: field plates, floating guard rings, and a variety of junction termination extensions (JTE). Using the device simulation results, both Schottky and JBS rectifiers were fabricated with a novel self-aligned edge termination design, and fabricated with process elements developed at the Alabama Microelectronics Science and Technology Center facility. These rectifiers exhibited near-ideal forward characteristics and had blocking voltages in excess of 2.5kV. The SiC diodes were subjected to inductive switching tests, and were found to have superior reverse recovery characteristics compared

  17. Fast controller for a unity-power-factor PWM rectifier

    SciTech Connect

    Eissa, M.O.; Leeb, S.B.; Verghese, G.C.; Stankovic, A.M.

    1996-01-01

    This paper presents an analog implementation of a fast controller for a unity-power-factor (UPF) PWM rectifier. The best settling times of many popular controllers for this type of converter are on the order of a few line cycles, corresponding to bandwidths under 20 Hz. The fast controller demonstrated in this paper can exercise control action at a rate comparable to the switching frequency rather than the line frequency. In order to accomplish this while maintaining unity power factor during steady-state operation, the fast controller employs a ripple-feedback cancellation scheme.

  18. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  19. Modelling a single phase voltage controlled rectifier using Laplace transforms

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  20. Low-Loss Schottky Rectifier Utilizing Trench Sidewall as Junction-Barrier-Controlled Schottky Contact

    NASA Astrophysics Data System (ADS)

    Kim, Han-Soo; Kim, Seong-Dong; Han, Min-Koo; Choi, Yearn-Ik

    1995-02-01

    A novel junction barrier contolled Schottky (JBS) rectifier structure, which has increased the Schottky contact area by utilizing the trench sidewall, has been proposed. The proposed device consists of a JBS rectifier positioned vertically along the trench sidewall as well as laterally along the surface. The additional sidewall Schottky contact reduces the forward voltage drop by enlarging the Schottky active area. The new trench structure shifts the peak electric field from Schottky contact surface to the silicon bulk and the leakage current by the barrier height lowering effect is decreased. An intensive 2-dimensional numerical simulation by MEDICI shows that the leakage current of the trenched JBS rectifier is less than 60% of that of the conventional Schottky rectifier, while the forward voltage drop of the trenched JBS rectifier is almost the same as that of the conventional Schottky rectifier.

  1. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer

    SciTech Connect

    Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; Czarkowski, Dariusz; Onar, Omer C.

    2015-05-12

    We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm x 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.

  2. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer

    DOE PAGESBeta

    Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; Czarkowski, Dariusz; Onar, Omer C.

    2015-05-12

    We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm xmore » 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.« less

  3. Advanced Control Strategy for Single-Phase Voltage-Source Active Rectifier with Low Harmonic Emission

    NASA Astrophysics Data System (ADS)

    Blahník, Vojtĕch; Peroutka, Zdenĕk; Talla, Jakub

    2014-03-01

    This paper introduces the advanced control of single-phase voltage-source active rectifier. This control provide direct control of trolley-wire current and active damping of low-frequency disturbances at the converter ac side. Our proposed control strategy combines PR controller with feed-forward model and low-frequency harmonic compensator based on resonant controllers. Achieved experimental results show excellent converter behavior, where converter is fed by strongly distorted supply voltage.

  4. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SILICON-CONTROLLED RECTIFIERS AND SCHOTTKY RECTIFIERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Ce...

  5. High-performance digital triggering system for phase-controlled rectifiers

    SciTech Connect

    Olsen, R.E.

    1983-01-01

    The larger power supplies used to power accelerator magnets are most commonly polyphase rectifiers using phase control. While this method is capable of handling impressive amounts of power, it suffers from one serious disadvantage, namely that of subharmonic ripple. Since the stability of the stored beam depends to a considerable extent on the regulation of the current in the bending magnets, subharmonic ripple, especially that of low frequency, can have a detrimental effect. At the NSLS, we have constructed a 12-pulse, phase control system using digital signal processing techniques that essentially eliminates subharmonic ripple.

  6. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    PubMed

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. PMID:27527100

  7. Combinational logic for generating gate drive signals for phase control rectifiers

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Trimble, D. W. (Inventor)

    1982-01-01

    Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.

  8. Real-time multi-DSP control of three-phase current-source unity power factor PWM rectifier

    SciTech Connect

    Xiao Wang; Boon-Teck Ooi . Dept. of Electrical Engineering)

    1993-07-01

    The design of a real-time multi-DSP controller for a high-quality six-valve three-phase current-source unity power factor PWM rectifier is discussed in this paper. With the decoupler preprocessor and the dynamic trilogic PWM trigger scheme, each of the three input currents can be controlled independently. Based on the a-b-c frame system model and the fast parallel computer control, the pole-placement control method is implemented successfully to achieve fast response in the ac currents. The low-frequency resonance in the ac filter L-C networks has been damped effectively. The experimental results are obtained from a 1-kVA bipolar transistor current-source PWM rectifier with a real-time controller using three TMS320C25 DSP's.

  9. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.

    PubMed

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-01-01

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407

  10. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems

    PubMed Central

    Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei

    2015-01-01

    In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407

  11. Transformer-rectifier flux pump using inductive current transfer and thermally controlled Nb(3)Sn cryotrons.

    PubMed

    Atherton, D L; Davies, R

    1979-10-01

    Transformer-rectifier flux pumps using thermally switched Nb(3)Sn cryotrons are being investigated as a loss make-up device for the proposed isochorically operated (sealed) superconducting magnets for the Canadian Maglev vehicle. High currents (1000 A) were obtained in an experimental flux pump using inductive current transfer and operating at 2 Hz. PMID:18699368

  12. Rectifier cabinet static breaker

    SciTech Connect

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs.

  13. Rectifier cabinet static breaker

    DOEpatents

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  14. Silicon-controlled-rectifier square-wave inverter with protection against commutation failure

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1971-01-01

    The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.

  15. Design and analysis of an automatic method of measuring silicon-controlled-rectifier holding current

    NASA Technical Reports Server (NTRS)

    Maslowski, E. A.

    1971-01-01

    The design of an automated SCR holding-current measurement system is described. The circuits used in the measurement system were designed to meet the major requirements of automatic data acquisition, reliability, and repeatability. Performance data are presented and compared with calibration data. The data verified the accuracy of the measurement system. Data taken over a 48-hr period showed that the measurement system operated satisfactorily and met all the design requirements.

  16. Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1986-01-01

    A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.

  17. The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy

    PubMed Central

    McCloskey, Conor; Rada, Cara; Bailey, Elizabeth; McCavera, Samantha; van den Berg, Hugo A; Atia, Jolene; Rand, David A; Shmygol, Anatoly; Chan, Yi-Wah; Quenby, Siobhan; Brosens, Jan J; Vatish, Manu; Zhang, Jie; Denton, Jerod S; Taggart, Michael J; Kettleborough, Catherine; Tickle, David; Jerman, Jeff; Wright, Paul; Dale, Timothy; Kanumilli, Srinivasan; Trezise, Derek J; Thornton, Steve; Brown, Pamela; Catalano, Roberto; Lin, Nan; England, Sarah K; Blanks, Andrew M

    2014-01-01

    Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility. PMID:25056913

  18. Control of Inward Rectifier K Channel Activity by Lipid Tethering of Cytoplasmic Domains

    PubMed Central

    Enkvetchakul, Decha; Jeliazkova, Iana; Bhattacharyya, Jaya; Nichols, Colin G.

    2007-01-01

    Interactions between nontransmembrane domains and the lipid membrane are proposed to modulate activity of many ion channels. In Kir channels, the so-called “slide-helix” is proposed to interact with the lipid headgroups and control channel gating. We examined this possibility directly in a cell-free system consisting of KirBac1.1 reconstituted into pure lipid vesicles. Cysteine substitution of positively charged slide-helix residues (R49C and K57C) leads to loss of channel activity that is rescued by in situ restoration of charge following modification by MTSET+ or MTSEA+, but not MTSES− or neutral MMTS. Strikingly, activity is also rescued by modification with long-chain alkyl-MTS reagents. Such reagents are expected to partition into, and hence tether the side chain to, the membrane. Systematic scanning reveals additional slide-helix residues that are activated or inhibited following alkyl-MTS modification. A pattern emerges whereby lipid tethering of the N terminus, or C terminus, of the slide-helix, respectively inhibits, or activates, channel activity. This study establishes a critical role of the slide-helix in Kir channel gating, and directly demonstrates that physical interaction of soluble domains with the membrane can control ion channel activity. PMID:17698595

  19. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  20. Noise Properties of Rectifying Nanopore

    SciTech Connect

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.

  1. Controlled Adhesion of Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  2. Silicon Sheet Quality is Improved By Meniscus Control

    NASA Technical Reports Server (NTRS)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  3. Control of silicon nanoparticle size embedded in silicon oxynitride dielectric matrix

    SciTech Connect

    Ehrhardt, F.; Ferblantier, G.; Muller, D.; Slaoui, A.; Ulhaq-Bouillet, C.; Rinnert, H.

    2013-07-21

    In this study, silicon rich silicon oxynitride layers containing more than 15% nitrogen were deposited by electron cyclotron resonance assisted plasma enhanced vapor deposition in order to form silicon nanoparticles after a high temperature thermal annealing. The effect of the flows of the precursor gases on the composition and the structural properties of the layers was assessed by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and infrared spectroscopic measurements. The morphological and crystallinity properties were investigated by energy filtered transmission electron microscopy and Raman spectroscopy. We show that the excess of silicon in the silicon oxynitride layer controls the silicon nanoparticles size. On the other hand, the crystalline fraction of particles is found to be strongly correlated to the nanoparticle size. Finally, the photoluminescence measurements show that it is also possible to tune the photoluminescence peak position between 400 and 800 nm and its intensity by changing the silicon excess in the silicon rich silicon oxynitride matrix.

  4. Curvature Control of Silicon Microlens for THz Dielectric Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran

    2012-01-01

    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  5. Optically controlled quadrature coupler on silicon substrate

    NASA Astrophysics Data System (ADS)

    Bhadauria, Avanish; Sharma, Sonia; Sonania, Shikha; Akhtar, Jamil

    2016-03-01

    In this paper, we have proposed and studied an optically controlled quadrature coupler fabricated on silicon substrate. The optically controlled quadrature coupler can be realized by terminating its coupled or through ports by optically induced load. Simulation and experimental results show that by varying optical intensity, we can control the phase and amplitude of output RF signal and can realize optically controlled reflection type attenuator, reflection type phase-shifter and ultrafast switches. The new kind of proposed device can be useful for ultra-fast signal processing and modulation schemes in high speed communication especially in QPSK modulation. The optical control has several advantages over conventional techniques such as MEMS and other semiconductor switching, which have several inherent disadvantages and limitations like low response time, low power handling capacity, device parasitic and non-linearity.

  6. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  7. 96. RECTIFIER NUMBER 1 AND RECTIFIER NUMBER 2 ON EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. RECTIFIER NUMBER 1 AND RECTIFIER NUMBER 2 ON EAST WALL OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system. PMID:24807951

  9. Electrically controlled giant piezoresistance in silicon nanowires.

    PubMed

    Neuzil, Pavel; Wong, Chee Chung; Reboud, Julien

    2010-04-14

    Herein we demonstrate giant piezoresistance in silicon nanowires (NWs) by the modulation of an electric field-induced with an external electrical bias. Positive bias for a p-type device (negative for an n-type) partially depleted the NWs forming a pinch-off region, which resembled a funnel through which the electrical current squeezed. This region determined the total current flowing through the NWs. In this report, we combined the electrical biasing with the application of mechanical stress, which impacts the charge carriers' concentration, to achieve an electrically controlled giant piezoresistance in nanowires. This phenomenon was used to create a stress-gated field-effect transistor, exhibiting a maximum gauge factor of 5000, 2 orders of magnitude increase over bulk value. Giant piezoresistance can be tailored to create highly sensitive mechanical sensors operating in a discrete mode such as nanoelectromechanical switches. PMID:20192246

  10. Coherent control of Rydberg states in silicon.

    PubMed

    Greenland, P T; Lynch, S A; van der Meer, A F G; Murdin, B N; Pidgeon, C R; Redlich, B; Vinh, N Q; Aeppli, G

    2010-06-24

    Laser cooling and electromagnetic traps have led to a revolution in atomic physics, yielding dramatic discoveries ranging from Bose-Einstein condensation to the quantum control of single atoms. Of particular interest, because they can be used in the quantum control of one atom by another, are excited Rydberg states, where wavefunctions are expanded from their ground-state extents of less than 0.1 nm to several nanometres and even beyond; this allows atoms far enough apart to be non-interacting in their ground states to strongly interact in their excited states. For eventual application of such states, a solid-state implementation is very desirable. Here we demonstrate the coherent control of impurity wavefunctions in the most ubiquitous donor in a semiconductor, namely phosphorus-doped silicon. In our experiments, we use a free-electron laser to stimulate and observe photon echoes, the orbital analogue of the Hahn spin echo, and Rabi oscillations familiar from magnetic resonance spectroscopy. As well as extending atomic physicists' explorations of quantum phenomena to the solid state, our work adds coherent terahertz radiation, as a particularly precise regulator of orbitals in solids, to the list of controls, such as pressure and chemical composition, already familiar to materials scientists. PMID:20577211

  11. Current Control Method to Achieve Wide-Range Power Driving for Linear Synchronous Motor with Half-Wave-Rectified Self-Excitation

    NASA Astrophysics Data System (ADS)

    Hirayama, Tadashi; Higuchi, Tsuyoshi

    In a previous paper, we proposed a novel linear synchronous motor with half-wave-rectified self-excitation. The long-stator-type linear synchronous motor was built, and its performance was verified by performing experiments. This paper presents a new current control method for the linear synchronous motor for achieving a wide range of speeds and high-power operations. First, we propose the current control method for high-thrust operation in the constant-thrust region. This operation is realized by using a reluctance thrust resulting from the saliency of the linear synchronous motor. Furthermore, we propose a control method that maximizes the ratio of the thrust to the voltage; this method can be used to expand the operating range. Wide-range-speed operation can be achieved by applying this new control method along with field-weakening control. The thrust and operation characteristics of the proposed control methods are estimated by performing experiments and an electric and magnetic coupled analysis.

  12. Solid state thermal rectifier

    DOEpatents

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  13. Unimolecular rectifiers: Present status

    NASA Astrophysics Data System (ADS)

    Metzger, Robert M.

    2006-07-01

    Many experimental issues presented here must be resolved before we can really understand unimolecular rectification. Nevertheless, at the University of Alabama six unimolecular rectifiers have been studied (Fig. 1, 1- 6). Langmuir-Blodgett (LB) or Langmuir-Schaefer (LS) monolayer films of these molecules show asymmetric electrical conductivity between Au and Al electrodes. When the films are very compact (LS of 4, LB of 5), and if there is finite intramolecular charge transfer (ICT, or intervalence transfer, IVT), then the electrical behavior persists for many cycles of measurement.

  14. Method of controlling defect orientation in silicon crystal ribbon growth

    NASA Technical Reports Server (NTRS)

    Leipold, M. H. (Inventor)

    1978-01-01

    The orientation of twinning and other effects in silicon crystal ribbon growth is controlled by use of a starting seed crystal having a specific (110) crystallographic plane and (112) crystallographic growth direction.

  15. Black silicon with controllable macropore array for enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Ao, Xianyu; Tong, Xili; Sik Kim, Dong; Zhang, Lianbing; Knez, Mato; Müller, Frank; He, Sailing; Schmidt, Volker

    2012-09-01

    Macroporous silicon with multiscale texture for reflection suppression and light trapping was achieved through a controllable electrochemical etching process. It was coated with TiO2 by atomic layer deposition, and used as the photoanode in photocatalytic water splitting. A conformal pn-junction was also built-in in order to split water without external bias. A 45% enhancement in photocurrent density was observed after black silicon etching. In comparison with nano-structured silicon, the etching process here has neither metal contamination nor requirement of vacuum facilities.

  16. Controllable deformation of silicon nanowires with strain up to 24%

    SciTech Connect

    Walavalkar, Sameer S.; Homyk, Andrew P.; Henry, M. David; Scherer, Axel

    2010-06-15

    Fabricated silicon nanostructures demonstrate mechanical properties unlike their macroscopic counterparts. Here we use a force mediating polymer to controllably and reversibly deform silicon nanowires. This technique is demonstrated on multiple nanowire configurations, which undergo deformation without noticeable macroscopic damage after the polymer is removed. Calculations estimate a maximum of nearly 24% strain induced in 30 nm diameter pillars. The use of an electron activated polymer allows retention of the strained configuration without any external input. As a further illustration of this technique, we demonstrate nanoscale tweezing by capturing 300 nm alumina beads using circular arrays of these silicon nanowires.

  17. A simple method to control nanotribology behaviors of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Guo, J.; Chen, C.; Chen, L.; Qian, L. M.

    2016-01-01

    A simple method was proposed to control the nanotribology behaviors of monocrystalline silicon against SiO2 microsphere by adjusting relative humidity (RH). Experimental results indicated that adhesion work, friction coefficient, and nanowear of silicon against SiO2 microsphere significantly varied between 60% and 90% RH. Under 60% RH, adhesion work was 119 mN/m, and friction coefficient was about 0.53. However, adhesion work and friction coefficient decreased to ˜70 mN/m and ˜0.3 under 90% RH, respectively. An apparent wear track ˜13 nm deep formed on the silicon surface under 60% RH, whereas no obvious wear scar was observed on the silicon surface under 90% RH. Analysis indicated that such tribological behaviors were due to different water condensations on the silicon surface under 60% and 90% RH. Under 60% RH, the water that condensed on the surfaces of the silicon sample and SiO2 tip mainly consisted of ice-like water. As a result, adhesion work was enlarged by the breaking force of the ice-like water bridge in the contact area. Given that a ≡Si-O-Si≡ bonding bridge easily formed between the silicon surface and the SiO2 tip with the help of water condensation under 60% RH instead of 90% RH, the friction coefficient was large and the nanowear of the silicon sample was severe under 60% RH. These results may help elucidate the nanotribology behaviors of silicon and facilitate the tribological design of dynamic microelectromechanical systems working under humid conditions.

  18. High-current, low-forward-drop JBS power rectifiers

    NASA Astrophysics Data System (ADS)

    Chang, H.-R.; Baliga, B. J.

    1986-03-01

    The junction- barrier-controlled Schottky (JBS) rectifier is a Schottky rectifier with a p- n junction grid structure integrated into the device structure to improve its reverse blocking characteristics. This paper reports the development of large area (0.5 cm 2), 30 V, JBS rectifiers capable of handling over 25 A of forward current while operating at up to 125°C with good reverse blocking characteristics. Trade-off curves between forward voltage drop and reverse leakage current are introduced to allow optimization of these devices.

  19. Controlled growth of nanocrystalline silicon within amorphous silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Kole, Arindam; Chaudhuri, Partha

    2014-04-01

    Controlled formation of nanocrystalline silicon (nc-Si) within hydrogenated amorphous silicon carbide (a-SiC:H) thin films has been demonstrated by a rf (13.56 MHz) plasma chemical vapour deposition (PECVD) method at a low deposition temperature of 200°C by regulating the deposition pressure (Pr) between 26.7 Pa and 133.3 Pa. Evolution of the size and the crystalline silicon volume fraction within the a-SiC:H matrix has been studied by XRD, Raman and HRTEM. The study reveals that at Pr of 26.7 Pa there are mostly isolated grains of nc-Si within the a-SiC:H matrix with average size of 4.5 nm. With increase of Pr the isolated nc-Si grains coalesce more and more giving rise to larger size connected nc-Si islands which appear as microcrystalline silicon in the Raman spectra. As a result net isolated nc-Si volume fraction decreases while the total crystalline silicon volume fraction increases.

  20. A current-type PWM rectifier with active damping function

    SciTech Connect

    Sato, Yukihiko; Kataoka, Teruo

    1996-05-01

    A new control method for current-type pulse-width modulation (PWM) rectifiers which can provide active damping function is presented. This damping function is effective only on the harmonic components of ac input current selectively. Thus steady-state waveform distortion and transient oscillation of the input current are reduced by the active damping effects. The active damping function can be realized by feedback control of an LC filter connected to the ac side of the rectifier, and it does not require any additional components in the main circuits, permitting a simple circuit configuration. The control system of the proposed PWM rectifier is analyzed by using a simple block diagram developed in the present paper. From the analytical results, the influence of the circuit parameters and control delay on the active damping effects and the stability of the operation are clarified to establish the design method. To confirm the effectiveness of the active damping function, some results of basic experiments are included. As an example of application of the active damping function, the proposed rectifier is applied to reduce the harmonic currents generated by conventional rectifiers operating in parallel with the proposed rectifier. Some experimental results in this application are also included.

  1. Analysis of Single Phase PWM Rectifier for Different Applications

    NASA Astrophysics Data System (ADS)

    Mitra, Arkendu; Chowdhuri, Sumana

    2016-06-01

    This research work investigates the various applications of a PWM rectifier based on its input power factor. Most of the cases, the papers describe the operation of the rectifier used for unity power factor (UPF) operation. Beside this mode of operation, this paper compiles the application of the rectifier as STATCOM also, where the rectifier deals only with reactive power exchange. In this work, the controller is implemented by inserting a loop for reference input of phase angle which will be compared with the actual one, so that user can operate the rectifier at any power factor. Some basic formulae are derived for the input current, active power and reactive power based on which the control circuit is to be designed. Here two Proportional-Integral (PI) controllers are used. A brief description of tuning these two PI controllers is incorporated in this paper. Also some calculations are given to determine the harmonic factors of the input line current from which it is found that the rectifier when operated in each mode operation, the order of the harmonics are very low.

  2. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  3. Treatment to Control Adhesion of Silicone-Based Elastomers

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  4. Low control-power wavelength conversion on a silicon chip.

    PubMed

    Zhao, Yun; Lombardo, David; Mathews, Jay; Agha, Imad

    2016-08-01

    We demonstrate controlled wavelength conversion on a silicon chip based on four-wave mixing Bragg scattering (FWM-BS). A total conversion efficiency of 5% is achieved with strongly unbalanced pumps and a controlling peak power of 55 mW, while the efficiency is over 15% when using less asymmetric pumps. The numerical simulation agrees with the experimental results. Both time domain and spectral domain noise measurements show as low as 2 dB signal-to-noise ratio (SNR) penalty because of the strong pump noise, two-photon absorption, and free-carrier absorption in silicon. We discuss how the scheme can be used to implement an all-optically controlled high-speed switch. PMID:27472641

  5. Controlled samples for silicon defect and impurity studies

    SciTech Connect

    Ciszek, T.F.

    1995-08-01

    Because of the diverse defects and impurities that are present in any given sample of silicon material, it can be extremely difficult to conduct a controlled experiment to study the influence of any particular defect or impurity on photovoltaic properties such as minority charge carrier lifetime {tau} or solar cell efficiency q. For example, the influence of iron may be different if boron is present, or the influence of silicon self interstitial clusters may be different if oxygen is present. It thus becomes important to conduct such studies on controlled samples where the influence of secondary effects is minimized. At NREL, over the past several years, we have focused on using the high-purity float-zone (FZ) growth method to obtain controlled samples. Because the silicon melt is not in contact with a container, and no heated components are in the growth region, very high purities and low defect levels can be achieved in baseline material. The baseline can be controllably perturbed by introduction of specific defects or impurities. The chart shown below lists some of the types of defect and impurity. combinations that can be studied in this way. The boxes marked with an {open_quotes}x{close_quotes} represent combinations we have studied to some extent.

  6. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter. PMID:26192100

  7. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGESBeta

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; et al

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  8. Polarization-independent silicon metadevices for efficient optical wavefront control

    SciTech Connect

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  9. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  10. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  11. Controlled thinning and surface smoothening of silicon nanopillars.

    PubMed

    Kalem, S; Werner, P; Nilsson, B; Talalaev, V G; Hagberg, M; Arthursson, O; Södervall, U

    2009-11-01

    A convenient method has been developed to thin electron beam fabricated silicon nanopillars under controlled surface manipulation by transforming the surface of the pillars to an oxide shell layer followed by the growth of sacrificial ammonium silicon fluoride coating. The results show the formation of an oxide shell and a silicon core without significantly changing the original length and shape of the pillars. The oxide shell layer thickness can be controlled from a few nanometers up to a few hundred nanometers. While downsizing in diameter, smooth Si pillar surfaces of less than 10 nm roughness within 2 microm were produced after exposure to vapors of HF and HNO3 mixture as evidenced by transmission electron microscopy (TEM) analysis. The attempt to expose for long durations leads to the growth of a thick oxide whose strain effect on pillars can be assessed by coupled LO-TO vibrational modes of Si-O bonds. Photoluminescence (PL) of the pillar structures which have been downsized exhibits visible and infrared emissions, which are attributable to microscopic pillars and to the confinement of excited carriers in the Si core, respectively. The formation of smooth core-shell structures while reducing the diameter of the Si pillars has a potential in fabricating nanoscale electronic devices and functional components. PMID:19801781

  12. Nanostructured silicon membranes for control of molecular transport.

    PubMed

    Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J

    2010-11-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. PMID:24932436

  13. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    SciTech Connect

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling Xu, Liang; Luo, Kai-Wu

    2014-03-10

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

  14. Single-switch 3{phi} PWM low harmonic rectifiers

    SciTech Connect

    Ismail, E.H.; Erickson, R.

    1996-03-01

    Existing 3{phi} ac-dc low-harmonic rectifiers are costly and require complex control schemes to minimize input current harmonics. Introduced here are two new classes of low cost 3{phi} ac-dc high power factor/low harmonic controlled rectifiers. These are derived from parent dc-dc converter topologies containing boost-type inputs and buck-type inputs. With a single active switch in addition to the diode bridge rectifier, the converters are capable of drawing a high-quality input current waveform naturally at nearly unit power factor. Thus, a simple 3{phi} ac-dc high power factor rectifier is obtained. Two algorithms are introduced in this paper for constructing a 3{phi} ac-dc high-quality rectifier. These algorithms depend on the simple switched-mode boost-type input converter and buck-type input converter modified by an input filter. For most known dc-dc converters which belong to these classes, there are corresponding 3{phi} ac-dc high power factor topologies, which use the same number of transistors and use six additional fast diodes. Analytical and simulation results are supplied to demonstrate the validity of the concept.

  15. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    SciTech Connect

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  16. Common rectifier diodes in temperature measurement applications below 50 K

    NASA Astrophysics Data System (ADS)

    Järvelä, J.; Stenvall, A.; Mikkonen, R.

    2010-06-01

    In this paper we studied the use of common electronic semiconductor diodes in temperature measurements at cryogenic atmosphere. The motivation for this is the high price of calibrated cryogenic temperature sensors since there are some applications, like quench detection, in which a cheaper and a less accurate sensor would suffice. We measured the forward voltage as a function of temperature, Vf(T), of several silicon rectifier diodes to determine the accuracy and interchangeability of the diodes. The experimental results confimed that Vf(T) of common rectifier diodes are similar to cryogenic sensor diodes, but the variability between two samples is much larger. The interchangeability of the diodes proved to be poor if absolute temperatures are to be measured. However for sensing changes in temperature they proved to be adequate and thus can be used to measure e.g. quench propagation or sense quench ignition at multiple locations with cheap price.

  17. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  18. Characterization of Nanostructured Silicon Membranes for Control of Molecular Transport

    NASA Astrophysics Data System (ADS)

    Srijanto, Bernadeta; Retterer, Scott; Fowlkes, Jason; Doktycz, Mitchel

    2011-03-01

    Fabrication of nanoporous membranes for selective transport of molecular species requires precise engineering at the nanoscale. The membrane permeability can be tuned by controlling the physical structure and the surface chemistry of the pores. We use a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, to fabricate silicon membranes that are physically robust and have uniform pore sizes. Pore sizes are further reduced using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide onto the membrane surfaces. Integrating nanoporous membranes within a microfluidic network provides a platform for tailoring molecular exchange between microchannels, independent of hydrodynamic effects. In enzymatic reactions, for example, tuning the pores size will allow smaller enzymatic substrates to traverse the membrane at controlled rates while larger enzymes remain spatially separated. Our results from membrane cross-sectioning using focused ion beam milling show that pore sizes can be controlled at dimensions below 10nm. Functional characterization was performed by quantitative fluorescence microscopy to observe the selective transport of molecular species of different sizes.

  19. Molecular rectifiers: a new design based on asymmetric anchoring moieties.

    PubMed

    Van Dyck, Colin; Ratner, Mark A

    2015-03-11

    The quest for a molecular rectifier is among the major challenges of molecular electronics. We introduce three simple rules to design an efficient rectifying molecule and demonstrate its functioning at the theoretical level, relying on the NEGF-DFT technique. The design rules notably require both the introduction of asymmetric anchoring moieties and a decoupling bridge. They lead to a new rectification mechanism based on the compression and control of the HOMO/LUMO gap by the electrode Fermi levels, arising from a pinning effect. Significant rectification ratios up to 2 orders of magnitude are theoretically predicted as the mechanism opposes resonant to nonresonant tunneling. PMID:25706442

  20. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    SciTech Connect

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  1. Controlled skeletal progenitor cell migration on nanostructured porous silicon/silicon micropatterns

    NASA Astrophysics Data System (ADS)

    Torres-Costa, V.; Sánchez-Vaquero, V.; Muñoz-Noval, Á.; González-Méndez, L.; Punzón-Quijorna, E.; Gallach-Pérez, D.; Manso-Silván, M.; Martínez-Muñoz, G.; Climent-Font, A.; García-Ruiz, J. P.; Martín-Palma, R. J.

    2011-10-01

    In this work nanostructured porous silicon (nanoPS) was used for the fabrication of surface micropatterns aiming at controlling cell adhesion and migration. In particular, surface patterns of nanoPS and Si were engineered by high-energy ion-beam irradiation and subsequent anodization. It was found that human skeletal progenitor cells are sensitive to oneand two-dimensional patterns and that focal adhesion is inhibited on nanoPS areas. In spite of this anti-fouling characteristics, studies on patterns with reduced Si areas show that cells conform to nanoPS pathways favoring migration through cell protrusion, body translocation and tail retraction from two parallel Si traction rails. Moreover, migration can be blocked and cells tend to arrange when grid patterns with the appropriate dimensions are fabricated. The experimental results confirm that progenitor cells are able to exploit nanoPS anti-fouling designs by adapting to it for migration purposes.

  2. Electronic measurement and control of spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Huang, Biqin; Monsma, Douwe J.

    2007-05-01

    The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10μm undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.

  3. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOEpatents

    Wang, Qi; Stradins, Paul; Teplin, Charles; Branz, Howard M.

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  4. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1

    PubMed Central

    Kahanovitch, Uri; Tsemakhovich, Vladimir; Berlin, Shai; Rubinstein, Moran; Styr, Boaz; Castel, Ruth; Peleg, Sagit; Tabak, Galit; Dessauer, Carmen W; Ivanina, Tatiana; Dascal, Nathan

    2014-01-01

    The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1–4), activated by direct binding of the Gβγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gβγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gβγ. Inversely, the GIRK2 homotetramers exhibit low Ibasal and strong activation by Gβγ. The high Ibasal of GIRK1 seems to be associated with its unique distal C terminus (G1-dCT), which is not present in the other subunits. We investigated the role of G1-dCT using electrophysiological and fluorescence assays in Xenopus laevis oocytes and protein interaction assays. We show that expression of GIRK1/2 increases the plasma membrane level of coexpressed Gβγ (a phenomenon we term ‘Gβγ recruitment’) but not of coexpressed Gαi3. All GIRK1-containing channels, but not GIRK2 homomers, recruited Gβγ to the plasma membrane. In biochemical assays, truncation of G1-dCT reduces the binding between the cytosolic parts of GIRK1 and Gβγ, but not Gαi3. Nevertheless, the truncation of G1-dCT does not impair activation by Gβγ. In fluorescently labelled homotetrameric GIRK1 channels and in the heterotetrameric GIRK1/2 channel, the truncation of G1-dCT abolishes Gβγ recruitment and decreases Ibasal. Thus, we conclude that G1-dCT carries an essential role in Gβγ recruitment by GIRK1 and, consequently, in determining its high basal activity. Our results indicate that G1-dCT is a crucial part of a Gβγ anchoring site of GIRK1-containing channels, spatially and functionally distinct from the site of channel activation by Gβγ. PMID:25384780

  5. Ordered silicon nanorod arrays with controllable geometry and robust hydrophobicity

    NASA Astrophysics Data System (ADS)

    Zi-Wen, Wang; Jia-Qi, Cai; Yi-Zhi, Wu; Hui-Jie, Wang; Xiao-Liang, Xu

    2015-01-01

    Highly ordered silicon nanorod (SiNR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask. Hydrophobicity of SiNR arrays of different geometries is also studied. It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°, which would be useful in self-cleaning nanorod-based device applications. Project supported by the National Natural Science Foundation of China (Grant No. 51272246) and the Scientific and Technological Research Foundation of Anhui Province, China (Grant No. 12010202035).

  6. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-03-01

    In this work, micro- and nanoparticles of porous silicon (PSi) are demonstrated to act as effective carrier for the controlled delivery of acyclovir (ACV). PSi films prepared by electrochemical etching were fractured by ultrasonication to prepare micro- and nanoparticles. PSi native particles were thermally oxidized (TOPSi) and thermally hydrosilylated using undecylenic acid (UnPSi). PSi particles with three different surface chemistries were then loaded with ACV by physical adsorption and covalent attachment. Such particles were characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. In vitro ACV release experiments in phosphate buffered saline showed sustained release behaviour from both micro- and nanoparticles and order of release was found to be native PSi > TOPSi > UnPSi. Drug release kinetics study using Korsmeyer-Peppas model suggested a combination of both drug diffusion and Si scaffold erosion based drug release mechanisms.

  7. Silicon-on-insulator integrated tunable polarization controller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarmiento-Merenguel, Jose-Dario; Alonso-Ramos, Carlos; Halir, Robert; Le Roux, Xavier; Vivien, Laurent; Cheben, Pavel; Durán-Valdeiglesias, Elena; Molina-Fernández, Iñigo; Marris-Morini, Delphine; Xu, Danxia; Schmid, Jens H.; Janz, Siegfried; Ortega-Moñux, Alejandro

    2016-05-01

    Polarization management is a key functionality in many photonic applications, including optical communications, imaging or quantum information. Developing integrated devices capable of reliably controlling polarization state would result in compact and low cost circuits with improved stability compared with fiber or bulk optics solutions. However, stringent fabrication tolerances make the integration of polarization managing elements highly challenging. The main challenge in polarization controllers, composed by polarization rotators and polarization phase shifters, is to precisely control rotation angle in integrated polarization rotators. Proposed solutions typically require sophisticated fabrication processes or extremely tight fabrication tolerances, seriously hindering their practical application. Here we present a technology independent polarization controller scheme that relies on phase shifters to largely relax fabrication tolerances of polarization rotators. In addition, these phase shifters enable dynamic wavelength tuning. In our scheme, three polarization rotation elements are interconnected with two tunable phase shifters to adjust the polarization extinction ratio, while an output polarization phase shifter is used to select the relative phase. This way we can achieve any desired output state of polarization. We have implemented this scheme in the silicon-on-insulator platform, experimentally demonstrating a record polarization extinction range of 40 dB (± 20 dB) with a 98% coverage of the Poincaré sphere. Furthermore, the device is tunable in the complete C-band. These results constitute, to the best of our knowledge, the highest polarization extinction range achieved in a fully integrated device.

  8. Reliable 3-phase PWM boost rectifiers employing a stacked dual boost converter subtopology

    SciTech Connect

    Salmon, J.C.

    1996-05-01

    This paper describes circuit topologies for 3-phase pulse-width modulation (PWM) boost rectifiers that operate with a unity fundamental power factor and a low-distortion ac line current. Overlap delays between the switching of the upper and lower devices in a PWM rectifier leg are not critical and diodes eliminates the possibility of the dc-link capacitor discharging into short circuits and shoot-through fault conditions. The rectifiers are controlled using a stacked dual boost converter cell subtopology model that can be used in two current control modes. The dual current-control mode shapes two line currents and can achieve current distortion levels below 5%. The single current-control mode shapes one line current and can achieve current distortion levels close to 5% with the rectifier output dc voltage at the standard level associated with a rectified mains voltage. The per-unit current ratings for the switches in the 3-phase PWM switch networks are around 15--20% of the input rms line current as compared to 71% for a standard 3-phase PWM rectifier. Circuit simulations and experimental results are used to demonstrate the performance and feasibility of the rectifiers described.

  9. Control mechanisms for the oceanic distribution of silicon isotopes

    NASA Astrophysics Data System (ADS)

    Wischmeyer, André G.; de La Rocha, Christina L.; Maier-Reimer, Ernst; Wolf-Gladrow, Dieter A.

    2003-09-01

    Marine diatoms take up silicic acid for the buildup of their opaline shells and discriminate against the heavier silicon isotope. For the first time, the overall oceanic distribution of silicon isotopes has been estimated by integration of the Hamburg Model of the Ocean Carbon Cycle, version 4 (HAMOCC4). It is shown that the relationship between the silicic acid concentration and its silicon isotope composition is not a simple Rayleigh distillation curve. Only the Southern Ocean and the equatorial Pacific show a clear functional dependency similar to the Rayleigh distillation curve. Model results can be used to predict opal silicon isotope compositions in the sediment and constrain the use of silicon isotopes as a proxy for silicic acid utilization. Owing to the structure of the Pacific current system, it might be valid to apply a relationship between surface silicic acid concentrations and the silicon isotope signal in the equatorial Pacific sediments.

  10. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    NASA Technical Reports Server (NTRS)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  11. Electric field control of donor pair diatomic molecules in silicon

    NASA Astrophysics Data System (ADS)

    Baena, Alejandra; Saraiva, Andre; Calderón, María J.; Koiller, Belita

    2015-03-01

    Single donors are well-established building blocks for engineering electronic properties of semiconductors, acting effectively as giant hydrogen atoms. Donor pairs, analogous to effective hydrogen molecules, were recently investigated in the strongly interacting regime in silicon. In this regime, electric field control renders timid results. Pairs that are more distant are more susceptible to external fields, and may harbour single electron charge control. Theoretically, the molecular quantum mechanics analogy between a donor pair and the H2 molecule in vacuum is not as straightforward as it may seem. A detailed understanding of the electronic structure of these molecular systems is a current challenge. We analyze the lowest energy states within effective mass theory, including central cell corrected donor potential effects and the conduction band multiplicity in Si. The spectrum of ionized donor pairs and its response to an external electric field will be presented. We contemplate possible advantages of heteropolar diatomic molecules, e.g, Sb -As pairs, as more efficient elements for such devices and applications.

  12. Microstructural control of silicon carbide via liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Mrotek, Sharon Robinson

    Silicon carbide ceramics with various microstructures were fabricated by controlling the amount and composition of a Y2O3-Al 2O3 liquid phase, crystallographic phase of the starting powders, trace impurities in those powders, and time and temperature of sintering and post- sintering heat-treatments. Alpha and beta SiC "seeds" were used to control grain growth during sintering. The grain size distribution and aspect ratio of the grains were determined through microstructural analysis of polished and etched samples. TEM was used in conjunction with EDS to determine the distribution of the sintering aids in the grains and the grain boundaries. Additionally, the final phase content of the samples was determined via x-ray diffraction. The fracture toughness and hardness were measured to evaluate the relative effects of the microstructural variations on the mechanical properties. Alpha silicon carbide samples exhibited a fine grained, equiaxed microstructure. Under appropriate conditions, samples prepared from beta-SiC powders underwent a phase transformation to alpha-SiC accompanied by the growth of elongated platelet grains. The addition of alpha seeds to the beta powder reduced the size of the platelets compared to unseeded samples of the same composition. If the beta to alpha phase transformation did not occur, the beta samples developed an equiaxed microstructure. The grain size of all samples decreased with increasing amounts of sintering additives. The beta to alpha phase transformation, required to obtain an elongated grain microstructure, was catalyzed by the presence of sufficient amounts of aluminum. If insufficient Al impurity was present in the powder, purposeful additions of Al metal could induce the phase transformation. Examination of the sintering progression over time indicated that the phase transformation occurred late in the sintering process and appeared to occur via a solution/reprecipitation mechanism. Post-sintering heat treatments were also used

  13. High current JBS rectifiers and their impact on switching power supplies

    NASA Astrophysics Data System (ADS)

    Baliga, B. J.; Chang, H.-R.; Steigerwald, R. L.

    The junction barrier controlled Schottky (JBS) rectifier is a Schottky rectifier with a p-n junction grid structure integrated into the device structure to improve its reverse blocking characteristics. This paper reports the development of large area (0.5 sq cm), 30 V, JBS rectifiers capable of handling over 25 A of forward current while operating at up to 125 C with good reverse blocking characteristics. Trade-off curves between forward voltage drop and reverse leakage current are introduced to allow optimization of these devices. Evaluation of their impact on low voltage switching power supplies is presented.

  14. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  15. ISGV Self-rectifying Turbine Design For Thermoacoustic Application

    NASA Astrophysics Data System (ADS)

    Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh

    2014-11-01

    Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.

  16. Chemical control of physical properties in silicon nitride films

    NASA Astrophysics Data System (ADS)

    Xu, Xiangdong; Zhou, Dong; He, Qiong; Jiang, Yadong; Fan, Taijun; Huang, Long; Ao, Tianhong; He, Shaowei

    2013-06-01

    Amorphous hydrogenated silicon nitride ( a-SiN x H y ) films were prepared by plasma-enhanced chemical vapor deposition (PECVD). The physical properties and chemical structures of the resulting materials were systematically investigated. Results reveal that the a-SiN x H y films similarly consist of four kinds of Si-N groups, including Si3N4, H-Si-N3, H2-Si-N2, and Si3-Si-N. Deposition at 13.56 MHz and 300 ∘C with flow ratio of SiH4/NH3=30/30 sccm leads to the yield of Si0.39N0.38H0.23 films that exhibit excellent properties of high uniformity, high elastic modulus, moderate refractive index and optical band gap, low UV absorption, and ultralow residual stress (-0.17 MPa). Such Si0.39N0.38H0.23 films hold considerable promise for applications in solar cells and infrared sensors. In contrast, an increase of Si or N content in a-SiN x H y films will cause the degradation of the properties, so that the films are unsuitable for solar cells. Moreover, a new conception of network degree was proposed to evaluate and explain the properties of a-SiN x H y films. Particularly, this work discloses the relationships between the chemical structures and physical properties, and suggests a basic approach to the yield of a-SiN x H y films with controlled physical properties.

  17. Electron beam quality control using an amorphous silicon EPID

    SciTech Connect

    Beck, J. A.; Budgell, G. J.; Roberts, D. A.; Evans, P. M.

    2009-05-15

    An amorphous silicon EPID has been investigated to determine whether it is capable of quality control constancy measurements for linear accelerator electron beams. The EPID grayscale response was found to be extremely linear with dose over a wide dose range and, more specifically, for exposures of 95-100 MU. Small discrepancies of up to 0.8% in linearity were found at 6 MeV (8-15 MeV showed better agreement). The shape of the beam profile was found to be significantly altered by scatter in air over the approximately 60 cm gap between the end of the applicator and the EPID. Nevertheless, relative changes in EPID-measured profile flatness and symmetry were linearly related to changes in these parameters at 95 cm focus to surface distance (FSD) measured using a 2D diode array. Similar results were obtained at 90 deg. and 270 deg. gantry angles. Six months of daily images were acquired and analyzed to determine whether the device is suitable as a constancy checker. EPID output measurements agreed well with daily ion chamber measurements, with a 0.8% standard deviation in the difference between the two measurement sets. When compared to weekly parallel plate chamber measurements, this figure dropped to 0.5%. A Monte Carlo (MC) model of the EPID was created and demonstrated excellent agreement between MC-calculated profiles in water and the EPID at 95 and 157 cm FSD. Good agreement was also found with measured EPID profiles, demonstrating that the EPID provides an accurate measurement of electron profiles. The EPID was thus shown to be an effective method for performing electron beam daily constancy checks.

  18. Sized controlled synthesis, purification, and cell studies with silicon quantum dots.

    PubMed

    Shiohara, Amane; Prabakar, Sujay; Faramus, Angelique; Hsu, Chia-Yen; Lai, Ping-Shan; Northcote, Peter T; Tilley, Richard D

    2011-08-01

    This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using (1)H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales. PMID:21727983

  19. Sized controlled synthesis, purification, and cell studies with silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Shiohara, Amane; Prabakar, Sujay; Faramus, Angelique; Hsu, Chia-Yen; Lai, Ping-Shan; Northcote, Peter T.; Tilley, Richard D.

    2011-08-01

    This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales.This article describes the size control synthesis of silicon quantum dots with simple microemulsion techniques. The silicon nanocrystals are small enough to be in the strong confinement regime and photoluminesce in the blue region of the visible spectrum and the emission can be tuned by changing the nanocrystal size. The silicon quantum dots were capped with allylamine either a platinum catalyst or UV-radiation. An extensive purification protocol is reported and assessed using 1H NMR to produce ultra pure silicon quantum dots suitable for biological studies. The highly pure quantum dots were used in cellular uptake experiments and monitored using confocal microscopy. The results showed that the amine terminated silicon nanocrystals accumulated in lysosome but not in nuclei and could be used as bio-markers to monitor cancer cells over long timescales. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10458f

  20. Controls on silicon cycling in Southeast Asian rice production systems

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Marxen, Anika; Vetterlein, Doris; Jahn, Reinhold

    2013-04-01

    Recent research suggests that silicon (Si) is beneficial for rice plants, i.e., a sufficient Si supply improves their resistance against pests and pathogens and increases the uptake of essential nutrients. Despite its potential importance for rice yields, cycling of Si in rice production systems is poorly studied. We assess plant-available Si (Sipa; determined using acetate extraction) in topsoils (Ap+Arp horizons) and Si uptake by plants at 70 paddy fields managed by local farmers in contrasting regions of Vietnam and the Philippines. First results show that Sipa contents are considerably larger in Philippine (217 ± 100 mg Sipa kg-1 ) than in Vietnamese (32 ± 19 mg Sipa kg-1) paddy soils. Rice straw from the Philippines contains 8.6 ± 0.9 % Si, straw from Vietnam 5.0 ± 1.2 % Si. Laboratory experiments showed that Si is limiting the growth of rice plants in some of the Vietnamese soils. We assume that differences in geo-/ pedologic conditions between Vietnam and the Philippines explain the data. Large Sipa contents in the Philippine soils are due to recent rock formation by active volcanism, hence, by a large Sipa input due to mineral weathering in recent geologic history. In contrast, parent materials of the Vietnamese paddy soils derive from old and highly weathered land surfaces. Hence, our data suggest that geo-/pedologic conditions are the main control for the availability of Si in paddy soils. Currently, we examine the relevance of agricultural practices for small-scale differences in the availability of Si within regions. Inadequate practices, such as removal of rice straw from the fields, might deplete Sipa in paddy soils causing a decrease in rice yields in some regions of Vietnam. We investigate the role of phytoliths (amorphous Si bodies contained in rice straw) as source of Sipa in paddy soils. Our methods include laboratory experiments and the assessment of turnover times of phytoliths in paddy soils; first results will be presented and discussed

  1. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  2. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  3. Size control of erbium-doped silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    John, John St.; Coffer, Jeffery L.; Chen, Yandong; Pinizzotto, Russell F.

    2000-09-01

    This work describes the effects of pyrolysis oven length and erbium precursor on the preparation of discrete erbium-doped silicon nanoparticles. These doped nanoparticles were prepared by the co-pyrolysis of disilane and the volatile complex Er(tmhd)3 (tmhd=2,2,6,6-tetramethyl-3,5-heptanedionato). The particle sizes and size distributions were determined using high resolution and conventional transmission electron microscopy. Erbium-doped silicon nanoparticles exhibit a selected area electron diffraction pattern consistent with the diamond cubic phase and a distinctive dark contrast in the transmission electron microscope. The presence of erbium is confirmed by x-ray energy dispersive spectroscopy. In general, the mean diameter of the individual nanoparticles increases as the length of the pyrolysis oven used during their preparation is increased.

  4. Novel plasma control method in PECVD for preparing microcrystalline silicon

    SciTech Connect

    Nishimiya, T.; Kondo, M.; Matsuda, A.

    1997-07-01

    A novel plasma enhanced vapor deposition (PECVD) technique employing biased wall (BW) method has been developed for the enhanced growth rate of the hydrogenated microcrystalline silicon ({micro}c-Si:H) films. Using this method, the authors have achieved a growth rate of more than 6{angstrom}/sec for the formation of {micro}c-Si:H having an average grain size of 200{angstrom} at 350 C.

  5. Analysis of parametric transformer with rectifier load

    SciTech Connect

    Ichinokura, O.; Jinzenji, T. ); Tajima, K. )

    1993-03-01

    This paper describes a push-pull parametric transformer constructed using a pair of orthogonal-cores. The operating characteristics of the parametric transformer with a rectifier load were analyzed based on SPICE simulations. The analysis results show good agreement with experiment. It was found that the input surge current of the full-wave rectifier circuit with a smoothing capacitor can be compensated by the parametric transformer. Use of the parametric transformer as a power stabilizer is anticipated owing to its various functions such as for voltage regulation and overload protection.

  6. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. PMID:27247338

  7. PWM rectifier with low dc voltage ripple for magnet supply

    SciTech Connect

    Ciscato, D. ); Malesani, L.; Rosetto, L.; Tenti, P. ); Basile, G.L.; Pasti, M. ); Voelker, F. )

    1992-04-01

    PWM bridge rectifiers with GTO switches are considered for application to particle accelerator magnet power supplies, where two-quadrant operation and extremely low dc current ripple are required. Different control strategies, with both preprogrammed and variable switching patterns, are examined and compared in view of optimization of the system performance. In particular, optimum digital PWM, multilevel delta modulation, and hybrid PWM/delta techniques are analyzed. In this paper the validity of the control methods is verified by simulation and experimental tests on a 60-kW prototype.

  8. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  9. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  10. Controlling the dopant dose in silicon by mixed-monolayer doping.

    PubMed

    Ye, Liang; Pujari, Sidharam P; Zuilhof, Han; Kudernac, Tibor; de Jong, Michel P; van der Wiel, Wilfred G; Huskens, Jurriaan

    2015-02-11

    Molecular monolayer doping (MLD) presents an alternative to achieve doping of silicon in a nondestructive way and holds potential for realizing ultrashallow junctions and doping of nonplanar surfaces. Here, we report the mixing of dopant-containing alkenes with alkenes that lack this functionality at various ratios to control the dopant concentration in the resulting monolayer and concomitantly the dopant dose in the silicon substrate. The mixed monolayers were grafted onto hydrogen-terminated silicon using well-established hydrosilylation chemistry. Contact angle measurements, X-ray photon spectroscopy (XPS) on the boron-containing monolayers, and Auger electron spectroscopy on the phosphorus-containing monolayers show clear trends as a function of the dopant-containing alkene concentration. Dynamic secondary-ion mass spectroscopy (D-SIMS) and Van der Pauw resistance measurements on the in-diffused samples show an effective tuning of the doping concentration in silicon. PMID:25607722

  11. Thermal system design and modeling of meniscus controlled silicon growth process for solar applications

    NASA Astrophysics Data System (ADS)

    Wang, Chenlei

    The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to

  12. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  13. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  14. An evaluation system for experimental silicon and silicon carbide super gate turn off thyristors.

    PubMed

    Bayne, Stephen; Lacouture, Shelby; Lawson, Kevin; Giesselmann, Michael; Scozzie, Charles J; O'Brien, Heather; Ogunniyi, Aderinto A

    2014-07-01

    This paper describes the design and implementation of a small-scale pulsed power system specifically intended to evaluate the suitability of experimental silicon and silicon carbide high power Super Gate Turn Off thyristors for high action (500 A(2) s and above) pulsed power applications where energy is extracted from a storage element in a rapid and controlled manner. To this end, six of each type of device was placed in a controlled three phase rectifier circuit which was in turn connected to an aircraft ground power motor-generator set and subjected to testing protocols with varying power levels, while parameters such as offset firing angle were varied. PMID:25085173

  15. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have...

  16. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section...

  17. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor-rectifier systems. 129.360 Section...

  18. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section...

  19. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section...

  20. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section...

  1. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor-rectifier systems. 129.360 Section...

  2. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 120.360 Section...

  3. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 120.360 Section...

  4. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching.

    PubMed

    Jiang, Bing; Li, Meicheng; Liang, Yu; Bai, Yang; Song, Dandan; Li, Yingfeng; Luo, Jian

    2016-02-01

    The etching anisotropy induced by the morphology and rotation of silver particles controls the morphology of silicon nanoporous structures, through various underlying complex etching mechanisms. The level of etching anisotropy can be modulated by controlling the morphology of the silver catalyst to obtain silicon nanoporous structures with straight pores, cone-shaped pores and pyramid-shaped pores. In addition, the structures with helical pores are obtained by taking advantage of the special anisotropic etching, which is induced by the rotation and revolution of silver particles during the etching process. An investigation of the etching anisotropy during metal assisted chemical etching will promote a deep understanding of the chemical etching mechanism of silicon, and provide a feasible approach to fabricate Si nanoporous structures with special morphologies. PMID:26785718

  5. D0 Silicon Upgrade: Control Dewar Valve Calculations

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1995-10-20

    This engineering note documents the calculations that were done to support the valve size selection for the magnet flow control valve, EVMF in the solenoid control dewar. The size selected was a control valve with a Cv = 0.32.

  6. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  7. Optimal locomotion of mechanical rectifier systems

    NASA Astrophysics Data System (ADS)

    Blair, Justin T.

    Vehicles utilizing animal locomotion mechanisms may possess increased performance parameters and the ability to overcome more difficult terrain than conventional wheel or propeller driven vehicles. The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This dissertation defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A general model is developed from the Euler-Lagrange equation and simplified by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear (but not linear) term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We verify the solution method through case studies of a two dimensional chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal, and obtain analytical insights into determinants of optimal gaits from a simple disk-mass rectifier system. Lastly, we develop a dynamic model for batoid swimming featuring a 6 degree-of-freedom main body (position and orientation), with independent wing deformation (described as the motion of many discrete points in the body-fixed coordinate frame), and calculate various gaits. Multiple wing shapes and optimality criteria are considered, such as the maximum thrust to deflection ratio or minimum input power, and the resulting gaits are compared.

  8. Controlling leakage losses in subwavelength grating silicon metamaterial waveguides.

    PubMed

    Sarmiento-Merenguel, J Darío; Ortega-Moñux, Alejandro; Fédéli, Jean-Marc; Wangüemert-Pérez, J Gonzalo; Alonso-Ramos, Carlos; Durán-Valdeiglesias, Elena; Cheben, Pavel; Molina-Fernández, Íñigo; Halir, Robert

    2016-08-01

    Subwavelength gratings (SWG) are photonic structures with a period small enough to suppress diffraction, thereby acting as artificial dielectric materials, also called all-dielectric metamaterials. This property has been exploited in many high-performance photonic integrated devices in the silicon-on-insulator (SOI) platform. While SWG waveguides are theoretically lossless, they may exhibit leakage penalty to the substrate due to a combination of reduced modal confinement and finite thickness of the buried oxide (BOX) layer. In this Letter, for the first time, to the best of our knowledge, we analyze substrate leakage losses in SWG waveguides. We establish a direct relation between the effective index of the waveguide mode and the leakage losses which, remarkably, is independent of the geometric parameters of the SWG waveguide. This universal relation is demonstrated both numerically and experimentally, and it provides practical design guidelines to mitigate leakage losses. For BOX thicknesses of 2 and 3 μm, we find negligible leakage losses when the mode effective index is higher than 1.65 and 1.55, respectively. PMID:27472589

  9. Multi-crystalline silicon solidification under controlled forced convection

    NASA Astrophysics Data System (ADS)

    Cablea, M.; Zaidat, K.; Gagnoud, A.; Nouri, A.; Chichignoud, G.; Delannoy, Y.

    2015-05-01

    Multi-crystalline silicon wafers have a lower production cost compared to mono-crystalline wafers. This comes at the price of reduced quality in terms of electrical properties and as a result the solar cells made from such materials have a reduced efficiency. The presence of different impurities in the bulk material plays an important role during the solidification process. The impurities are related to different defects (dislocations, grain boundaries) encountered in multi-crystalline wafers. Applying an alternative magnetic field during the solidification process has various benefits. Impurities concentration in the final ingot could be reduced, especially metallic species, due to a convective term added in the liquid that reduces the concentration of impurities in the solute boundary layer. Another aspect is the solidification interface shape that is influenced by the electromagnetic stirring. A vertical Bridgman type furnace was used in order to study the solidification process of Si under the influence of a travelling magnetic field able to induce a convective flow in the liquid. The furnace was equipped with a Bitter type three-phase electromagnet that provides the required magnetic field. A numerical model of the furnace was developed in ANSYS Fluent commercial software. This paper presents experimental and numerical results of this approach, where interface markings were performed.

  10. Coherent control of single spins in silicon carbide at room temperature.

    PubMed

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology. PMID:25437256

  11. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  12. Balanced ternary addition using a gated silicon nanowire

    NASA Astrophysics Data System (ADS)

    Mol, J. A.; van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-12-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a function of the potential of the single electron transistor island. Mapping logical, ternary inputs to the three gates controlling the potential of the single electron transistor island allows us to perform complex, inherently ternary operations, on a single transistor.

  13. Three phase six-switch PWM buck rectifier with power factor improvement

    NASA Astrophysics Data System (ADS)

    Zafarullah Khan, M.; Mohsin Naveed, M.; Akbar Hussain, D. M.

    2013-06-01

    Conventional Phase Controlled Rectifier injects low order current harmonics into the AC mains. Large size filtering components are required to attenuate these harmonics. In this paper, three phase six-switch PWM buck rectifier is presented which operates at nearly unity power factor and provides variable output voltage. Small size energy storing components are required depending upon switching frequency. MATLAB simulation is performed and modified Sinusoidal Pulse Width Modulation (SPWM) switching technique is used in 3kW prototype converter to demonstrate low input current THD, nearly unity displacement factor, well regulated output voltage and reduced switching losses compared to conventional SPWM.

  14. Controlled Fluxes of Silicon Nanoparticles By Extraction from a Pulsed RF Plasma

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Larriba-Andaluz, Carlos

    2015-09-01

    Deposition of silicon nanoparticles onto substrates may be a means of growing monocrystalline silicon films at low substrate temperature if the nanoparticles' impact energy and size can be controlled to provide melting or amorphization of the nanoparticle without damaging the underlying film. In order to explore conditions that could produce such controlled fluxes of nanoparticles we numerically model a pulsed RF argon-silane plasma, with a positive DC bias applied during the afterglow phase of each pulse so as to extract and accelerate negatively charged silicon particles. Operating parameters studied include pulse on time, pulse off time, DC bias voltage, RF voltage and pressure. This set of parameters is tested to find conditions under which one can achieve a periodic steady state with repeatable pulse-to-pulse conditions that maximize silicon film growth rates while maintaining nanoparticle impact energies in the range 0.5-2.0 eV/atom. We utilize a previously developed 1-D dusty plasma numerical model, modified to consider pulsing and applied substrate bias. This model self-consistently solves for the coupled behavior of plasma, chemistry, and aerosol. Results show that it is possible by this method to produce nanoparticle fluxes that are tailored with respect to their distribution of impact energies and mass deposition rates. Partially supported by US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), US National Science Foundation (CHE-124752), and Minnesota Supercomputing Institute.

  15. Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz

    NASA Technical Reports Server (NTRS)

    Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.

    2011-01-01

    A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.

  16. Development of high temperature gallium phosphide rectifiers

    NASA Technical Reports Server (NTRS)

    Craford, M. G.; Keune, D. L.

    1972-01-01

    Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.

  17. Polyamine Block of Inwardly Rectifying Potassium Channels

    PubMed Central

    Kurata, Harley T.; Cheng, Wayland W.L.; Nichols, Colin G.

    2011-01-01

    Polyamine blockade of inwardly rectifying potassium (Kir) channels underlies their steep voltage-dependence observed in native cells. The structural determinants of polyamine blockade and the structure-activity profile of endogenous polyamines requires specialized methodology for characterizing polyamine interactions with Kir channels. Recent identification and growing interest in the structure and function of prokaryotic Kir channels (KirBacs) has driven the development of new techniques for measuring ion channel activity. Several methods for measuring polyamine interactions with prokaryotic and eukaryotic Kir channels are discussed. PMID:21318869

  18. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-01

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle. PMID:26906780

  19. Control of silicon oxynitrides refractive index by reactive-assisted ion beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Ida, Michel; Chaton, Patrick; Rafin, B.

    1994-11-01

    This paper presents the properties of silicon oxynitrides obtained by reactive ion beam sputter deposition: Dual Ion Beam System. Control of refractive index was achieved by adjusting the process parameters as ion beam current, ion beam energy and reactive gas partial pressure of oxygen and nitrogen. The main difficulty was to achieve stoichiometric nitride, it has been shown that energetic ionized nitrogen was needed to obtain silicon nitride. The major parameter, to obtain variable compositions between silica and silicon nitride, was the oxygen partial pressure with a fixed nitrogen partial pressure. Optical constants in the visible range, refractive index and extinction coefficient, have been measured by spectrophotometry and spectroscopic ellipsometry. Stoichiometry, contamination and packing density have been measured by Rutherford Backscattering and Nuclear Reaction Analysis. The correlation between the film composition and optical constants is shown. Various test results indicate that silicon oxynitrides obtained by reactive assisted ion beam sputtering are high quality optical materials. These films are homogeneous isotropic, with a high packing density. The extinction coefficient is in the order of 10-4 after 300 degree(s)C annealing. All values of refractive index between 1.49 and 2.1 can be chosen.

  20. Improving Memory Characteristics of Hydrogenated Nanocrystalline Silicon Germanium Nonvolatile Memory Devices by Controlling Germanium Contents.

    PubMed

    Kim, Jiwoong; Jang, Kyungsoo; Phu, Nguyen Thi Cam; Trinh, Thanh Thuy; Raja, Jayapal; Kim, Taeyong; Cho, Jaehyun; Kim, Sangho; Park, Jinjoo; Jung, Junhee; Lee, Youn-Jung; Yi, Junsin

    2016-05-01

    Nonvolatile memory (NVM) with silicon dioxide/silicon nitride/silicon oxynitride (ONO(n)) charge trap structure is a promising flash memory technology duo that will fulfill process compatibility for system-on-panel displays, down-scaling cell size and low operation voltage. In this research, charge trap flash devices were fabricated with ONO(n) stack gate insulators and an active layer using hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) films at a low temperature. In this study, the effect of the interface trap density on the performance of devices, including memory window and retention, was investigated. The electrical characteristics of NVM devices were studied controlling Ge content from 0% to 28% in the nc-SiGe:H channel layer. The optimal Ge content in the channel layer was found to be around 16%. For nc-SiGe:H NVM with 16% Ge content, the memory window was 3.13 V and the retention data exceeded 77% after 10 years under the programming condition of 15 V for 1 msec. This showed that the memory window increased by 42% and the retention increased by 12% compared to the nc-Si:H NVM that does not contain Ge. However, when the Ge content was more than 16%, the memory window and retention property decreased. Finally, this research showed that the Ge content has an effect on the interface trap density and this enabled us to determine the optimal Ge content. PMID:27483856

  1. Temperature Dependent Spin Transport in Silicon Controlled by an Electrostatic Gate

    NASA Astrophysics Data System (ADS)

    Li, Jing; Appelbaum, Ian

    2011-03-01

    Long-distance (~ 500 μ m) lateral spin polarized electron transport in undoped silicon under the control of an electrostatic gate is studied from 40K to 120K. The temperature dependence of average spin polarization, transport time, and spin dephasing during coherent precession can be largely attributed to reduction of finite spin lifetime at higher temperatures. Measurements on devices with different transport lengths are shown to modify the effect of electrostatic gating. Support from ONR is acknowledged.

  2. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj. PMID:23028884

  3. Quantum Entanglement and Spin Control in Silicon Nanocrystal

    PubMed Central

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure 29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of 29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of 29Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution. PACS numbers: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj PMID:23028884

  4. Coherent control of single spins in a silicon carbide pn junction device at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Widmann, Matthias; Booker, Ian; Niethammer, Matthias; Ohshima, Takeshi; Gali, Adam; Son, Nguyen T.; Janzén, Erik; Wrachtrup, Joerg

    Spins in single defects have been studied for quantum information science and quantum metrology. It has been proven that spins of the single nitrogen-vacancy (NV) centers in diamond can be used as a quantum bit, and a single spin sensor operating at ambient conditions. Recently, there has been a growing interest in a new material in which color centers similar to NV centers can be created and whose electrical properties can also be well controlled, thus existing electronic devices can easily be adapted as a platform for quantum applications. We recently reported that single spins of negatively charged silicon vacancies in SiC can be coherently controlled and long-lived at room temperature. As a next step, we isolated single silicon vacancies in a SiC pn junction device and investigated how the change in Fermi level, induced by applying bias, alters the charge state of silicon vacancies, thus affects the spin state control. This study will allow us to envision quantum applications based on single defects incorporated in modern electronic devices.

  5. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  6. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Laube, J. Gutsch, S.; Hiller, D.; Zacharias, M.; Bruns, M.; Kübel, C.; Weiss, C.

    2014-12-14

    This paper reports the growth of silicon nanocrystals (SiNCs) from SiH4–O{sub 2} plasma chemistry. The formation of an oxynitride was avoided by using O{sub 2} instead of the widely used N{sub 2}O as precursor. X-ray photoelectron spectroscopy is used to prove the absence of nitrogen in the layers and determine the film stoichiometry. It is shown that the Si rich film growth is achieved via non-equilibrium deposition that resembles a interphase clusters mixture model. Photoluminescence and Fourier transformed infrared spectroscopy are used to monitor the formation process of the SiNCs, to reveal that the phase separation is completed at lower temperatures as for SiNCs based on oxynitrides. Additionally, transmission electron microscopy proves that the SiNC sizes are well controllable by superlattice configuration, and as a result, the optical emission band of the Si nanocrystal can be tuned over a wide range.

  7. High Voltage GaN Schottky Rectifiers

    SciTech Connect

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  8. Indium growth and island height control on silicon submonolayer phases

    NASA Astrophysics Data System (ADS)

    Chen, Jizhou

    The quantum size effects (QSE) make it possible to control the dimensions of self-assembled nanostructures. An important goal in present day surface science is to grow uniform sized self-assembled nanostructures. One system which has displayed a number of interesting surface structures is Pb/In grown on a Si(111) substrate. The first part of the thesis discussed Pb islands grown on the anisotropic Si(111)-In(4x1) substrate. In addition to a preferred height of 4 monolayers due to QSE, these islands grow as nanowires with a preferred width of 660nm due to strain driven growth from the anisotropic substrate. Islands grown on the In(4x1) substrate also retain their preferred height to room temperature in contrast to previously observed critical temperatures of 250 K or less for islands grown on other substrates. Then In islands were grown on Si(111)-Pb-alpha-sqrt3 x sqrt3 substrate. The In islands in face-centered cubic (FCC) structure were found to have a preferred height of 4 monolayers due to QSE. With further depositions, an FCC to body-centered tetragonal(BCT) structure transition is observed. The In bct islands was found to have unexpected fast growth rate compared to FCC structure, which indicate the extra high mobility of In atoms. In the last part In islands were grown on varies of In phases at low temperature. Conversion between submonolayer In phases are observed. Due to the highly mobility of In atoms, the QSE effects observed on the Pb alpha phase is not observed.

  9. Control of valley dynamics in silicon quantum dots in the presence of an interface step

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Széchenyi, Gábor; Culcer, Dimitrie; Pályi, András

    2016-07-01

    Recent experiments on silicon nanostructures have seen breakthroughs toward scalable, long-lived quantum information processing. The valley degree of freedom plays a fundamental role in these devices, and the two lowest-energy electronic states of a silicon quantum dot can form a valley qubit. In this paper, we show that a single-atom high step at the silicon/barrier interface induces a strong interaction of the qubit and in-plane electric fields and that the strength of this interaction can be controlled by varying the relative position of the electron and the step. We analyze the consequences of this enhanced interaction on the dynamics of the qubit. The charge densities of the qubit states are deformed differently by the interface step, allowing nondemolition qubit readout via valley-to-charge conversion. A gate-induced in-plane electric field together with the interface step enables fast control of the valley qubit via electrically driven valley resonance. We calculate single- and two-qubit gate times, as well as relaxation and dephasing times, and present predictions for the parameter range where the gate times can be much shorter than the relaxation time and dephasing is reduced.

  10. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  11. Surface photovoltage method for the quality control of silicon epitaxial layers on sapphire

    SciTech Connect

    Yaremchuk, A. F.; Starkov, A. V.; Zaikin, A. V.; Alekseev, A. V.; Sokolov, E. M.

    2014-12-15

    The surface photovoltage method is used to study “silicon-on-sapphire” epitaxial layers with a thickness of 0.3–0.6 μm, which are used to fabricate p-channel MOS (metal—oxide-semiconductor) transistors with improved radiation hardness. It is shown that the manner in which the photoconductivity of the epitaxial layer decays after the end of a light pulse generated by a light-emitting diode (wavelength ∼400 nm) strongly depends on the density of structural defects in the bulk of the structure. This enables control over how a “silicon-on-sapphire” structure is formed to provide the manufacturing of MOS structures with optimal operating characteristics.

  12. Gate-controlled-diodes in silicon-on-sapphire: A computer simulation

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1974-01-01

    The computer simulation of the electrical behavior of a Gate-Controlled Diode (GCD) fabricated in Silicon-On-Sapphire (SOS) was described. A procedure for determining lifetime profiles from capacitance and reverse current measurements on the GCD was established. Chapter 1 discusses the SOS structure and points out the need of lifetime profiles to assist in device design for GCD's and bipolar transistors. Chapter 2 presents the one-dimensional analytical formula for electrostatic analysis of the SOS-GCD which are useful for data interpretation and setting boundary conditions on a simplified two-dimensional analysis. Chapter 3 gives the results of a two-dimensional analysis which treats the field as one-dimensional until the silicon film is depleted and the field penetrates the sapphire substrate. Chapter 4 describes a more complete two-dimensional model and gives results of programs implementing the model.

  13. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  14. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section...

  15. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section...

  16. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section...

  17. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each...

  18. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...) Meet Sections 35.84.2 and 35.84.4 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR... 46 Shipping 7 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section...

  19. Inward rectifier current noise in frog skeletal muscle.

    PubMed Central

    DeCoursey, T E; Dempster, J; Hutter, O F

    1984-01-01

    Inwardly rectifying K+ currents were studied in cut muscle fibres from frogs using the Vaseline-gap voltage-clamp method. Both faces of the membrane were exposed to 120 mM-K+ methylsulphate solution. At small negative potentials, -10 and -21 mV, the current noise spectrum, after subtraction of a control spectrum at the zero current potential, could be fitted by a Lorentzian spectral component, usually with an additional 1/f component, where f is the frequency. At more negative potentials the 1/f component predominated. The zero frequency amplitude of the Lorentzian averaged 2.6 X 10(-24) A2 Hz-1 at -10 mV and 4.6 X 10(-24) A2 Hz-1 at -21 mV, with a mean half-power frequency, fc, of 34 Hz and 45 Hz, respectively. The time constant of the K+ current activation upon hyperpolarization agrees with that calculated from fc, and the Lorentzian disappears upon replacement of external K+ by tetraethylammonium (TEA+) or Rb+. Thus, the Lorentzian component appears to be ascribable to fluctuations originating in the inwardly rectifying mechanism. The noise spectra and macroscopic currents were interpreted by assuming that the inwardly rectifying K+ conductance is proportional to the product of two parameters: ps representing the state of the mechanism that gives rise to the observable macroscopic current relaxations and to the current fluctuations resulting in the observed Lorentzian spectra, and pf describing the instantaneous rectification of the single-channel conductance. Alternatively, pf may represent another mechanism in series with ps, but which fluctuates too rapidly to measure. Using this model the limiting single-channel conductance, gamma, was found to be approximately 9 pS. The corresponding specific density of channels is about 1 micron-2, assuming uniform distribution over all regions of the membrane. A preliminary value for gamma ( DeCoursey & Hutter , 1982) was derived without consideration of instantaneous rectification. Systematic errors in these results due

  20. Neural induction suppresses early expression of the inward-rectifier K+ channel in the ascidian blastomere.

    PubMed Central

    Okamura, Y; Takahashi, K

    1993-01-01

    gastrula stage was sensitive to alpha-amanitin, a highly specific transcription inhibitor. In both induced and uninduced cells, injection of alpha-amanitin at the 32-cell stage reduced the current density of the inward-rectifier K+ channel to about 2 nA/nF, corresponding to 13% of that recorded from uninjected cells. By contrast, the expression of the fast-inactivating-type Na+ current, which transiently increased along with the inward-rectifier K+ channel, was resistant to alpha-amanitin injection. 6. The dose of alpha-amanitin injected was controlled by monitoring co-injected fluorescent dye, fura-2.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 6 Fig. 8 Fig. 11 PMID:8246182

  1. Costs of controlling emissions from the manufacture of silicon photovoltaic cells using dendritic web technology

    SciTech Connect

    Wilenitz, I.

    1983-11-01

    Detailed analyses were conducted to determine environmental control costs associated with the production of silicon dendritic web photovoltaic (PV) cells. In these analyses (i) likely manufacturing processing steps were identified, (ii) material inputs and uncontrolled material outputs were estimated, (iii) need for and capability of environmental control equipment were examined, and (iv) capital and operation and maintenance costs for environmental controls for integrated and disaggregated plant designs were estimated. These estimates were developed for a hypothetical facility with a yearly output of PV cells capable of producing 10 MWp. Analysis suggested that the annualized incremental environmental control costs, based on capital recovery over a 10 year plant life, would be 1.4 cents and 2.8 cents per watt for integrated and disaggregated plant designs, respectively. Capital costs ranged from 50% to 55% (integrated) and 36% to 40% (disaggregated) of the estimated costs; the ranges reflected differences in assumed real discount rates. Because of the small emission flows projected, treatment equipment to be used, for the most part, represents the smallest size readily available from equipment manufacturers. Consequently, larger emission flows could be accommodated without additional capital costs. Total control costs are small in comparison with current production costs for silicon photovoltaic devices ($5/watt), but may be of greater importance at projected production cost of $0.5 to 1.0/watt. These conclusions may not apply to other material or process options.

  2. Candidate locations for SPS rectifying antennas

    NASA Technical Reports Server (NTRS)

    Eberhardt, A. W.

    1977-01-01

    The feasibility of placing 120 Satellite Power System (SPS) rectifying antenna (rectenna) sites across the U.S. was studied. An initial attempt is made to put two land sites in each state using several land site selection criteria. When only 69 land sites are located, it is decided to put the remaining sites in the sea and sea site selection criteria are identified. An estimated projection of electrical demand distribution for the year 2000 is then used to determine the distribution of these sites along the Pacific, Atlantic, and Gulf Coasts. A methodology for distributing rectenna sites across the country and for fine-tuning exact locations is developed, and recommendations on rectenna design and operations are made.

  3. Triple quantum dots as charge rectifiers.

    PubMed

    Busl, M; Platero, G

    2012-04-18

    We theoretically analyze electronic spin transport through a triple quantum dot in series, attached to electrical contacts, where the drain contact is coupled to the central dot. We show that current rectification is observed in the device due to current blockade. The current blocking mechanism is originated by a destructive interference of the electronic wavefunction at the drain dot. There, the electrons are coherently trapped in a singlet two-electron dark state, which is a coherent superposition of the electronic wavefunction in the source dot and in the dot isolated from the contacts. Its formation gives rise to zero current and current rectification as the voltage is swept. We analyze this behavior analytically and numerically for both zero and finite magnetic dc fields. On top of that, we include phenomenologically a finite spin relaxation rate and calculate the current numerically. Our results show that triple dots in series can be designed to behave as quantum charge rectifiers. PMID:22442135

  4. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    PubMed

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology. PMID:19198289

  5. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  6. Gate-controlled diode structure based electro-optical interfaces in standard silicon-CMOS integrated circuitry.

    PubMed

    Xu, Kaikai; Liu, Haitao; Zhang, Zhengyuan

    2015-07-20

    In this paper, we discuss the emission of visible light by a monolithically integrated silicon gate-controlled diode with the p-n junction reverse-biased. Since the MOS-like diode utilizes the field effect to modulate the optical output, the modulation speed will benefit from this mechanism. Hence, a silicon gate-controlled diode structure for optical modulation analyzed its modulation principle, its dynamic characteristics are presented, and the bandwidth of the device is considered to approach GHz in theory due to the field-induced emission mechanism. The prototype MOS-like diode opens up the design of multiterminal silicon light emitting devices (LEDs), where gate electrodes with more than one gate contact overlap several junctions with different junction intersection geometries. The device appears as a good candidate for optical modulation within silicon technology. PMID:26367823

  7. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  8. Band-Structure Engineering of Gold Atomic Wires on Silicon by Controlled Doping

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kang, Pil Gyu; Ryang, Kyung Deuk; Yeom, Han Woong

    2008-03-01

    We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.

  9. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  10. Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization

    PubMed Central

    Fang, David Z.; Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2010-01-01

    Rapid thermal carbonization in a dilute acetylene (C2H2) atmosphere has been used to chemically modify and precisely tune the pore size of ultrathin porous nanocrystalline silicon (pnc-Si). The magnitude of size reduction was controlled by varying the process temperature and time. Under certain conditions, the carbon coating displayed atomic ordering indicative of graphene layer formation conformal to the pore walls. Initial experiments show that carbonized membranes follow theoretical predictions for hydraulic permeability and retain the precise separation capabilities of untreated membranes. PMID:20839831

  11. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    PubMed Central

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  12. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  13. Study of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structure

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Yin; Zhang, Yifei; Singh, Jasprit; York, Robert; Mishra, Umesh

    2001-02-01

    It is known that conventional metal-oxide-silicon (MOS) devices will have gate tunneling related problems at very thin oxide thicknesses. Various high-dielectric-constant materials are being examined to suppress the gate currents. In this article we present theoretical results of a charge control and gate tunneling model for a ferroelectric-oxide-silicon field effect transistor and compare them to results for a conventional MOS device. The potential of high polarization charge to induce inversion without doping and high dielectric constant to suppress tunneling current is explored. The model is based on a self-consistent solution of the quantum problem and includes the ferroelectric hysteresis response self-consistently. We show that the polarization charge associated with ferroelectrics can allow greater controllability of the inversion layer charge density. Also the high dielectric constant of ferroelectrics results in greatly suppressed gate current.

  14. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration.

    PubMed

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3-dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  15. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    PubMed Central

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  16. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy.

  17. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    PubMed

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  18. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances. PMID:27107147

  19. Precision control of thermal transport in cryogenic single-crystal silicon devices

    NASA Astrophysics Data System (ADS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  20. Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Széchenyi, Gábor; Pályi, András

    2016-08-01

    Gate control of donor electrons near interfaces is a generic ingredient of donor-based quantum computing. Here, we address the question: how is the phonon-assisted qubit relaxation time T 1 affected as the electron is shuttled between the donor and the interface? We focus on the example of the ‘flip-flop qubit’ (Tosi et al arXiv:1509.08538v1), defined as a combination of the nuclear and electronic states of a phosphorus donor in silicon, promising fast electrical control and long dephasing times when the electron is halfway between the donor and the interface. We theoretically describe orbital relaxation, flip-flop relaxation, and electron spin relaxation. We estimate that the flip-flop qubit relaxation time can be of the order of 100 μs, 8 orders of magnitude shorter than the value for an on-donor electron in bulk silicon, and a few orders of magnitude shorter (longer) than the predicted inhomogeneous dephasing time (gate times). All three relaxation processes are boosted by (i) the nontrivial valley structure of the electron–phonon interaction, and (ii) the different valley compositions of the involved electronic states.

  1. Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon.

    PubMed

    Boross, Péter; Széchenyi, Gábor; Pályi, András

    2016-08-01

    Gate control of donor electrons near interfaces is a generic ingredient of donor-based quantum computing. Here, we address the question: how is the phonon-assisted qubit relaxation time T 1 affected as the electron is shuttled between the donor and the interface? We focus on the example of the 'flip-flop qubit' (Tosi et al arXiv:1509.08538v1), defined as a combination of the nuclear and electronic states of a phosphorus donor in silicon, promising fast electrical control and long dephasing times when the electron is halfway between the donor and the interface. We theoretically describe orbital relaxation, flip-flop relaxation, and electron spin relaxation. We estimate that the flip-flop qubit relaxation time can be of the order of 100 μs, 8 orders of magnitude shorter than the value for an on-donor electron in bulk silicon, and a few orders of magnitude shorter (longer) than the predicted inhomogeneous dephasing time (gate times). All three relaxation processes are boosted by (i) the nontrivial valley structure of the electron-phonon interaction, and (ii) the different valley compositions of the involved electronic states. PMID:27334425

  2. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5–10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  3. Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.

    PubMed

    Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit

    2015-07-28

    The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process. PMID:26135844

  4. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  5. Silicon-based current-controlled reconfigurable magnetoresistance logic combined with non-volatile memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhong; Luo, Zhaochu

    2015-03-01

    Silicon-based complementary metal-oxide-semiconductor (CMOS) transistors have achieved great success. However, the traditional development pathway is approaching its fundamental limits. Magnetoelectronics logic, especially magnetic-field-based logic, shows promise for surpassing the development limits of CMOS logic. Existing proposals of magnetic-field-based logic are based on exotic semiconductors and difficult for further technological implementation. We proposed a kind of diode-assisted geometry-enhanced low-magnetic-field magnetoresistance (MR) mechanism. It couples p-n junction's nonlinear transport characteristic and Lorentz force by geometry, and shows extremely large low-magnetic-field MR (>120% at 0.15 T) Further, it is applied to experimentally demonstrate current-controlled reconfigurable MR logic on the silicon platform at room temperature. This logic device could perform Boolean logic AND, OR, NAND and NOR in one device. Combined with non-volatile magnetic memory, this logic architecture has the advantages of current-controlled reconfiguration, zero refresh consumption, instant-on performance and would bridge the processor-memory gap.

  6. Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions

    NASA Astrophysics Data System (ADS)

    Kalra, Rachpon; Laucht, Arne; Hill, Charles D.; Morello, Andrea; CentreQuantum Computation; Communication Technology, Australia Team

    2015-03-01

    The electron spin of a single atom in silicon is an excellent candidate for the building-block of a quantum computer. Recent breakthrough experiments have shown an individual phosphorus impurity atom can be used to store and elaborate one bit of quantum information. To continue along this exciting path, it is necessary to couple multiple phosphorus atoms in a controllable way and demonstrate quantum logic operations between pairs of qubits. This was thought to require exquisite control of their mutual interaction, and atomically-precise placement of the spins. Our work shows that the nuclei, to which the electrons are bound, can be exploited to enable a logic operation based on selective resonant excitation. This operation has the enormous advantage that the inter-qubit interaction does not require any modification. Our calculations show that high-fidelity operations can be performed while tolerating a rather wide range of distances between atoms. This drastically reduces the demands posed on device fabrication, paving the way forward for large-scale quantum-information processing in silicon. Funded by the Australian Research Council (CE11E000127) and the U.S. Army Research Office (W911NF-13-1-0024).

  7. Children rectify inequalities for disadvantaged groups.

    PubMed

    Elenbaas, Laura; Killen, Melanie

    2016-08-01

    Children's decisions regarding the allocation of societal resources in the context of preexisting inequalities were investigated. African American and European American children ages 5 to 6 years (n = 91) and 10 to 11 years (n = 94) judged the acceptability of a medical resource inequality on the basis of race, allocated medical supplies, evaluated different resource allocation strategies, and completed a measure of status awareness based on race. With age, children were increasingly aware of wealth status disparities between African Americans and European Americans, and judged a medical resource inequality between groups more negatively. Further, with age, children rectified the resource inequality over perpetuating it, but only when African American children were disadvantaged. With age, children also referenced rights when reasoning about their judgments concerning the disadvantaged African American group. When European American children were disadvantaged, children did not systematically allocate more resources to one group over another. The results are discussed in terms of social inequalities, disadvantaged status, moral judgments, and intergroup attitudes. (PsycINFO Database Record PMID:27455190

  8. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J.

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  9. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis1[OPEN

    PubMed Central

    Drechsler, Navina; Zheng, Yue; Nobmann, Barbara; Rausch, Christine

    2015-01-01

    Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K+ in the roots relies on the concomitant loading of counteranions, like nitrate (NO3−). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3−-dependent K+ translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3− nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K+ under low NO3− supply. Because the depolarization-activated Stelar K+ Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K+ in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3− translocation might affect xylem loading and root-to-shoot K+ translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3− regimes revealed that both proteins contribute to K+ translocation from root to shoot. SKOR activity dominates under high NO3− and low K+ supply, whereas NPF7.3/NRT1.5 is required under low NO3− availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis. PMID:26508776

  10. Maximal rectification ratios for idealized bi-segment thermal rectifiers

    PubMed Central

    Shih, Tien-Mo; Gao, Zhaojing; Guo, Ziquan; Merlitz, Holger; Pagni, Patrick J.; Chen, Zhong

    2015-01-01

    Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal κmax/κmin, where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers. PMID:26238970

  11. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation.

    PubMed

    Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K

    2010-01-01

    Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. PMID:20039374

  13. Controlled Release of Dexamethasone From an Intravitreal Delivery System Using Porous Silicon Dioxide

    PubMed Central

    Hou, Huiyuan; Wang, Chengyun; Nan, Kaihui; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2016-01-01

    Purpose The current study aims to evaluate a porous silicon-based drug delivery system meant for sustained delivery of dexamethasone (Dex) to the vitreous and retina. Methods Dexamethasone was grafted covalently into the pore walls of fully oxidized porous silicon particles (pSiO2-COO-Dex), which then was evaluated for the pharmacological effect of the payload on cultured ARPE19 cells before intravitreal injection. The Dex release profile was investigated in a custom designed dynamic dissolution chamber to mimic the turnover of vitreous fluid in rabbit eyes. Ocular safety, in vivo release, and pharmacodynamics were evaluated in rabbit eyes, and the human VEGF-induced rabbit retinal vascular permeability model. Results Loading efficiency of Dex was 69 ± 9 μg per 1 mg of the pSiO2-COO-Dex particles. Dynamic in vitro release demonstrated a sustained mode when compared to free Dex, with the drug half-life extended by 5 times. The released Dex was unaltered and biologically active. In vivo drug release in rabbit eyes revealed a mode similar to the release seen in vitro, with a vitreous half-life of 11 days. At 2 and 4 weeks after a single intravitreal injection of pSiO2-COO-Dex particles (mean 2.71 ± 0.47 mg), intravitreal 500 ng of VEGF did not induce significant retinal vessel dilation or fluorescein leakage, while these events were observed in the eyes injected with empty pSiO2 particles or with free Dex. The retinal vessel score from fluorescein angiography for the control eyes was double the score for the eyes injected with pSiO2-COO-Dex. No adverse reaction was observed for the eyes injected with drug-loaded pSi particles during the course of the study. Conclusions The porous silicon-based Dex delivery system (pSiO2-COO-Dex) can be administered safely into vitreous without toxicity. Dex release from the porous silicon particles was sustained for 2 months and was effective against VEGF-induced retinal vessel reaction. PMID:26882530

  14. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    PubMed

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier. PMID:26737525

  15. Dopant and self-diffusion in extrinsic n-type silicon isotopically controlled heterostructures

    SciTech Connect

    Silvestri, Hughes H.; Sharp, Ian D.; Bracht, Hartmut A.; Nicols, Sam P.; Beeman, Jeff W.; Hansen, John; Nylandsted-Larsen, Arme; Haller, Eugene E.

    2002-04-01

    We present experimental results of dopant- and self-diffusion in extrinsic silicon doped with As. Multilayers of isotopically controlled {sup 28}Si and natural silicon enable simultaneous analysis of {sup 30}Si diffusion into the {sup 28}Si enriched layers and dopant diffusion throughout the multilayer structure. In order to suppress transient enhanced self- and dopant diffusion caused by ion implantation, we adopted a special approach to dopant introduction. First, an amorphous 250-nm thick Si layer was deposited on top of the Si isotope heterostructure. Then the dopant ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer. These samples were annealed for various times and temperatures to study the impact of As diffusion and doping on Si self-diffusion. The Si self-diffusion coefficient and the dopant diffusivity for various extrinsic n-type conditions were determined over a wide temperature range. We observed increased diffusivities that we attribute to the increase in the concentration of the native defect promoting the diffusion.

  16. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain

    PubMed Central

    Simmons, Chelsey S.; Ribeiro, Alexandre J. S.; Pruitt, Beth L.

    2013-01-01

    Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes. PMID:23287818

  17. VSI-PWM rectifier/inverter system with a reduced switch count

    SciTech Connect

    Kim, G.T.; Lipo, T.A.

    1995-12-31

    A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an antiparallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  18. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    NASA Astrophysics Data System (ADS)

    Yibin, Gong; Pengfei, Dai; Anran, Gao; Tie, Li; Ping, Zhou; Yuelin, Wang

    2011-12-01

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 °C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields.

  19. Microscopic control of 29Si nuclear spins near phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Järvinen, J.; Zvezdov, D.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.

    2015-09-01

    We demonstrate an efficient control of 29Si nuclear spins for specific lattice sites near 31P donors in silicon at temperatures below 1 K and in a high magnetic field of 4.6 T. Excitation of the forbidden electron-nuclear transitions leads to a pattern of well-resolved holes and peaks in the electron spin resonance (ESR) lines of 31P . The pattern originates from dynamic polarization (DNP) of the 29Si nuclear spins near the donors via the solid effect. DNP of 29Si is demonstrated also with the Overhauser effect where the allowed ESR transitions are excited. In this case mostly the remote 29Si nuclei having weak interaction with the donors are polarized, which results in a single hole and a sharp peak pair in the ESR spectrum. Our work shows that the solid effect can be used for initialization of 29Si nuclear spin qubits near the donors.

  20. Interfacial Layer Control by Dry Cleaning Technology for Polycrystalline and Single Crystalline Silicon Growth.

    PubMed

    Im, Dong-Hyun; Kong-Soo Lee; Kang, Yoongoo; Jeong, Myoungho; Park, Kwang Wuk; Lee, Soon-Gun; Ma, Jin-Won; Kim, Youngseok; Kim, Bonghyun; Im, Ki-Vin; Lim, Hanjin; Lee, Jeong Yong

    2016-05-01

    Native oxide removal prior to poly-Si contact and epitaxial growth of Si is the most critical technology to ensure process and device performances of poly-Si plugs and selective epitaxial growth (SEG) layers for DRAM, flash memory, and logic device. Recently, dry cleaning process for interfacial oxide removal has attracted a world-wide attention due to its superior passivation properties to conventional wet cleaning processes. In this study, we investigated the surface states of Si substrate during and after dry cleaning process, and the role of atomic elements including fluorine and hydrogen on the properties of subsequent deposited silicon layer using SIMS, XPS, and TEM analysis. The controlling of residual fluorine on the Si surface after dry cleaning is a key factor for clean interface. The mechanism of native oxide re-growth caused by residual fluorine after dry cleaning is proposed based on analytical results. PMID:27483844

  1. Electrical control of interfacial trapping for magnetic tunnel transistor on silicon

    SciTech Connect

    Lu, Y. Lacour, D.; Lengaigne, G.; Le Gall, S.; Suire, S.; Montaigne, F.; Hehn, M.; Wu, M. W.

    2014-01-27

    We demonstrate an electrical control of an interfacial trapping effect for hot electrons injected in silicon by studying a magnetic tunnel transistor on wafer bonded Si substrate. Below 25 K, hot electrons are trapped at the Cu/Si interface, resulting in collector current suppression through scattering in both parallel and antiparallel magnetic configurations. Consequently, the magneto-current ratio strongly decreases from 300% at 27 K to 30% at 22 K. The application of a relatively small electric field (∼333 V/cm) across the Cu/Si interface is enough to strip the trapped electrons and restore the magneto-current ratio at low temperature. We also present a model taking into account the effects of both electric field and temperature that closely reproduces the experimental results and allows extraction of the trapping binding energy (∼1.6 meV)

  2. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  3. Large-area silica nanotubes with controllable geometry on silicon substrates

    NASA Astrophysics Data System (ADS)

    Hu, Mingzhe; Yu, Rong; MacManus-Driscoll, Judith L.; Robinson, Adam P.

    2009-01-01

    The synthesis of a highly uniform, large-scale nanoarrays consisting of silica nanotubes above embedded nanohole arrays in silicon substrates is demonstrated. In situ anodized aluminium oxide (AAO) thin film masks on Si substrates were employed, and the nanotubes were fabricated by Ar ion milling through the masks. The geometries of the nanoarrays, including pore diameter, interpore distance and the length of both nanopores and nanotubes could be controlled by the process parameters, which included that the outer pore diameter of silica tube was tuned from ˜80 nm to ˜135 nm while the inner tube diameter from ˜40 nm to ˜65 nm, the interpore distance of the nanotube arrays was from 100 nm to 180 nm and the length of silica tube changed from ˜90 nm to ˜250 nm. The presented nanostructure fabrication method has strong potential for application in intensity and frequency adjustable high luminescence efficiency optoelectronic devices.

  4. Isolation and Control of Spins in Silicon Carbide with Millisecond-Coherence Times

    NASA Astrophysics Data System (ADS)

    Christle, David J.; Falk, Abram L.; Andrich, Paolo; Klimov, Paul V.; Awschalom, David D.; Hassan, Jawad Ul; Son, Nguyen T.; Janzén, Erik; Ohshima, Takeshi

    2015-03-01

    The elimination of defects from silicon carbide (SiC) has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because the electronic states of SiC defects can have sharp optical and spin transitions, they are increasingly recognized as a valuable resource for quantum-information and nanoscale-sensing applications. We demonstrate that individual electronic spin states of the divacancy defect in highly purified monocrystalline 4H-SiC can be isolated and coherently controlled. This defect has analogous behavior to the prominent nitrogen-vacancy center in diamond, yet exists in a material amenable to modern growth and microfabrication techniques. We spectroscopically identify the different forms of divacancies, and show that divacancy spins exhibit an exceptionally long ensemble Hahn-echo coherence time that exceeds one millisecond. Funding by NSF, AFOSR MURI, and the Knut & Alice Wallenberg Foundation is gratefully acknowledged.

  5. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    PubMed

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset. PMID:26836366

  6. Room temperature coherent control of defect spin qubits in silicon carbide.

    PubMed

    Koehl, William F; Buckley, Bob B; Heremans, F Joseph; Calusine, Greg; Awschalom, David D

    2011-11-01

    Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen-vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen-vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen-vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon-silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen-vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical

  7. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing. PMID:23598342

  8. Beds of reconfigurable angled hairs rectify Stokes flows

    NASA Astrophysics Data System (ADS)

    Alvarado, Jose; Comtet, Jean; Hosoi, Anette Peko

    2015-11-01

    Biological tissues such as intestines, blood vessels, kidneys, and tongues are coated with beds of passive, elongated, hair-like protrusions such as microvilli, hyaluronans, primary cilia, and papillae. Stresses from fluid flows can bend deformable hairs, but this reconfiguration can in turn affect confined fluid flows. We investigate this elastoviscous coupling by developing a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows in a Taylor-Couette geometry. We characterize this system with a theoretical model which shows that reconfiguration of hair beds is controlled by a single elastoviscous number. Hair bending results in an apparent shear thinning because the hair tip lowers toward the base and thus widens the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base and thus narrows the gap. Beds of reconfigurable angled hairs can thus give rise to an asymmetric flow impedance at arbitrarily low Reynolds number and could therefore function as a microfluidic rectifier.

  9. Rectifying thermal fluctuations: Minimal pumping and Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Mandal, Dibyendu

    Molecular complexes with movable components form the basis of nanoscale machines. Their inherent stochastic nature makes it a challenge to generate any controllable movement. Rather than fighting these fluctuations, one can utilize them by the periodic modulation of system parameters, or stochastic pumping. For the no-pumping theorem (NPT), which establishes minimal conditions for directed pumping, we present a simplified proof using an elementary graph theoretical construction. Motivated by recent experiments, we propose a new class of "hybrid" models combining elements of both the purely discrete and purely continuous descriptions prevalent in the field. We formulate the NPT in this hybrid framework to give a detailed justification of the original experiment observation. We also present an extension of the NPT to open stochastic systems. Next we consider the paradox of "Maxwell's demon," an imaginary intelligent being that rectifies thermal fluctuations in a manner that seems to violate the second law of thermodynamics. We present two exactly solvable, autonomous models that can reproduce the actions of the demon. Of necessity, both of these models write information on a memory device as part of their operation. By exposing their explicit, transparent mechanisms, our models offer simple paradigms to investigate the autonomous rectification of thermal fluctuations and the thermodynamics of information processing.

  10. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  11. An ultra-low-voltage rectifier for PE energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Jingmin, Wang; Zheng, Yang; Zhangming, Zhu; Yintang, Yang

    2016-02-01

    An ultra low voltage rectifier with high power conversion efficiency (PCE) for PE energy harvesting applications is presented in this paper. This is achieved by utilizing the DTMOS which the body terminal is connected to the gate terminal in a diode connected transistor. This implementation facilitates the rectifier with dynamic control over the threshold voltage. Moreover, we use input powered to take the place of output powered to reduce the power loss and thereby increasing the power conversion efficiency. Based on standard SMIC 0.18 μm CMOS technology, the simulation results show that the voltage conversion efficiency and the power conversion efficiency can reach up to 90.5% and 95.5% respectively, when the input voltage equals to 0.2 V @ 100 Hz with load resistance 50 kω. Input voltages with frequencies in the range of 10 Hz-1 kHz can be rectified. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).

  12. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  13. Role of silicone derivative plus onion extract gel in presternal hypertrophic scar protection: a prospective randomized, double blinded, controlled trial.

    PubMed

    Jenwitheesuk, Kamonwan; Surakunprapha, Palakorn; Jenwitheesuk, Kriangsak; Kuptarnond, Chusak; Prathanee, Sompop; Intanoo, Worawit

    2012-08-01

    Use of silicone derivative and onion extract had been reported in the prevention of hypertrophic scarring. Our experience showed the preventive use of silicone derivative plus onion extract gel on hypertrophic scars after median sternotomy. In a randomized, double blinded, placebo-controlled study, 60 patients after median sternotomy incisions were separated into two groups. All patients were treated either with silicone derivative plus onion extract gel (Cybele(®) scagel) or placebo gel twice daily for a total treatment period of 12 weeks. During each visit, pain and itching scores were graded by the patients and scar characteristics were observed by surgeons using the Vancouver scar scale. Pain and itch score values from patients' who applied silicone derivative plus onion extract gel was less than another group (P < 0·05). Pigmentation was significantly different between two groups (P < 0·05) and the reduction of scores on vascularity, pliability, height in treated group was not superior to the untreated group. No adverse events were reported by any of the patients. A silicone derivative plus onion extract gel is safe and effective for the preventing the hypertrophic scarring after median sternotomy. PMID:22168750

  14. Dynamic nuclear polarization of {sup 29}Si nuclei in isotopically controlled phosphorus doped silicon

    SciTech Connect

    Hayashi, Hiroshi; Itahashi, Tatsumasa; Itoh, Kohei M.; Vlasenko, Leonid S.; Vlasenko, Marina P.

    2009-07-15

    Dynamic nuclear polarization (DNP) of {sup 29}Si nuclei in isotopically controlled silicon single crystals with the {sup 29}Si isotope abundance f{sub 29Si} varied from 1.2% to 99.2% is reported. It was found that both the DNP enhancement and {sup 29}Si nuclear spin-lattice relaxation time under saturation of the electron paramagnetic resonance transitions of phosphorus donors increase with the decrease in the {sup 29}Si abundance. A remarkably large steady-state DNP enhancement, E{sup ss}=2680 which is comparable to the theoretical upper limit of 3310, has been achieved through the ''resolved'' solid effect that has been identified clearly in the f{sub 29Si}=1.2% sample. The DNP enhancement depends not only on the {sup 29}Si abundance but also on the electron spin-lattice relaxation time that can be controlled by temperature and/or illumination. The linewidth of {sup 29}Si NMR spectra after DNP shows a linear dependence on f{sub 29Si} for f{sub 29Si}{<=}10% and changes to a square-root dependence for f{sub 29Si}{>=}50%. Comparison of experimentally determined nuclear polarization time with nuclear spin diffusion coefficients indicates that the rate of DNP is limited by the polarization transfer rather than by spin diffusion.

  15. Implementation of Statistical Process Control: Evaluating the Mechanical Performance of a Candidate Silicone Elastomer Docking Seal

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    The National Aeronautics and Space Administration has been developing a novel docking system to meet the requirements of future exploration missions to low-Earth orbit and beyond. A dynamic gas pressure seal is located at the main interface between the active and passive mating components of the new docking system. This seal is designed to operate in the harsh space environment, but is also to perform within strict loading requirements while maintaining an acceptable level of leak rate. In this study, a candidate silicone elastomer seal was designed, and multiple subscale test articles were manufactured for evaluation purposes. The force required to fully compress each test article at room temperature was quantified and found to be below the maximum allowable load for the docking system. However, a significant amount of scatter was observed in the test results. Due to the stochastic nature of the mechanical performance of this candidate docking seal, a statistical process control technique was implemented to isolate unusual compression behavior from typical mechanical performance. The results of this statistical analysis indicated a lack of process control, suggesting a variation in the manufacturing phase of the process. Further investigation revealed that changes in the manufacturing molding process had occurred which may have influenced the mechanical performance of the seal. This knowledge improves the chance of this and future space seals to satisfy or exceed design specifications.

  16. Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

    SciTech Connect

    Razek, Sara Abdel; Swillam, Mohamed A.; Allam, Nageh K.

    2014-05-21

    Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H{sub 2}O{sub 2} electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650 nm and lengths from 8 to 18 μm. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670 nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ∼670 nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ∼660 nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

  17. Single C59N molecule as a molecular rectifier.

    PubMed

    Zhao, Jin; Zeng, Changgan; Cheng, Xin; Wang, Kedong; Wang, Guanwu; Yang, Jinlong; Hou, J G; Zhu, Qingshi

    2005-07-22

    We report a new kind of experimental realization of a molecular rectifier, which is based on a single azafullerene C59N molecule in a double-barrier tunnel junction via the single electron tunneling effect. An obvious rectifying effect is observed. The positive onset voltage is about 0.5-0.7 V, while the negative onset voltage is about 1.6-1.8 V. Theoretical analyses show that the half-occupied molecular orbital of the C59N molecule and the asymmetric shift of the molecular Fermi level when the molecule is charged are responsible for the molecular rectification. PMID:16090819

  18. Tunable electronic transport properties of silicon-fullerene-linked nanowires: Semiconductor, conducting wire, and tunnel diode

    NASA Astrophysics Data System (ADS)

    Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro

    2010-03-01

    We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum tunneling. More significantly, the junctions have asymmetric I-Vb curves, which could be used as rectifiers. The current-voltage curves are interpreted by band-overlapping models. Tunable electronic transport properties of silicon-fullerene-linked nanowires could find many applications such as field-effect transistors, conducting wires, and tunnel diodes.

  19. Numerically controlled atmospheric-pressure plasma sacrificial oxidation using electrode arrays for improving silicon-on-insulator layer uniformity

    NASA Astrophysics Data System (ADS)

    Takei, Hiroyasu; Yoshinaga, Keinosuke; Matsuyama, Satoshi; Yamauchi, Kazuto; Sano, Yasuhisa

    2015-01-01

    Silicon-on-insulator (SOI) wafers are important semiconductor substrates in high-performance devices. In accordance with device miniaturization requirements, ultrathin and highly uniform top silicon layers (SOI layers) are required. A novel method involving numerically controlled (NC) atmospheric-pressure plasma sacrificial oxidation using an electrode array system was developed for the effective fabrication of an ultrathin SOI layer with extremely high uniformity. Spatial resolution and oxidation properties are the key factors controlling ultraprecision machining. The controllability of plasma oxidation and the oxidation properties of the resulting experimental electrode array system were examined. The results demonstrated that the method improved the thickness uniformity of the SOI layer over one-sixth of the area of an 8-in. wafer area.

  20. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  1. Erbium-doped slot waveguides containing size-controlled silicon nanocrystals

    SciTech Connect

    Hoffmann, R.; Beyer, J. Heitmann, J.; Klemm, V.; Rafaja, D.; Johnson, B. C.; McCallum, J. C.

    2015-04-28

    Silicon based slot waveguides with a slot containing Si nanocrystals (Si-nc) and Erbium ions (Er{sup 3+}) inside a silica matrix were prepared using sputter deposition and low-energy ion implantation. This sequence enabled independent optimization of nanocrystal formation and Er{sup 3+} incorporation parameters. Using a superlattice approach, the size of the Si-nc inside the slot could be controlled and optimized for maximum Er{sup 3+} luminescence yield at 1.54 μm. Er{sup 3+} is found to be efficiently pumped by Si-nc of sizes around 3 to 4 nm. Increasing Er{sup 3+} photoluminescence at 1.54 μm with increasing post-implantation annealing temperatures up to 1000 °C is attributed to annealing of matrix or Si-nc interface defects mainly. Additionally, a dependence of the Er{sup 3+} luminescence intensity on both the excitation and emission linear polarization orientation is shown, which demonstrates efficient field enhancement in sputtered slot waveguide structures.

  2. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  3. Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Shenli; Wang, Xinwei; Liu, Hong; Shen, Wenzhong

    2014-01-01

    Silicon nanowires (SiNWs) have long been considered a promising material due to their extraordinary electrical and optical properties. As a simple, highly efficient fabrication method for SiNWs, metal-assisted chemical etching (MACE) has been intensively studied over recent years. However, effective control by modulation of simple parameters is still a challenging topic and some key questions still remain in the mechanistic processes. In this work, a novel method to manipulate SiNWs with a light-modulated MACE process has been systematically investigated. Conic structures consisting of inclined and clustered SiNWs can be generated and effectively modified by the incident light while new patterns such as ‘bamboo shoot’ arrays can also be formed under certain conditions. More importantly, detailed study has revealed a new top-down ‘diverting etching’ model of the conic structures in this process, different from the previously proposed ‘bending’ model. As a consequence of this mechanism, preferential lateral mass transport of silver particles occurs. Evidence suggests a relationship of this phenomenon to the inhomogeneous distribution of the light-induced electron-hole pairs beneath the etching front. Study on the morphological change and related mechanism will hopefully open new routes to understand and modulate the formation of SiNWs and other nanostructures.

  4. Silicon as Reducing Agent for Controlled Production of Plasmonic Copper Nanocomposite Glasses: A Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2015-11-01

    The use of silicon to produce metal nanocomposite phosphate glasses with plasmonic properties is proposed. It is demonstrated how the reducing properties of Si powder allow for producing Cu nanocomposite glasses in a controlled manner during heat treatment (HT). Cu/Si-codoped glasses were prepared in a 50BaO-50P2O5 matrix by a simple melt-quench method in ambient atmosphere. The worst-case scenario is considered by having the noble metal introduced in its higher oxidation state as copper(II) oxide, i.e., instead of using monovalent copper. Optical absorption and photoluminescence (PL) spectroscopy, including emission decay dynamics, were employed for characterization of the melt-quenched glass, and for investigating the influence of HT on material optical properties. Remarkably, increasing amounts of Si powder were observed to suppress and ultimately remove the Cu2+ visible absorption band in the CuO-containing glasses. Moreover, subsequent HT of the glass with the highest Si content resulted in progressive development of the surface plasmon resonance of Cu nanoparticles with increasing holding time. PL spectroscopy analysis is further employed towards elucidating the Cu2+ → Cu+ → Cu0 valence state changes likely occurring during the melting and subsequent thermal processing.

  5. 37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA DISCHARGE IN THE COTTRELL ELECTROSTATIC GENERATORS. THE SYSTEM WAS CAPABLE OF PROVIDING 88,000 VOLTS TO THE ELECTRODES WITHIN THE PRECIPITATOR CHAMBER THE UNIT WAS LOCATED TO THE REAR OF BOILER 904 IN AN ENCLOSED ROOM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  6. 125. JOB NO. LINE 5044, INTERNATIONAL RECTIFIER CORP., RACHELLE LABORATORIES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. JOB NO. LINE 5044, INTERNATIONAL RECTIFIER CORP., RACHELLE LABORATORIES, INC., LONG BEACH, CA, BY J.C. FULTON, SEPTEMBER 1982, LINE 5044, CLIFTON AND CO., ON FILE ENGINEERS DEPARTMENT, PORT OF LONG BEACH - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  7. Comparison of Rectified and Unrectified Sockets for Transtibial Amputees

    PubMed Central

    Engsberg, Jack R.; Sprouse, S. Wayne; Uhrich, Mary L.; Ziegler, Barbara R.; Luitjohan, F. Daniel

    2008-01-01

    The current method for fabricating prosthetic sockets is to modify a positive mold to account for the non-homogeneity of the residual limb to tolerate load (i.e., rectified socket). We tested unrectified sockets by retaining the shape of the residual limb, except for a distal end pad, using an alginate gel process instead of casting. This investigation compared rectified and unrectified sockets. Forty-three adults with unilateral transtibial amputations were tested after randomly wearing both rectified and unrectified sockets for at least 4 weeks. Testing included a gait analysis, energy expenditure and Prosthesis Evaluation Questionnaire (PEQ). Results indicated no differences between sockets for gait speed and timing, gait kinematics and kinetics, and gait energy expenditure. There were also no differences in the Prosthetic Evaluation Questionnaire and 16 subjects selected the rectified socket, 25 selected the unrectified socket, and 2 subjects selected to use both sockets as their exit socket. Results seemed to indicate that more than one paradigm exists for shaping prosthetic sockets, and this paradigm may be helpful in understanding the mechanisms of socket fit. The alginate gel fabrication method was simpler than the traditional method. The method could be helpful in other countries where prosthetic care is lacking, may be helpful with new amputees, and may be helpful in typical clinics to reduce costs and free the prosthetist to focus more time on patient needs. PMID:18776945

  8. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Astrophysics Data System (ADS)

    Yoo, T.-W.; Chang, K.

    1991-11-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  9. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  10. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems...

  11. Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhang, Hengkai; Tang, Xiaobing; Lai, King W. C.

    2016-07-01

    Graphene/silicon junction based photodetectors have attracted great interest due to their superior characteristics like large photosensitive area, fast photocarrier collection and low dark current. Currently, the weak optical absorption and short photocarrier lifetime of graphene remain major limitations for detection of infrared light with wavelengths above 1.2 μm. Here, we elucidate the mechanism of photocarrier transport in graphene/silicon junction based photodetector and propose a theoretical model to study the design and effect of finger-electrode structures on the photocurrent in graphene. We demonstrate that the top finger-like electrode in graphene/silicon photodetector can be designed to enhance the photocarrier collection efficiency in graphene by reducing the average transport distance of photocarriers. Therefore, the photoresponsivity of the graphene/silicon junction based photodetector can be increased. Our results have successfully demonstrated that by optimizing the design of finger electrodes, 4 times enhancement of photocurrents in graphene can be obtained at room temperature.

  12. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  13. Control of silicon solidification and the impurities from an Al-Si melt

    NASA Astrophysics Data System (ADS)

    Wang, Panpan; Lu, Huimin; Lai, Yuanshi

    2014-03-01

    The investigation on purification of metallurgical grade silicon by solidification of hypereutectic Al-Si melt under the temperature gradient as an intensified separation way was carried out. Based on the available thermodynamic parameters and experimental data, the thermodynamic behavior and chemical composition of metallic impurities was studied in the solidification process. The principle for the silicon growth in the Al-Si melts was investigated. The results indicated that the refined silicon grains were successfully enriched at the top of the Al-Si alloy. Then the top part refined silicon was collected by aqua regia leaching. Electrorefining of the bottom part (Al-22%Si) was investigated effectively in view of recovering pure Si and Al. Additionally, according to previous investigation, the optimized technical process for SOG-Si production was proposed.

  14. Junction barrier Schottky rectifier with an improved P-well region

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Li, Ting; Cao, Fei; Shao, Lei; Chen, Yu-Xian

    2012-12-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the VF—IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10-8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.

  15. Parameter Plane Synthesis and Performance Investigation of a Three-Phase Three-Level Bidirectional Rectifier

    NASA Astrophysics Data System (ADS)

    Bhat, Abdul Hamid; Langer, Nitin

    2014-12-01

    In this paper, parameter plane synthesis of a three-phase neutral-point clamped bidirectional rectifier has been performed. The converter involves one outer-loop PI voltage controller and two inner-loop PI current controllers for the closed-loop control. D-partition technique has been employed for the precise design of the voltage controller. An experimental prototype of the converter has been developed, and the experimental investigation of the converter performance in closed loop has been carried out. DSP DS1104 of dSPACE has been used for real-time implementation of the designed controller. The converter gives a very good performance in steady state and dynamic state (for rectification as well as inversion modes of operation) using the designed controller parameters.

  16. Two-photon indirect optical injection and two-color coherent control in bulk silicon

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-12-01

    Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 and 300 K. At 4 K, the TA-phonon-assisted transitions dominate the injection at low photon energies and the TO-phonon-assisted transitions at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to the light propagation direction. For light propagating along the <001> direction, the carrier injection exhibits valley anisotropy, and the injection into the Z conduction band valley is larger than that into the X and Y valleys. For σ- light propagating along the <001> (<111>) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. For two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 and 300 K. We show the current control for three different polarization scenarios: For cocircularly polarized beams, the direction of the charge current and the polarization direction of the spin current can be controlled by a relative-phase parameter; for the collinearly and cross-linearly polarized beams, the current amplitude can be controlled by that parameter. The spectral dependence of the maximum swarm velocity shows that

  17. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Larkin, David J. (Inventor); Powell, J. Anthony (Inventor)

    1992-01-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  18. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor)

    1991-01-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  19. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation.

    PubMed

    Abel, Paul R; Lin, Yong-Mao; Celio, Hugo; Heller, Adam; Mullins, C Buddie

    2012-03-27

    Silicon and partially oxidized silicon thin films with nanocolumnar morphology were synthesized by evaporative deposition at a glancing angle, and their performance as lithium-ion battery anodes was evaluated. The incorporated oxygen concentration was controlled by varying the partial pressure of water during the deposition and monitored by quartz crystal microbalance, X-ray photoelectron spectroscopy. In addition to bulk oxygen content, surface oxidation and annealing at low temperature affected the cycling stability and lithium-storage capacity of the films. By simultaneously optimizing all three, films of ~2200 mAh/g capacity were synthesized. Coin cells made with the optimized films were reversibly cycled for ~120 cycles with virtually no capacity fade. After 300 cycles, 80% of the initial reversible capacity was retained. PMID:22372404

  20. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed M.; Yang, Shuqiang; Miller, Mike; Xu, Frank; Banerjee, Sanjay; Sreenivasan, S. V.

    2012-10-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent.

  1. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-01

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis. PMID:26796986

  2. The properties of polycrystalline silicon solar cells with controlled titanium additions

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Hopkins, R. H.; Davis, J. R., Jr.

    1981-01-01

    By coupling the results of electrical measurements, such as spectral response, lighted and dark I-V determinations, and deep-level-transient spectroscopy with optical and laser scan photomicroscopy, the effects of grain boundaries and impurities on silicon solar cells were evaluated. Titanium, which produces two deep levels in silicon, degrades cell performance by reducing bulk lifetime and thus cell short-circuit current. Electrically active grain boundaries induce carrier recombination in the bulk and depletion regions of the solar cell. Experimental data imply a small but measurable segregation of titanium into some grain boundaries of the polycrystalline silicon containing high Ti concentration. However, for the titanium-contaminated polycrystalline material used in this study, solar cell performance is dominated by the electrically active titanium concentration in the grains. Microstructural impacts on the devices are of secondary importance

  3. Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators

    PubMed Central

    Vukovic, N.; Healy, N.; Suhailin, F. H.; Mehta, P.; Day, T. D.; Badding, J. V.; Peacock, A. C.

    2013-01-01

    Microresonators are ideal systems for probing nonlinear phenomena at low thresholds due to their small mode volumes and high quality (Q) factors. As such, they have found use both for fundamental studies of light-matter interactions as well as for applications in areas ranging from telecommunications to medicine. In particular, semiconductor-based resonators with large Kerr nonlinearities have great potential for high speed, low power all-optical processing. Here we present experiments to characterize the size of the Kerr induced resonance wavelength shifting in a hydrogenated amorphous silicon resonator and demonstrate its potential for ultrafast all-optical modulation and switching. Large wavelength shifts are observed for low pump powers due to the high nonlinearity of the amorphous silicon material and the strong mode confinement in the microcylindrical resonator. The threshold energy for switching is less than a picojoule, representing a significant step towards advantageous low power silicon-based photonic technologies. PMID:24097126

  4. Electrical Control of g-Factor in a Few-Hole Silicon Nanowire MOSFET.

    PubMed

    Voisin, B; Maurand, R; Barraud, S; Vinet, M; Jehl, X; Sanquer, M; Renard, J; De Franceschi, S

    2016-01-13

    Hole spins in silicon represent a promising yet barely explored direction for solid-state quantum computation, possibly combining long spin coherence, resulting from a reduced hyperfine interaction, and fast electrically driven qubit manipulation. Here we show that a silicon-nanowire field-effect transistor based on state-of-the-art silicon-on-insulator technology can be operated as a few-hole quantum dot. A detailed magnetotransport study of the first accessible hole reveals a g-factor with unexpectedly strong anisotropy and gate dependence. We infer that these two characteristics could enable an electrically driven g-tensor-modulation spin resonance with Rabi frequencies exceeding several hundred mega-Hertz. PMID:26599868

  5. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan; Campbell, Steven L; Miller , John M.

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  6. Rectifying behaviour of spin coated pn hetero-junction

    SciTech Connect

    Yogamalar, N. Rajeswari; Bose, A. Chandra

    2015-06-24

    Rectifying pn hetero- junction is fabricated with an acceptor p-type organic semiconductor namely tetra- chloro dihydroxy tetra-iodo fluorescein (Rose Bengal (RB)) followed by an inorganic n-type ZnO semiconductor on indium tin oxide (ITO) substrate. The n-type ZnO films are formed by unintentional doping and doping with aluminium (Al) and yttrium (Y) donors. The surface morphology and the distribution of grains are observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM). The current-voltage (I-V) characteristic of the rectifying diode is measured to characterize the junction properties. The I-V plots obtained from the hetero- junction with electric contact shows a diode characteristic different from that of an ideal behavior. The overall efficiency of the diode exhibits a greater dependency on the film crystallinity, carrier concentration, and reverse saturation current.

  7. Rectifying behaviour of spin coated pn hetero-junction

    NASA Astrophysics Data System (ADS)

    Yogamalar, N. Rajeswari; Bose, A. Chandra

    2015-06-01

    Rectifying pn hetero- junction is fabricated with an acceptor p-type organic semiconductor namely tetra- chloro dihydroxy tetra-iodo fluorescein (Rose Bengal (RB)) followed by an inorganic n-type ZnO semiconductor on indium tin oxide (ITO) substrate. The n-type ZnO films are formed by unintentional doping and doping with aluminium (Al) and yttrium (Y) donors. The surface morphology and the distribution of grains are observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM). The current-voltage (I-V) characteristic of the rectifying diode is measured to characterize the junction properties. The I-V plots obtained from the hetero- junction with electric contact shows a diode characteristic different from that of an ideal behavior. The overall efficiency of the diode exhibits a greater dependency on the film crystallinity, carrier concentration, and reverse saturation current.

  8. Development of a Thermal Rectifier Usable at High Temperature

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsunehiro; Goto, Hiroki; Toyama, Yasuhiro; Itoh, Takashi; Mikami, Masashi

    2011-05-01

    By using Al-based metallic alloys characterized by a disordered structure and a narrow pseudogap of a few hundred meV in energy width persisting at the Fermi level, we succeeded in preparing materials possessing a large increase of thermal conductivity with increasing temperature. This unusual increase of thermal conductivity is caused by the electronic structure effect known as the bipolar diffusion effect (BDE) in the context of the two-band model. A thermal rectifier was constructed using materials exhibiting the BDE. By showing the thermal rectification of the bulk sample prepared in this study, we demonstrate that our newly proposed idea of a thermal rectifier using the BDE is applicable for practical use.

  9. Voltage-controlling mechanisms in low-resistivity silicon solar cells - A unified approach

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.

    1986-01-01

    An experimental technique is used to determine the relative values of the base and emitter components of the dark saturation current of six types of high-voltage low-resistivity silicon solar cells. One of the surprising findings is the suggestion that the magnitude of the minority-carrier mobility may be process-dependent.

  10. High reliability megawatt transformer/rectifier

    NASA Technical Reports Server (NTRS)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.