Science.gov

Sample records for silicon photon detectors

  1. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  2. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOEpatents

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  3. Silicon microchannel plates: initial results for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H.; Tremsin, Anton S.; Vallerga, John V.; Beetz, Charles P.; Boerstler, Robert W.; Winn, D. R.

    2000-12-01

    The emergence of Silicon based microchannel plates (MCP's) has been awaited for a number of years, with many proposed advantages over standard glass MCPs for space-based detectors. Si should have a very low inherent background (< 0.01 events sec-1 cm-2), as well as being a low Z element with low stopping power for x, gamma and cosmic rays. The surface is oxidized and can be baked to very high temperatures (> 800 degrees Celsius), and will not react with photocathodes deposited on the surface. This could potentially allow opaque photocathodes, with their higher resolution and efficiency, to be used in the near UV/optical bands. Since the microchannel positions are determined photolithographically, the pattern will be uniform and coherent, resulting in more uniform flat fields and less differential non-linearity in the spatial response. Microchannel spacing could decrease to the micron regime, while size formats could increase. The potential advantages of Si MCPs encompass increased gain, stability, longevity, event rate, and QE. However, glass MCPs have a strong and successful heritage in space-based detector systems and the advantages of Si MCP's must be demonstrated in the laboratory before being considered for flight applications. We have tested some newly developed silicon (Si) MCP's provided by Nanosciences Corp. Although these are still in the developmental stage we have achieved a number of significant results. The gain, pulse height, response and gain uniformity, and quantum detection efficiency are very similar to glass MCP's. However the Si MCP background is approximately 0.02 events sec-1 cm-2 without shielding, a significant improvement over even low noise MCP's. The small samples we have tested are 25 mm format with 8 micrometer pore spacing, but they are taken from a 75 mm substrate, which offers the possibility of large MCP's in the near future. More testing and process development are underway to probe other operational parameters and optimize the

  4. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  5. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields

    SciTech Connect

    Eklund, Karin; Ahnesjoe, Anders

    2010-11-15

    Purpose: Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., ''electron'') diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. Methods: The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. Results: The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly

  6. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  7. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  8. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  9. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. Fast digitization and discrimination of prompt neutron and photon signals using a novel silicon carbide detector

    SciTech Connect

    Brandon W. Blackburn; James T. Johnson; Scott M. Watson; David L. Chichester; James L. Jones; Frank H. Ruddy; John G. Seidel; Robert W. Flammang

    2007-04-01

    Current requirements of some Homeland Security active interrogation projects for the detection of Special Nuclear Material (SNM) necessitate the development of faster inspection and acquisition capabilities. In order to do so, fast detectors which can operate during and shortly after intense interrogation radiation flashes are being developed. Novel silicon carbide (SiC) semiconductor Schottky diodes have been utilized as robust neutron and photon detectors in both pulsed photon and pulsed neutron fields and are being integrated into active inspection environments to allow exploitation of both prompt and delayed emissions. These detectors have demonstrated the capability of detecting both photon and neutron events during intense photon flashes typical of an active inspection environment. Beyond the inherent insensitivity of SiC to gamma radiation, fast digitization and processing has demonstrated that pulse shape discrimination (PSD) in combination with amplitude discrimination can further suppress unwanted gamma signals and extract fast neutron signatures. Usable neutron signals have been extracted from mixed radiation fields where the background has exceeded the signals of interest by >1000:1.

  12. A silicon photonic wavelength division multiplex system for high-speed data transmission in detector instrumentation

    NASA Astrophysics Data System (ADS)

    Skwierawski, P.; Schneider, M.; Karnick, D.; Eisenblätter, L.; Weber, M.

    2016-01-01

    We propose a new silicon photonics-based optical transmission system utilizing wavelength division multiplexing (WDM) . This technology has the possibility of reading out all raw data from a detector even without massive local data reduction. The transmitter in the detector volume consists of multiple integrated Mach-Zehnder modulators monolithically integrated with wavelength (de-)multiplexers. The first demonstrator currently under development aims for a data rate of 160 Gbit/s per fiber, scalable to 5 Tbit/s and beyond. We report on our recently developed Echelle grating WDM multiplexers with up to 45 channels on an area of 0.5 mm2 and electro-optic modulators providing a bandwidth of 18 GHz.

  13. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  14. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  15. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors

    NASA Astrophysics Data System (ADS)

    Chen, Long; Preston, Kyle; Manipatruni, Sasikanth; Lipson, Michal

    2009-08-01

    We report an optical link on silicon using micrometer-scale ring-resonator enhanced silicon modulators and waveguide-integrated germanium photodetectors. We show 3 Gbps operation of the link with 0.5 V modulator voltage swing and 1.0 V detector bias. The total energy consumption for such a link is estimated to be ~120 fJ/bit. Such compact and low power monolithic link is an essential step towards large-scale on-chip optical interconnects for future microprocessors.

  16. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  17. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  18. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O’Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  19. Further characterization of IRAS doped silicon detectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Measurements made on several doped-silicon detectors are reported. Topics discussed include: Si:Sb detector, the effects of detector bias on dielectric relaxation; characterization of spontaneous noise and gamma-induced spikes and their circumvention; and the time response of two detectors to step changes in the background photon flux density. Several potential system programs are indicated.

  20. Label-free silicon photonic biosensor system with integrated detector array

    PubMed Central

    Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.

    2010-01-01

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292

  1. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  2. Silicon applications in photonics

    NASA Astrophysics Data System (ADS)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  3. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  4. Characterization of an Indirect-Detection Amorphous Silicon Detector for Dosimetric Measurement of Intensity Modulated Photon Fields

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel Wayne

    Indirect-detection amorphous silicon electronic imagers show much promise for measurement of radiation dose, particularly for pre-treatment verification of patient-specific intensity modulated radiotherapy plans. These instruments, commonly known as Electronic Portal Imaging Devices (EPIDs), have high data density, large detecting area, convenient electronic read-out, excellent positional reproducibility, and are quickly becoming standard equipment on today's medical megavoltage linear accelerators. However, because these devices were originally intended to be digital radiograph imagers and not dosimeters, the modeling, calibration, and prediction of their response to dose carries a number of challenges. For instance, EPID dose images exhibit off-axis dose errors of up to 18% with increasing distance from the central axis of the imager (as compared to dose predictions calculated by a commercially available treatment planning system). Furthermore, these off-axis errors are asymmetric, with higher errors in the in-plane direction than in the cross-plane direction. In this work, methods are proposed to account for EPID off-axis effects by precisely calculating off-axis output factors from experimental measurements to increase the accuracy of EPID absolute dose measurement. Using these methods, dose readings acquired over the entire surface of the detector agree to within 2% accuracy as compared to respective EPID dose predictions. Similarly, the percentage of measured dose points that agree with respective calculated dose points (using 3%, 3 mm criteria) improves by as much as 60% for off-axis intensity modulated photon fields. Furthermore, a number of clinical applications of EPID dosimetry are investigated, including pixel response constancy, the effect of data density on a common metric for quantitatively comparing measured vs. calculated dose, and the implementation of an electronic portal dosimetry program for radiotherapy quality assurance.

  5. Micromechanical uncooled photon detectors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos G.

    2000-04-01

    Recent advances in micro-electro-mechanical systems (MEMS) have led to the development of uncooled IR detectors operate as micromechanical thermal detectors or micromechanical quantum detectors. We report on a new method for photon detection using electronic stresses in semiconductor microstructures. Photo-induced stress in semiconductor microstructures, is caused by changes in the charge carrier density in the conduction band and photon detection results from the measurement of the photon-induced bending of semiconductor microstructures. Small changes in position of microstructures are routinely measured in atomic force microscopy where atomic imaging of surfaces relies on the measurement of small changes in the bending of microcantilevers. Changes in the conduction band charge carrier density can result either from direct photo- generation of free charge carriers or from photoelectrons emitted from thin metal film surface in contact with a semiconductor microstructure which forms a Schottky barrier. In our studies we investigated three systems: (i) Si microstructures, (ii) InSb microstructures and (iii) Si microstructures coated with a thin excess electron-hole- pairs while for InSb photo-induced stress causes the crystal lattice to expand. We will present our results and discuss our findings.

  6. Photon-number-resolving superconducting nanowire detectors

    NASA Astrophysics Data System (ADS)

    Mattioli, Francesco; Zhou, Zili; Gaggero, Alessandro; Gaudio, Rosalinda; Jahanmirinejad, Saeedeh; Sahin, Döndü; Marsili, Francesco; Leoni, Roberto; Fiore, Andrea

    2015-10-01

    In recent years, photon-number-resolving (PNR) detectors have attracted great interest, mainly because they can play a key role in diverse application fields. A PNR detector with a large dynamic range would represent an ideal photon detector, bringing the linear response of conventional analogue detectors down to the single-photon level. Several technologies, such as InGaAs single photon avalanche detectors (SPADs), arrays of silicon photomultipliers, InGaAs SPADs with self-differencing circuits and transition edge sensors have shown photon number resolving capability. Superconducting nanowires provide free-running single-photon sensitivity from visible to mid-infrared frequencies, low dark counts, excellent timing resolution (<60 ps) and short dead time (˜10 ns), at an easily accessible temperature (2-3 K), but they do not inherently resolve the photon number. In this framework, PNR detectors based on arrays of superconducting nanowires have been proposed. In this article we describe a number of methods and device configurations that have been pursued to obtain PNR capability using superconducting nanowire detectors.

  7. SU-F-18C-05: Characterization of a Silicon Strip Photon-Counting Detector in the Presence of Compton Scatter: A Simulation Study

    SciTech Connect

    Ziemer, B; Ding, H; Cho, H

    2014-06-15

    Purpose: To investigate the effect of Compton scatter on detection efficiency and charge-sharing for a Si strip photon-counting detector as a function of pixel pitch, slice thickness and total pixel length. Methods: A CT imaging system employing a silicon photon-counting detector was implemented using the GATE Monte Carlo package. A focal spot size of 300 µm, magnification of 1.33, and pixel pitches of 0.1 and 0.5mm were initially investigated. A 60 kVp spectrum with 3 mm Al filter was used and energy spectral degradation based on a prototype detector was simulated. To study charge-sharing, a single pixel was illuminated, and the detector response in neighboring pixels was investigated. A longitudinally semiinfinite detector was simulated to optimize the quantum detection efficiency of the imaging system as a function of pixel pitch, slice thickness and depth of interaction. A 2.5 mm thick tungsten plate with a 0.01 mm by 1.5 mm slit was implemented to calculate the modulation transfer function (MTF) from projection-based images. A threshold of 15 keV was implemented in the detector simulation. The preliminary charge sharing investigation results considered only scattering effects and the detector electronics related factors were neglected. Results: Using a 15 keV threshold, 1% of the pixel charge migrated into neighboring pixels with a pixel size of 0.1×0.1 mm{sup 2}. The quantum detection efficiency was 77%, 84%, 87% and 89% for 15 mm, 22.5 mm, 30 mm, and 45 mm length silicon detector pixels, respectively. For a pixel pitch of 0.1 mm, the spatial frequency at 10% of the maximum MTF was found to be 5.2 lp/mm. This agreed with an experimental MTF measurement of 5.3 lp/mm with a similar detector configuration. Conclusion: Using optimized design parameters, Si strip photon-counting detectors can offer high detection efficiency and spatial resolution even in the presence of Compton scatter.

  8. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  9. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  10. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  11. Electron-Photon Coincidence Calibration Of Photon Detectors

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1988-01-01

    Absolute and relative detector efficiencies measured. Apparatus uses coincidence-counting techniques to measure efficiency of ultraviolet or vacuum ultraviolet detector at very low radiation intensity. Crossed electron and atomic beams generate photons used to calibrate photon detector. Pulses from electron counter and photon detector(s) processed by standard coincidence-counting techniques. Used to calibrate other detectors or make absolute measurements of incident photon fluxes.

  12. Silicon photonics: some remaining challenges

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  13. Novel Silicon Carbide Detector for Active Inspections

    SciTech Connect

    F. H. Ruddy; J.G. Seidel; R.W. Flammang

    2007-03-01

    The need to address increasingly challenging inspection requirements (such as large volume objects, very fast inspection throughputs, potentially significant shielding, etc.) for such items as nuclear materials and explosives will require the use of active interrogation technologies. While these active technologies can successfully address these challenges by inducing unique, temporal signatures, the inspection environment will also induce overall “background signals” that can be orders of magnitude larger than the induced signatures. Detectors that can successfully operate in these types of customized, inspection environments (pulsed and continuous) and successfully extract induced signature data are clearly needed and will effectively define the limitations of any active inspection system. A novel silicon carbide detector is now being investigated to successfully address both neutron- and photon/bremsstrahlung-type inspection applications. While this paper describes this detector and highlights efforts related to neutron inspection, it will focus on its neutron and gamma-ray/photon detection performance in neutron- and bremssstrahlung-type inspection applications.

  14. The LAMBDA photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, M.; Lampert, M.-O.; Fritzsch, T.; Rothermund, M.

    2013-03-01

    The Medipix3 photon-counting detector chip has a number of novel features that are attractive for synchrotron experiments, such as a high frame rate with zero dead time and high spatial resolution. DESY are developing a large-area Medipix3-based detector array (LAMBDA). A single LAMBDA module consists of 2 by 6 Medipix3 chips on a ceramic carrier board, bonded to either a single large silicon sensor or two smaller high-Z sensors. The readout system fits behind the carrier board to allow module tiling, and uses a large on-board RAM and multiple 10 Gigabit Ethernet links to permit high-speed readout. Currently, the first large silicon modules have been constructed and read out at low speed, and the firmware for highspeed readout is being developed. In addition to these silicon sensors, we are developing a germanium hybrid pixel detector in collaboration with Canberra for higher-energy beamlines. Canberra have produced a set of 256-by-256-pixel planar germanium sensors with 55μm pitch, and these are currently being bonded to Medipix3 readout chips by Fraunhofer IZM (Berlin).

  15. The CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  16. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  17. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  18. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    NASA Astrophysics Data System (ADS)

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  19. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  20. Schematic driven silicon photonics design

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  1. Silicon nitride microwave photonic circuits.

    PubMed

    Roeloffzen, Chris G H; Zhuang, Leimeng; Taddei, Caterina; Leinse, Arne; Heideman, René G; van Dijk, Paulus W L; Oldenbeuving, Ruud M; Marpaung, David A I; Burla, Maurizio; Boller, Klaus-J

    2013-09-23

    We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems. PMID:24104179

  2. VSiPMT a new photon detector

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Barbarino, G.; Barbato, F. C. T.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Migliozzi, P.; Mollo, C. M.; Vivolo, D.

    2016-04-01

    Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology.

  3. Cryogenic Silicon Detectors with Implanted Contacts for the Detection of Visible Photons Using the Neganov-Trofimov-Luke Effect

    NASA Astrophysics Data System (ADS)

    Defay, X.; Mondragon, E.; Willers, M.; Langenkämper, A.; Lanfranchi, J.-C.; Münster, A.; Zöller, A.; Wawoczny, S.; Steiger, H.; Hitzler, F.; Bruhn, C.; Schönert, S.; Potzel, W.; Chapellier, M.

    2016-07-01

    There is a common need in astroparticle experiments such as direct dark matter detection, double-beta decay without emission of neutrinos [0 ν β β ] and coherent neutrino nucleus scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Trofimov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Trofimov-Luke Effect light detector with an electric field configuration designed to improve the charge collection within the semiconductor.

  4. Cryogenic Silicon Detectors with Implanted Contacts for the Detection of Visible Photons Using the Neganov-Trofimov-Luke Effect

    NASA Astrophysics Data System (ADS)

    Defay, X.; Mondragon, E.; Willers, M.; Langenkämper, A.; Lanfranchi, J.-C.; Münster, A.; Zöller, A.; Wawoczny, S.; Steiger, H.; Hitzler, F.; Bruhn, C.; Schönert, S.; Potzel, W.; Chapellier, M.

    2016-02-01

    There is a common need in astroparticle experiments such as direct dark matter detection, double-beta decay without emission of neutrinos [0 ν β β ] and coherent neutrino nucleus scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Trofimov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Trofimov-Luke Effect light detector with an electric field configuration designed to improve the charge collection within the semiconductor.

  5. Silicon diode detectors used in radiological physics measurements. Part II: Measurement of dosimetry data for high-energy photons.

    PubMed

    Wright, A E; Gager, L D

    1977-01-01

    Initial calibration of a linear accelerator requires physics instruments to measure accurately central axis depth-dose and off-axis data, both in and out of the beam. These data for an 8- MeV unit were first measured using film, a Farmer 0.6-cm3 ion chamber, a 0.3-cm3 ion chamber, and a 0.1-cm3 silicon diode. Both small probes and film gave a high response compared to the Farmer probe, which has a uniform energy response. Measurements with the diode interfaced to an X-Y recorder required only a fraction of the time required with the chambers, minimizing error due to change in machine output, and permitted resolution of isodose lines in the penumbra. However, corrections required at points in depth due to nonuniform energy response of the unshielded diode were laborious. Construction of a partially shielded diode which duplicates the response of the Farmer probe eliminated the necessity for corrections, permitting rapid accumulation of a wide range of depth-dose and off-axis data. PMID:927387

  6. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  7. The Heavy Photon Search test detector

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; Burkert, V.; Celentano, A.; Charles, G.; Cooper, W.; Cuevas, C.; Dashyan, N.; DeVita, R.; Desnault, C.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Essig, R.; Fadeyev, V.; Field, C.; Freyberger, A.; Gershtein, Y.; Gevorgyan, N.; Girod, F.-X.; Graf, N.; Graham, M.; Griffioen, K.; Grillo, A.; Guidal, M.; Haller, G.; Hansson Adrian, P.; Herbst, R.; Holtrop, M.; Jaros, J.; Kaneta, S.; Khandaker, M.; Kubarovsky, A.; Kubarovsky, V.; Maruyama, T.; McCormick, J.; Moffeit, K.; Moreno, O.; Neal, H.; Nelson, T.; Niccolai, S.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Partridge, R.; Phillips, S. K.; Rauly, E.; Raydo, B.; Reichert, J.; Rindel, E.; Rosier, P.; Salgado, C.; Schuster, P.; Sharabian, Y.; Sokhan, D.; Stepanyan, S.; Toro, N.; Uemura, S.; Ungaro, M.; Voskanyan, H.; Walz, D.; Weinstein, L. B.; Wojtsekhowski, B.

    2015-03-01

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e- invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e- pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.

  8. Applications of passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Kyung, Richard; Park, Chan Ho

    2012-03-01

    We can postulate that dark matter are WIMPS, more specifically, Majorana particles called neutralinos floating through space. Upon neutralino-neutralino annihilation, they create a greater burst of other particles into space: these being all kinds of particles including anti-deuterons which are the indications of the existence of dark matter. For the study of the applications of passivated silicon detectors, this paper shows following procedures in two categories. Painting on little pieces of silicon (Polyimid and Boxcar Red) :Took clean paint brush and painted on Polyimid and Boxcar red samples onto little pieces of sample silicon and dried for a certain number of hours in different conditions. Cooling test : usually done in 7 cycles, cool until usually -35 degrees or -40 degrees Celsius with thermoelectric cooler, dry out, evapate the moisture in the fume hood, take pictures with the microscope and check for irregularities every 1, 4 and 7 times. The results show us how the passivated silicon will act in the real experiment--the vacuum chamber and x-rays (from the radioactive source), and different atmospheric pressures simulate what it will be like in space.

  9. A micron resolution optical scanner for characterization of silicon detectors.

    PubMed

    Shukla, R A; Dugad, S R; Garde, C S; Gopal, A V; Gupta, S K; Prabhu, S S

    2014-02-01

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper. PMID:24593348

  10. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  11. Design methodologies for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Flueckiger, Jonas; Lin, Charlie; Hochberg, Michael; Pond, James; Klein, Jackson; Ferguson, John; Cone, Chris

    2014-03-01

    This paper describes design methodologies developed for silicon photonics integrated circuits. The approach presented is inspired by methods employed in the Electronics Design Automation (EDA) community. This is complemented by well established photonic component design tools, compact model synthesis, and optical circuit modelling. A generic silicon photonics design kit, as described here, is available for download at http://www.siepic.ubc.ca/GSiP.

  12. Cascaded systems analysis of photon counting detectors

    SciTech Connect

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  13. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  14. Portable triple silicon detector telescope spectrometer for skin dosimetry

    NASA Astrophysics Data System (ADS)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  15. A complete design flow for silicon photonics

    NASA Astrophysics Data System (ADS)

    Pond, James; Cone, Chris; Chrostowski, Lukas; Klein, Jackson; Flueckiger, Jonas; Liu, Amy; McGuire, Dylan; Wang, Xu

    2014-05-01

    Broad adoption of silicon photonics technology for photonic integrated circuits requires standardized design flows that are similar to what is available for analog and mixed signal electrical circuit design. We have developed a design flow that combines mature electronic design automation (EDA) software with optical simulation software. An essential component of any design flow, whether electrical or photonic, is the ability to accurately simulate largescale circuits. This is particularly important when the behavior of the circuit is not trivially related to the individual component performance. While this is clearly the case for electronic circuits consisting of hundreds to billions of transistors, it is already becoming important in photonic circuits such as WDM transmitters, where signal cross talk needs to be considered, as well as optical cross-connect switches. In addition, optical routing to connect different components requires the introduction of additional waveguide sections, waveguide bends, and waveguide crossings, which affect the overall circuit performance. Manufacturing variability can also have dramatic circuit-level consequences that need to be simulated. Circuit simulations must rely on compact models that can accurately represent the behavior of each component, and the compact model parameters must be extracted from physical level simulation and experimental results. We show how large scale circuits can be simulated in both the time and frequency domains, including the effects of bidirectional and, where appropriate, multimode and multichannel photonic waveguides. We also show how active, passive and nonlinear individual components such as grating couplers, waveguides, splitters, filters, electro-optical modulators and detectors can be simulated using a combination of electrical and optical algorithms, and good agreement with experimental results can be obtained. We then show how parameters, with inclusion of fabrication process variations, can

  16. Operating quantum waveguide circuits with superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Natarajan, C. M.; Peruzzo, A.; Miki, S.; Sasaki, M.; Wang, Z.; Baek, B.; Nam, S.; Hadfield, R. H.; O'Brien, J. L.

    2010-05-01

    Advanced quantum information science and technology (QIST) applications place exacting demands on optical components. Quantum waveguide circuits offer a route to scalable QIST on a chip. Superconducting single-photon detectors (SSPDs) provide infrared single-photon sensitivity combined with low dark counts and picosecond timing resolution. In this study, we bring these two technologies together. Using SSPDs we observe a two-photon interference visibility of 92.3±1.0% in a silica-on-silicon waveguide directional coupler at λ =804 nm—higher than that measured with silicon detectors (89.9±0.3%). We further operated controlled-NOT gate and quantum metrology circuits with SSPDs. These demonstrations present a clear path to telecom-wavelength quantum waveguide circuits.

  17. High resistivity silicon radiation detectors

    NASA Astrophysics Data System (ADS)

    Segal, Julie Diane

    This work addresses the use of silicon detectors both for charged particles in a high energy physics application, and for electromagnetic radiation, specifically x-ray and γ-ray detectors. The second generation of a PIN diode array pixel detector integrated with full twin well CMOS was developed for high energy particle physics. A new vertical high voltage diode termination structure was developed and compared to other diode termination structures through simulations. The new structure reduced the process complexity and improved the yield and robustness to mechanical damage to the backside, allowing us to build a much larger detector with denser frontside patterning, implementing a new sparse-field read-out design. Radiation measurements from this pixel detector are presented, which represent the first integrated sparse-field read-out results ever reported. A prototype 1mm thick PIN diode array x-ray detector with a depletion voltage of 800V was simulated, designed and fabricated for protein crystallography. Using 2D simulations, an optimized 5 floating ring high voltage structure was designed and implemented. Preliminary measurements indicate that the detector can be operated successfully up to 1000V. A new cylindrical drift detector was developed for x-ray absorbtion spectroscopy. To minimize the drift time, an analytic expression for drift field and 2D simulations were used to optimize the applied surface potential for a uniform drift field. Three novel integrated transistors for first stage amplification were designed and fabricated, which show promise of working with fairly straightforward optimization. A new technique for controlling dark current due to surface generation was introduced and implemented successfully. Instead of collecting the surface current at a guard anode, surface generation is suppressed by putting n+ diffusion rings between the p+ rings, dramatically reducing the depleted oxide interface area which is the site for surface generation

  18. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  19. Electromagnetic Shower Reconstruction for theSilicon Detector

    SciTech Connect

    Meyer, N.

    2005-12-08

    This report presents a two-pass reconstruction algorithm for electromagnetic showers, based on studies with simulated photons in the highly segmented Silicon Tungsten calorimeter of the Silicon Detector concept for the International Linear Collider. It is shown that the initial reconstruction and identification of the dense shower cores allows shower separation down to 3 cm distance between two photons on the calorimeter surface. First results are shown for the subsequent collection of unassociated hits around the shower cores necessary to reconstruct complete energy deposits by individual particles.

  20. Comparison at the sub-100 fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique

    NASA Astrophysics Data System (ADS)

    Porrovecchio, G.; Šmid, M.; López, M.; Hofer, H.; Rodiek, B.; Kück, S.

    2016-08-01

    A comparison down to sub-100-fW optical power level was carried out between a low-noise Silicon photodiode and a low optical flux measurement facility based on a double attenuator technique. The comparison was carried out via a silicon single-photon avalanche diode (Si-SPAD), which acted as transfer standard. The measurements were performed at a wavelength of 770 nm using an attenuated laser as a radiation source at optical power levels between approximately 86 fW and approximately 1325 fW, corresponding to approximately 330 000 photons s‑1 and approximately 5.2  ×  106 photons s‑1, respectively. The mean relative deviation of the detection efficiencies of the Si-SPAD, determined by the Si-photodiode and the low optical flux measurement facility, i.e. between two completely independent traceability routes, was  <  0.2%, thus well within the combined standard uncertainty of the two measurements. To our knowledge, this is the first comparison for the detection efficiency of a single photon detector using a direct optical flux measurement by a conventional Si-photodiode at such low power levels.

  1. Construction of the CDF silicon vertex detector

    SciTech Connect

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S. ); Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T. ); Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.

  2. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad. PMID:27367099

  3. Emerging heterogeneous integrated photonic platforms on silicon

    NASA Astrophysics Data System (ADS)

    Fathpour, Sasan

    2015-05-01

    Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI) waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths) and feasibility of electrically-injected lasers (at least at room temperature). More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III-V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for different purposes with

  4. Silicon photonics at the University of Surrey

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Gwilliam, R. M.; Wright, N. M.; Thomson, D. J.; Timotijevic, B. D.; Litvinenko, K. L.; Headley, W. R.; Smith, A. J.; Knights, A. P.; Jessop, P. E.; Tarr, N. G.; Deane, J. H. B.

    2009-05-01

    Silicon Photonics is a field that has seen rapid growth and dramatic changes in the past 5 years. According to the MIT Communications Technology Roadmap [1], which aims to establish a common architecture platform across market sectors with a potential $20B in annual revenue, silicon photonics is among the top ten emerging technologies. This has in part been a consequence of the recent involvement of large semiconductor companies around the world, particularly in the USA. Significant investment in the technology has also followed in Japan, Korea, and in the European Union. Low cost is a key driver, so it is imperative to pursue technologies that are mass-producible. Therefore, Silicon Photonics continues to progress at a rapid rate. This paper will describe some of the work of the Silicon Photonics Group at the University of Surrey in the UK. The work is concerned with the sequential development of a series of components for silicon photonic optical circuits, and some of the components are discussed here. In particular the paper will present work on optical waveguides, optical filters, modulators, and lifetime modification of carriers generated by two photon absorption, to improve the performance of Raman amplifiers in silicon.

  5. Analog optical computing primitives in silicon photonics

    NASA Astrophysics Data System (ADS)

    Jiang, Yunshan; DeVore, Peter T. S.; Jalali, Bahram

    2016-03-01

    Optical computing accelerators may help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  6. Novel photon-counting detectors for free-space communication

    NASA Astrophysics Data System (ADS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-03-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of three types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 μm to 25 μm doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  7. Deposited silicon photonics: Optical interconnect devices in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Preston, Kyle Jonathan

    Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 kilometers over fiber to centimeter-length on-chip waveguides. Many silicon photonic building blocks have been demonstrated to date, but critical work remains to determine the best approaches for integrating together silicon photonics with microelectronics. In this thesis, I explore a novel method for integration of silicon photonics on the CMOS platform by using a deposited material: polycrystalline silicon. I will show the first demonstrations of electrically-active optical filters, modulators, and photodetectors in this material. In principle, this material platform would allow for the integration of silicon photonic devices and systems on top of any substrate, including complex CMOS and memory chips or even glass and plastic substrates. In Chapter 1, I introduce the state-of-the-art in silicon photonics, describe several integration schemes under development, and introduce the idea of using deposited materials. In Chapter 2, I demonstrate the use of polysilicon to make integrated microring resonators, and show the integration of different silicon materials together. Chapter 3 discusses the use of polysilicon as both an optical waveguiding layer and an electrode material in slot waveguides for the application of light emitters. Chapter 4 demonstrates the use of a pump-probe experiment to measure the free carrier lifetime in the material and demonstrate all-optical modulation. In Chapter 5, I demonstrate the first high-speed integrated electro-optic modulator in polysilicon, a necessary device for optical transmitters. In Chapter 6, I show how defects inside the same material enable integrated photodetectors at near-infrared telecommunication wavelengths. Chapter 7 shows initial results in adapting the material processing for lower temperatures, necessary for integration

  8. Compound FDTD method for silicon photonics

    NASA Astrophysics Data System (ADS)

    Olyaee, Abbas; Hamadani, Farzad T.

    2011-09-01

    Attempt to manufacture photonics devices on silicon requires theoretical and numerical prediction. This essay presents Compound FDTD (C-FDTD) method for comprehensive simulation of silicon photonics devices. Although this method is comprehensive, it maintains conventional Yee algorithm. The method involves variation of refractive index due to nonlinear effects. With the help of this simulator, refractive index change due to free-carriers created through two photon absorption and Kerr effect in silicon waveguide is considered. Results indicate how to choose pump pulse shape to optimum operation of active photonics devices. Also conductivity variation of Si waveguide due to change in free-carrier density is studied. By considering variations in conductivity profile, we are able to design better schemes for sweep free carriers away with reverse bias or nonlinear photovoltaic effect for fast devices and Raman amplifiers.

  9. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  10. Thermoelectric nanowire single-photon detector

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Astghik A.; Kuzanyan, Armen S.

    2013-05-01

    We have collected and analyzed the values of thermoelectric parameters of thermoelectric materials and on this basis calculated the energy resolution and photon count rate of the Thermoelectric Nanowire Single-Photon Detector (TNSPD). It is concluded that the TNSPD can achieve higher specifications as compared with the best single-photon detectors. The lanthanum-cerium hexaboride sensors of TNSPD are expected to reach more than gigahertz count rates and will have a sensitivity of 0.1 eV. It means that the device is sensitive enough to register and spectrally characterize not only X-ray and UV, but also optical and infrared photons, as its major competitors, the superconducting and semiconducting single-photon detectors.

  11. SIS Detectors for Terahertz Photon Counting System

    NASA Astrophysics Data System (ADS)

    Ezawa, Hajime; Matsuo, Hiroshi; Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo

    2016-07-01

    An Intensity interferometer with photon counting detector is a candidate to realize a THz interferometer for astronomical observations. We have demonstrated that synthesis imaging is possible even with intensity interferometers. An SIS junction (or STJ) with low leakage current of 1 pA is a suitable device for photon counting detectors. Readout circuit utilizing FETs with low gate leakage, low gate capacitance, and fast response is discussed.

  12. Utilization of thermal effects for silicon photonics

    NASA Astrophysics Data System (ADS)

    Dai, Daoxin; Yu, Longhai; Chen, Sitao; Wu, Hao

    2015-08-01

    Thermal effect plays a key role and has been utilized for various photonic devices. For silicon photonics, the thermal effect is usually important because of the large thermo-optical coefficient of silicon material. This paper gives a review for the utilization of thermal effects for silicon photonics. First, the thermal effect is very beneficial to realize energy-efficient silicon photonic devices with tunability/switchability (including switches, variable optical attenuators, etc). Traditionally metal micro-heater sitting on a buried silicon-on-insulator (SOI) nanowire is used to introduce a phase shift for thermal tunability by injecting a electrical current. An effective way to improve the energy-efficiency of thermal tuning is reducing the volume of the optical waveguide as well as the micro-heater. Our recent work on silicon nanophotonic waveguides with novel nano-heaters based on metal wires as well as graphene ribbons will be summarized. Second, the thermal resistance effect of the metal strip on a hybrid plasmonic waveguide structure can be utilized to realize an ultra-small on-chip photodetector available for an ultra-broad band of wavelength, which will also be discussed.

  13. Photonic Crystal Sensors Based on Porous Silicon

    PubMed Central

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  14. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  15. Status and perspectives of gaseous photon detectors

    NASA Astrophysics Data System (ADS)

    Di Mauro, Antonio

    2014-12-01

    This article aims at reviewing the state of the art of gaseous photon detectors for RICH applications. Emphasis will be put on THGEM based devices which represent the most advanced development among the various micro-pattern gaseous photon sensors proposed for Cherenkov imaging in very high rate environments.

  16. Silicon as an unconventional detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  17. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  18. Charging effects in passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.

    1995-02-01

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.

  19. Analog optical computing primitives in silicon photonics.

    PubMed

    Jiang, Yunshan; DeVore, Peter T S; Jalali, Bahram

    2016-03-15

    Optical computing accelerators help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation and the recovery of a signal in the presence of multiplicative distortion. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide. PMID:26977687

  20. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  1. EDITORIAL: Special issue on silicon photonics

    NASA Astrophysics Data System (ADS)

    Reed, Graham; Paniccia, Mario; Wada, Kazumi; Mashanovich, Goran

    2008-06-01

    The technology now known as silicon photonics can be traced back to the pioneering work of Soref in the mid-1980s (see, for example, Soref R A and Lorenzo J P 1985 Electron. Lett. 21 953). However, the nature of the research conducted today, whilst it builds upon that early work, is unrecognizable in terms of technology metrics such as device efficiency, device data rate and device dimensions, and even in targeted applications areas. Today silicon photonics is still evolving, and is enjoying a period of unprecedented attention in terms of research focus. This has resulted in orders-of-magnitude improvement in device performance over the last few years to levels many thought were impossible. However, despite the existence of the research field for more than two decades, silicon is still regarded as a 'new' optical material, one that is being manipulated and modified to satisfy the requirements of a range of applications. This is somewhat ironic since silicon is one of the best known and most thoroughly studied materials, thanks to the electronics industry that has made silicon its material of choice. The principal reasons for the lack of study of this 'late developer' are that (i) silicon is an indirect bandgap material and (ii) it does not exhibit a linear electro-optic (Pockels) effect. The former condition means that it is difficult to make a laser in silicon based on the intrinsic performance of the material, and consequently, in recent years, researchers have attempted to modify the material to artificially engineer the conditions for lasing to be viable (see, for example, the review text, Jalali B et al 2008 Silicon Lasers in Silicon Photonics: The State of the Art ed G T Reed (New York: Wiley)). The latter condition means that optical modulators are intrinsically less efficient in silicon than in some other materials, particularly when targeting the popular telecommunications wavelengths around 1.55 μm. Therefore researchers have sought alternative

  2. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  3. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  4. Silicon radiation detectors: materials and applications

    SciTech Connect

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

  5. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  6. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  7. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  8. High speed analog-to-digital conversion with silicon photonics

    NASA Astrophysics Data System (ADS)

    Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.

    2009-02-01

    Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.

  9. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing.

    PubMed

    Calkins, Brice; Mennea, Paolo L; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Lamas-Linares, Antia; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo

    2013-09-23

    The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications. PMID:24104153

  10. Deep UV photon-counting detectors and applications

    NASA Astrophysics Data System (ADS)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua; Geboff, Adam; Soloviev, Stanislav; Vert, Alexey; Sandvik, Peter

    2009-05-01

    Photon counting detectors are used in many diverse applications and are well-suited to situations in which a weak signal is present in a relatively benign background. Examples of successful system applications of photon-counting detectors include ladar, bio-aerosol detection, communication, and low-light imaging. A variety of practical photon-counting detectors have been developed employing materials and technologies that cover the waveband from deep ultraviolet (UV) to the near-infrared. However, until recently, photoemissive detectors (photomultiplier tubes (PMTs) and their variants) were the only viable technology for photon-counting in the deep UV region of the spectrum. While PMTs exhibit extremely low dark count rates and large active area, they have other characteristics which make them unsuitable for certain applications. The characteristics and performance limitations of PMTs that prevent their use in some applications include bandwidth limitations, high bias voltages, sensitivity to magnetic fields, low quantum efficiency, large volume and high cost. Recently, DARPA has initiated a program called Deep UV Avalanche Photodiode (DUVAP) to develop semiconductor alternatives to PMTs for use in the deep UV. The higher quantum efficiency of Geiger-mode avalanche photodiode (GM-APD) detectors and the ability to fabricate arrays of individually-addressable detectors will open up new applications in the deep UV. In this paper, we discuss the system design trades that must be considered in order to successfully replace low-dark count, large-area PMTs with high-dark count, small-area GM-APD detectors. We also discuss applications that will be enabled by the successful development of deep UV GM-APD arrays, and we present preliminary performance data for recently fabricated silicon carbide GM-APD arrays.

  11. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  12. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  13. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  14. Phase coherence length in silicon photonic platform.

    PubMed

    Yang, Yisu; Ma, Yangjin; Guan, Hang; Liu, Yang; Danziger, Steven; Ocheltree, Stewart; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2015-06-29

    We report for the first time two typical phase coherence lengths in highly confined silicon waveguides fabricated in a standard CMOS foundry's multi-project-wafer shuttle run in the 220nm silicon-on-insulator wafer with 248nm lithography. By measuring the random phase fluctuations of 800 on-chip silicon Mach-Zehnder interferometers across the wafer, we extracted, with statistical significance, the coherence lengths to be 4.17 ± 0.42 mm and 1.61 ± 0.12 mm for single mode strip waveguide and rib waveguide, respectively. We present a new experimental method to quantify the phase coherence length. The theory model is verified by both our and others' experiments. Coherence length is expected to become one key parameter of the fabrication non-uniformity to guide the design of silicon photonics. PMID:26191700

  15. Upgrade of the Belle Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Belle SVD Collaboration

    2010-11-01

    The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.

  16. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  17. Detectors for dark photon search with MESA

    SciTech Connect

    Molitor, Matthias

    2013-11-07

    The predictions of the standard model for the anomalous magnetic momentum of the muon, deviates from the direct measurements by 3,6 σ. A gauge boson of a new U(1)-Interaction, the so called dark photon, is predicted in many expansions of the standard model and could explain those deviations. In order to search for such a dark photon, a dedicated experiment is scheduled at the planned low energy accelerator MESA in Mainz. In order to detect dark photons this experiment needs a high resolution detector with a suitable acceptance.

  18. Status of the CDF silicon detector

    SciTech Connect

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  19. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  20. Hybrid laser integration for silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu

    Silicon photonics has attracted extensive attention in both academia and industry in recent years, as an enabling technology to address the exponentially increasing demands for communication bandwidth. It brings state-of-the-art complementary metal-oxide-semiconductor (CMOS) processing technology to the field of photonic integration. The high yield and uniformity of silicon devices make it possible to build complex photonic systems-on-chip in large production volumes. Cutting-edge device performance has been demonstrated on this platform, including high-speed modulators, photodetectors, and passive devices such as the Y-junction, waveguide crossing, and arrayed waveguide gratings. As the device library quickly matures, an integrated laser source for a transmitter remains missing from the design kit. I demonstrated hybrid external cavity lasers by integrating reflective optical semiconductor amplifiers and silicon photonics chips. The gain chip and silicon chip can be designed and optimized independently, which is a significant advantage compared to bonding an III-V film on top of the silicon chip. Advanced optoelectronics packaging processes can be leveraged for chip alignment. Tunable C-Band (near 1550 nm) lasers with 10 mW on-chip power and less than 220 kHz bandwidth are demonstrated. O-Band lasers (operating near 1310 nm) as well as successful data transmission at 10 Gb/s and 40 Gb/s using the hybrid laser as the light source are also demonstrated. I designed a single cavity, multi wavelength laser by utilizing a quantum dot SOA, Sagnac loop and micro-ring based silicon photonics half cavity. Four lasing peaks with less than 3 dB power non-uniformity were measured, as well as 4 x 10 Gb/s error free data transmission. In addition to my main focus on RSOA/Silicon external cavity lasers, I propose and demonstrate a novel germanium-assisted grating coupler with low loss on-and-off chip fiber coupling. A coupling efficiency of 76% at 1.55 microm and 40 nm 1 d

  1. Passive silicon photonic devices for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Peng, Jizong; Liu, Boyu; Pan, Ting; Zhou, Huanying; Mao, Junming; Yang, Yuxing; Qiu, Ciyuan; Su, Yikai

    2016-08-01

    We present our recent progress on microwave signal processing (MSP) using on-chip passive silicon photonic devices, including tunable microwave notch filtering/millimeter-wave (MMW) signal generation based on self-coupled micro-resonators (SCMRs), and tunable radio-frequency (RF) phase shifting implemented by a micro-disk resonator (MDR). These schemes can provide improved flexibility and performances of MSP. The experimental results are in good agreement with theoretical predictions, which validate the effectiveness of the proposed schemes.

  2. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  3. Optical Ranicon detectors for photon counting imaging.

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Crocker, Jim; Paresce, Francesco; Rafal, Marc

    1988-08-01

    The design and development of two detectors, known as Ranicon and advanced Ranicon, for optical photon counting imaging on ground-based telescopes are discussed. The proximity focusing, microchannel-plate stack, resistive anode, and signal processing characteristics are described. The theory behind the overall resolution of the Ranicon system is reviewed. Resolution measurements for the instruments are reported and discussed.

  4. Performance characteristics and radiation damage results from the Fermilab E706 silicon microstrip detector system

    NASA Astrophysics Data System (ADS)

    Engels, E.; Mani, S.; Orris, D.; Shepard, P. F.; Weerasundara, P. D.; Choudhary, B. C.; Joshi, U.; Kapoor, V.; Shivpuri, R.; Baker, W.; Berg, D.; Carey, D.; Johnstone, C.; Nelson, C.; Bromberg, C.; Brown, D.; Huston, J.; Miller, R.; Nguyen, A.; Benson, R.; Lukens, P.; Ruddick, K.; Alverson, G.; Faissler, W.; Garelick, D.; Glaubman, M.; Kourbanis, I.; Lirakis, C.; Pothier, E.; Sinanidis, A.; Wu, G.-H.; Yasuda, T.; Yosef, C.; Easo, S.; Hartman, K.; Oh, B. Y.; Toothacker, W.; Whitmore, J.; Ballocchi, G.; Debarbaro, L.; Desoi, W.; Fanourakis, G.; Ferbel, T.; Ginther, G.; Gutierrez, P.; Lanaro, A.; Lobkowicz, F.; Mansour, J.; Pedeville, G.; Prebys, E.; Skow, D.; Slattery, P.; Varelas, N.; Zielinski, M.

    1989-07-01

    A charged particle spectrometer containing a 7120-channel silicon microstrip detector system, one component of Fermilab experiment E706 to study direct photon production in hadron-hadron collisions, was utilized in a run in which 6 million events were recorded. We describe the silicon system, provide early results of track and vertex reconstruction, and present data on the radiation damage to the silicon wafers resulting from the narrow high intensity beam.

  5. Silicon Photonic Devices and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Ying

    Silicon photonics is the study and application of photonic systems, which use silicon as an optical medium. Data is transferred in the systems by optical rays. This technology is seen as the substitutions of electric computer chips in the future and the means to keep tack on the Moore's law. Cavity optomechanics is a rising field of silicon photonics. It focuses on the interaction between light and mechanical objects. Although it is currently at its early stage of growth, this field has attracted rising attention. Here, we present highly sensitive optical detection of acceleration using an optomechanical accelerometer. The core part of this accelerometer is a slot-type photonic crystal cavity with strong optomechanical interactions. We first discuss theoretically the optomechanical coupling in the air-slot mode-gap photonic crystal cavity. The dispersive coupling gom is numerically calculated. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters. Experimental results also demonstrated that the cavity has a large optomechanical coupling rate. The optically induced spring effect, damping and amplification of the mechanical modes are observed with measurements both in air and in vacuum. Then, we propose and demonstrate our optomechanical accelerometer. It can operate with a resolution of 730 ng/Hz1/2 (or equivalently 40.1 aN/Hz1/2) and with a transduction bandwidth of ≈ 85 kHz. We also demonstrate an integrated photonics device, an on-chip spectroscopy, in the last part of this thesis. This new type of on-chip microspectrometer is based on the Vernier effect of two cascaded micro-ring cavities. It can measure optical spectrum with a bandwidth of 74nm and a resolution of 0.22 nm in a small footprint of 1.5 mm2.

  6. Multifunctional optomechanical dynamics in integrated silicon photonics

    NASA Astrophysics Data System (ADS)

    Li, Huan

    Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. The emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces began to play significant roles. The interactions between light and matter in nanoscale has been the focus of almost a decade of active theoretical and experimental investigations, which are still ongoing and constitute a whole new burgeoning branch of nanotechnology, nano-optomechanical systems (NOMS). In such context, the general goal of my research is to generate, enhance and control optical forces on silicon photonics platforms, with a focus on developing new functionalities and demonstrating novel effects, which will potentially lead to a new class of silicon photonic devices for a broad spectrum of applications. In this dissertation, the concept of optical force and the general background of the NOMS research area are first introduced. The general goal of the silicon photonics research area and the research presented in this dissertation is then described. Subsequently, the fundamental theory for optical force is summarized. The different methods to calculate optical forces are enumerated and briefly reviewed. Integrated hybrid plasmonic waveguide (HPWG) devices have been successfully fabricated and the enhanced optical forces experimentally measured for the first time. All-optical amplification of RF signals has been successfully demonstrated. The optical force generated by one laser is used to mechanically change the optical path and hence the output power of another laser. In addition, completely optically tunable mechanical nonlinear behavior has been demonstrated for the first time and systematically studied. Optomechanical photon shuttling between photonic cavities has been demonstrated with a "photon see-saw" device. This photon see-saw is a novel multicavity optomechanical device which consists of two photonic crystal

  7. International Workshop on New Photon-detectors

    NASA Astrophysics Data System (ADS)

    The third edition of the « International Workshop on New Photon-Detectors (PhotoDet 2012) » will be held at the Laboratory of Linear Accelerator (LAL), Orsay, France, from 13th to 15th of June, 2012. The workshop is devoted to recent developments in photo-sensors and their applications in different fields like high energy physics,nuclear physics, cosmic-ray physics, astronomy, cosmology and medical sciences. The Geiger-mode multi-pixel photon detectors and their related front-end and read-out electronics represent the main targets of the workshop. Topics related to Hybrid-PMT, APD, MCP-PMT and other new photon sensors are also covered.

  8. Picosecond response of a photon drag detector

    SciTech Connect

    Kimmitt, M.F.

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  9. Experimental studies of radiation damage of silicon detectors. Internal report

    SciTech Connect

    Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A.; Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A.; Biggeri, U.; Borchi, E.; Bruzzi, M. |; Li, Z.; Kraner, H.W.

    1994-02-01

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences.

  10. Silicon Photonic Devices for Optical Computing

    NASA Astrophysics Data System (ADS)

    Qiu, Ciyuan

    The requirement for high performance computer will be significantly increased by the fast development of the internet. However, traditional CMOS computer will meet its bottleneck due to the miniaturization problem. Optical computer comes to be the leading candidate to solve this issue. Silicon photonic technology has tremendous developments and thus it becomes an ideal platform to implement optical computing system. In Chapter 1, I will first show the development of the optical computing and silicon photonic technology. I will also discuss some key nonlinear optical effects of silicon photonic devices. Based on the current silicon photonic technology, I will then make a brief introduction on the optical direct logic for the 2D optical computing and spatial light modulator for the 3D optical computing, both of which will be discussed in detail in the followed chapters. In Chapter 2, I will discuss micro-ring resonator which is the key element of optical directed logic circuit discussed in Chapter 3. I will give the analytical model based on photonic circuit to explain the performance of the micro-ring resonator. The group delay and the loss of the micro-ring resonator will be analyzed. And I will also show the active tuning of the transmission spectrum by using the nonlinear effect of silicon. In Chapter 3, I will show a revised optical direct-logic (DL) circuit for 2D optical computer that is well suited for complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics. It can significantly reduce the latency compared with traditional CMOS computers. For proof of concept, I demonstrated a scalable and reconfigurable optical directed-logic architecture consisting of a regular array of micro-ring resonator based optical on-off switches. The switches are controlled by electrical input logic signals through embedded p-i-n junctions. The circuit can be reconfigured to perform any 2x2 combinational logic operations by thermally tuning the operation modes of

  11. Dow Corning photonics: the silicon advantage in automotive photonics

    NASA Astrophysics Data System (ADS)

    Clapp, Terry V.; Paquet, Rene; Norris, Ann; Pettersen, Babette

    2005-02-01

    The Automotive Market offers several opportunities for Dow Corning to leverage the power of silicon-based materials. Dow Corning Photonics Solutions has a number of developments that may be attractive for the emergent photonics needs in automobiles, building on 40 years of experience as a leading Automotive supplier with a strong foundation of expertise and an extensive product offering- from encapsulents and highly reliable resins, adhesives, insulating materials and other products, ensuring that the advantage of silicones are already well-embedded in Automotive systems, modules and components. The recent development of LED encapsulants of exceptional clarity and stability has extended the potential for Dow Corning"s strength in Photonics to be deployed "in-car". Demonstration of board-level and back-plane solutions utilising siloxane waveguide technology offers new opportunities for systems designers to integrate optical components at low cost on diverse substrates. Coupled with work on simple waveguide technology for sensors and data communications applications this suite of materials and technology offerings is very potent in this sector. The harsh environment under hood and the very extreme thermal range that materials must sustain in vehicles due to both their engine and the climate is an applications specification that defines the siloxane advantage. For these passive optics applications the siloxanes very high clarity at the data-communications wavelengths coupled with extraordinary stability offers significant design advantage. The future development of Head-Up-Displays for instrumentation and data display will offer yet more opportunities to the siloxanes in Automotive Photonics.

  12. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-01

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current. PMID:22273682

  13. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  14. Silicon Detector Letter of Intent

    SciTech Connect

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  15. Development of Ultra-High Sensivity Silicon Carbide Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Xin, Xiao-Bin; Alexandrov, Petre; Stahle, Carl M.; Guan, Bing; Zhao, Jian H.

    2005-01-01

    A variety of silicon carbide (SiC) detectors have been developed to study the sensitivity of SiC ultraviolet (UV) detectors, including Schottky photodiodes, p-i-n photodiodes, avalanche photodiodes (APDs), and single photon-counting APDs. Due to the very wide bandgap and thus extremely low leakage current, Sic photo-detectors showed excellent sensitivity. The specific detectivity, D*, of SiC photodiodes are orders of magnitude higher than that of their competitors, such as Si photodiodes, and comparable to the D* of photomultiplier tubes (PMTs). To pursue the ultimate detection sensitivity, SiC APDs and single photon-counting avalanche diodes (SPADs) have also been fabricated. By operating the SiC APDs at a linear mode gain over 10(exp 6), SPADs in UV have been demonstrated. SiC UV detectors have great potential for use in solar blind UV detection and biosensing. Moreover, SiC detectors have excellent radiation hardness and high temperature tolerance which makes them ideal for extreme environment applications such as in space or on the surface of the Moon or Mars.

  16. Bright Single Photon Emitter in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  17. Detector for high-energy photon backscatter

    NASA Astrophysics Data System (ADS)

    Silver, Michael D.; Erker, Joseph W.; Duncan, Michael Z.; Hartford, Thomas J.; Sivers, E. A.; Hopkinson, James F.

    1993-12-01

    High energy photon backscatter uses pair production to probe deep beneath surfaces with single side accessibility or to image thick, radiographically opaque objects. At the higher photon energies needed to penetrate thick and/or highly attenuating objects, Compton backscatter becomes strongly forward peaked with relatively little backscatter flux. Furthermore, the downward energy shift of the backscattered photon makes it more susceptible to attenuation on its outbound path. Above 1.022 MeV, pair production is possible; at about 10 MeV, pari production crosses over Compton scatter as the dominant x-ray interaction mechanism. The backscattered photons can be hard x rays from the bremsstrahlung of the electrons and positrons or 0.511 MeV photons from the annihilation of the positron. Monte Carlo computer simulations of such a backscatter system were done to characterize the output signals and to optimize a high energy detector design. This paper touches on the physics of high energy backscatter imaging and describes at some length the detector design for tomographic and radiographic imaging.

  18. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  19. Silicon technologies for arrays of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Gulinatti, Angelo; Ceccarelli, Francesco; Rech, Ivan; Ghioni, Massimo

    2016-05-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/nearinfrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure.

  20. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.

    1996-02-01

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.

  1. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  2. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  3. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  4. Overview of Silicon Detectors in STAR: Present and Future

    SciTech Connect

    Kabana, Sonia; Collaboration: The SVT, SSD and HFT detector groups of the STAR experiment at RHIC

    2011-12-13

    The STAR experiment at RHIC aims to study the QCD phase transition and the origin of the spin of the proton. Its main detector for charged particle track reconstruction is a Time Projection Chamber, which has been supplemented with a silicon detector involving two different technologies, in particular double-sided silicon strip and silicon drift technology. STAR is preparing now for a new Silicon Vertex Detector, using double-sided silicon strip, single-sided silicon strip-pads, and CMOS monolithic active pixel sensors technology, planned to take data in 2014. We give an overview of the design, calibration and performances of the silicon detectors used by the STAR experiment in the past and the expected performances of the future silicon detector upgrade.

  5. A silicon strip detector dose magnifying glass for IMRT dosimetry

    SciTech Connect

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-02-15

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1

  6. Commissioning and operation of the CDF silicon detector

    SciTech Connect

    S. D'Auria

    2002-01-18

    The CDF-II silicon detector has been partially commissioned and used for taking preliminary physics data. This paper is a report on commissioning and initial operations of the 5.8m{sup 2} silicon detector. This experience can be useful to the large silicon systems that are presently under construction.

  7. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  8. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  9. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  10. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-10-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined.

  11. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  12. Silicon Photonics: The System on Chip Perspective

    NASA Astrophysics Data System (ADS)

    Scandurra, Alberto

    This chapter describes possible applications of silicon photonics to the System on Chip (SoC) domain. Systems on Chip (SoCs) are complex systems containing billions of transistors integrated in a unique silicon-chip, implementing even complex functionalities by means of a variety of modules communicating with the system memories and/or between them through a proper communication system. The higher and higher integration density is becoming such that many issues arise when a SoC has to be integrated, and electrical limits of interconnect wires are a limiting factor for performance. According to this scenario, a new technology is required for the on-chip interconnect, in order to overcome current physical and performance issues; one possible solution is the optical interconnect, exploiting the many benefits of light to transport information across the chip. From an industrial point of view it is fundamental that such a new technology be fully CMOS compatible, in order to be able to continue to use current SoC design methodologies as well as present manufacturing equipment for the whole electronic part of the chip. Many semiconductor industries are today investigating such a novel field and a number of projects are currently running in order to demonstrate the feasibility of such a revolutionary on-chip communication system relying on both CMOS technology and photonics.

  13. Silicon Detectors-Tools for Discovery in Particle Physics

    SciTech Connect

    Krammer, Manfred

    2009-07-07

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m{sup 2} of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  14. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    NASA Astrophysics Data System (ADS)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  15. Optimizing timing performance of silicon photomultiplier-based scintillation detectors

    PubMed Central

    Yeom, Jung Yeol; Vinke, Ruud

    2013-01-01

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872

  16. Spectroscopy-on-chip applications of silicon photonics

    NASA Astrophysics Data System (ADS)

    Baets, Roel; Subramanian, Ananth Z.; Dhakal, Ashim; Selvaraja, Shankar K.; Komorowska, Katarzyna; Peyskens, Frédéric; Ryckeboer, Eva; Yebo, Nebiyu; Roelkens, Gunther; Le Thomas, Nicolas

    2013-03-01

    In recent years silicon photonics has become a mature technology enabling the integration of a variety of optical and optoelectronic functions by means of advanced CMOS technology. While most efforts in this field have gone to telecom and datacom/interconnect applications, there is a rapidly growing interest in using the same technology for sensing applications, ranging from refractive index sensing to spectroscopic sensing. In this paper the prospect of silicon photonics for absorption, fluorescence and Raman spectroscopy on-a-chip will be discussed. To allow spectroscopy in the visible and near infrared the silicon photonics platform is extended with silicon nitride waveguides.

  17. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  18. An integrated Micromegas UV-photon detector

    NASA Astrophysics Data System (ADS)

    Melai, Joost; Lyashenko, Alexey; Breskin, Amos; van der Graaf, Harry; Timmermans, Jan; Visschers, Jan; Salm, Cora; Schmitz, Jurriaan

    2011-05-01

    Preliminary results of a photon detector combining a Micromegas-like multiplier coated with a UV-sensitive CsI photocathode are described. The multiplier is made in a CMOS compatible InGrid technology, which allows to postprocess it directly on the surface of an imaging IC. This method is aimed at building light-sensitive imaging detectors where all elements are monolithically integrated. We show that the CsI photocathode deposited in the InGrid mesh does not alter the device performance. Maximum gains of ˜6000 were reached in a single-grid element operated in Ar/CH4, with a 2% ion backflow fraction returning to the photocathode.

  19. Neutron spectrometer for ITER using silicon detectors

    SciTech Connect

    Conroy, Sean W.; Weiszflog, Matthias; Andersson-Sunden, Erik; Ericsson, Goran; Gatu-Johnson, Maria; Hellesen, Carl; Ronchi, Emanuel; Sjostrand, Henrik

    2008-10-15

    High resolution neutron spectrometers provide information about plasma parameters at existing fusion experiments. Such a system may also be employed at ITER. Proton recoil telescopes have classically been used to detect neutrons with good energy resolution but poor efficiency. Using annular silicon detectors, it is possible to greatly increase the solid angle coverage and hence improve efficiency. Based on a simulation (MCNPX) study, the scaling of energy resolution, efficiency, and time to determine an ion temperature to 10% accuracy on foil thickness and detector location is shown. The latter quantity is used to determine the optimum foil thickness and detector geometry for specific plasma temperatures. For a 20 keV deuterium-tritium (DT) plasma, 5.3% resolution with efficiency of 2.9x10{sup -4} n cm{sup 2} is attainable using the available detectors. This gives a temperature measurement with 10% accuracy in 1.1 ms for a neutron flux of 2x10{sup 9} n cm{sup -2}. Multiple detectors can be used to further increase the efficiency if needed. A system of this kind could be tested in a future DT campaign at, for example, JET.

  20. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  1. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  2. Operational experience with the CDF Run II Silicon Detector

    SciTech Connect

    Mondragon, Miguel N.; /Fermilab

    2010-01-01

    The CDF Run II Silicon Detector is the largest operating silicon detector in High Energy Physics. Its 722,000 channels spread over 7 m{sup 2} of silicon micro-strip sensors allow precision tracking and vertexing. The CDF silicon detector played a critical role in the discovery of B{sub s} mixing and is used extensively for the current Higgs Boson searches. Over the last 7 years, the detector efficiency has remained stable at 95% after the Run II commissioning period. The infrastructure (cooling, power supplies) problems dealt with are discussed.

  3. The CDF Run IIb Silicon Detector

    SciTech Connect

    M. Aoki; N. Bacchetta; S. Behari et al.

    2004-02-25

    Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {micro}m CMOS technology. Single sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.

  4. Memory effect in silicon time-gated single-photon avalanche diodes

    SciTech Connect

    Dalla Mora, A.; Contini, D. Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  5. Cadmium zinc telluride detector for low photon energy applications

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Wook; Wang, Kai; Reznic, Alla; Karim, Karim S.

    2010-04-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a polycrystalline radiation detector that has been investigated over the years for a variety of applications including Constellation X-ray space mission [1] and direct-conversion medical imaging such as digital mammography [2]. Due to its high conversion gain and low electron-hole pair creation energy (~4.43 eV) [3], it has found use in high end, photon counting medical imaging applications including positron emission tomography (PET), computed tomography (CT) and single photon emission computed tomography (SPECT). However, its potential in low photon energy applications has not been fully explored. In this work, we explore the capacity of the CZT material to count low photon energies (6 keV - 20 keV). These energies are of direct relevance to applications in gamma ray breast brachytheraphy and mammography, X-ray protein crystallography, X-ray mammography and mammography tomosynthesis. We also present a design that integrates the CZT direct conversion detector with an inhouse fabricated amorphous silicon (a-Si:H) thin film transistor (TFT) passive pixel sensor (PPS) array. A CZT photoconductor (2 cm x 2 cm size, 5-mm-thick) prepared by the traveling heat method (THM) from RedlenTM is characterized. The current-voltage characteristics reveal a resistivity of 3.3 x 1011 Ω•cm and a steady state dark current in the range of nA. Photocurrent transients under different biases and illumination pulses are studied to investigate photogeneration and the charge trapping process. It is found that charge trapping plays a more significant role in transient behavior at low biases and low frequency.

  6. Development of the ORRUBA Silicon Detector Array

    SciTech Connect

    Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, M. S.; Jones, K. L.; Kapler, R.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Thomas, J. S.

    2009-01-01

    High quality radioactive beams have recently made possible the measurement of (d,p) reactions on unstable nuclei in inverse kinematics, which can yield information on the development of single-neutron structure away from stability, and are of astrophysical interest due to the proximity to suggested r-process paths. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new high solid-angular coverage array, composed of two rings of silicon detectors, optimized for measuring (d,p) reactions. A partial implementation has been used to measure (d,p) reactions on nuclei around the N = 82 shell closure.

  7. Beta ray spectroscopy based on a plastic scintillation detector/silicon surface barrier detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Hirning, C. R.; Yuen, P.; Aikens, M.

    1994-01-01

    Beta radiation is now recognized as a significant radiation safety problem and several international conferences have recently been devoted to the problems of mixed field beta/photon dosimetry. Conventional dosimetry applies algorithms to thermoluminescence dosimetry (TLD) multi-element badges which attempt to extract dose information based on the comparison of TL signals from ``thick/thin'' and/or ``bare/filtered'' elements. These may be grossly innacurate due to inadequate or non-existant knowledge of the energy spectrum of both the beta radiation and the accompanying photon field, as well as other factors. In this paper, we discuss the operation of a beta-ray energy spectrometer based on a two element, E × dE detector telescope intended to support dose algorithms with beta spectral information. Beta energies are measured via a 5 cm diameter × 2 cm thick BC-404 plastic scintillator preceded by a single, 100 μm thick, totally depleted, silicon dE detector. Photon events in the E detector are rejected by requiring a coincidence between the E and dE detectors. Photon rejection ratios vary from 225:1 at 1.25 MeV (60Co) to 360:1 at 0.36 MeV (133Ba). The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of approximately 125 keV to an upper limit of 3.5 MeV. This energy range spans the great majority of beta-emitting radionuclides in nuclear facilities.

  8. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  9. Preliminary studies using silicon strip detectors in digital autoradiography

    SciTech Connect

    Sanghera, B.; Ott, R.J. . Inst. of Cancer Research)

    1993-08-01

    A prototype 1-D silicon strip detector system for applications in autoradiography is described. The commercially available detector allows 2-D imaging to be achieved by acquiring projection data at multiple angles as the source is rotated above the detector. Standard image reconstruction techniques are employed to produce the final 2-D image. The first test performed is presented showing that tomography is possible with 1-D silicon strip detectors.

  10. Status and performance of the CDF Run II silicon detector

    SciTech Connect

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  11. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  12. Silicon-chip source of bright photon pairs.

    PubMed

    Jiang, Wei C; Lu, Xiyuan; Zhang, Jidong; Painter, Oskar; Lin, Qiang

    2015-08-10

    Integrated quantum photonics relies critically on the purity, scalability, integrability, and flexibility of a photon source to support diverse quantum functionalities on a single chip. Here we report a chip-scale photon-pair source on the silicon-on-insulator platform that utilizes dramatic cavity-enhanced four-wave mixing in a high-Q silicon microdisk resonator. The device is able to produce high-quality photon pairs at different wavelengths with a high spectral brightness of 6.24×10(7) pairs/s/mW(2)/GHz and photon-pair correlation with a coincidence-to-accidental ratio of 1386 ± 278 while pumped with a continuous-wave laser. The superior performance, together with the structural compactness and CMOS compatibility, opens up a great avenue towards quantum silicon photonics with capability of multi-channel parallel information processing for both integrated quantum computing and long-haul quantum communication. PMID:26367942

  13. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  14. Lithium-drifted silicon detector with segmented contacts

    DOEpatents

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  15. New Generation of Superconducting Nanowire Single-Photon Detectors

    NASA Astrophysics Data System (ADS)

    Goltsman, G. N.

    2015-09-01

    We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  16. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  17. Graphene Josephson Junction Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Single photon detectors (SPDs) have found use across a wide array of applications depending on the wavelength to which they are sensitive. Graphene, because of its linear, gapless dispersion near the Dirac point, has a flat, wide bandwidth absorption that can be enhanced to near 100 % through the use of resonant structures making it a promising candidate for broadband SPDs. Upon absorbing a photon in the optical to mid-infrared range, a small (~10 μm2) sheet of graphene at cryogenic temperatures can experience a significant increase in electronic temperature due to its extremely low heat capacity. At 1550 nm, for example, calculations show that the temperature could rise by as much as 500 %. This temperature increase could be detected with near perfect quantum efficiency by making the graphene the weak link in a Josephson junction (JJ). We present a theoretical model demonstrating that such a graphene JJ SPD could operate at the readily achievable temperature of 3 K with near zero dark count, sub-50 ps timing jitter, and sub-5 ns dead time and report on the progress toward experimentally realizing the device.

  18. Wavelenght specific photon detector for the VUV

    NASA Astrophysics Data System (ADS)

    Olson, C. G.

    1980-05-01

    The high photon fluxes necessary for modulation experiments place troublesome requirements on detectors. The necessity of retaining good linearity at high effective count rates eliminates channeltrons. Use of a photomultiplier plus sodium salicylate is inattractive, both because of poor efficiency and because the combination cannot discriminate against long wavelength stray light or higher orders without additional losses due to filters. To solve these problems we have assembled a versatile detector based on an EMI venetian blind photomultiplier dynode chain in which the first dynode acts as the photochathode. The standard BeCu dynode has good efficiency in the 20-30 eV range, but it has a strong spectral dependence at higher energies. It was desirable therefore to be able to readily interchange the first dynode (cathode) with others coated with air stable materials, or to evaporate on the cathode in-situ. Total yield data for potential photocathodes is relatively scare in the 25-250 eV range. We have surveyed a number of materials looking for cathodes with good sensitivity, without sharp structure, and with sufficient wavelength selectivity to also act as filters. Suggestions will be given. A byproduct of this survey was materials which are sufficiently wavelenght intensive (e.g. air exposed Ge) to be better candidates for beam intensity monitors than the W or Au diodes commonly used.

  19. High-density optical interconnects by using silicon photonics

    NASA Astrophysics Data System (ADS)

    Urino, Yutaka; Usuki, Tatsuya; Fujikata, Junichi; Ishizaka, Masashige; Yamada, Koji; Horikawa, Tsuyoshi; Nakamura, Takahiro; Arakawa, Yasuhiko

    2014-02-01

    One of the most serious challenges facing the exponential performance growth in the information industry is a bandwidth bottleneck in inter-chip interconnects. Optical interconnects with silicon photonics have been expected to solve the problem because of the intrinsic properties of optical signals and the industrial advantages of silicon for use in the electronics industry. We therefore propose an optical interconnect system by using silicon photonics to solve the problem. We examined integration between photonics and electronics and integration between light sources and silicon substrates, and we propose a photonics-electronics convergence system based on these examinations. We also investigated the configurations and characteristics of optical components for the system, including silicon spot-size converters, silicon optical waveguides, silicon optical splitters, silicon optical modulators, germanium photodetectors, and arrayed laser diodes. We then demonstrated the feasibility of the system by fabricating a high-density silicon optical interposer by using silicon photonics hybridly integrated with arrayed laser diodes and monolithically integrated with the other optical components on a single silicon substrate. The pad pitches of optical modulators and photodetectors were designed to be 100 μm so that LSI bare chips were able to contact to them electrically by flip-chip bonding. Since this system was optically complete and closed and no temperature sensitive component was used, we did not need to align the fibers, control the polarization, or control the temperature throughout the experiments. As a result, we achieved errorfree data links at 20 Gbps and high bandwidth density of 30 Tbps/cm2 with the silicon optical interposer.

  20. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  1. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  2. Niobium Silicon Alloys for Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Calvo, M.; D'Addabbo, A.; Monfardini, A.; Benoit, A.; Boudou, N.; Bourrion, O.; Catalano, A.; Dumoulin, L.; Goupy, J.; Le Sueur, H.; Marnieros, S.

    2014-08-01

    We are studying the properties of Niobium Silicon amorphous alloys as a candidate material for the fabrication of highly sensitive kinetic inductance detectors (KID), optimized for very low optical loads. As in the case of other composite materials, the NbSi properties can be changed by varying the relative amounts of its components. Using a NbSi film with T = 1 K we have been able to obtain the first NbSi resonators, observe an optical response and acquire a spectrum in the band 50-300 GHz. The data taken show that this material has very high kinetic inductance and normal state surface resistivity . These properties are ideal for the development of KID. More measurements are planned to further characterize the NbSi alloy and fully investigate its potential.

  3. Silicon charge detector for the CREAM experiment

    NASA Astrophysics Data System (ADS)

    Park, I. H.; Park, N. H.; Nam, S. W.; Ahn, H. S.; Allison, P.; Bagliesi, M. G.; Baek, S. J.; Beatty, J. J.; Bigongiari, G.; Boyle, P.; Childers, J. T.; Conkin, N. B.; Coutu, S.; Duvernois, M. A.; Ganel, O.; Han, J. H.; Hyun, H. J.; Jeon, J. A.; Kim, K. C.; Lee, M. H.; Lutz, L.; Maestro, P.; Malinine, A.; Marrocchesi, P. S.; Minnick, S.; Mognet, S. I.; Nutter, S.; Park, J. H.; Seo, E. S.; Sina, R.; Swordy, S.; Wakely, S.; Wu, J.; Yang, J.; Yoon, Y. S.; Zei, R.; Zinn, S. Y.

    2007-01-01

    The Cosmic Ray Energetics And Mass (CREAM) payload had its first successful flight in December 2004 from McMurdo Station, Antarctica as a Long Duration Balloon mission. Its aim is to explore the supernova acceleration limit of cosmic rays, the relativistic gas of protons, electrons and heavy nuclei arriving at Earth from outside of the solar system. The instrument is equipped with several systems to measure charge and energy spectra for Z=1 26 nuclei over the energy range 10 10eV. The Silicon Charge Detector (SCD) is a precision device to measure the charge of incident cosmic rays. The design, construction, integration and preliminary performance of the SCD are detailed in this paper.

  4. Silicon strip detectors for the ATLAS upgrade

    SciTech Connect

    Gonzalez-Sevilla, S.

    2011-07-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors. (authors)

  5. High-Q silicon carbide photonic-crystal cavities

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-01

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ˜ 0.60 ( λ / n ) 3 at wavelength 1.5 μm. A corresponding Purcell factor value of ˜104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  6. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  7. Silicon detector readout system using commercially available items

    SciTech Connect

    Green, D.

    1986-05-01

    The basic properties of silicon detectors are briefly noted, including bulk and electrical properties. Thermal and shot noise in front end amplifiers is discussed. The configuration of detectors and preamps is then briefly described. A detector test is described and results are given. (LEW)

  8. Analysis of Silicon Photomultiplier Detector Waveforms from Cosmic Rays using Digital Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Castro, Juan; Zavala, Favian; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    Silicon photomultiplier detectors exhibit high gain, low operating voltage, are insensitive to magnetic fields, and can detect light at the single photon level, making them very attractive for applications in fields such as particle physics, astrophysics, and medical physics. However, they exhibit effects that may prevent their optimal operation, including thermally induced high dark count rate, after pulse effects, and cross talk produced from photons in nearby pixels. In this presentation, we describe our coincidence setup using two scintillator pads and a Hamamatsu multipixel photon counter (MPPC) to gather cosmic ray produced signal pulses, and our methods of analysis for the detector waveforms. In particular, we discuss our methods of digitization, software implementation of low pass and Gaussian type filters, and the application of a domino ring sampler (DRS4) digitizing board to obtain signal waveforms to determine the operating characteristics for these detectors. Department of Education grant number P031S90007.

  9. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896.

    SciTech Connect

    PANDY,S.U.

    1998-11-08

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.

  10. Optimizing timing performance of silicon photomultiplier-based scintillation detectors.

    PubMed

    Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S

    2013-02-21

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362-33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm(3) and with 3 × 3 × 20 mm(3) LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm(3) LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15° C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872

  11. Sputtered germanium/silicon devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Nujhat, N.; Papouloute, J.-P.; DeBerry, M.; Jiang, L.; Korivi, N. S.

    2015-08-01

    We report on the ongoing investigation of magnetron sputtered germanium on silicon for photonics applications. Direct current (DC) magnetron sputtering has been used to deposit germanium layers on silicon at low growth temperatures and medium range vacuum levels. Standard photolithography has been used to make germanium photodetectors for the 1550 nm wavelength range. Electrical characterization, more specifically current-voltage measurements indicate that the devices function as intended. Sputtered silicon waveguides have also been fabricated and evaluated for possible applications in photonics integration. The sputtering-based developments in our present research are expected to provide for a flexible and economically viable manufacturing process for such devices.

  12. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  13. Near-IR photon number resolving detector design

    NASA Astrophysics Data System (ADS)

    Bogdanski, Jan; Huntington, Elanor H.

    2013-05-01

    Photon-Number-Resolving-Detection (PNRD) capability is crucial for many Quantum-Information (QI) applications, e.g. for Coherent-State-Quantum-Computing, Linear-Optics-Quantum-Computing. In Quantum-Key-Distribution and Quantum-Secret-Sharing over 1310/1550 nm fiber, two other important, defense and information security related, QI applications, it's crucial for the information transmission security to guarantee that the information carriers (photons) are single. Thus a PNRD can provide an additional security level against eavesdropping. Currently, there are at least a couple of promising PNRD technologies in the Near-Infrared, but all of them require cryogenic cooling. Thus a compact, portable PNRD, based on commercial Avalanche-Photo-Diodes (APDs), could be a very useful instrument for many QI experiments. For an APD-based PNRD, it is crucial to measure the APD-current in the beginning of the avalanche. Thus an efficient cancellation of the APD capacitive spikes is a necessary condition for the very weak APD current measurement. The detector's principle is based on two commercial, pair-matched InGaAs/InP APDs, connected in series. It leads to a great cancelation of the capacitive spikes caused by the narrow (300 ps), differential gate-pulses of maximum 4V amplitude assuming that both pulses are perfectly matched in regards to their phases, amplitudes, and shapes. The cancellation scheme could be used for other APD-technologies, e.g. Silicon, extending the detection spectrum from visible to NIR. The design distinguishes itself from other, APD-based, schemes by its scalability feature and its computer controlled cancellation of the capacitive spikes. Furthermore, both APDs could be equally used for the detection purpose, which opens a possibility for the odd-even photon number parity detection.

  14. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  15. Optical cross-talk effect in a semiconductor photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Hamal, Karel; Kral, Lukas; Blazej, Josef

    2005-09-01

    Solid state single photon detectors are getting more and more attention in various areas of applied physics: optical sensors, communication, quantum key distribution, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP and InGaAs/InGaAsP at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Recently, there is a strong demand for the photon counting detector in a form of an array; even small arrays 10x1 or 3x3 are of great importance for users. Although the photon counting array can be manufactured, there exists a serious limitation for its performance: the optical cross-talk between individual detecting cells. This cross-talk is caused by the optical emission of the avalanche photon counting structure which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon shallow junction type photodiode. The timing properties, radiation pattern and spectral distribution of the emitted light have been measured for various detection structures and their different operating conditions. The ultimate limit for the cross-talk has been determined and the methods for its limitation have been proposed.

  16. Indium-bump-free antimonide superlattice membrane detectors on a silicon substrates

    NASA Astrophysics Data System (ADS)

    Zamiri, M.; Klein, B.; Schuler, T.; Myers, S.; Cavallo, F.; Krishna, S.

    2016-05-01

    We present an approach to realize antimonide based superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN based superlattice detectors are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxiallift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  17. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  18. Flexible and tunable silicon photonic circuits on plastic substrates

    PubMed Central

    Chen, Yu; Li, Huan; Li, Mo

    2012-01-01

    Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible electronics is to physically transfer highly integrated devices made in high-quality, crystalline semiconductors on to plastic substrates. Here we demonstrate a flexible form of silicon photonics using the transfer-and-bond fabrication method. Photonic circuits including interferometers and resonators have been transferred onto flexible plastic substrates with preserved functionalities and performance. By mechanically deforming, the optical characteristics of the devices can be tuned reversibly over a remarkably large range. The demonstration of the new flexible photonic systems based on the silicon-on-plastic (SOP) platform could open the door to many future applications, including tunable photonics, optomechanical sensors and biomechanical and bio-photonic probes. PMID:22953043

  19. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    NASA Astrophysics Data System (ADS)

    Hall, David; Liu, Yu-Hsin; Lo, Yu-Hwa

    2015-11-01

    While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  20. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.

    SciTech Connect

    Wiltzius, P.; Braun, P. V.; Liao, H.; Brzezinski, A.; Chen, Y. C.; Nelson, E.; Shir, D.; Rogers, J. A.; Bogart, Katherine Huderle Andersen

    2008-08-01

    We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

  1. Breakdown of silicon particle detectors under proton irradiation

    SciTech Connect

    Vaeyrynen, S.; Raeisaenen, J.; Kassamakov, I.; Tuominen, E.

    2009-11-15

    Silicon particle detectors made on Czochralski and float zone silicon materials were irradiated with 7 and 9 MeV protons at a temperature of 220 K. During the irradiations, the detectors were biased up to their operating voltage. Specific values for the fluence and flux of the irradiation were found to cause a sudden breakdown in the detectors. We studied the limits of the fluence and the flux in the breakdown as well as the behavior of the detector response function under high flux irradiations. The breakdown was shown to be an edge effect. Additionally, the buildup of an oxide charge is suggested to lead to an increased localized electric field, which in turn triggers a charge carrier multiplication. Furthermore, we studied the influences of the type of silicon material and the configuration of the detector guard rings.

  2. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  3. Fabrication of detectors and transistors on high-resistivity silicon

    SciTech Connect

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 k..cap omega../center dot/cm<100> silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs.

  4. First performance results of the Phobos silicon detectors

    NASA Astrophysics Data System (ADS)

    Pernegger, H.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2001-11-01

    The Phobos experiment concluded its first year of operation at RHIC taking data in Au-Au nucleus collisions at s nn=65 GeV and 130 GeV/ nucleon pair. First preliminary results of the performances of our silicon detectors in the experiment are summarized. The Phobos experiment uses silicon pad detectors for both tracking and multiplicity measurements. The silicon sensors vary strongly in their pad geometry. In this paper, we compare the signal response, the signal uniformity and signal-to-noise performance as measured in the experiment for the different geometries. Additionally, we investigate effects of very high channel occupancy on the signal response.

  5. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  6. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  7. Cosmic ray positron research and silicon track detector development

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Wefel, John P.

    1991-01-01

    The purpose was to conduct research on: (1) position sensing detector systems, particularly those based upon silicon detectors, for use in future balloon and satellite experiments; and (2) positrons, electrons, proton, anti-protons, and helium particles as measured by the NASA NMSU Balloon Magnet Facility.

  8. Status of the CDF Run II Silicon Detector

    SciTech Connect

    S. Nahn

    2003-04-10

    A snapshot of the status of the CDF Run II Silicon Detector is presented, with a summary of commissioning issues since the start of Run II, current performance of the detector, and the use of the data in both the trigger and offline reconstruction.

  9. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed. PMID:27137229

  10. The Mark II Silicon Strip Vertex Detector and performance of a silicon detector telescope in the Mark II detector at the SLC

    SciTech Connect

    Labarga, L.; Adolphsen, C.; Gratta, G.; Litke, A.; Turala, M.; Zaccardelli, C. . Inst. for Particle Physics); Breakstone, A.; Parker, S. ); Barnett, B.; Dauncey, P.; Drewer, D.; Matthews, J. ); Jacobsen, R.; Lueth, V. )

    1989-12-01

    A Silicon Strip Vertex Detector (SSVD) consisting of 36 independent silicon detector modules has been built for use in the Mark II detector at the SLAC Linear Collider (SLC). We discuss the performance of the individual modules and the stability and accuracy of their placement in the mechanical support. To gain operational experience at the SLC, we have assembled and placed inside the Mark II a telescope made of three Silicon Detector Modules. We present results from the first data run of the SLC on the overall performance of the Telescope, including backgrounds, charged particle tracking and spatial resolution. 7 refs., 10 figs.

  11. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  12. Novel Waveguide Architectures for Light Sources in Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Tummidi, Ravi Sekhar

    Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser. The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport. Low losses in the proposed structure are paramount due to the low gain expectation (˜1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This

  13. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  14. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    NASA Astrophysics Data System (ADS)

    Zamiri, M.; Klein, B.; Schuler-Sandy, T.; Myers, S.; Dahiya, V.; Cavallo, F.; Krishna, S.

    2016-02-01

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  15. The vertex detector for the Lepton/Photon Collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  16. Broadband all-optical microwave photonics phase detector.

    PubMed

    Ashourian, Mohsen; Emami, Hossein; Sarkhosh, Niusha

    2013-12-15

    A microwave photonics phase detector is conceived and practically demonstrated. The phase-detector system employs a semiconductor optical amplifier as a four-wave mixer to enable phase detection over a broad frequency range. The system behavior is first mathematically modeled and then demonstrated practically. Phase measurement over a frequency range of 1-18 GHz is achieved. This phase detector is an excellent candidate for wideband applications such as frequency-agile radar. PMID:24322231

  17. The vertex detector for the Lepton/Photon collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  18. Photon Detection System for LBNE Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Djurcic, Zelimir

    2014-03-01

    The LBNE (Long-Baseline Neutrino Experiment) is the next generation accelerator-based neutrino oscillation experiment planned in US. The experiment will use a new muon-neutrino beam sent from Fermi National Accelerator Laboratory and will detect electron-neutrino appearance and muon-neutrino disappearance using a Liquid Argon TPC located at a distance of 1300 km at Sanford Underground Research Facility in South Dakota. The primary physics goal of the LBNE is a definitive determination the neutrino mass hierarchy, determination the octant of the neutrino mixing angle theta-23, and precise measurement of CP violation in neutrino oscillation. Neutrino interaction in LAr result in charged particles producing ionization and scintillation light signals. Dedicated photon detection system is under design for use in the LBNE LArTPC far detectors. The baseline design couples wavelength-shifter coated ultraviolet transmitting acrylic to 3 mm2 silicon photomultipliers. By detecting scintillation light we aim to improve event reconstruction capabilities and efficiently separate neutrino events from background. Current status of the system will be described.

  19. Fabrication of a thin silicon detector with excellent thickness uniformity

    NASA Astrophysics Data System (ADS)

    Valtonen, E.; Eronen, T.; Nenonen, S.; Andersson, H.; Miikkulainen, K.; Eränen, S.; Ronkainen, H.; Mäkinen, J.; Husu, H.; Lassila, A.; Punkkinen, R.; Hirvonen, M.

    2016-02-01

    We have fabricated and tested a thin silicon detector with the specific goal of having a very good thickness uniformity. SOI technology was used in the detector fabrication. The detector was designed to be used as a ΔE detector in a silicon telescope for measuring solar energetic particles in space. The detector thickness was specified to be 20 μm with an rms thickness uniformity of±0.5%. The active area consists of three separate elements, a round centre area and two surrounding annular segments. A new method was developed for measuring the thickness uniformity based on a modified Fizeau interferometer. The thickness uniformity specification was well met with the measured rms thickness variation of 43 nm. The detector was electrically characterized by measuring the I- V and C- V curves and the performance was verified using a 241Am alpha source.

  20. Noise performance of the D0 layer 0 silicon detector

    SciTech Connect

    Johnson, M.; /Fermilab

    2006-11-01

    A new inner detector called Layer 0 has been added to the existing silicon detector for the DZero colliding beams experiment. This detector has an all carbon fiber support structure that employs thin copper clad Kapton sheets embedded in the surface of the carbon fiber structure to improve the grounding of the structure and a readout system that fully isolates the local detector ground from the rest of the detector. Initial measurements show efficiencies greater than 90% and 0.3 ADC count common mode contribution to the signal noise.

  1. Comparison Between Two Monte Carlo Simulations of Angiographic Phantom Coupled to Silicon Strip Detector

    NASA Astrophysics Data System (ADS)

    Montaño, L. M.; Sanchez, D.; Avila, C.; Sanabria, J.; Baldazzi, G.; Bollini, D. D.; Cabal, A.; Ceballos, C.; Dabrowski, W.; Díaz García, A.; Gambaccini, M.; Giubellino, P.; Gombia, M.; Grybos, P.; Idzik, M.; Marzari-Chiesa, A.; Prino, F.; Ramello, L.; Sitta, M.; Swientek, K.; Taibi, A.; Tomassi, E.; Tuffanelli, A.; Wiacek, P.

    2004-09-01

    Preliminary results of a dual energy angiography simulation using the Monte Carlo package GEANT 3.2113 are presented and compared to Monte Carlo MCNP-4C results reported before. The simulation is based on an experimental set up consisting of a Plexiglas-aluminium step wedge phantom with 4 cylindrical cavities filled with iodated contrast medium. The silicon 384 microstrip detector was set into edge-on configuration (incoming X-rays parallel to longitudinal axis of the strips) and the properties of the simulated detector just resemble the ones of the real detector. Monochromatic photon beams of 31.5keV and 35.5keV are used to take advantage of the discontinuous variation of the iodine photon absorption at the energy of the K-shell, the key to dual energy subtraction imaging.

  2. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia E.; Van Buuren, Anthony; Terminello, Louis; Hart, Bradley R.

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  3. Advantages of Photon Counting Detectors for Terahertz Astronomy

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ezawa, Hajime

    2016-08-01

    For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than 10^{-18} W/Hz^{0.5} is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately 10^{-17} W/Hz^{0.5} at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

  4. Silicon Photonics with Applications to Data Center Networks

    NASA Astrophysics Data System (ADS)

    Aguinaldo, Ryan Francis

    In data center applications, fiber-based optical interconnects can be used to provide point-to-point links enabling high-bandwidth, inter-rack, data communications. In order to provide for future network scalability, which must be able to handle ultra-large data flows and bandwidth-intensive requests, optical technologies are increasingly introduced to different levels of the data center architecture to enable a variety of transparent network or all-optical networking schemes. However, the use of bulk optical components, which take up valuable rack-space real estate, can be extremely energy and cost prohibitive, especially when scaled up to the size of industrial warehouse-scale computing and considering that predictions of future data center networks are expected to contain millions of nodes. As such, we study chip-scale, silicon photonic, integrated circuits and their use as the optical hardware in future data center implementations. This work describes aspects of the design and integration of silicon photonic devices, which can be used for high-bandwidth, multi-channel, wavelength division multiplexed, optical communications. Examples of silicon photonic subsystems are discussed, including the realization of an on-chip channelized spectrum monitor and a network-node-on-a-chip. These optical integrated circuits are meant to replace bulk optical components with their functional equivalents on monolithic silicon. This work demonstrates that silicon photonics may be advantageous in meeting the urgent hardware-scaling demands of high-bandwidth, multi-user, communication networks.

  5. The CDF Silicon Vertex Detector for Run II

    SciTech Connect

    R. Rossin

    2004-01-06

    The 8 layer, 720k channel CDF Run II silicon detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the CDF experiment. A summary of the experience in commissioning and operating this double-sided detector during the first 2 years of Run II is presented. The performances of the silicon in term of resolution, efficiency are also described. The results of the studies of radiation damage and the expected operational limits are discussed. A short description of the SVT, the Level 2 Silicon Vertex Trigger, one of the major upgrades related to the new silicon device is also presented. Finally, some of the many physics results achieved by means of the new Silicon+SVT machinery are also reviewed.

  6. High-Q silicon carbide photonic-crystal cavities

    SciTech Connect

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  7. Generation of correlated photons in nanoscale silicon waveguides

    NASA Astrophysics Data System (ADS)

    Sharping, Jay E.; Lee, Kim F.; Foster, Mark A.; Turner, Amy C.; Schmidt, Bradley S.; Lipson, Michal; Gaeta, Alexander L.; Kumar, Prem

    2006-12-01

    .We experimentally study the generation of correlated pairs of photons through four-wave mixing (FWM) in embedded silicon waveguides. The waveguides, which are designed to exhibit anomalous group-velocity dispersion at wavelengths near 1555 nm, allow phase matched FWM and thus efficient pair-wise generation of non-degenerate signal and idler photons. Photon counting measurements yield a coincidence-to-accidental ratio (CAR) of around 25 for a signal (idler) photon production rate of about 0.05 per pulse. We characterize the variation in CAR as a function of pump power and pump-to-sideband wavelength detuning. These measurements represent a first step towards the development of tools for quantum information processing which are based on CMOS-compatible, silicon-on-insulator technology.

  8. Single-photon emitting diode in silicon carbide.

    PubMed

    Lohrmann, A; Iwamoto, N; Bodrog, Z; Castelletto, S; Ohshima, T; Karle, T J; Gali, A; Prawer, S; McCallum, J C; Johnson, B C

    2015-01-01

    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing. PMID:26205309

  9. Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Sipahigil, A.; Jahnke, K. D.; Rogers, L. J.; Teraji, T.; Isoya, J.; Zibrov, A. S.; Jelezko, F.; Lukin, M. D.

    2014-09-01

    We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers. The generation of indistinguishable single photons from separated emitters at 5 K is demonstrated in a Hong-Ou-Mandel interference experiment. Prospects for realizing efficient quantum network nodes using SiV centers are discussed.

  10. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  11. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  12. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  13. Low loss etchless silicon photonic waveguides.

    PubMed

    Cardenas, Jaime; Poitras, Carl B; Robinson, Jacob T; Preston, Kyle; Chen, Long; Lipson, Michal

    2009-03-16

    We demonstrate low loss silicon waveguides fabricated without any silicon etching. We define the waveguides by selective oxidation which produces ultra-smooth sidewalls with width variations of 0.3 nm. The waveguides have a propagation loss of 0.3 dB/cm at 1.55 microm. The waveguide geometry enables low bending loss of approximately 0.007 dB/bend for a 90 degrees bend with a 50 microm bending radius. PMID:19293905

  14. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  15. Communication Limits Due to Photon-Detector Jitter

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Farr, William H.

    2008-01-01

    A theoretical and experimental study was conducted of the limit imposed by photon-detector jitter on the capacity of a pulse-position-modulated optical communication system in which the receiver operates in a photon-counting (weak-signal) regime. Photon-detector jitter is a random delay between impingement of a photon and generation of an electrical pulse by the detector. In the study, jitter statistics were computed from jitter measurements made on several photon detectors. The probability density of jitter was mathematically modeled by use of a weighted sum of Gaussian functions. Parameters of the model were adjusted to fit histograms representing the measured-jitter statistics. Likelihoods of assigning detector-output pulses to correct pulse time slots in the presence of jitter were derived and used to compute channel capacities and corresponding losses due to jitter. It was found that the loss, expressed as the ratio between the signal power needed to achieve a specified capacity in the presence of jitter and that needed to obtain the same capacity in the absence of jitter, is well approximated as a quadratic function of the standard deviation of the jitter in units of pulse-time-slot duration.

  16. Development of a GSO positron/single-photon imaging detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Matsumoto, K.; Senda, M.

    2006-01-01

    We have developed and tested a GSO (gadolinium oxyorthosilicate) position-sensitive gamma detector which can be used with positron and single-photon radionuclides for imaging breast cancer or sentinel lymph node detection. Because GSO has a relatively good energy resolution for annihilation gammas as well as low energy gamma photons, and does not contain any natural radioisotopes, it can be used for positron imaging and lower energy single-photon imaging. The imaging detector consists of a GSO block, 2 inch square multi-channel position-sensitive photo-multiplier tube (PSPMT), and associated electronics. The size of a single GSO element was 2.9 mm × 2.9 mm × 20 mm and these elements were arranged into 15 × 15 matrixes to form a block that was optically coupled to the PSPMT. It was possible to separate all GSO crystals into a two-dimensional position histogram for annihilation gammas (511 keV) and low energy gamma photons (122 keV). The typical energy resolution was 24% FWHM and 37% FWHM for 511 keV and 122 keV gamma photons, respectively. For the positron imaging, coincidence between the imaging detector and a single gamma probe is measured. For the single-photon imaging, a tungsten collimator is mounted in front of the imaging detector. With this configuration, it was possible to image both positron radionuclides and low energy single-photon radionuclides. We measured spatial resolution and sensitivity as well as image quality of the developed imaging detector. Results indicated that the developed imaging detector has the potential to be a new and useful instrument for nuclear medicine.

  17. The silicon strip vertex detector of the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Onuki, Yoshiyuki

    2014-11-01

    The Belle II upgrade of the Belle experiment will extend the search for physics beyond the standard model. The upgrade is currently under construction, and foreseen to complete in time for the physics run scheduled for 2016. The vertex detector of the Belle II comprises two types of silicon detectors: the pixel detector (PXD) and the strip detector (SVD) using double-sided silicon strip detector (DSSD). One of the most characteristic features of the SVD is a unique chip-on-sensor scheme which enabling good signal-to-noise (S/N) ratio while reducing the material budget. This paper describes the implementation of the scheme, status and future prospects of the Belle II SVD.

  18. A Photon Interference Detector with Continuous Display.

    ERIC Educational Resources Information Center

    Gilmore, R. S.

    1978-01-01

    Describes an apparatus which attempts to give a direct visual impression of the random detection of individual photons coupled with the recognition of the classical intensity distribution as a result of fairly high proton statistics. (Author/GA)

  19. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

    PubMed Central

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 105 with a mode-volume of ~1.7(λ/n)3. This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  20. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.

    PubMed

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  1. A large area, silicon photomultiplier-based PET detector module

    PubMed Central

    Raylman, RR; Stolin, A; Majewski, S; Proffitt, J

    2013-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm2 LYSO elements (spanning 41 × 91mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner. PMID:24319305

  2. A large area, silicon photomultiplier-based PET detector module

    NASA Astrophysics Data System (ADS)

    Raylman, R. R.; Stolin, A.; Majewski, S.; Proffitt, J.

    2014-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ~45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (~2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner.

  3. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    PubMed

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-01

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt. PMID:24718185

  4. Scaling silicon photonic switch fabrics for data center interconnection networks.

    PubMed

    Nikolova, Dessislava; Rumley, Sébastien; Calhoun, David; Li, Qi; Hendry, Robert; Samadi, Payman; Bergman, Keren

    2015-01-26

    With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed. PMID:25835876

  5. Polarization rotator-splitters in standard active silicon photonics platforms.

    PubMed

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < -13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < -22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters. PMID:24663698

  6. Hybrid integration of carbon nanotubes into silicon slot photonic structures

    NASA Astrophysics Data System (ADS)

    Durán Valdeiglesias, E.; Zhang, W.; Hoang, H. C.; Alonso-Ramos, C.; Noury, A.; Serna, S.; Le Roux, X.; Cassan, E.; Izard, N.; Sarti, F.; Torrini, U.; Balestrieri, M.; Keita, A.-S.; Yang, H.; Bezugly, V.; Vinattieri, A.; Cuniberti, G.; Filoramo, A.; Gurioli, M.; Vivien, L.

    2016-03-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects. However, current Si photonics require on-chip integration of several materials, including III-V for lasing, doped silicon for modulation and Ge for detection. The very different requirements of these materials result in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. We are developing an alternative route towards the integration of optoelectronic devices in Si photonic, relying on the use of single wall carbon nanotubes (SWNTs). SWNTs can be considered as a Si compatible material able to emit, modulate and detect near-infrared light. Hence, they hold a unique potential to implement all active devices in the Si photonics platform. In addition, solution processed SWNTs can be integrated on Si using spin-coating techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform.

  7. Silicon-photonics-based wideband radar beamforming: basic design

    NASA Astrophysics Data System (ADS)

    Fathpour, Sasan

    2010-01-01

    Proposed is silicon-photonics-based phased array antenna beamforming for high-resolution long-range radars with wide instantaneous radio frequency (rf) bandwidth. Specifically, the proposed silicon-photonics beamformer platform offers the potential for cost-effective monolithic chip-scale integration of photonic delay lines, 2×2 optical switches, variable optical attenuators, and optical amplifiers that form the base unit of a rf transmit/receive array signal processor. In effect, the proposed silicon-photonics devices empower the design of a powerful proposed photonic beamformer with one time-delay unit per antenna element. Device-level designs studies are shown that promise meeting the high-resolution radar mission-critical requirements via time delays of up to 2.5 ns, switching times of less than 100 ns, optical isolations as good as 50 dB, and optical gains of up to 6 dB. Longer delays are achieved off chip using optical fibers.

  8. The non-linearity of the ESA Photon Counting Detector

    NASA Astrophysics Data System (ADS)

    Llebaria, A.; Nieto, J.-L.; di Serego Alighieri, S.

    1986-11-01

    The time-resolved imaging mode (TRIM) suggested by di Serego Alighieri and Perryman (1986), in which photons are recorded separately on each television camera frame, was used to analyze the data obtained in 1984 on the nucleus of M31 with the ESA Photon Counting Detector (PCD) on the Canada-France-Hawaii telescope. Through the examination of the TRIM data, it was possible to detect nonlinearity in the response of the ESA PCD, which is interpreted as being due to phosphorescence in the intensifier. A quantitative measurement of this effect is shown. It is argued that if the interpretation is correct, the same kind of nonlinearity should be found in all photon counting detectors with phosphor screen. The amount of the nonlinearity is presumably higher in detectors with lower thresholds.

  9. Silicon detector upgrades for the Tevatron Run 2

    SciTech Connect

    M. Kruse

    2002-10-25

    The current silicon devices being used by the D0 and CDF collaborations for the Tevatron Run 2a, which is expected to end in 2005 after accumulating about 2 fb{sup -1} of data, will need to be replaced due to radiation damage for the following data collection period designated as Run 2b. We will discuss these silicon replacement plans, the more uniform design of the detectors between D0 and CDF, and the current status of their fabrication.

  10. Photon-number-resolving detector with 10bits of resolution

    NASA Astrophysics Data System (ADS)

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T.

    2007-06-01

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32×32 element InxGa1-xAsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  11. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  12. Influence of detector motion in entanglement measurements with photons

    SciTech Connect

    Landulfo, Andre G. S.; Matsas, George E. A.; Torres, Adriano C.

    2010-04-15

    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step toward the implementation of quantum information protocols in a global scale.

  13. Superconducting-nanowire single-photon-detector linear array

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyuan; McCaughan, Adam; Bellei, Francesco; Najafi, Faraz; De Fazio, Domenico; Dane, Andrew; Ivry, Yachin; Berggren, Karl K.

    2013-09-01

    We designed, fabricated, and tested a one-dimensional array of superconducting-nanowire single-photon detectors, integrated with on-chip inductors and resistors. The architecture is suitable for monolithic integration on a single chip operated in a cryogenic environment, and inherits the characteristics of individual superconducting-nanowire single-photon detectors. We demonstrated a working array with four pixels showing position discrimination and a timing jitter of 124 ps. The electronic crosstalk between the pixels in the array was negligible.

  14. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. PMID:23553907

  15. Characterization of IRAS doped silicon detectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Data are presented from a range of operating conditions which include background photo flux, operating temperature, and frequency. Each detector is equipped with a load resistor, a cryogenic field effect transistor preamplifier, and a temperature sensor. Data are also presented of detector signal, noise spectra, noise equivalent power, and spectral response.

  16. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes

    PubMed Central

    Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

    2013-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

  17. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation.

    PubMed

    Akhlaghi, Mohsen K; Schelew, Ellen; Young, Jeff F

    2015-01-01

    At the core of an ideal single-photon detector is an active material that absorbs and converts every incident photon to a discriminable signal. A large active material favours efficient absorption, but often at the expense of conversion efficiency, noise, speed and timing accuracy. In this work, short (8.5 μm long) and narrow (8 × 35 nm(2)) U-shaped NbTiN nanowires atop silicon-on-insulator waveguides are embedded in asymmetric nanobeam cavities that render them as near-perfect absorbers despite their small volume. At 2.05 K, when biased at 0.9 of the critical current, the resulting superconducting single-photon detectors achieve a near-unity on-chip quantum efficiency for ∼1,545 nm photons, an intrinsic dark count rate <0.1 Hz, a reset time of ∼7 ns, and a timing jitter of ∼55 ps full-width at half-maximum. Such ultracompact, high-performance detectors are essential for progress in integrated quantum optics. PMID:26359204

  18. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Mohsen K.; Schelew, Ellen; Young, Jeff F.

    2015-09-01

    At the core of an ideal single-photon detector is an active material that absorbs and converts every incident photon to a discriminable signal. A large active material favours efficient absorption, but often at the expense of conversion efficiency, noise, speed and timing accuracy. In this work, short (8.5 μm long) and narrow (8 × 35 nm2) U-shaped NbTiN nanowires atop silicon-on-insulator waveguides are embedded in asymmetric nanobeam cavities that render them as near-perfect absorbers despite their small volume. At 2.05 K, when biased at 0.9 of the critical current, the resulting superconducting single-photon detectors achieve a near-unity on-chip quantum efficiency for ~1,545 nm photons, an intrinsic dark count rate <0.1 Hz, a reset time of ~7 ns, and a timing jitter of ~55 ps full-width at half-maximum. Such ultracompact, high-performance detectors are essential for progress in integrated quantum optics.

  19. Design, performance and status of the CLEO III silicon detector

    NASA Astrophysics Data System (ADS)

    Fast, J.; Alam, M. S.; Alexander, J.; Anastassov, A.; Arndt, K.; Bean, A.; Bebek, C.; Boyd, R.; Brandenburg, G.; Cherwinka, J.; Darling, C.; Duboscq, J.; Gan, K. K.; Gao, Y.; Hopman, P.; Kagan, H.; Kass, R.; Kim, D.; Lee, J.; Menon, N.; Miller, D.; Oliver, J.; Rush, C.; Severini, H.; Shipsey, I.; Skubic, P.; Spencer, M.; Timm, S.; Tourne, E.; Ward, C.; Zoeller, M.

    1999-10-01

    The CLEO III silicon detector is part of a general upgrade of the CLEO detector to allow for operation at a luminosity of 2×10 33 cm-2 s-1, which will be provided by the Cornell Electron-Positron Storage Ring (CESR) beginning in 1999. The silicon detector is a four-layer barrel design covering radii from 2.5 to 10.2 cm with 93% solid angle coverage. The silicon sensors are DC-coupled and double-sided with double-metal readout on the p-side. The n-type strips measure φ, with 50 μm pitch while the p-type strips measure z, the coordinate along the beam axis, with 100 μm pitch. The readout electronics are mounted on BeO hybrids attached to the conical support structure and connected to the silicon sensors via a thin kapton flex cable. The electronics consist of an R/ C chip with bias resistors and decoupling capacitors, a low-noise preamp/shaper chip and a digitizer/sparsifier chip. Readout is done using VME-based sequencer boards. Production of all detector components is nearing completion and installation of the detector will take place in early 1999.

  20. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  1. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  2. High-energy neutron spectroscopy with thick silicon detectors.

    PubMed

    Kinnison, James D; Maurer, Richard H; Roth, David R; Haight, Robert C

    2003-02-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene. PMID:12537520

  3. An all-silicon single-photon source by unconventional photon blockade

    PubMed Central

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-01-01

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area. PMID:26061665

  4. An all-silicon single-photon source by unconventional photon blockade.

    PubMed

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-01-01

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area. PMID:26061665

  5. Photon detector for MEGA. [53 MeV

    SciTech Connect

    Gagliardi, C.A.; Tribble, R.E.

    1992-01-01

    The MEGA photon detector is designed to observe the 52.83-MeV photon produced in a [mu] [yields] e[gamma] decay with an energy resolution of 1.25 MeV, a position resolution of 2 [times] 5 mm[sup 2], a directional resolution of 10[degree], a time resolution of 500 ps, and an efficiency of about 5.4%. It will consist of three independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin Pb foils to convert photons into e[sup +]e[sup [minus

  6. The silicon tracker of the H1 detector

    NASA Astrophysics Data System (ADS)

    List, Benno

    2006-10-01

    The H1 experiment at HERA is equipped with a silicon vertex detector, comprising a barrel part and two endcaps with disks. The barrel part uses double sided, DC coupled strip sensors, whereas the endcap parts use two types of wedge-shaped sensors, both single sided and AC coupled: u/v-sensors have strips parallel to one edge of the sensor, r-sensors have circular strips. Additional pad detectors provide fast triggering signals in the backward part.

  7. The Silicon Drift Detector of the ALICE Experiment

    SciTech Connect

    Batigne, G.

    2005-10-12

    The ALICE experiment studies the properties of quark-gluon plasma and requires a good tracking system. This document presents the silicon drift detector which is part of the Inner Tracking System. Its principle and main features are given, especially its sensitivity to temperature variation and the effect of parasitic fields on measurement. Finally, the typical spatial resolution of this detector, which has been measured during beam tests, is shown.

  8. Charged particle detectors made from thin layers of amorphous silicon

    SciTech Connect

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  9. Operation of silicon microstrip detectors in a high radiation environment

    SciTech Connect

    Kapustinsky, J.S.; Alde, D.M.; Boissevain, J.G.; Jeppesen, R.G.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; Lopez, T.A.; McGaughey, P.L.; Moss, J.M.; Peng, J.C. ); Brooks, B.M.; Isenhower, L.D.; Sadler, M.E. ); Lederman, L.M.; Schub, M.H. ); Brown, C.N.; Cooper, W.E.; Gounder, K.; Hsiung, Y.B.; Mishra, C.S. (Fermi National

    1990-01-01

    A Silicon Microstrip Spectrometer was recently installed and operated in an 800 GeV proton beamline at Fermilab as a major new component of experiment E789. The detectors received an estimated radiation exposure of up to 7.8 {times} 10{sup 12} minimum ionizing particles per cm{sup 2} over a period of two months. We report on the changes in detector performance that we have observed following preliminary data analysis. 5 refs., 4 figs.

  10. Silicon Microstrip Detectors for the Jlab SBS Spectrometer

    NASA Astrophysics Data System (ADS)

    de Persio, F.; Kiprich, S.; Meddi, F.; Urciuoli, G. M.

    2014-06-01

    The INFN group of Rome is developing two silicon microstrip detector planes to be part of the tracking system of the SBS spectrometer, that will be installed in the experimental Hall A of Jefferson Labortatory, in order to improve its resolution. The detector and the PCB design were the results of models simulated using PSPICE. The entire assembly process will be realized in the INFN Roma clean room CL10000 facility.