Science.gov

Sample records for silicon-based micro gas

  1. Silicon-based bridge wire micro-chip initiators for bismuth oxide-aluminum nanothermite

    NASA Astrophysics Data System (ADS)

    Staley, C. S.; Morris, C. J.; Thiruvengadathan, R.; Apperson, S. J.; Gangopadhyay, K.; Gangopadhyay, S.

    2011-11-01

    We present a micro-manufacturing process for fabricating silicon-based bridge wire micro-chip initiators with the capacity to liberate joules of chemical energy at the expense of micro joules of input electrical energy. The micro-chip initiators are assembled with an open material reservoir utilizing a novel 47 °C melting point solder alloy bonding procedure and integrated with a bismuth oxide-aluminum nanothermite energetic composite. The electro-thermal conversion efficiency of the initiators is enhanced by the use of a nanoporous silicon bed which impedes thermal coupling between the bridge wire and bulk silicon substrate while maintaining the structural integrity of the device. Electrical behaviors of the ignition elements are investigated to extract minimum input power and energy requirements of 382.4 mW and 26.51 µJ, respectively, both in the absence and presence of an injected bismuth oxide-aluminum nanothermite composition. Programmed combustion of bismuth oxide-aluminum nanothermite housed within these initiators is demonstrated with a success rate of 100% over a 30 to 80 µJ range of firing energies and ignition response times of less than 2 µs are achieved in the high input power operation regime. The micro-initiators reported here are intended for use in miniaturized actuation technologies.

  2. Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro

    E-print Network

    Sun, Yu

    Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro unmanned aerial vehicles. These micro turbines vary in size and power. They can be hand held producing a fraction

  3. Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors

    NASA Astrophysics Data System (ADS)

    Li, Tianjian; Dong, Ying; Yuan, Dengpeng; Liu, Yujin

    2015-04-01

    Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA) was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article.

  4. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  5. Monolithically-integrated MicroChemLab for gas-phase chemical analysis.

    SciTech Connect

    Kottenstette, Richard Joseph; Adkins, Douglas Ray; Manley, Robert George; Lewis, Patrick Raymond; Bauer, Joseph M.; Manginell, Ronald Paul; Okandan, Murat; Shul, Randy John; Sokolowski, Sara Suzette

    2003-06-01

    Sandia National Labs has developed an autonomous, hand-held system for sensitive/selective detection of gas-phase chemicals. Through the sequential connection of microfabricated preconcentrators (PC), gas chromatography columns (GC) and a surface acoustic wave (SAW) detector arrays, the MicroChemLab{trademark} system is capable of selective and sensitive chemical detection in real-world environments. To date, interconnection of these key components has primarily been achieved in a hybrid fashion on a circuit board modified to include fluidic connections. The monolithic integration of the PC and GC with a silicon-based acoustic detector is the subject of this work.

  6. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer.

    PubMed

    Liu, Guigen; Han, Ming

    2015-06-01

    We report a novel fiber-optic sensor for measurement of static gas pressure based on the natural convection of a heated silicon pillar attached to a fiber tip functioning as a Fabry-Perot interferometer (FPI). A visible laser beam is guided by the fiber to efficiently heat the silicon pillar, while an infrared whitelight source, also guided by the fiber, is used to measure the temperature of the FPI, which is influenced both by the laser power and the pressure through natural convection. We theoretically and experimentally show that, by monitoring the fringe shift caused by the laser heating, air pressure sensing with little temperature cross-sensitivity can be achieved. The pressure sensitivity can be easily tuned by adjusting the heating laser power. In our experiment, the sensor performance within the temperature range from 20°C to 50°C and the pressure range from 0 to 1400 psi has been characterized, showing an average sensitivity of -0.52??pm/psi. Compared to the passive version of the sensor, the pressure sensitivity was ?15 times larger, and the temperature cross-sensitivity was ?100 times smaller. PMID:26030532

  7. MEMS micropump for a Micro Gas Analyzer

    E-print Network

    Sharma, Vikas, 1979-

    2009-01-01

    This thesis presents a MEMS micro-vacuum pump designed for use in a portable gas analysis system. It is designed to be pneumatically-driven and as such does not have self-contained actuation (the focus of future work). ...

  8. Silicon-based nanoenergetic composites

    SciTech Connect

    Asay, Blaine; Son, Steven; Mason, Aaron; Yarrington, Cole; Cho, K Y; Gesner, J; Yetter, R A

    2009-01-01

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  9. Micro-combustor for gas turbine engine

    DOEpatents

    Martin, Scott M. (Oviedo, FL)

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  10. Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

    SciTech Connect

    Matzke, C.M.; Kottenstette, R.J.; Casalnuovo, S.A.; Frye-Mason, G.C.; Hudson, M.L.; Sasaki, D.Y.; Manginell, R.P.; Wong, C.C.

    1998-11-01

    Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 {micro}m wide, 200 to 400 {micro}m deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm{sup 2} on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro- channel sidewalls, which domminate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  11. Silicon-based Quantum Computing

    NASA Astrophysics Data System (ADS)

    Clark, Robert

    2002-03-01

    The Australian Centre for Quantum Computer Technology has as a central focus the construction of few-qubit silicon-based solid state devices for test, by a reliable, reproducable and potentially scalable fabrication route. A description will be given of the fabrication approaches underway, with progress to date. Three principal objectives are within reach: 1. The ability to dope silicon with phosphorus in an atomically-precise array, using STM-lithography and Si-MBE overgrowth. 2. The construction of few-donor QC devices using single-ion implantation through nanofabricated apertures, with on-chip detection, self-aligned control gates and single electron transistor (SET) readout devices. 3. A high frequency experiment, using rf-SETs, to measure the coherent electron transfer between two buried phosphorus donor atoms constituting a nanostructured H_2^+ molecule encapsulated in silicon. This work is being carried out in collaboration with Los Alamos National Laboratory and is funded by the Australian Research Council, the Australian Government, the US Army Research Office, National Security Agency and Advanced Research and Development Activity.

  12. Measuring micro-organism gas production

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Pearson, A. O.; Mills, S. M.

    1973-01-01

    Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples.

  13. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies developed here could be used to develop X-ray and neutron monitors that could be used in the future for security checks at the airports and other critical facilities. The project would lead to devices that could significantly enhance the performance of multi-billion dollar neutron source facilities in the US and bring our nation to the forefront of neutron beam sciences and technologies which have enormous impact to materials, life science and military research and applications.

  14. Silicon-based wire electrode array for neural interfaces

    NASA Astrophysics Data System (ADS)

    Pei, Weihua; Zhao, Hui; Zhao, Shanshan; Fang, Xiaolei; Chen, Sanyuan; Gui, Qiang; Tang, Rongyu; Chen, Yuanfang; Hong, Bo; Gao, Xiaorong; Chen, Hongda

    2014-09-01

    Objectives. Metal-wire electrode arrays are widely used to record and stimulate neurons. Commonly, these devices are fabricated from a long insulated metal wire by cutting it into the proper length and using the cross-section as the electrode site. The assembly of a micro-wire electrode array with regular spacing is difficult. With the help of micro-machine technology, a silicon-based wire electrode array (SWEA) is proposed to simplify the assembling process and provide a wire-type electrode with tapered tips. Approach. Silicon wires with regular spacing coated with metal are generated from a silicon wafer through micro-fabrication and are ordered into a 3D array. A silicon wafer is cut into a comb-like structure with hexagonal teeth on both sides by anisotropic etching. To establish an array of silicon-based linear needles through isotropic wet etching, the diameters of these hexagonal teeth are reduced; their sharp edges are smoothed out and their tips are sharpened. The needle array is coated with a layer of parylene after metallization. The tips of the needles are then exposed to form an array of linear neural electrodes. With these linear electrode arrays, an array of area electrodes can be fabricated. Main results. A 6? × ?6 array of wire-type electrodes based on silicon is developed using this method. The time required to manually assemble the 3D array decreases significantly with the introduction of micro-fabricated 2D array. Meanwhile, the tip intervals in the 2D array are accurate and are controlled at no more than 1%. The SWEA is effective both in vitro and in vivo. Significance. Using this method, the SWEA can be batch-prepared in advance along with its parameters, such as spacing, length, and diameter. Thus, neural scientists can assemble proper electrode arrays in a short time.

  15. Stirling engines for gas fired micro-cogen and cooling

    SciTech Connect

    Lane, N.W.; Beale, W.T.

    1996-12-31

    This paper describes the design and performance of free-piston Stirling engine-alternators particularly suited for use as natural gas fired micro-cogen and cooling devices. Stirling based cogen systems offer significant potential advantages over internal combustion engines in efficiency, to maintain higher efficiencies at lower power levels than than combustion engines significantly expands the potential for micro-cogen. System cost reduction and electric prices higher than the U.S. national average will have a far greater effect on commercial success than any further increase in Stirling engine efficiency. There exist niche markets where Stirling engine efficiency. There exist niche markets where Stirling based cogen systems are competitive. Machines of this design are being considered for production in the near future as gas-fired units for combined heat and power in sufficiently large quantities to assure competitive prices for the final unit.

  16. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all referees for their thorough reviews and evaluation of the full papers. Above all, we would like to sincerely thank all authors for their valuable contributions to these proceedings as well as all the participants for creating a stimulating atmosphere through their presentations and discussions and making this conference a great success. Dr Arjan Frijns Editor and Event Coordinator Prof. Dimitris Valougeorgis Local Organizer Prof. Stéphane Colin Network Coordinator Dr Lucien Baldas Assistant Network Coordinator The PDF also contains details of the Conference Organizers.

  17. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-print Network

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  18. Hot gas stream application in micro-bonding technique

    NASA Astrophysics Data System (ADS)

    Andrijasevic, Daniela; Giouroudi, Ioanna; Smetana, Walter; Boehm, Stefan; Brenner, Werner

    2006-01-01

    This paper presents a new concept for bonding micro-parts with dimensions in the range of 50 ?m to 300 ?m. Two different kinds of adhesives - polyurethane adhesive foil and hot melt glue - were applied to a basic substrate by different techniques. The focused and concentrated hot gas stream softened glue which had been applied in a solid state. Micro-parts were then embossed in the softened glue, or covered and shielded by it. In this way, a rigid and compact bond was obtained after cooling. For the positioning of micro-parts (optical fibers), it has been necessary to manufacture adequate V-grooves. Finite element analyses using the ANSYS TM program package were performed in order to evaluate parameters which govern the heat transfer to the adhesive and substrate respectively. Experimental results are in good agreement with results obtained by the numerical simulations. The advantages of this new approach are small system size, low capital costs, simple usage, applicability to many material combinations, easy integration into existing production lines, etc.

  19. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    SciTech Connect

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  20. An aging study of a gas electron multiplier with micro-strip gas chamber readout

    SciTech Connect

    Miyamoto, J.; Shipsey, I.P.I.

    1999-06-01

    The authors have performed an aging study of a Gas Electron Multiplier (GEM) readout with a Micro-Strip Gas Chamber (MSGC). The GEM is constructed from Kapton and copper, and the MSGC is constructed from semiconductive glass and gold. When the detector (GEM+MSGC) is operated in an argon-dimethyl ether (DME) gas mixture and irradiated with a 5.4 keV photon beam, about 220 mC/cm of charge can be accumulated without degradation of the detector performance. This corresponds to about 20 years of operation at the LHC.

  1. On-Column Micro Gas Chromatography Detection with Capillary-Based Optical Ring Resonators

    E-print Network

    Fan, Xudong "Sherman"

    On-Column Micro Gas Chromatography Detection with Capillary-Based Optical Ring Resonators Siyka I their utility. In contrast, in gas chromatography (GC), gaseous samples are separated based on their interaction

  2. Micro gas analyzers for environmental and medical applications.

    PubMed

    Ohira, Shin-Ichi; Toda, Kei

    2008-07-01

    In this review, novel microsystems and microdevices to measure gaseous species for environmental analysis and medical diagnostics are described. Miniaturization of analyzers makes field measurements affordable. As well, high sensitivity and good time resolution can be achieved by miniaturization. Some such devices have already been successfully applied to real environmental analyses. Mobile monitoring is available with the use of micro gas analyzers to investigate the natural environment, air pollution and to detect nerve or explosive gases released accidentally or through terrorist activities. Miniature devices are also attractive for medical analyses. Gases produced from the human body reflect gases contained in the blood and certain metabolic conditions. Noninvasive monitoring using miniature devices is available in hospitals and in a patient's home. Many investigations have been conducted using wet and dry chemistry methods for both applications. Instruments employing wet chemistries, which comprise liquid droplets, liquid film, miniature diffusion scrubbers, and microfluidic devices have been studied. Among the instruments using dry methods, miniature samplers, portable gas chromatographs, and microfabricated gas chromatographs have all been investigated. These instruments are expected to usher in a new era of environmental monitoring and will find uses in many medical applications. PMID:18558107

  3. Autonomous micro and nano sensors for upstream oil and gas

    NASA Astrophysics Data System (ADS)

    Chapman, David; Trybula, Walt

    2015-06-01

    This paper describes the development of autonomous electronic micro and nanoscale sensor systems for very harsh downhole oilfield conditions and provides an overview of the operational requirements necessary to survive and make direct measurements of subsurface conditions. One of several significant developmental challenges is selecting appropriate technologies that are simultaneously miniaturize-able, integrate-able, harsh environment capable, and economically viable. The Advanced Energy Consortium (AEC) is employing a platform approach to developing and testing multi-chip, millimeter and micron-scale systems in a package at elevated temperature and pressure in API brine and oil analogs, with the future goal of miniaturized systems that enable the collection of previously unattainable data. The ultimate goal is to develop subsurface nanosensor systems that can be injected into oil and gas well bores, to gather and record data, providing an unparalleled level of direct reservoir characterization. This paper provides a status update on the research efforts and developmental successes at the AEC.

  4. Silicon-based nanochannel glucose sensor

    E-print Network

    Wang, Xihua; Gibney, Katherine A; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2008-01-01

    Silicon nanochannel biological field effect transistors have been developed for glucose detection. The device is nanofabricated from a silicon-on-insulator wafer with a top-down approach and surface functionalized with glucose oxidase. The differential conductance of silicon nanowires, tuned with source-drain bias voltage, is demonstrated to be sensitive to the biocatalyzed oxidation of glucose. The glucose biosensor response is linear in the 0.5-8 mM concentration range with 3-5 min response time. This silicon nanochannel-based glucose biosensor technology offers the possibility of high density, high quality glucose biosensor integration with silicon-based circuitry.

  5. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M. (Antioch, CA)

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  6. Investigations of Slip Effect on the Performance of Micro Gas Bearings and Stability of Micro Rotor-Bearing Systems

    PubMed Central

    Huang, Hai; Meng, Guang; Chen, Jieyu

    2007-01-01

    Incorporating the velocity slip effect of the gas flow at the solid boundary, the performance and dynamic response of a micro gas-bearing-rotor system are investigated in this paper. For the characteristic length scale of the micro gas bearing, the gas flow in the bearing resides in the slip regime rather than in the continuum regime. The modified Reynolds equations of different slip models are presented. Gas pressure distribution and load carrying capacity are obtained by solving the Reynolds equations with finite different method (FDM). Comparing results from different models, it is found that the second order slip model agrees reasonably well with the benchmarked solutions obtained from the linearized Boltzmann equation. Therefore, dynamic coefficients derived from the second order slip model are employed to evaluate the linear dynamic stability and vibration characteristics of the system. Compared with the continuum flow model, the slip effect reduces dynamic coefficients of the micro gas bearing, and the threshold speed for stable operation is consequently raised. Also, dynamic analysis shows that the system responses change with variation of the operating parameters including the eccentricity ratio, the rotational speed, and the unbalance ratio.

  7. SILICON-BASED TUNNEL DIODE TECHNOLOGY A Dissertation

    E-print Network

    SILICON-BASED TUNNEL DIODE TECHNOLOGY A Dissertation Submitted to Graduate School of the University;SILICON-BASED TUNNEL DIODE TECHNOLOGY Abstract By Yan Yan Tunnel diodes have received interest because and extraction of a full ac device model. A current density of 2.7 A/m2 and peak-to-valley current ratio (PVR

  8. AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION

    E-print Network

    Deng, Xunming

    AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION Aarohi Vijh 1 fabricated one and two cell, amorphous silicon based mini-modules encapsulated with a modern silicone. This yellowing upon exposure to UV light is a characteristic of most carbon-based polymers. Silicon

  9. A silicon-based electrical source of surface plasmon polaritons.

    PubMed

    Walters, R J; van Loon, R V A; Brunets, I; Schmitz, J; Polman, A

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology. PMID:19966790

  10. Environmental Barrier Coatings for Silicon-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Robinson, Raymond C.; Bansal, Narottam P.

    2001-01-01

    Silicon-based ceramics, such as SiC fiber-reinforced SiC (SiC/SiC ceramic matrix composites (CMC) and monolithic silicon nitride (Si3N4), are prime candidates for hot section structural components of next generation gas turbine engines. Silicon-based ceramics, however, suffer from rapid surface recession in combustion environments due to volatilization of the silica scale via reaction with water vapor, a major product of combustion. Therefore, application of silicon-based ceramic components in the hot section of advanced gas turbine engines requires development of a reliable method to protect the ceramic from environmental attack. An external environmental barrier coating (EBC) is considered a logical approach to achieve protection and CP long-term stability. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 Wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program (5). They consist of three layers, a silicon first bond coat, a mullite or a mullite + BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2) second bond coat, and a BSAS top coat. The EPM EBCs were applied on SiC/SiC CMC combustor liners in three Solar Turbines (San Diego, CA) Centaur 50s gas turbine engines. The combined operation of the three engines has accumulated over 24,000 hours without failure (approximately 1,250 C maximum combustor liner temperature), with the engine in Texaco, Bakersfield, CA, accumulating about 14,000 hours. As the commercialization of Si-based ceramic components in gas turbines is on the horizon, a major emphasis is placed on EBCs for two reasons. First, they are absolute necessity for the protection of Si-based ceramics from water vapor. Second, they can enable a major enhancement in the performance of gas turbines by creating temperature gradients with the incorporation of a low thermal conductivity layer. Thorough understanding of current state-of-the-art EBCs will provide the foundation upon which development of future EBCs will be based. Phase stability and thermal conductivity of EPM EBCs are published elsewhere. This paper will discuss the chemical/environmental durability and silica volatility of EPM EBCs and their impact on the coating's upper temperature limit.

  11. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ? 150 ?m) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device. PMID:26196499

  12. GAS PHASE EXPOSURE HISTORY DERIVED FROM MATERIAL PHASE CONCENTRATION PROFILES USING SOLID PHASE MICRO-EXTRACTION

    EPA Science Inventory

    EPA Identifier: F8P31059
    Title: Gas Phase Exposure History Derived from Material Phase Concentration Profiles Using Solid Phase Micro-Extraction
    Fellow (Principal Investigator): Jonathan Lewis McKinney
    Institution: University of Missouri - ...

  13. New Concept of Micro-Gas-Turbine-Based Cogeneration Package for Performance Improvement in Practical Use

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kenichiro; Shibata, Satoshi; Inoue, Umeo; Tsuchiya, Toshiaki; Sotouchi, Hiroko; Okamoto, Masanori

    As energy consumption is rapidly increasing in the commercial sector in Japan, the market potential for a micro-gas turbine is expected to grow significantly if thermal efficiency is improved further. One way of improving thermal efficiency is to introduce a steam injection system that uses steam from the heat recovery steam generator. We have recently carried out several tests using a micro-gas turbine (Capstone C60). Test results show that this new device utilizing steam injection can improve some key performance parameters for output, thermal efficiency and emissions. The stable operation of the micro-gas turbine with steam injection was confirmed under various operating conditions. On the basis of the above findings, we hereby propose the use of a micro-gas-turbine-based cogeneration package with steam injection driven by a heat recovery steam generator (HRSG) with supplementary firing.

  14. Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells

    E-print Network

    Deng, Xunming

    Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

  15. Storage sizing for embedding of local gas production in a micro gas grid

    NASA Astrophysics Data System (ADS)

    Alkano, D.; Nefkens, W. J.; Scherpen, J. M. A.; Volkerts, M.

    2014-12-01

    In this paper we study the optimal control of a micro grid of biogas producers. The paper considers the possibility to have a local storage device for each producer, who partly consumes his own production, i.e. prosumer. In addition, connected prosumers can sell stored gas to create revenue from it. An optimization model is employed to derive the size of storage device and to provide a pricing mechanism in an effort to value the stored gas. Taking into account physical grid constraints, the model is constructed in a centralized scheme of model predictive control. Case studies show that there is a relation between the demand and price profiles in terms of peaks and lows. The price profiles generally follow each other. The case studies are employed as well to to study the impacts of model parameters on deriving the storage size.

  16. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  17. Silicon rich nitride for silicon based laser devices

    E-print Network

    Yi, Jae Hyung

    2008-01-01

    Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light ...

  18. Silicon-Based Semiconductor Heterostructures: Column IV Bandgap Engineering

    E-print Network

    Bean, John C.

    Silicon-Based Semiconductor Heterostructures: Column IV Bandgap Engineering JOHN C. BEAN, FELLOW, IEEE Invited Paper Semiconductor heterostructures greatly enhance the range of possible device no natural semiconductor partner, exploitation of these effects had been confined to com- pound

  19. Aalborg Universitet Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat

    E-print Network

    Berning, Torsten

    Aalborg Universitet Influence of anodic gas recirculation on solid oxide fuel cells in a micro. (2014). Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat.aau.dk on: juli 08, 2015 #12;Original Research Article Influence of anodic gas recirculation on solid oxide

  20. Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra

    1997-01-01

    Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.

  1. Gas transport by thermal transpiration in micro-channels -- A numerical study

    SciTech Connect

    Wong, C.C.; Hudson, M.L.; Potter, D.L.; Bartel, T.J.

    1998-08-01

    A reliable micro gas pump is an essential element to the development of many micro-systems for chemical gas analyses. At Sandia, the authors are exploring a different pumping mechanism, gas transport by thermal transpiration. Thermal transpiration refers to the rarefied gas dynamics developed in a micro-channel with a longitudinal temperature gradient. To investigate the potential of thermal transpiration for gas pumping in micro-systems, the authors have performed simulations and model analysis to design micro-devices and to assess their design performance before the fabrication process. The effort is to apply ICARUS (a Direct Simulation Monte Carlo code developed at Sandia) to characterize the fluid transport and evaluate the design performance. The design being considered has two plenums at different temperatures (hot and cold) separated by a micro-channel of 0.1 micron wide and 1 micron long. The temperature difference between the two plenums is 30 kelvin. ICARUS results, a quasi-steady analysis, predicts a net flow through the micro-channel with a velocity magnitude of about 0.4 m/s due to temperature gradient at the wall (thermal creep flow) at the early time. Later as the pressure builds up in the hot plenum, flow is reversed. Eventually when the system reaches steady state equilibrium, the net flow becomes zero. The thermal creep effect is compensated by the thermo-molecular pressure effect. This result demonstrates that it is important to include the thermo-molecular pressure effect when designing a pumping mechanism based on thermal transpiration. The DSMC technique can model this complex thermal transpiration problem.

  2. Treatment to Control Adhesion of Silicone-Based Elastomers

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  3. A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection.

    PubMed

    Camara, E H M; Breuil, P; Briand, D; de Rooij, N F; Pijolat, C

    2011-03-01

    This paper presents the optimization of a micro gas preconcentrator based on a micro-channel in porous and non-porous silicon filled with an adequate adsorbent. This micro gas preconcentrator is both applicable in the fields of atmospheric pollution monitoring (Volatil organic compounds--VOCs) and explosives detection (nitroaromatic compounds). Different designs of micro-devices and adsorbent materials have been investigated since these two parameters are of importance in the performances of the micro-device. The optimization of the device and its operation were driven by its future application in outdoor environments. Parameters such as the preconcentration factor, cycle time and the influence of the humidity were considered along the optimization process. As a result of this study, a preconcentrator with a total cycle time of 10 min and the use of single wall carbon nanotubes (SWCNTs) as adsorbent exhibits a good preconcentration factor for VOCs with a limited influence of the humidity. The benefits of using porous silicon to modify the gas desorption kinetics are also investigated. PMID:21334483

  4. Amorphous-silicon-based uncooled microbolometer IRFPA

    NASA Astrophysics Data System (ADS)

    Vedel, Corrinne; Martin, Jean-Luc; Ouvrier-Buffet, Jean-Louis; Tissot, Jean-Luc; Vilain, Michel; Yon, Jean-Jacques

    1999-07-01

    LETI LIR has been involved in Amorphous Silicon uncooled microbolometer development for a few years. This paper reports recent progress that have been carried out both in technological and product field. Due to the very particular features of LETI LIR technology, large fill factor, high thermal insulation, associated with small thermal time constant, can be achieved, resulting in a large detector responsivity. In addition, pulsed bias has been introduced showing performance improvement in terms of power consumption, reliability, faster thermal response. A model has been developed which accounts for these improvements. Electro-thermal results obtained from an IRCMOS 256 X 64, 47 micrometers detector sizes, laboratory prototype show that NETD less than 50 mK at f/1 can be obtained even at a high video scanning rate, that is compatible with micro scanning techniques.

  5. Micro Strip Gas Chambers Overcoated with Carbon, Hydrogenated Amorphous Silicon, and Glass Films

    E-print Network

    Micro Strip Gas Chambers Overcoated with Carbon, Hydrogenated Amorphous Silicon, and Glass Films M of this type consisted of a a bulk substrate, quartz or polyimide, where a surface layer, typically t ¸ 1¯m implantation [5][6]. Another possibility is to cover a highly resistive bulk substrate with a thin 2 #12; film

  6. Micro gas bearings fabricated by deep X-ray lithography D. Kim, S. Lee, Y. Jin, Y. Desta, M. D. Bryant, J. Goettert

    E-print Network

    Bryant, Michael D.

    Micro gas bearings fabricated by deep X-ray lithography D. Kim, S. Lee, Y. Jin, Y. Desta, M. D. Bryant, J. Goettert Abstract Micro bearing systems for Micro Electrome- chanical Systems (MEMS) have, frictionless bearings are needed, and in practice, micro gas bearings approach the ideal. Typically, bearings

  7. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    SciTech Connect

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH{sub 4} (10%) and He-C{sub 2}H{sub 6} (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C{sub 2}H{sub 6} (50%) and Ar-C{sub 2}H{sub 6}(50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability.

  8. Trends in Silicon-Based Detectors Ronald Lipton, Fermilab

    E-print Network

    Trends in Silicon-Based Detectors Ronald Lipton, Fermilab Outline · Some Physics context · Current generations of experiments will deploy large areas of complex silicon sensors and electronics. At HL-LHC ~ 200 reconstruction algorithms · 28 (EM) + 12 (Hadronic) layers · 600 m2 of silicon sensors operating at -30 deg C 11

  9. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  10. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  11. X-ray Polarimetry with a Micro-Pattern Gas Detector

    NASA Technical Reports Server (NTRS)

    Hill, Joe

    2005-01-01

    Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.

  12. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  13. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    SciTech Connect

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K.; Yoon, Seog-Joon; Ambade, Swapnil B.; Lokhande, B.J.; Mane, Rajaram S.; Han, Sung-Hwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ? These structures were characterized by XRD and SEM. ? LPG, CO{sub 2} and NH{sub 4} gases were exposed. ? Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  14. Outdoor degradation of thin film amorphous silicon based PV modules

    NASA Astrophysics Data System (ADS)

    Berov, M.; Ivanov, P.; Tuytuyndziev, N.; Vitanov, P.

    2014-12-01

    One of the main problems in thin film silicon based modules is the deterioration of their performance upon exposure to light. The presented work focuses on a methodology for evaluation of thin-film photovoltaic module degradation behavior under real operating conditions. The outdoor degradation of double junction a-Si:H/a-Si:H modules was investigated using automated measurement setup for a period of two years. A deterioration of the module's maximum power was observed due to the well known Staebler-Wronski effect, which main causes are the decrease of open circuit voltage and the fill factor of the module. The obtained results can be correlated to the technology and construction of the thin film silicon based modules.

  15. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-print Network

    Guyer, Brittany (Brittany Leigh)

    2009-01-01

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  16. MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer ...................................................................................................................MS.1

    E-print Network

    Reif, Rafael

    MEMS & BioMEMS Chip-Scale Quadrupole Mass Filters for a Micro Gas Analyzer...................................................................................................................MS.2 MEMS-based Plasma Probes for Spacecraft Re-entry Monitoring.........................................................................MS.4 Direct Patterning of Metallic MEMS through Microcontact Printing

  17. Novel Silicon-Based Optical Materials and Devices

    NASA Astrophysics Data System (ADS)

    Augustine, Brian H.

    1995-01-01

    With the emerging technologies of optical computing and signal processing, there exists a continued desire to integrate microelectronics and optical functionality on a single substrate material. Since microelectronics devices are universally the domain of silicon-based materials and processing, it is of scientific and technological interest to develop silicon-based optical materials. We have experimentally demonstrated novel optical devices and materials using silicon-based thin film materials and processing. The first experimental demonstration involves thermal-optical switching of a five film interference filter using alternating layers of SiO_2 and amorphous Si, with an a-Si active layer. Switching in the near infrared region with rise-times of 40 nsec., and up to 56% contrast ratio is achieved. Device modeling suggests improvements for future devices, and confirms the switching mechanism. The second experimental thrust involves fabrication, materials characterization, and light emission study of silicon-rich silicon oxynitride (a-rm SiO _{x}N_{y}:H) thin films, produced by plasma enhanced chemical vapor deposition (PECVD). Materials characterization includes single wavelength ellipsometry, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, optical absorption spectroscopy, transmission electron microscopy, and photoluminescence (PL) spectroscopy. A blue shift in PL peak energy with increasing refractive index is observed up to 3.15 eV with radiative lifetimes of sub-10 nsec. In addition, a three -order-of-magnitude increase in PL intensity is demonstrated after post-deposition annealing at temperatures greater than 850^circC. A chemical bonding model is presented to explain the luminescence and annealing behavior in terms of radiative defect states within the band gap due to bonding defects in the suboxide. This mechanism is discussed in terms of current literature on porous silicon, nanocrystalline silicon, and other light emitting silicon-based materials.

  18. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

  19. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  20. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  1. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-08-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  2. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Greig, Amelia; Charles, Christine; Boswell, Roderick

    2015-10-01

    A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls. For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  3. Transition from glow silent discharge to micro-discharges in nitrogen gas

    NASA Astrophysics Data System (ADS)

    Gherardi, Nicolas; Gouda, Gamal; Gat, Eric; Ricard, André; Massines, François

    2000-08-01

    At atmospheric pressure, the electrical breakdown of a silent discharge can occur in many thin filaments (leading to micro-discharges) or in a single discharge canal covering the entire electrode surface (leading to a glow discharge). The aim of this paper is to contribute to a better understanding of the transition from a glow silent discharge to micro-discharges in nitrogen at atmospheric pressure. For this purpose, the two types of regime have been studied by emission spectroscopy and electrical measurements. The transition is always observed due to an increase of the power dissipated in the gas gap, but the maximum power that can be used while maintaining a glow discharge depends on the nature of the dielectric surface in contact with the gas. These results have been explained by the predominance of the density of metastable nitrogen molecules on the discharge regime. Due to the creation of seed electrons via Penning ionization, these metastable molecules can control the gas breakdown and so the discharge regime. Their density essentially depends on their quenching rate. The products etched from the surfaces in contact with the discharge appear to be the main source of the metastable molecules quenching. Therefore, the nature of the surface controls the nature of the quenching of the metastable molecules and the power dissipated in the discharge the quencher density.

  4. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    SciTech Connect

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models are necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.

  5. Specific features of the formation of vanadium oxide micro- and nanocrystals during gas-phase synthesis

    NASA Astrophysics Data System (ADS)

    Vinogradova, O. P.; Sidorov, A. I.; Klimov, V. A.; Shadrin, E. B.; Nashchekin, A. V.; Khanin, S. D.; Lyubimov, V. Yu.

    2008-07-01

    A modified method of gas-phase synthesis of vanadium oxide micro- and nanocrystals was developed. The morphology of the crystals obtained and its dependence on the synthesis conditions are analyzed. The method is shown to permit the growth of rod-shaped crystals rectangular in cross section, whiskers, crystals with a rectangular cavity, and also lamellar crystals and planar ordered textures consisting of oriented rodshaped crystals. The microcrystals synthesized were used to study the mutual reversible transformation of various vanadium oxides using oxidation and reduction reactions.

  6. Mass flow rate and pressure distribution of gas through three-dimensional micro-channels

    SciTech Connect

    Jiang, Jianzheng; Fan, Jing

    2014-12-09

    An effective method to predict the mass flow rate and pressure distribution of gas through three dimensional micro-channels with different cross-section shapes has been proposed. For rectangular cross sections often employed in experiment, the present solutions versus measured data of Zohar et al. (2002) show that the side walls significantly affect the mass flow rates as the aspect ratio is smaller than 10, whereas the non-dimensional pressure distributions, mainly determined by the inlet-to-outlet pressure ratio, are insensitive to the aspect ratio.

  7. Micro computed tomography and CFD simulation of drop deposition on gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Guilizzoni, M.; Santini, M.; Lorenzi, M.; Knisel, V.; Fest-Santini, S.

    2014-11-01

    Fuel cells are electrochemical power generation system which may achieve high energy efficiencies with environmentally friendly emissions. Among the different types, Proton Exchange Membrane fuel cells (PEMFC) seem at present one of the most promising choices. A very important component of a PEMFC is the gas diffusion layer (GDL), which has the primary role of managing water in the cell, allowing reactant gases transport to the catalyst layer while keeping the membrane correctly hydrated and preventing electrode flooding. Therefore, GDLs have to be porous and very hydrophobic. Carbon clothes or carbon papers coated with a hydrophobizing agent - typically a fluoropolymer - are used. Given the complex chemistry and morphology of the GDLs, wettability analyses on them present some critical issues when using the conventional contact angle measurement techniques. In this paper, the deposition of a drop on a GDL (produced using polytetrafluoroethylene-co-perfluoroalcoxy vinyl ether as the fluorinated polymer) was investigated by means of micro computed tomography (microCT) and numerical simulation. The microCT facility operational at the University of Bergamo was used to acquire a 3D tomography of a water drop deposed on a sample GDL. The reconstructed drop dataset allows thorough understanding of the real drop shape, of its contact area and contact line. The GDL dataset was used to create a realistic mesh for the numerical simulation of the drop deposition, which was performed using the OpenFOAM® interFOAM solver.

  8. Direct observations of gas-hydrate formation in natural porous media on the micro-scale

    NASA Astrophysics Data System (ADS)

    Chaouachi, M.; Sell, K.; Falenty, A.; Enzmann, F.; Kersten, M.; Pinzer, B.; Saenger, E. H.; Kuhs, W. F.

    2013-12-01

    Gas hydrates (GH) are crystalline, inclusion compounds consisting of hydrogen-bonded water network encaging small gas molecules such as methane, ethane, CO2, etc (Sloan and Koh 2008). Natural gas hydrates are found worldwide in marine sediments and permafrost regions as a result of a reaction of biogenic or thermogenic gas with water under elevated pressure. Although a large amount of research on GH has been carried out over the years, the micro-structural aspects of GH growth, and in particular the contacts with the sedimentary matrix as well as the details of the distribution remain largely speculative. The present study was undertaken to shed light onto the well-established but not fully understood seismic anomalies, in particular the unusual attenuation of seismic waves in GH-bearing sediments, which may well be linked to micro-structural features. Observations of in-situ GH growth have been performed in a custom-build pressure cell (operating pressures up to several bar) mounted at the TOMCAT beam line of SLS/ PSI. In order to provide sufficient absorption contrast between phases and reduce pressure requirements for the cell we have used Xe instead of CH4. To the best of our knowledge this represents the first direct observation of GH growth in natural porous media with sub-micron spatial resolution and gives insight into the nucleation location and growth process of GH. The progress of the formation of sI Xe-hydrate in natural quartz sand was observed with a time-resolution of several minutes; the runs were conducted with an excess of a free-gas phase and show that the nucleation starts at the gas-water interface. Initially, a GH film is formed at this interface with a typical thickness of several ?m; this film may well be permeable to gas as suggested in the past - which would explain the rapid transport of gas molecules for further conversion of water to hydrate, completed in less than 20 min. Clearly, initially the growth is directed mainly into the liquid (and not into the gas phase as sometimes suggested). The observations of the 2D slices after full transformation show for all systems studied that hydrates tend to concentrate in the center of pore spaces and do not adhere in a systematic manner to quartz grains. Whether or not a thin film of water remained at the quartz-GH interface after completion of the reaction is presently under investigation. Sloan, E.D., Koh, C.A., (2008) Clathrate hydrates of natural gases. CRC Press, Boca Raton, FL.

  9. In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices

    NASA Astrophysics Data System (ADS)

    Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David

    2015-04-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20?m size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate crystallite size distribution using high-energy synchrotron radiation. Geophys.Res.Letters, 2007 ; 34 : L13608, DOI:10.1029/2006GL029134

  10. Design and fabrication of a silicon-based direct methanol fuel cell with a new cathode spoke structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Yuan, Zhenyu; Li, Yuling; Jia, Qi; Chen, Song; Liu, Xiaowei

    2011-03-01

    In this paper, a self-breathing micro direct methanol fuel cell (?DMFC) featuring a new cathode current collector with a spoke configuration is presented to improve cell performance. Simulation results show that the new spoke structure can effectively increase the efficiency of oxygen mass transport and exhibit higher pressure than the conventional perforated structure. The water transfer to the proton exchange membrane (PEM) is promoted to reduce the PEM resistance with the increase in the membrane water content. Additionally, the effects of the spoke blades on performance were evaluated to determine the optimal cathode structure. The self-breathing ?DMFCs with conventional and new cathode structures were fabricated using silicon-based micro-electromechanical system (MEMS) technologies and tested at room temperature with 1 M methanol solution. The experimental results revealed that the spoke cathode structure exhibits significantly higher performance than the conventional structure, showing a substantial 30% increase in peak power density.

  11. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    SciTech Connect

    Kawagoe, Yoshiaki; Isono, Susumu; Takeno, Takanori; Yonemura, Shigeru; Takagi, Toshiyuki; Miki, Hiroyuki

    2014-12-09

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment.

  12. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    NASA Astrophysics Data System (ADS)

    Kawagoe, Yoshiaki; Yonemura, Shigeru; Isono, Susumu; Takeno, Takanori; Miki, Hiroyuki; Takagi, Toshiyuki

    2014-12-01

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment.

  13. Porous silicon-based biosensor for pathogen detection.

    PubMed

    Mathew, Finny P; Alocilja, Evangelyn C

    2005-02-15

    A porous silicon-based biosensor for rapid detection of bacteria was fabricated. Silicon (0.01 ohmcm, p-type) was anodized electrochemically in an electrochemical Teflon cell containing ethanoic hydrofluoric acid solution to produce sponge-like porous layer of silicon. Anodizing conditions of 5 mA/cm2 for 85 min proved best for biosensor fabrication. A single-tube chemiluminescence-based assay, previously developed, was adapted to the biosensor for detection of Escherichia coli. Porous silicon chips were functionalized with a dioxetane-Polymyxin B (cell wall permeabilizer) mixture by diffusion and adsorption on to the porous surface. The reaction of beta-galactosidase enzyme from E. coli with the dioxetane substrate generated light at 530 nm. Light emission for the porous silicon biosensor chip with E. coli was significantly greater than that of the control and planar silicon chip with E. coli (P<0.01). Sensitivity of the porous silicon biosensor was determined to be 101-102 colony forming units (CFU) of E. coli. The porous silicon-based biosensor was fabricated and functionalized to successfully detect E. coli and has potential applications in food and environmental testing. PMID:15626624

  14. Electroluminescence efficiencies of erbium in silicon-based hosts

    SciTech Connect

    Cueff, Sébastien E-mail: christophe.labbe@ensicaen.fr; Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas; Kurvits, Jonathan A.; Zia, Rashid; Department of Physics, Brown University, Providence, Rhode Island 02912 ; Rizk, Richard; Labbé, Christophe E-mail: christophe.labbe@ensicaen.fr

    2013-11-04

    We report on room-temperature 1.5??m electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  15. A silicon-based cluster state quantum computer

    E-print Network

    John J. L. Morton

    2009-05-25

    It has been over ten years since Kane's influential proposal for a silicon-based nuclear spin quantum computer using phosphorous donors. Since then, silicon-based architectures have been refined as the experimental challenges associated with the original proposal have become better understood, while simultaneously a number of powerful and generic models for quantum computation have emerged. Here, I discuss how the cluster state or "one-way" model for quantum computing might be advantageously applied to donors in silicon, with the potential to substantially reduce the practical requirements of a successful implementation. The essence of the scheme is to use the electron spin associated with a donor to weave an entangled network between 31P donor nuclear spins. This resource has been shown to have exceptional coherence times and supports universal quantum computation through local measurements on the nuclear spins. Some of the key ingredients, such as global spin manipulation, have been robustly established, while others, such as single spin measurement, have seen much progress in recent years. A key challenge will be the demonstration of electron transfer between donors that preserves spin coherence.

  16. Thermal/environmental barrier coating system for silicon-based materials

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor)

    1999-01-01

    A coating system for a substrate containing a silicon-based material, such as silicon carbide-containing ceramic matrix materials containing silicon carbide and used to form articles exposed to high temperatures, including the hostile thermal environment of a gas turbine engine. The coating system includes a layer of barium strontium aluminosilicate (BSAS) as a bond coat for a thermal-insulating top coat. As a bond coat, the BSAS layer serves to adhere the top coat to a SiC-containing substrate. The BSAS bond coat exhibits sufficient environmental resistance such that, if the top coat should spall, the BSAS bond coat continues to provide a level of environmental protection to the underlying SiC-containing substrate.

  17. Silicon-Based Optical Modulator with Ferroelectric Layer

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas

    2006-01-01

    According to a proposal, a silicon dioxide layer in a high-speed, low-power, silicon- based electro-optical modulator would be replaced by a layer of lead zirconate titanate or other ferroelectric oxide material. The purpose of this modification is to enhance the power performance and functionality of the modulator. In its unmodified form, the particular silicon- based electro-optical modulator is of an advanced design that overcomes the speed limitation of prior silicon-based electro- optical modulators. Whereas modulation frequencies of such devices had been limited to about 20 MHz, this modulator can operate at modulation frequencies as high as 1 GHz. This modulator can be characterized as a silicon-waveguide-based metal oxide/semiconductor (MOS) capacitor phase shifter in which modulation of the index of refraction in silicon is obtained by exploiting the free-charge-carrier-plasma dispersion effect. As shown in the figure, the modulator includes an n-doped crystalline silicon slab (the silicon layer of a silicon- on-insulator wafer) and a p-doped polycrystalline silicon rib with a gate oxide layer (the aforementioned silicon dioxide layer) sandwiched between them. Under accumulation conditions, the majority charge carriers in the silicon waveguide modify the index of refraction so that a phase shift is induced in the optical mode propagating in the waveguide. The advantage of using an MOS capacitor phase shifter is that it is possible to achieve high modulation speed because there are no slow carrier-generation or -recombination processes involved in the accumulation operation. The main advantage of the proposed substitution of a ferroelectric oxide layer for the silicon dioxide layer would arise from the spontaneous polarization effect of the ferroelectric layer: This spontaneous polarization would maintain accumulation conditions in the absence of applied voltage. Consequently, once the device had been switched to a given optical state, it would remain in that state, even in the absence of applied voltage (in other words, even with power turned off). A secondary advantage is that because the ferroelectric layer would have an index of refraction larger than that of silicon dioxide, there could be some reduction of optical losses attributable to fabrication of the modulator

  18. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, ?=162°) but not on the abaxial side (?=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ?180?m deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (?1.7?m diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. PMID:25175398

  19. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  20. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  1. Low Temperature Performance of Silicon-based Photo-sensors

    NASA Astrophysics Data System (ADS)

    Wasserman, Ryan; Buchanan, Norm

    2012-10-01

    The Long Baseline Neutrino Experiment (LBNE) has been proposed to use an intense neutrino beam to study neutrino properties, as well as rare and yet unseen events in particle physics. In order to maximize the physics potential of this experiment a liquid argon far detector will need to be equipped a photon detector which can reduce cosmic ray background (for a surface located detector) and provide a trigger for non beam-related events such as supernovae neutrinos and proton decay. I will describe an effort under way to design and fabricate a photon detection system based on wavelength-shifter coated optical fibers sensitive to liquid argon scintillation light and utilizing silicon-based photo-sensors. Plans for future large scale testing and simulation of the photon detection system will also be discussed.

  2. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Hattori, Kaori; Kohara, Ryota; Kunieda, Etsuo; Kubo, Atsushi; Kubo, Hidetoshi; Miuchi, Kentaro; Nakahara, Tadaki; Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Shirahata, Takashi; Takada, Atsushi; Tanimori, Toru; Ueno, Kazuki

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber (?-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this ?-TPC (10×10×8 cm 3) and the 6×6×13 mm 3 GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the ?-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6° (FWHM) at 364 keV of 131I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of 131I.

  3. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  4. Analytical estimation of neutron yield in a micro gas-puff X pinch

    SciTech Connect

    Derzon, M. S.; Galambos, P. C.; Hagen, E. C.

    2012-12-01

    In this paper, we present the basic concepts for developing a micro x pinch as a small-scale neutron source. For compact sources, these concepts offer repetitive function at higher yields and pulsing rates than competing methods. The uniqueness of these concepts arises from the use of microelectronic technology to reduce the size of the target plasma and to efficiently heat the target gas. The use of repetitive microelectromechanical systems (MEMs) gas puff technology, as compared to cryogenic wires or solid targets (for the beam-target alternatives), has the potential to be robust and have a long lifetime because the plasma is not created from solid surfaces. The modeling suggests that a 50 J at the wall plug pulse could provide >10{sup 5} tritium (DT) neutrons and 10{sup 3} deuterium (DD) neutrons at temperatures of a few keV. At 1 kHz, this would be >10{sup 8} and 10{sup 6} neutrons per second, DT and DD, respectively, with a 250 {mu}m anode-cathode gap. DT gas puff devices may provide >10{sup 12} neutrons/s operating at 1 kHz and requiring 100 kW. The MEMs approach offers potentially high pulse rates and yields.

  5. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    SciTech Connect

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (?5.2?±?0.6)?×?10{sup ?11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7?±?0.7)?×?10{sup ?22} m{sup 2} s{sup ?1?}Pa{sup ?1} at 81?°C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  6. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (-5.2 ± 0.6) × 10-11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10-22 m2 s-1 Pa-1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  7. Gas transport evaluation in lithium-air batteries with micro/nano-structured cathodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoning; Wen, Kechun; Song, Yuanqiang; Ye, Luhan; Zhang, Kelvin H. L.; Pan, Yu; Lv, Weiqiang; Liao, Yulong; He, Weidong

    2015-01-01

    Inefficient gas transport in the porous cathode is disastrous for the lithium-air battery to achieve a high electrochemical performance. Previous evaluation of the cathode diffusivity relies on indirect calculations based on multiple V-I data obtained over the intact battery system, which inevitably induces evaluation uncertainty and material waste. In this report, an electrochemical device is designed for the out-of-cell diffusivity measurement in the lithium-air battery with micro/nano-sized cathodes. With the measured diffusivity, a few electrochemical parameters including the limiting current density and the concentration polarization associated with the porous cathodes can thus be directly evaluated. The work facilitates the development of highly-efficient cathode materials in the general field of metal-air battery field.

  8. Cathode sheath and hydrogen Balmer lines modelling in a micro-hollow gas discharge

    NASA Astrophysics Data System (ADS)

    Spasojevi?, Dj

    2012-11-01

    We present a model of the cathode sheath (CS) processes responsible for the broadening of the hydrogen Balmer beta line recorded from a micro-hollow gas discharge (MHGD) and used for simultaneous diagnostics of plasma and CS parameters. The MHGD was generated in a microhole (diameter 100 ?m at narrow side and 130 ?m at wider side) of a gold-alumina-gold sandwich in the pressure ranges: (100-900) mbar in argon with traces of hydrogen, and (100-400) mbar in pure hydrogen. The electron number density is determined from the plasma broadened line width of the central part of Balmer beta profile, while the average value of electric field strength in the CS and the CS thickness are determined from the extended line wings induced by the dc Stark effect.

  9. Author's personal copy Current status and outlook for silicon-based optical biosensors

    E-print Network

    Weiss, Sharon

    Author's personal copy Current status and outlook for silicon-based optical biosensors S.M. Weiss a. The advantages of these silicon-based optical biosensors for high sensitivity detection include a low analyte silicon waveguide biosensors. Sections 3 and 4 highlight more conventional silicon photonics technology

  10. In-situ formation of nanoparticles within a silicon-based matrix

    DOEpatents

    Thoma, Steven G. (Albuquerque, NM); Wilcoxon, Jess P. (Albuquerque, NM); Abrams, Billie L. (Albuquerque, NM)

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  11. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    E-print Network

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2015-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  12. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity

    PubMed Central

    Evans, Benjamin A.; Fiser, Briana L.; Prins, Willem J.; Rapp, Daniel J.; Shields, Adam R.; Glass, Daniel R.; Superfine, R.

    2011-01-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (?-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. PMID:22184482

  13. Micro-Simulation Models of Urban Regions: Anticipating Greenhouse Gas Emissions from Transport and Housing in Austin, Texas

    E-print Network

    Kockelman, Kara M.

    Micro-Simulation Models of Urban Regions: Anticipating Greenhouse Gas Emissions from Transport AND MOTIVATION Energy security and climate change are top issues in today's world and require immediate attention of a microsimulation model for household and firm evolution and location choices overtime, along with evolution

  14. Silicon Micro-Needles with Flexible Interconnections , Y. Hanein1

    E-print Network

    Silicon Micro-Needles with Flexible Interconnections G. Holman1 , Y. Hanein1 , R. C. Wyeth2 , A. O approach allows the integration of micro- machined silicon needles with a larger silicon base designed layers to sandwich a metallic layer. The metal layer forms the electrical connection between the silicon

  15. Observation of Micro Premixed Flames Surrounded by High Temperature Burned Gas Flow

    NASA Astrophysics Data System (ADS)

    Fuchihata, Manabu; Ida, Tamio; Kuwana, Kazunori

    Flame structure of micro scale methane-air premixed flames is investigated experimentally. First, the uppermost and lowest flow rates which propagating flame could be formed are examined with simple single burner. Propagating flame is not stabilized on the simple single burner whose diameter is less than 4mm, despite the flow rate is well controlled between the expected velocity gradient limits for blow off and flash back. In addition, all the extinction mechanism observed for the burner diameter less than 4mm is blow off. It is, consequently, considered that the flame formed on the burner whose diameter is less than 4mm has other extinction mechanism in addition to blow off and flash back caused by flow velocity gradient. Secondly, the flame formed on the burner with pilot flame is observed. The flame is stabilized even on the burner whose diameter is 0.3mm. However, shape of the flame formed on the burner whose diameter is less than 1mm and at around lowest flow rate is near spherical. It is similar to the appearance of micro diffusion flames. On the other hand, the flame formed on the burner whose diameter is less than 0.5mm is not considered as propagating flame, because typical laminar propagating flame has a structure more than 0.5mm thickness at this condition. Therefore, it is supposed that the flame formed on the burner whose diameter is submillimeter and at around lowest flow rate is dominated by the diffusion mixing of oxygen and methane from the premixture and high temperature heat flux from the pilot gas flow.

  16. Porous silicon based anode material formed using metal reduction

    SciTech Connect

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  17. Root canal hydrophobization by dentinal silanization: improvement of silicon-based endodontic treatment tightness.

    PubMed

    Collart Dutilleul, Pierre-Yves; Fonseca, Cesar Gaitán; Zimányi, László; Romieu, Olivier; Pozos-Guillén, Amaury J; Semetey, Vincent; Cuisinier, Frédéric; Pérez, Elías; Levallois, Bernard

    2013-07-01

    A new strategy to improve silicon-based endodontic treatment tightness by dentine hydrophobization is presented in this work: root dentine was silanized to obtain a hydrophobic dentine-sealer interface that limits fluid penetration. This strategy was based on the grafting of aliphatic carbon chains on the dentine through a silanization with the silane end groups [octadecyltrichlorosilane (OTS) and octadecyltriethoxysilane]. Dentine surface was previously pretreated, applying ethylenediaminetetraacetic acid and sodium hypochlorite, to expose hydroxyl groups of collagen for the silane grafting. Collagen fibers exposure after pretreatment was visible with scanning electron microscopy, and Fourier transform infrared (FTIR) spectroscopy showed their correct exposition for the silanization (amide I and II, with 1630, 1580, and 1538 cm?¹ peaks corresponding to the vibration of C=O and C--N bonds). The grafting of aliphatic carbon chains was confirmed by FTIR (peaks at 2952 and 2923 cm?¹ corresponding to the stretching of C--H bonds) and by the increasing of the water contact angle. The most efficient hydrophobization was obtained with OTS in ethyl acetate, with a water contact angle turning from 51° to 109°. Gas and liquid permeability tests showed an increased seal tightness after silanization: the mean gas and water flows dropped from 2.02 × 10?? to 1.62 × 10?? mol s?¹ and from 10.8 × 10?³ to 5.4 × 10?³ µL min?¹, respectively. These results show clear evidences to turn hydrophilic dentine surface into a hydrophobic surface that may improve endodontic sealing. PMID:23359546

  18. Spectroscopic and electric characterization of an atmospheric pressure segmented gas discharge with micro hollow electrodes

    NASA Astrophysics Data System (ADS)

    Jovovi?, Jovica; Konjevi?, Nikola

    2014-03-01

    We present the results of an optical emission spectroscopy and electric study of segmented micro hollow gas discharge source (SMHGD) operating at atmospheric pressure in DC regime. This microdischarge source with 1 mm discharge channel consists of five metal discs separated by alumina. Three central discs are made of copper while stainless steel was used for the cathode and anode. In order to perform side on measurements, 1.5 mm diameter side hole was drilled through central copper disc. The electron temperature ( T e ), gas temperature ( T g ) and electron number density ( N e ) were measured in argon, argon-hydrogen and helium SMHGDs operating in the voltage range (220 to 475) V and currents 40 mA, 60 mA and 80 mA. Boltzmann plots of relative Ar I and He I line intensities were used to measure T e = (3700-5500) K in argon and (2500-2800) K in helium SMHGDs. Same technique is applied to N2 ( C 3 ? u- B 3 ? g ) band to measure T g in the range (700-900) K in Ar and He and (1400-1600) K in Ar-H2 mixture. Line profiles of hydrogen the H ? line in argon and the ratio of He I 447.1 nm line intensity and its forbidden component in helium are employed to determine N e ? (2-4) × 1014 cm-3 in the center of SMHGD. By measuring SMHGD disc voltages, the longitudinal distribution of plasma potential and electric field strength are determined.

  19. Quenching-resistant multiple micro-flame photometric detector for gas chromatography.

    PubMed

    Hayward, Taylor C; Thurbide, Kevin B

    2009-11-01

    A multiple flame photometric detector (mFPD) based on many flames operated in series is introduced for the detection of sulfur and phosphorus compounds. The method employs attributes of a previously developed micro counter-current flame technique to readily establish any number of very small compact flames inside a narrow quartz tube. Results show for the first time that a five flame mFPD mode can improve hydrocarbon quenching resistance nearly 20-fold relative to a single flame (i.e., conventional FPD) mode, and nearly 10-fold relative to a two flame (i.e., dual FPD) mode. Under these conditions, the five flame mFPD mode is shown to maintain about 60% of its original analyte chemiluminescence even in the presence of over 100 mL/min of methane flow into the detector. In contrast to a conventional dual FPD device, the five flame mFPD mode also provides analyte sensitivity that is similar to a conventional FPD. Of note, the mFPD yields minimum detectable limits for sulfur and phosphorus of 4 x 10(-11) g S/s and 3 x 10(-12) g P/s respectively. Analyte selectivity over hydrocarbons, signal reproducibility, and response equimolarity are also improved in the mFPD, making it a potentially useful detector for applications in gas chromatography. PMID:19874054

  20. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  1. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    E-print Network

    de Mas, Nuria

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride ...

  2. 10.1098/rsta.2003.1221 Progress in silicon-based quantum computing

    E-print Network

    Goan, Hsi-Sheng

    10.1098/rsta.2003.1221 Progress in silicon-based quantum computing By R. G. Clark1 , R. Brenner1 Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia 3Centre for Quantum

  3. Low-pressure micro-strip gas chamber and a search for a high-efficiency secondary-electron emitter

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Sbarra, C.

    1994-11-01

    The test beam performance of a low-pressure micro-strip gas chamber with a thick CsI secondary-electron emitting surface as the source of primary ionization is presented. A study of the secondary-electron yield of CsI and KCl coated surfaces are discussed, as well as a promising new technique, CsI-treated CVD diamond films.

  4. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  5. Theory for hydrostatic gas journal bearings for micro-electro-mechanical systems

    E-print Network

    Liu, Lixian, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    The goal of the MIT micro-engine project is to develop high-speed rotating Power MEMS (Micro-Electro-Mechanical Systems) using computer chip fabrication technologies. To produce high power (10-50 W) in a small volume (less ...

  6. Efficient and scalable single mode waveguide coupling on silicon based substrates

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Tseng, R.; Rawlings, B.; Liff, S.; Ban, I.; McFarlane, W.; Reshotko, M.; Chang, P.

    2014-03-01

    One of the key challenges in Silicon based optical interconnect system remains to be the efficient coupling of optical signals from the submicron size on-chip waveguides to standard single mode (SM) fibers with low insertion loss (IL) and relaxed alignment tolerance. Large optical alignment tolerance allows optical connectors to be attached to on-chip waveguides passively using standard semiconductor pick-and-place assembly tools that have placement accuracies of 10- 15?m. To facilitate the assembly, optical fiber coupling elements need to be modular and compact. They have to also have low profile to avoid blocking air flow or mechanical interference with other elements of the package. In this paper we report the development of a two-dimensional (2D) SM optical fiber coupling architecture that consists of Si based photonic lightwave circuit (PLC) substrate and a high-density micro-lensed fiber optic connector. The system is compact, efficient and has large optical alignment tolerance. At 1300nm an insertion loss of 2.4dB and 1.5dB was measured for the PLC module and the fiber optic connector, respectively. When the PLC module and connector was aligned together, a total insertion loss of 7.8dB was demonstrated with x,y alignment tolerance of 40?m for 1dB optical loss. The SM optical coupling architecture presented here is scalable, alignment tolerant and has the potential to be manufactured in high volume. To our knowledge, such a system has not been reported in the literature so far.

  7. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  8. Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire Growth

    SciTech Connect

    Zhang, Jiguang; Liu, Jun; Wang, Donghai; Choi, Daiwon; Fifield, Leonard S.; Wang, Chong M.; Xia, Guanguang; Nie, Zimin; Yang, Zhenguo; Pederson, Larry R.; Graff, Gordon L.

    2010-03-10

    Silicon based nanowires have been grown from commercial silicon powders under conditions of differing oxygen and carbon activities. Nanowires grown in the presence of carbon sources consisted of a crystalline SiC core with an amorphous SiOx shell. The thickness of SiOx shell decreased as the oxygen concentration in the precursor gases was lowered. Nanowires grown in a carbon-free environment consisted of amorphous silicon oxide with a typical composition of SiO1.8. The growth rate of nanowires decreased with decreasing oxygen content in the precursor gases. SiO1.8 nanowires exhibited an initial discharge capacity of ~ 1,300 mAh/g and better stability than those of silicon powders. A Vapor Induced Solid-Liquid-Solid (VI-SLS) mechanism is proposed to explain the nanowire growth (including silicon and other metal based nanowires) from powder sources. In this approach, both a gas source and a solid powder source are required for nanowire growth. This mechanism is consistent with experimental observations and can also be used to guide the design and growth of other nanowires.

  9. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    PubMed

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-01

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes. PMID:20556268

  10. Fabrication of silicon-based shape memory alloy micro-actuators

    NASA Technical Reports Server (NTRS)

    Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.

    1992-01-01

    Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.

  11. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Hecht, Christian; van der Schoot, Nadine; Kronemayer, Helmut; Wlokas, Irenaeus; Lindken, Ralph; Schulz, Christof

    2012-03-01

    Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.

  12. Characterization and Modeling of Segmental Dynamics in Silicone Based Nanocomposites

    SciTech Connect

    Maxwell, R S; Baumann, T; Gee, R; Maiti, A; Patel, M; Lewicki, J

    2009-03-27

    The addition of nano-particles with novel chemical, optical, or barrier properties further opens the door to the development of so-called multifunctional materials (1). Key to developing robust, tailored composites is a detailed understanding of the structural contributions to the engineering properties of the composite and how they may change with time in harsh service conditions. The segmental dynamics and local order underlie much of the fundamental physics that influence the performance of elastomers and can serve as important diagnostics for reinforcement and other fundamental properties (e.g., network topology, cross-link density, the number and distance between chemical and physical (entanglements) cross-links, the type and volume fraction of filler) and thus provide a route to this fundamental understanding. {sup 1}H MQ-NMR spectroscopy has shown the ability to provide more reliable and quantitative information regarding the elastomer network structure and heterogeneities (2). {sup 1}H MQ-NMR methods allow for the measurement of absolute residual dipolar couplings (<{Omega}{sub d}>) and thus the segmental/cooperative dynamics Thus, the MQ-NMR method allows for the direct measure of network topology and in many cases, filler-particle interactions. The ability of MD methods to uncover structural motifs and dynamics at the atomistic scale is well known. In polymer systems, however, the relationship to bulk material properties can be somewhat tenuous due to often limited number of atoms and short time durations that can be studied. Extending these MD simulations to large assemblies of atoms and extending them to longer times using state of the art computational resources has allowed us to probe some useful relationships. MD provides static and dynamic properties for a collection of particles that allow atomic scale insights that are difficult to gain otherwise. We have been exploiting these methods to characterize the effects of network structure and filler content on a number of silicone based nanocomposite systems. This data is providing improved insight into the structural contributions to the changes in segmental dynamics. Here we provide an overview of our ongoing work toward understanding the influence of the network structure on the physical and chemical properties of advanced composite elastomers, including material performance in severe environments (high temperature, high strains, high radiation fluxes).

  13. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  14. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  15. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovovi?, J.; Šišovi?, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 ?m alumina thickness and 100 ?m diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+?ft({{\\text{B}}2}?\\text{u}+- {{X}2}?\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1?nm and He I 492.2?nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2?nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  16. Evaluation of micro flat-tube solid-oxide fuel cell modules using simple gas heating apparatus

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Shimada, Hiroyuki; Fujishiro, Yoshinobu

    2014-12-01

    Micro flat-tube solid-oxide fuel cell (SOFC) modules consisting of 1 mm thick, 1.2 cm wide micro flat-tube SOFCs, gas manifold, and insulator have been fabricated and evaluated using simple gas heating apparatus. The cell consists of NiO - yttria stabilized zirconia (YSZ) as an anode (flat-tube support), scandia stabilized zirconia (ScSZ) as an electrolyte, gadolinia doped ceria (GDC) for an interlayer, and (La, Sr)(Fe, Co)O3 (LSCF) - GDC as a cathode, which has been fabricated using cost effective extrusion technique and dip-coating technique. The cell has been investigated between 600 and 650 °C operating temperature and showed the power density at 0.75 V of 0.19 and 0.385 W cm-2, respectively. Using the cell, a five and ten-series modules were assembled and stored in insulator with small gas heaters powered by a 24 V power source for start-up. The module successfully operated using hydrogen and methane fuel.

  17. External laser intensity modulation based on a MEMS micro-mirror for photo-acoustic gas sensing

    NASA Astrophysics Data System (ADS)

    Li, Li; Stewart, George; Thursby, Graham; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-10-01

    An external laser intensity modulation system based on a micro-electromechanical systems (MEMS) mirror is presented in this paper, for application to gas sensing. The micro mirror is driven by the electrothermal actuator. The rotation direction is decided by the relative position between the driving actuator and the axis of micro-mirror. In contrast to the traditional technique of current modulation of tunable diode lasers where wavelength modulation (WM) is combined with intensity modulation (IM), the IM can be separated from WM and wavelength tuning through the external modulation furnished by the mirror reflection. The MEMS mirror with 10?m thick structure material layer and 100nm thick gold coating is formed as a circular mirror with 2mm diameter. The mirror is attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. There are four electrothermal actuators orthogonal to each other that are connected to the circular mirror. Double-loop serpentine springs are used to attach the four actuators to the micro mirror. Each three-beam actuator is attached to a spring at one end that connects the actuator to the mirror and fixed to the substrate at the other end. The actuators are of two different types regarding length: 1.8 mm from hereon called the long actuator and 1.35 mm called the short actuator. Characterizing the frequency response and measuring the modulation performance of the MEMS mirror is presented in this work. Intensity modulation depth from very low values to about 100 percent can be achieved through adjusting the MEMS mirror's reflection position and driving voltage. The intensity-modulated laser source is used for photoacoustic gas sensing in order to recover the target gas absorption line profile based on tunable diode laser spectroscopy. The target gas is 1 percent acetylene balanced by nitrogen and the target absorption line is P17 of acetylene at 1535.39nm. Good agreement between experimental results and theoretical simulations is obtained.

  18. High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments.

    PubMed

    Schiemangk, Max; Lampmann, Kai; Dinkelaker, Aline; Kohfeldt, Anja; Krutzik, Markus; Kürbis, Christian; Sahm, Alexander; Spießberger, Stefan; Wicht, Andreas; Erbert, Götz; Tränkle, Günther; Peters, Achim

    2015-06-10

    We present micro-integrated diode laser modules operating at wavelengths of 767 and 780 nm for cold quantum gas experiments on potassium and rubidium. The master-oscillator-power-amplifier concept provides both narrow linewidth emission and high optical output power. With a linewidth (10 ?s) below 1 MHz and an output power of up to 3 W, these modules are specifically suited for quantum optics experiments and feature the robustness required for operation at a drop tower or on-board a sounding rocket. This technology development hence paves the way toward precision quantum optics experiments in space. PMID:26192832

  19. Fabrication of micro/nano-structures using focused ion beam implantation and XeF2 gas-assisted etching

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Fang, F. Z.; Fu, Y. Q.; Zhang, S. J.; Han, T.; Li, J. M.

    2009-05-01

    A micro/nano-structure fabrication method is developed using focused ion beam implantation (FIBI) and FIB XeF2 gas-assisted etching (FIB-GAE). Firstly, the FIB parameters' influence on the FIBI depth is studied by SEM observation of the FIBI cross-section cutting by FIB. Nanoparticles with 10-15 nm diameter are found to be evenly distributed in the FIBI layer, which can serve as a XeF2-assisted etching mask when the ion dose is larger than 1.4 × 1017 ions cm-2. The FIBI layers being used as the etching mask for the subsequent FIB-GAE process are explored to create different micro/nano-structures such as nano-gratings, nano-electrode and sinusoidal microstructures. It is found that the method of combining FIBI with subsequent FIB-GAE is efficient and flexible in micro/nano-structuring, and it can effectively remove the redeposition effect compared with the FIB milling method.

  20. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector

    PubMed Central

    Urdaneta, M.; Stepanov, P.; Weinberg, I. N.; Pala, I. R.; Brock, S.

    2013-01-01

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm2. PMID:24432047

  1. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector.

    PubMed

    Urdaneta, M; Stepanov, P; Weinberg, I N; Pala, I R; Brock, S

    2011-01-11

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm(2). PMID:24432047

  2. Ultra-large tuning of photonic modes for efficient Er-doped silicon-based emitters

    E-print Network

    C) systems, thus tailoring the angular emission and the radiative rate. In particular, a strong enhancement of the external emission efficiency has been obtained in silicon-on-insulator (SOI) PhC slab [4], by the existenceUltra-large tuning of photonic modes for efficient Er-doped silicon-based emitters L. Cavigli a

  3. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells

    E-print Network

    Deng, Xunming

    1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High's PECVD deposition system. Figure 5-2 Voc of nip solar cells as a function of hydrogen dilution

  4. Acoustic phonon engineering of thermal properties of silicon-based nanostructures

    E-print Network

    Acoustic phonon engineering of thermal properties of silicon- based nanostructures N D Zincenco1]. In the technologically important semiconductors and dielectrics heat is mostly carried by the acoustic phonons small structures, due to the modification of acoustic phonon energy spectra and decrease in the phonon

  5. Tailored Phase Transitions via Mixed-Mesogen Liquid Crystalline Polymers with Silicon-Based Spacers

    E-print Network

    Mather, Patrick T.

    by a coupling between liquid crys- talline order and rubber elasticity resulting from the underlying crossTailored Phase Transitions via Mixed-Mesogen Liquid Crystalline Polymers with Silicon-Based Spacers-chain liquid crystalline polymers (LCPs) is desired for a variety of applications, including soft actuation

  6. Large optical spectral range dispersion engineered silicon-based photonic crystal

    E-print Network

    Texas at Austin, University of

    Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide T. Chen2 1 Omega Optics, Inc, 10306 Sausalito Dr, Austin, TX 78759, USA 2 Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas at Austin, 10100 Burnet Rd

  7. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    PubMed Central

    Denmark, Scott E.; Liu, Jack H.-C.

    2012-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are first converted to complex silicon-containing cross-coupling substrates, and the subsequent silicon-based cross-coupling reaction affords an even more highly functionalized product in a stereoselective fashion. In so doing, structurally simple and inexpensive starting materials are quickly transformed into value-added and densely substituted products. Therefore, sequential processes are often useful in constructing the carbon backbones of natural products. In this review, studies of sequential processes involving silicon-based cross-coupling are discussed. Additionally, the total syntheses that utilize these sequential processes are also presented. PMID:23293392

  8. Tunable silicon-based light sources using erbium doped liquid crystals S. M. Weissa

    E-print Network

    Weiss, Sharon

    Tunable silicon-based light sources using erbium doped liquid crystals S. M. Weissa Department 2007 Tunable emission in the near infrared is demonstrated on a silicon platform. The building blocks for the tunable light sources consist of porous silicon microcavities infiltrated with erbium doped nematic liquid

  9. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    SciTech Connect

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  10. Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Lucey, P. G.; Exarhos, G. J.; Windisch, C. F., Jr.

    2004-01-01

    It is well known that on Mars CO2 is the principal constituent of the thin atmosphere and on a seasonal basis CO2 snow and frost coats the polar caps. Also over 25% of the Martian atmosphere freezes out and sublimes again each year. The Mars Odyssey Emission Imaging system (THEMIS) has discovered water ice exposed near the edge of Mars southern perennials cap. In recent years, it has been suggested that in Martian subsurface CO2 may exist as gas hydrate (8CO2 + 44 H2O) with melting temperature of 10C. Since the crust of Mars has been stable for enough time there is also a possibility that methane formed by magmatic processes and/or as a byproduct of anaerobic deep biosphere activity to have raised toward the planet s surface. This methane would have been captured and stored as methane hydrate, which concentrates methane and water. Determination of abundance and distribution of these ices on the surface and in the near surface are of fundamental importance for understanding Martian atmosphere, and for future exploration of Mars. In this work, we have evaluated feasibility of using remote Raman and micro-Raman spectroscopy as potential nondestructive and non-contact techniques for detecting solid CO2, CH4 gas, and gas hydrates as well as water-ice on planetary surfaces.

  11. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    NASA Astrophysics Data System (ADS)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  12. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  13. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach???63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘?-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  14. Vapor sensors using porous silicon-based optical interferometers

    NASA Astrophysics Data System (ADS)

    Gao, Ting

    The ability to detect or monitor various gases is important for many applications. Smaller, more portable, lower power, and less expensive gas sensors are needed. Porous silicon (PS) has attracted attention for use in such devices due to its unique optical and electronic properties and its large surface area. This thesis describes the preparation and characteristics of vapor sensors using thin PS Fabry-Perot films. The average refractive index of the PS layer increases when the PS film is exposed to analyte vapors, causing the optical fringes to shift to longer wavelengths. Two methods for monitoring the shifts in these optical fringes are explored in this thesis. The first technique measures the reflection spectrum using a white light source, and the second measures the intensity of reflected light using a low-power red diode laser source. The latter method offers a simple, low-cost and reliable transduction mechanism for vapor sensing. A vapor sensor with a detection limit of 250 ppb and a wide dynamic range (five orders of magnitude) is demonstrated. The effect of the PS film thickness and porosity on sensitivity are systematically studied. A model based on the Bruggeman approximation and capillary condensation is proposed to explain this sensing behavior. Two approaches to improve the sensitivity of the PS sensors are explored. In the first, porous Si is chemically modified and the investigation shows that the sensing response varies with different surface properties. In a second study, thin polymer layers are coated on the porous Si substrate to selectively filter solvent vapors. This bi-layer approach is also applied to porous Si layers that have luminescent quantum structures. These latter structures sense adsorbates based on quenching of luminescence from the quantum-confined silicon nanostructures. In the course of this thesis, an anomalous response of ozone-oxidized PS films to water vapor was discovered. The effect was studied by optical interferometry, isotope studies, and in-situ Fourier transform infrared spectroscopy. It is concluded that in some porous Si films, water forms a strongly hydrogen bonded network that results in compression of the porous Si layer.

  15. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    SciTech Connect

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  16. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes

    NASA Astrophysics Data System (ADS)

    Mazouzi, D.; Karkar, Z.; Reale Hernandez, C.; Jimenez Manero, P.; Guyomard, D.; Roué, L.; Lestriez, B.

    2015-04-01

    In this review we try to shed a comprehensive understanding on the influence of the different parameters of the formulation of silicon-based composite electrode on its cyclability, i.e. the binder, the conductive additives, the current collector, the electrode porosity and solid loading, in view of a more rational assessment of the relevancy of these parameters for the battery technology. The reasons of the better efficiency of carboxymethyl cellulose and alternative new binders than PVdF are first addressed into details. The critical effects of the active mass loading and porosity on the cyclability are highlighted. Then the influence of the conductive additive type and current collector texture are discussed. Putting everything together shows that it is required to meticulously optimize all the different scales of the composite electrode to hopefully raise the performance of silicon-based electrode above that of graphite commercial ones.

  17. Analysis of silicon-based optical racetrack resonator for acceleration sensing

    NASA Astrophysics Data System (ADS)

    Mo, Wenqin; Wu, Huaming; Gao, Dingshan; Zhou, Zhiping

    2010-10-01

    Silicon based racetrack resonator are demonstrated as highly sensitive acceleration sensor. The sensor consists of a straight waveguide coupled with a racetrack resonator, and a crossbeam seismic mass serving as the vibration unit. The resonant wavelength, which depends on the optical phase change per round trip, is sensitive to external accelerations due to the waveguide increment and stress-optic effect. With a 30-dB signal-to-noise ratio measurement system, the detection limit and dynamic range are theoretically obtained as high as 4.8×10-4 g under the frequency of acceleration below 200 Hz. The new silicon-based accelerometer will have great potential in seismic prospecting due to its high sensitivity, light weight and immunity to electromagnetic interference.

  18. MACRO- MICRO-PURGE SOIL GAS SAMPLING METHODS FOR THE COLLECTION OF CONTAMINANT VAPORS

    EPA Science Inventory

    Purging influence on soil gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., dead-space purge volume), was evaluated at different field sites. A macro-purge sampling system consisted of a standard hollo...

  19. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells

    E-print Network

    Deng, Xunming

    1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE II Annual-Efficiency Single-Junction a-SiGe Solar Cells Section 3 Optimization of High-efficiency a-Si Top Cell Section 4. Figure 2-3 J-V curve of a single-junction a-SiGe solar cell with initial, active-area efficiency

  20. Hybrid micro-technologies for medical applications.

    PubMed

    Gianchandani, Yogesh B

    2009-01-01

    Medical applications have long provided an impetus for research in silicon-based microsystems. This paper explores micro-technologies that complement and extend conventional manufacturing approaches and applications. For example, lithographic microfabrication methods can be used to fabricate stents and integrated microsensors that can monitor lumen patency in cardiac and biliary applications. These methods can also be extended to the fabrication of ceramic-based piezoelectric transducers. One potential application is to provide tissue density measurements at the tip of a biopsy needle. Piezo-thermal elements may additionally provide the means for precise cauterization and tissue ablation. Other examples of hybrid micro-technologies are also provided. PMID:19964176

  1. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  2. Micro- and nano-scale hollow TiO{sub 2} fibers by coaxial electrospinning: Preparation and gas sensing

    SciTech Connect

    Zhang Jin; Choi, Sun-Woo; Kim, Sang Sub

    2011-11-15

    We report the preparation of micro- and nano-scale hollow TiO{sub 2} fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO{sub 2} fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO{sub 2} fibers as a function of viscosity. The successful control over the diameter of hollow TiO{sub 2} fibers is expected to bring extensive applications. To test a potential use of hollow TiO{sub 2} fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature. - Graphical abstract: Microstructures of as-prepared and calcined hollow TiO{sub 2} fibers prepared by the electrospinning technique with a coaxial needle. Dynamic response at various CO concentrations for the sensor fabricated with the hollow TiO{sub 2} fibers. Highlights: > Hollow TiO{sub 2} fibers were synthesized using a coaxial electrospinning technique. > Their diameter can be controlled by changing the viscosity of electrospinning solutions. > Lower viscosities produce slim hollow nanofibers. > In contrast, fat hollow microfibers are obtained in the case of higher viscosities. > Successful control over the diameter of hollow TiO{sub 2} fibers will bring extensive applications.

  3. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes.

    PubMed

    Liu, Lehao; Lyu, Jing; Li, Tiehu; Zhao, Tingkai

    2015-12-23

    Silicon has been considered as one of the most promising anode material alternates for next-generation lithium-ion batteries, because of its high theoretical capacity, environmental friendliness, high safety, low cost, etc. Nevertheless, silicon-based anode materials (especially bulk silicon) suffer from severe capacity fading resulting from their low intrinsic electrical conductivity and great volume variation during lithiation/delithiation processes. To address this challenge, a few special constructions from nanostructures to anchored, flexible, sandwich, core-shell, porous and even integrated structures, have been well designed and fabricated to effectively improve the cycling performance of silicon-based anodes. In view of the fast development of silicon-based anode materials, we summarize their recent progress in structural design principles, preparation methods, morphological characteristics and electrochemical performance by highlighting the material structure. We also point out the associated problems and challenges faced by these anodes and introduce some feasible strategies to further boost their electrochemical performance. Furthermore, we give a few suggestions relating to the developing trends to better mature their practical applications in next-generation lithium-ion batteries. PMID:26666682

  4. Preparation and photoluminescence character of size distribution optimized silicon-based nanometer material

    NASA Astrophysics Data System (ADS)

    Du, Hui-jing

    2006-06-01

    The uniform size distribution of nanometer materials is the crucial problem to achieve the high efficiency luminescence of silicon-based nanometer materials, but the nonuniform distribution of nanometer materials is the common problem in the preparation of silicon-based nanometer material. Using baffle and backscattering methods in the pulsed laser ablation (PLA), the nanometer silicon material with uniform size distribution was prepared. Big particles formed during the high energy pulsed laser ablation were well controlled. They were broken through collisions with the baffle, or deposited directly on the baffle. Using backscattered particles which are small atomic clusters, nanometer material is synthesized. It is smaller and more uniform in size distribution than conventional PLA. The photoluminescence (PL) characteristics of the material are improved than conventional PLA with higher intensity and narrower full width at half maximum (FWHM). The narrower full width at half maximum of the PL shows that the size distribution of the material is uniform. Otherwise the width would become wider because of the nonuniform size distribution. The unmoved PL peak of different areas on the material also shows the uniform size distribution. The blue shift of the PL peak from red wavelength to violet wavelength shows that the size of the material is smaller than nanometer materials deposited by conventional PLA. The size distribution optimized silicon-based nanometer material with improved PL characteristics, such as high intensity, narrow FWHM, would promote the realization of the full-silicon optoelectronic integration.

  5. A programmable palm-size gas analyzer for use in micro-autonomous systems

    NASA Astrophysics Data System (ADS)

    Gordenker, Robert J. M.; Wise, Kensall D.

    2012-06-01

    Gas analysis systems having small size, low power, and high selectivity are badly needed for defense (detection of explosives and chemical warfare agents), homeland security, health care, and environmental applications. This paper presents a palm-size gas chromatography system having analysis times of 5-50sec, detection limits less than 1ppb, and an average power dissipation less than one watt. It uses no consumables. The three-chip fluidic system consists of a preconcentrator, a 25cm-3m separation column, and a chemi-resistive detector and is supported by a microcomputer and circuitry for programmable temperature control. The entire system, including the mini-pump and battery, occupies less than 200cc and is configured for use on autonomous robotic vehicles.

  6. Effect of boundary conditions on the performances of gas-lubricated micro journal bearing

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Lei, Kangbin; Luo, Xilian; Gu, Zhaolin; Kiwamu, Kase

    2010-06-01

    As significant components of micromechanics, gas-lubricated microbearings are more prevalent for their special advantages than other types. The fluid dynamics of the microbearing is different from their larger cousins due to the noncontinuum effect and surface-dominated effect, which may make the Navier-Stokes equations invalid. In this paper, by considering the accommodation coefficients on journal (? i) and that on bearing (? o) separately, the microbearings with different bearing numbers under the assumption of large L/D (length to diameter) are simulated using direct simulation Monte Carlo (DSMC) program incorporated with a Volume-CAD software. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are applied to model the molecule-surface interaction. The flow field characteristics, as well as the performances of gas-lubricated journal bearings including load-carrying capacity, attitude angle and bearing drag are obtained. The results reveal that ?i and ?o have different effects to flow field characteristics and bearing performances. The bearing number has significantly impact on the bearing performances. The method developed in this paper would be very useful for designing and evaluating the gas-lubricated journal microbearing.

  7. Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System

    NASA Technical Reports Server (NTRS)

    Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.

    2001-01-01

    Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.

  8. Direct numerical simulations of micro-bubble expansion in gas embolotherapy.

    PubMed

    Ye, Tao; Bull, Joseph L

    2004-12-01

    We are currently developing a novel gas embolotherapy technique that involves the selective, acoustic vaporization of liquid perfluorocarbon droplets in or near a tumor as a possible treatment for cancer The resulting bubbles can then stick within the tumor vasculature to occlude blood flow and "starve" the tumor The potential development of high stresses during droplet vaporization is a major concern for safe implementation of this technique. No prior study, either experimentally or theoretically, addresses this important issue. In this work, the acoustic vaporization procedure of the therapy is investigated by direct numerical simulations. The nonlinear, multiphase, computational model is comprised of an ideal gas bubble surrounded by liquid inside a long tube. Convective and unsteady inertia, viscosity, and surface tension affect the bubble dynamics and are included in this model, which is solved by a novel fixed-grid, sharp-interface, moving boundary method. We assess the potential for flow-induced wall stresses to rupture the vessel or damage the endothelium during vaporization under a range of operating conditions by varying dimensionless parameters--Reynolds, Weber, and Strouhal numbers, inertial energy and initial droplet size. It is found that the wall pressure is typically highest at the start of the bubble expansion, but the maximum wall shear stress occurs at a later time. Smaller initial bubble diameters, relative to the vessel diameter, result in lower wall stresses. PMID:15796333

  9. Modeling Transport in Gas Chromatography Columns for the Micro-ChemLab

    SciTech Connect

    ADKINS,DOUGLAS R.; FRYE-MASON,GREGORY CHARLES; HUDSON,MARY L.; KOTTENSTETTE,RICHARD; MATZKE,CAROLYN M.; SALINGER,ANDREW G.; SHADID,JOHN N.; WONG, CHUNGNIN CHANN

    1999-09-01

    The gas chromatography (GC) column is a critical component in the microsystem for chemical detection ({mu}ChemLab{trademark}) being developed at Sandia. The goal is to etch a meter-long GC column onto a 1-cm{sup 2} silicon chip while maintaining good chromatographic performance. Our design strategy is to use a modeling and simulation approach. We have developed an analytical tool that models the transport and surface interaction process to achieve an optimized design of the GC column. This analytical tool has a flow module and a separation module. The flow module considers both the compressibility and slip flow effects that may significantly influence the gas transport in a long and narrow column. The separation module models analyte transport and physico-chemical interaction with the coated surface in the GC column. It predicts the column efficiency and performance. Results of our analysis will be presented in this paper. In addition to the analytical tool, we have also developed a time-dependent adsorption/desorption model and incorporated this model into a computational fluid dynamics (CFD) code to simulate analyte transport and separation process in GC columns. CFD simulations can capture the complex three-dimensional flow and transport dynamics, whereas the analytical tool cannot. Different column geometries have been studied, and results will be presented in this paper. Overall we have demonstrated that the modeling and simulation approach can guide the design of the GC column and will reduce the number of iterations in the device development.

  10. An integrated approach for optimal design of micro gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Fuligno, Luca; Micheli, Diego; Poloni, Carlo

    2009-06-01

    The present work presents an approach for the optimized design of small gas turbine combustors, that integrates a 0-D code, CFD analyses and an advanced game theory multi-objective optimization algorithm. The output of the 0-D code is a baseline design of the combustor, given the required fuel characteristics, the basic geometry (tubular or annular) and the combustion concept (i.e. lean premixed primary zone or diffusive processes). For the optimization of the baseline design a simplified parametric CAD/mesher model is then defined and submitted to a CFD code. Free parameters of the optimization process are position and size of the liner hole arrays, their total area and the shape of the exit duct, while different objectives are the minimization of NOx emissions, pressure losses and combustor exit Pattern Factor. A 3D simulation of the optimized geometry completes the design procedure. As a first demonstrative example, the integrated design process was applied to a tubular combustion chamber with a lean premixed primary zone for a recuperative methane-fuelled small gas turbine of the 100 kW class.

  11. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions

    SciTech Connect

    Ruby N. Ghosh; Reza Loloee; Roger G. Tobin; Yung Ho Kahng

    2006-04-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen-containing species in chemically reactive, high temperature environments. For fast and stable sensor response measurements, a gate activation process is required. Activation of all sensors took place by switching back and forth between oxidizing (1.0% oxygen in nitrogen) and reducing (10% hydrogen in nitrogen) gases for several hours at a sensor temperature {ge}620 C. All 52 devices on the sensor chip were activated simultaneously by flooding the entire chip with gas. The effects of activation on surface morphology and structure of Pt gates before and after activation were investigated. The optical images obtained from Pt gates demonstrated a clear transition from a smooth and shiny surface to a grainy and cloudy surface morphology. XRD scans collected from Pt gates suggest the presence of an amorphous layer and species other than Pt (111) after activation. The reliability of the gate insulator of our metal-oxide-SiC sensors for long-term device operation at 630 C was studied. We find that the dielectric is stable against breakdown due to electron injection from the substrate with gate leakage current densities as low at 5nA/cm{sup 2} at 630 C. We also designed and constructed a new nano-reactor capable of high gas flow rates at elevated pressure. Our reactor, which is a miniature version of an industrial reactor, is designed to heat the flowing gas up to 700 C. Measurements in ultrahigh vacuum demonstrated that hydrogen sulfide readily deposits sulfur on the gate surface, even at the very high hydrogen/hydrogen sulfide ratios (10{sup 3}-10{sup 5}) expected in applications. Once deposited, the sulfur adversely affects sensor response, and could not be removed by exposure to hydrogen at the temperatures and pressures accessible in the ultrahigh vacuum experiments. Oxygen exposures, however, were very effective at removing sulfur, and the device performance after sulfur removal was indistinguishable from performance before exposure to H{sub 2}S.

  12. Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

    PubMed Central

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ?Vgas was calculated to be 46.1 ?W. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 ?W and 11.7 ?W, respectively. PMID:24451468

  13. A contribution to spectroscopic diagnostics and cathode sheath modeling of micro-hollow gas discharge in argon

    NASA Astrophysics Data System (ADS)

    Cveji?, M.; Spasojevi?, Dj.; Šišovi?, N. M.; Konjevi?, N.

    2011-08-01

    In this paper, the hydrogen Balmer beta line shape from a micro-hollow gas discharge (MHGD) in argon with traces of hydrogen is used for simultaneous diagnostics of plasma and cathode sheath (CS) parameters. For this purpose, a simple model of relevant processes responsible for the line broadening is introduced and applied to the Balmer beta profile recorded from a MHGD generated in the microhole (diameter 100 ?m at narrow side and 130 ?m at wider side) of a gold-alumina-gold sandwich in the pressure range (100-900 mbar). The electron number density Ne in the range (0.4-4.5) × 1020 m-3 is determined from the width of the central part of the Balmer beta line profile, while, from the extended wings of the Balmer beta profile, induced by dc Stark effect, the next three parameters are determined: the average value Ea of electric field strength in the CS in the range (16-95 kV/cm), the electric field strength E0 at the cathode surface in the range (32-190 kV/cm), and the CS thickness zg in the range (18-70 ?m). All four MHGD parameters, Ne, Ea, E0, and zg, compare reasonably well with results of the modeling experiment by M. J. Kushner [J. Phys. D: Appl. Phys. 38, 1633 (2005)]. The results for Ne are compared with other emission experiments.

  14. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions

    SciTech Connect

    Ruby Ghosh; Reza Loloee; Roger Tobin

    2008-09-30

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device, Pt/SiO{sub 2}/SiC that can detect hydrogen-containing species in chemically reactive, high temperature (600 C) environments. We demonstrate that the device can be used as a hydrogen monitor in syngas applications of common interferants as well as sulfur and water vapor. These measurements were made in the Catalyst Screening Unit at NETL, Morgantown under atmospheric conditions. The sensor response to hydrogen gas at 350 C is 240 mV/decade, this is significantly higher than the device response to room temperature gas or that predicted from vacuum chamber studies. The enhanced catalytic activity of the platinum sensing film under energy plant operating conditions was investigated via AFM, x-ray diffraction, TEM and x-ray photoelectron spectroscopy. Our characterization indicated that exposure to high temperature gases significantly modifies the morphology of the Pt catalytic film and the Pt/SiO{sub 2} interfacial region, which we tentatively attribute to the enhanced hydrogen sensitivity of the sensing film. A model for the hydrogen/oxygen response of the SiC device under atmospheric conditions was developed. It is based on two independent phenomena: a chemically induced shift in the metal-semiconductor work function difference and the passivation/creation of charged states at the SiO{sub 2}-SiC interface. The optimum operating set point for the SiC sensor with respect to response time and long term reliability was determined to be close to mid-gap. Ultrahigh vacuum (UHV) techniques were used to investigate the effects of sulfur contamination on the Pt gate. Exposure to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20-600 times greater than the H2S level, rapidly coated the gate with a monolayer of sulfur. Although hydrogen exposure could not remove the adsorbed sulfur, oxygen was effective at removing sulfur with no evidence of irreversible changes in device behavior. The role of oxygen in the functioning of the SiC sensors was also investigated. All of the results are consistent with oxygen acting through its surface reactions with hydrogen, including the need for oxygen to reset the device to a fully hydrogen-depleted state and competition between hydrogen oxidation and hydrogen diffusion to metal/oxide interface sites. A strong sensor response to the unsaturated linear hydrocarbon propene (C{sub 3}H{sub 6}) was observed.

  15. The analysis of forensic samples using laser micro-pyrolysis gas chromatography mass spectrometry.

    PubMed

    Armitage, S; Saywell, S; Roux, C; Lennard, C; Greenwood, P

    2001-09-01

    Laser micropyrolysis gas chromatography-mass spectrometry is used for the analysis of paint, photocopier toner, and synthetic fiber materials to test the forensic potential of this emerging technology. It uses a laser microprobe to selectively target very small parts of the materials for GC-MS analysis. Whereas the paint and the toner samples were amenable to direct laser pyrolysis, the synthetic fibers proved transparent to the 1064 nm laser radiation. The difficulty with the fibers demonstrates that a specific laser wavelength may not be appropriate for all types of materials. Nevertheless, the fibers were able to be indirectly pyrolyzed by impregnation in a strongly absorbing graphite matrix. A vast array of hydrocarbon pyrolysates was detected from the different materials studied. Unique product distributions were detected from each sample and in sufficient detail to facilitate individual molecular characterization (i.e., molecular fingerprinting). The integrity of the laser data were confirmed by comparison to data obtained from the same samples by the more conventional pyroprobe pyrolysis GC-MS method. The high spatial resolution and selectivity of the laser method may be advantageous for specific forensic applications, however, further work may be required to improve the reproducibility of the data. PMID:11569542

  16. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS

    SciTech Connect

    Ruby N. Ghosh; Peter Tobias; Roger G. Tobin

    2004-10-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. For these capacitive sensors we have determined that the optimum sensor operating point in terms of sensor lifetime and response time is at midgap. Detailed measurements of the oxide leakage current as a function of temperature were performed to investigate the high temperature reliability of the devices. In addition, robust metallization and electrical contacting techniques have been developed for device operation at elevated temperatures. To characterize the time response of the sensor responses in the millisecond range, a conceptually new apparatus has been built. Using laser induced fluorescence imaging techniques we have shown that the gas underneath the sensor can be completely exchanged with a time constant under 1 millisecond. Ultrahigh vacuum studies of the surface chemistry of the platinum gate have shown that sensor deactivation by adsorbed sulfur is a possible problem. Investigations on the chemical removal of sulfur by catalytic oxidation or reduction are continuing.

  17. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph.

    PubMed

    Bryant-Genevier, Jonathan; Zellers, Edward T

    2015-11-27

    This article describes work leading to a microfabricated preconcentrator-focuser (?PCF) designed for integration into a wearable microfabricated gas chromatograph (?GC) for monitoring workplace exposures to volatile organic compounds (VOCs) ranging in vapor pressure from ?0.03 to 13kPa at concentrations near their respective Threshold Limit Values. Testing was performed on both single- and dual-cavity, etched-Si ?PCF devices with Pyrex caps and integrated resistive heaters, packed with the graphitized carbons Carbopack X (C-X) and/or Carbopack B (C-B). Performance was assessed by measuring the 10% breakthrough volumes and injection bandwidths of a series of VOCs, individually and in mixtures, as a function of the VOC air concentrations, mixture complexity, sampling and desorption flow rates, adsorbent masses, temperature, and the injection split ratio. A dual-cavity device containing 1.4mg of C-X and 2.0mg of C-B was capable of selectively and quantitatively capturing a mixture of 14 VOCs at low-ppm concentrations in a few minutes from sample volumes sufficiently large to permit detection at relevant concentrations for workplace applications with the ?GC detector that we ultimately plan to use. Thermal desorption at 225°C for 40s yielded ?99% desorption of all analytes, and injected bandwidths as narrow as 0.6s facilitated efficient separation on a downstream 6-m GC column in <3min. A preconcentration factor of 620 was achieved for benzene from a sample of just 31mL. Increasing the mass of C-X to 2.3mg would be required for exhaustive capture of the more volatile target VOCs at high-ppm concentrations. PMID:26530144

  18. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters.

    PubMed

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-03-10

    A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat -?H°, adsorption/desorption rate constants Ka and Kd, active-site number per unit mass N' and surface coverage ?, can be quantitatively extracted according to physical-chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N', the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate -?H°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high -?H° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of -?H°, Ka, Kd, N' and ?, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among reproducibility, sensitivity and response/recovery speed. The optimized material shows complete signal recovery, 55% sensitivity improvement than the hyper-branched polymer and 2?3 folds faster response/recovery speed than the KIT-5 mesoporous silica. PMID:25732312

  19. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

    SciTech Connect

    2010-03-01

    Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

  20. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M. (Palos Verdes, CA); Tao, Hongyi (Covina, CA); Todd-Copley, Judith A. (Palos Verdes, CA)

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  1. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  2. Silicon-based hybrid luminescent/magnetic porous nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Manso-Silván, Miguel; García-Ruiz, Josefa P.; Hernando-Pérez, M.; de Pablo, P. J.; Martín-Palma, Raúl J.

    2011-01-01

    Silicon-based porous nanoparticles showing at the same time intense visible luminescence and magnetic response were fabricated. The hybrid luminescent/magnetic nanoparticles (hLMNPs) were fabricated by the electrodeposition of cobalt and iron into nanostructured porous silicon. These nanoparticles were subsequently functionalized and internalized into cells. The hybrid behavior of the hLMNPs is a relevant feature for the development of research tools as nontoxic cellular tracker for progenitor cells and consequently able to be used in many strategies of cellular therapy. Additionally, the hLMNPs can be functionalized with various biomolecules that will endow them with new functionalities.

  3. Technical trends in amorphous-silicon-based uncooled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc; Chatard, Jean-Pierre; Mottin, Eric

    2003-01-01

    After the development of an amorphous silicon based uncooled microbolometer technology, LETI and ULIS are now working to facilitate the IR focal plane arrays (IRFPA) integration into equipment in order to address a very large market. Achievement of this goal needs the integration of advanced functions on the focal plane and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the new designs for readout circuit and packages which will be used for 320×240 and 160×120 arrays with a pitch of 35?m.

  4. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  5. The spatial resolution of silicon-based electron detectors in ?-autoradiography

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Wells, Kevin

    2010-03-01

    Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits ? - or ?+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as 3H where an intrinsic 0.1-1 µm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.

  6. Next Generation Silicon Based Detector Characterization in the LASI Lab at Arizona State University

    NASA Astrophysics Data System (ADS)

    Veach, Todd; Scowen, P.; Nikzad, S.

    2007-05-01

    We present preliminary results of comprehensive characterization we performed on a Cassini flight spare 1024 x 1024 silicon based CCD, to ensure that our methods are accurate, and a 1024 x 1024 NIR/Red optimized delta-doped, anti-reflection coated silicon based CCD provided by the Nanoscience and Advanced Detector Arrays Group at JPL. We also present here a new facility for CCD calibration and testing at the Laboratory of Astronomical and Space Instrumentation (LASI) at Arizona State University. The current process includes calibration from the optical to near-infrared with future considerations to calibrate into the ultraviolet. We measure several important CCD characterization parameters including, but not limited to; the quantum efficiency, optimum operating temperature, read noise, dark current, gain, linearity and reproducibility. A unique feature of the calibration is the coplanar positioning of the photodiode and CCD. The CCD is stabilized at optimum operating temperature while the photodiode is held at the equilibrium ambient temperature inside an Infrared Laboratories ND-5 Series Dewar. FITS image acquisition is done using the Voodoo software provided with the LEACH controller while control of the monochrometer is done using LABVIEW. All of the image processing is done using an IDL and LABVIEW interface. This work is supported by the Jet Propulsion Laboratory under Award Number 1275804.

  7. A silicon-based two-dimensional chalcogenide: growth of Si?Te? nanoribbons and nanoplates.

    PubMed

    Keuleyan, Sean; Wang, Mengjing; Chung, Frank R; Commons, Jeffrey; Koski, Kristie J

    2015-04-01

    We report the synthesis of high-quality single-crystal two-dimensional, layered nanostructures of silicon telluride, Si2Te3, in multiple morphologies controlled by substrate temperature and Te seeding. Morphologies include nanoribbons formed by VLS growth from Te droplets, vertical hexagonal nanoplates through vapor-solid crystallographically oriented growth on amorphous oxide substrates, and flat hexagonal nanoplates formed through large-area VLS growth in liquid Te pools. We show the potential for doping through the choice of substrate and growth conditions. Vertical nanoplates grown on sapphire substrates, for example, can incorporate a uniform density of Al atoms from the substrate. We also show that the material may be modified after synthesis, including both mechanical exfoliation (reducing the thickness to as few as five layers) and intercalation of metal ions including Li(+) and Mg(2+), which suggests applications in energy storage materials. The material exhibits an intense red color corresponding to its strong and broad interband absorption extending from the red into the infrared. Si2Te3 enjoys chemical and processing compatibility with other silicon-based material including amorphous SiO2 but is very chemically sensitive to its environment, which suggests applications in silicon-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. PMID:25764295

  8. Electronic and Optical Properties of Novel Phases of Silicon and Silicon-Based Derivatives

    NASA Astrophysics Data System (ADS)

    Ong, Chin Shen; Choi, Sangkook; Louie, Steven

    2014-03-01

    The vast majority of solar cells in the market today are made from crystalline silicon in the diamond-cubic phase. Nonetheless, diamond-cubic Si has an intrinsic disadvantage: it has an indirect band gap with a large energy difference between the direct gap and the indirect gap. In this work, we perform a careful study of the electronic and optical properties of a newly discovered cubic-Si20 phase of Si that is found to sport a direct band gap. In addition, other silicon-based derivatives have also been discovered and found to be thermodynamically metastable. We carry out ab initio GW and GW-BSE calculations for the quasiparticle excitations and optical spectra, respectively, of these new phases of silicon and silicon-based derivatives. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility and the NSF through XSEDE resources at NICS.

  9. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/?m2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  10. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  11. A contribution to spectroscopic diagnostics and cathode sheath modeling of micro-hollow gas discharge in argon

    SciTech Connect

    Cvejic, M.; Spasojevic, Dj.; Sisovic, N. M.; Konjevic, N.

    2011-08-01

    In this paper, the hydrogen Balmer beta line shape from a micro-hollow gas discharge (MHGD) in argon with traces of hydrogen is used for simultaneous diagnostics of plasma and cathode sheath (CS) parameters. For this purpose, a simple model of relevant processes responsible for the line broadening is introduced and applied to the Balmer beta profile recorded from a MHGD generated in the microhole (diameter 100 {mu}m at narrow side and 130 {mu}m at wider side) of a gold-alumina-gold sandwich in the pressure range (100-900 mbar). The electron number density N{sub e} in the range (0.4-4.5) x 10{sup 20} m{sup -3} is determined from the width of the central part of the Balmer beta line profile, while, from the extended wings of the Balmer beta profile, induced by dc Stark effect, the next three parameters are determined: the average value E{sub a} of electric field strength in the CS in the range (16-95 kV/cm), the electric field strength E{sub 0} at the cathode surface in the range (32-190 kV/cm), and the CS thickness z{sub g} in the range (18-70 {mu}m). All four MHGD parameters, N{sub e}, E{sub a}, E{sub 0}, and z{sub g}, compare reasonably well with results of the modeling experiment by M. J. Kushner [J. Phys. D: Appl. Phys. 38, 1633 (2005)]. The results for N{sub e} are compared with other emission experiments.

  12. Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems.

    PubMed

    Bieberle-Hütter, A; Santis-Alvarez, A J; Jiang, B; Heeb, P; Maeder, T; Nabavi, M; Poulikakos, D; Niedermann, P; Dommann, A; Muralt, P; Bernard, A; Gauckler, L J

    2012-11-21

    An integrated system of a microreformer and a carrier allowing for syngas generation from liquefied petroleum gas (LPG) for micro-SOFC application is discussed. The microreformer with an overall size of 12.7 mm × 12.7 mm × 1.9 mm is fabricated with micro-electro-mechanical system (MEMS) technologies. As a catalyst, a special foam-like material made from ceria-zirconia nanoparticles doped with rhodium is used to fill the reformer cavity of 58.5 mm(3). The microreformer is fixed onto a microfabricated structure with built-in fluidic channels and integrated heaters, the so-called functional carrier. It allows for thermal decoupling of the cold inlet gas and the hot fuel processing zone. Two methods for heating the microreformer are compared in this study: a) heating in an external furnace and b) heating with the two built-in heaters on the functional carrier. With both methods, high butane conversion rates of 74%-85% are obtained at around 550 °C. In addition, high hydrogen and carbon monoxide yields and selectivities are achieved. The results confirm those from classical lab reformers built without MEMS technology (N. Hotz et al., Chem. Eng. Sci., 2008, 63, 5193; N. Hotz et al., Appl. Catal., B, 2007, 73, 336). The material combinations and processing techniques enable syngas production with the present MEMS based microreformer with high performance for temperatures up to 700 °C. The functional carrier is the basis for a new platform, which can integrate the micro-SOFC membranes and the gas processing unit as subsystem of an entire micro-SOFC system. PMID:23044760

  13. Coherent Visible-Light-Generation Enhancement in Silicon-Based Nanoplasmonic Waveguides via Third-Harmonic Conversion.

    PubMed

    Sederberg, S; Elezzabi, A Y

    2015-06-01

    We report visible third-harmonic conversion at ?=517 nm in subwavelength silicon-based nanoplasmonic waveguides at an unprecedented conversion efficiency of 2.3×10^{-5}. This marks both the highest third-harmonic conversion efficiency in a silicon-based or nanoplasmonic structure and the smallest silicon waveguide structure demonstrated to date. The high conversion efficiency is attributed to tight electric field confinement and strong light-matter coupling arising from surface plasmon modes in the nanoplasmonic waveguide, enabling efficient nonlinear optical mixing over micrometer length scales. The nonresonant geometry of the waveguide enables the entire ?=1550 nm femtosecond pulse spectrum to be converted to its third harmonic, which may be easily extended to the entire visible spectrum. We envisage that third-harmonic generation in silicon-based nanoplasmonic waveguides could provide a platform for integrated, broadband visible light sources and entangled triplet photons on future hybrid electronic-silicon photonic chips. PMID:26196643

  14. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances

    NASA Astrophysics Data System (ADS)

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-08-01

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02099a

  15. Mechanical engineering and design of silicon-based particle tracking devices

    SciTech Connect

    Miller, W.O.; Thompson, T.C.; Gamble, M.T.; Reid, R.S.; Woloshun, K.A.; Dransfield, G.D.; Ziock, H.J.

    1990-01-01

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab.

  16. Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter.

    PubMed

    Zhang, Weifeng; Ehteshami, Nasrin; Liu, Weilin; Yao, Jianping

    2015-07-01

    We report the design, fabrication, and testing of a silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter. Spectral measurement shows that the filter has a narrow notch in reflection of approximately 46 pm, a Q-factor of 33,500, and an extinction ratio of 16.4 dB. DC measurement shows that the average central wavelength shift rates with forward and reverse bias are -1.15??nm/V and 4.2??pm/V, respectively. Due to strong light confinement in the Fabry-Perot cavity, the electro-optic frequency response shows that the filter has a 3-dB modulation bandwidth of ?5.6??GHz. The performance of using the filter to perform modulation of a 3.5??Gb/s2(7)-1 nonreturn-to-zero pseudorandom binary sequence is evaluated. PMID:26125390

  17. Lateral resistance reduction induced by light-controlled leak current in silicon-based Schottky junction

    NASA Astrophysics Data System (ADS)

    Wang, Shuan-Hu; Zhang, Xu; Zou, Lv-Kuan; Zhao, Jing; Wang, Wen-Xin; Sun, Ji-Rong

    2015-10-01

    Lateral resistance of silicon-based p-type and n-type Schottky junctions is investigated. After one electrode on a metallic film is irradiated, the differential lateral resistance of the system is dependent on the direction of the bias current: it keeps constant in one direction and decreases in the opposite direction. By systematically investigating the electrical potential changes in silicon and the junction, we propose a new mechanism based on light-controlled leak current. Our work provides an insight into the nature of this phenomenon and will facilitate the advanced design of switchable devices. Project supported by the National Basic Research Program of China (Grant No. 2011CB921801) and the National Natural Science Foundation of China (Grant No. 111374348).

  18. Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Askari, Sadegh; Macias-Montero, Manuel; Velusamy, Tamilselvan; Maguire, Paul; Svrcek, Vladmir; Mariotti, Davide

    2015-08-01

    The synthesis of silicon and silicon-based quantum dots (diameter < 5?nm) is discussed. Specifically the synthesis of Si-based quantum dots (QDs) by atmospheric pressure plasmas is reviewed and the most recent developments are also reported. Atmospheric pressure plasmas are then compared with other synthesis methods that include low pressure plasmas, wet chemistry, electrochemical etching and laser-based methods. Finally, progress in the synthesis of alloyed silicon QDs is discussed where the nanoscale Si-Sn and Si-C systems are reported. The report also includes a theoretical analysis that highlights some fundamental differences offered by plasmas at atmospheric pressure and that may provide opportunities for novel materials with advantageous properties.

  19. Graphene as a transparent electrode for amorphous silicon-based solar cells

    NASA Astrophysics Data System (ADS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  20. Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.

    2005-01-01

    Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.

  1. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2014-11-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CI?-PFCA) combined On-Board Range Extender (O-BRE). CI?-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CI?-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH4. Combining the CI?-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CI?-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CI?-PFCA, palladium membrane and the O-BRE. The CI?-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH4. The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm2) when driven by the catalytic hydrolysis of chemical hydride (NaBH4 and the prototype system shows run time more than 15 hours.

  2. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 ?m and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  3. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO? Catalyst and Effects of a Double Catalyst Structure with Pt/?-Al?O?.

    PubMed

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO? and Pt/?-Al?O? catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO?, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H?, while H? combustion was activated by repeated exposure to H? gas during the periodic gas test. Selective CO sensing of the micro-TGS against H? was attempted using a double catalyst structure with 0.3-30 wt% Pt/?-Al?O? as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/?-Al?O? catalyst, by cancelling out the combustion heat from the AuPtPd/SnO? catalyst. In addition, the AuPtPd/SnO? and 0.3 wt% Pt/?-Al?O? double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H?. PMID:26694397

  4. On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael

    2008-01-01

    The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.

  5. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    SciTech Connect

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-15

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000??m) and cavity height (e.g., 200–1000?nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25?000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

  6. DNA hybridization detection by porous silicon-based DNA microarray in conjugation with infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ryo-taro; Miyamoto, Ko-ichiro; Ishibashi, Ken-ichi; Hirano, Ayumi; Said, Suhana Mohd; Kimura, Yasuo; Niwano, Michio

    2007-07-01

    A method is described for the label-free detection of DNA hybridization on porous silicon (por-Si), based upon the pairing of oligonucleotide chemistry and standard silicon nanotechnology. Por-Si with a pore diameter of approximately 30 nm was used to immobilize probe DNA. Infrared microspectroscopy was employed to monitor the hybridization of probe-DNA immobilized on pore surfaces with its complementary DNA (target-DNA). The immobilization of probe DNA on por-Si facilitates hybridization detection for a small sensing area (approximately 50×50 ?m2) with a high detection efficiency. In this study, we fabricated a porous silicon-based DNA microarray (por-Si-microarray) using photolithographic and Si anodizing techniques. We demonstrate that DNA hybridization can be detected on a por-Si-microarray through the analysis of infrared absorption spectral profiles in the region where the vibration modes of the bases appear. This present approach demonstrates that por-Si-microarray in conjugation with infrared microspectroscopy has potential application in DNA sensing chips.

  7. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGESBeta

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore »silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  8. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  9. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6?Gy?min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62??±??1)% within approximately 20?h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  10. Understanding and mitigating DNA induced corrosion in porous silicon based biosensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yiliang; Lawrie, Jenifer L.; Laibinis, Paul E.; Weiss, Sharon M.

    2014-03-01

    Porous silicon structures have been demonstrated as effective biosensors due to their large surface area, size-selective filtering capabilities, and tunable optical properties. However, porous silicon surfaces are highly susceptible to oxidation and corrosion in aqueous environments and solutions containing negative charges. In DNA sensing applications, porous silicon corrosion can mask the DNA binding signal as the typical increase in refractive index that results from a hybridization event can be countered by the decrease in refractive index due to corrosion of the porous silicon matrix. Such signal ambiguity should be eliminated in practical devices. In this work, we carefully examined the influence of charge density and surface passivation on the corrosion process in porous silicon waveguides in order to control this process in porous silicon based biosensors. Both increased DNA probe density and increased target DNA concentration enhance the corrosion process, leading to an overall blueshift of the waveguide resonance. While native porous silicon structures degrade upon prolonged exposure to solutions containing negative charges, porous silicon waveguides that are sufficiently passivated to prevent oxidation/corrosion in aqueous solution exhibit a saturation effect in the corrosion process, which increases the reliability of the sensor. For practical implementation of porous silicon DNA sensors, the negative charges from DNA must be mitigated. We show that a redshift of the porous silicon waveguide resonance results from either replacing the DNA target with neutral charge PNA or introducing Mg2+ ions to shield the negative charges of DNA.

  11. Low Power Pixel-Level ADC Readout Circuit for an Amorphous Silicon-Based Microbolometer

    NASA Astrophysics Data System (ADS)

    Ha, Dong-Heon; Hwang, Chi Ho; Lee, Yong Soo; Lee, Hee Chul

    A new readout integrated circuit is developed for application in an amorphous silicon-based microbolometer array with a pixel pitch of 35µm. The proposed circuit lowers the power dissipation for a pixel-level analog-to-digital converter (ADC), which uses a comparator and a counter for its data conversion. The infrared current of a microbolometer is proportional to the resistivity changes of the microbolometer. Thus, the required number of counter operations for the pixel ADC can be determined according to the microbolometer current variation. The counting number precisely determines how much infrared flux is absorbed. A 14bit counter should normally be used for the pixel ADC for this kind of operation. However, when the proposed current skimming scheme is adopted, the total bits for the counter in the pixel ADC can be reduced to 12bits. Due to the proposed mechanism, the required operational speed of the comparator can lower than that of a conventional circuit. Consequently, the overall power dissipation in the comparator and counter is less than that of a conventional structure. This low power approach is very suitable in the pixel-level ADCs of microbolometers.

  12. Design and fabrication of a foldable 3D silicon based package for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Sokolovskij, R.; Liu, P.; van Zeijl, H. W.; Mimoun, B.; Zhang, G. Q.

    2015-05-01

    Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies.

  13. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-01

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  14. Silicon-based current-controlled reconfigurable magnetoresistance logic combined with non-volatile memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhong; Luo, Zhaochu

    2015-03-01

    Silicon-based complementary metal-oxide-semiconductor (CMOS) transistors have achieved great success. However, the traditional development pathway is approaching its fundamental limits. Magnetoelectronics logic, especially magnetic-field-based logic, shows promise for surpassing the development limits of CMOS logic. Existing proposals of magnetic-field-based logic are based on exotic semiconductors and difficult for further technological implementation. We proposed a kind of diode-assisted geometry-enhanced low-magnetic-field magnetoresistance (MR) mechanism. It couples p-n junction's nonlinear transport characteristic and Lorentz force by geometry, and shows extremely large low-magnetic-field MR (>120% at 0.15 T) Further, it is applied to experimentally demonstrate current-controlled reconfigurable MR logic on the silicon platform at room temperature. This logic device could perform Boolean logic AND, OR, NAND and NOR in one device. Combined with non-volatile magnetic memory, this logic architecture has the advantages of current-controlled reconfiguration, zero refresh consumption, instant-on performance and would bridge the processor-memory gap.

  15. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    PubMed Central

    Bernard-Gauthier, Vadim; Wängler, Carmen; Wängler, Bjoern; Schirrmacher, Ralf

    2014-01-01

    Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F? leaving group substitutions have the potential to become a valuable addition to radiochemistry. PMID:25157357

  16. Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain

    NASA Astrophysics Data System (ADS)

    Cao, Daoshe; Tandaechanurat, Aniwat; Nakayama, Shigeru; Ishida, Satomi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2012-11-01

    We report on the demonstration of lasing oscillation in a silicon-based three-dimensional photonic crystal nanocavity using InAs quantum dots as gain material by pulsed optical pumping at 11 K. An active layer embedding InAs quantum dots was inserted in the cavity using micromanipulation technique. The highest quality factor for silicon-based three-dimensional photonic crystal cavities (˜22 000) was achieved. We also evaluated the spontaneous emission coupling factor of the laser to be ˜0.78 by fitting the experimental light-in light-out curve with coupled rate equations. This result would pave the way to the realization of CMOS-compatible high-density three-dimensional photonic integrated circuits.

  17. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers.

    PubMed

    Hwang, Geon-Tae; Im, Donggu; Lee, Sung Eun; Lee, Jooseok; Koo, Min; Park, So Young; Kim, Seungjun; Yang, Kyounghoon; Kim, Sung June; Lee, Kwyro; Lee, Keon Jae

    2013-05-28

    Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks. PMID:23617401

  18. Polymer-coated micro-optofluidic ring resonator detector for a comprehensive two-dimensional gas chromatographic microsystem: ?GC ×?GC-?OFRR.

    PubMed

    Collin, William R; Scholten, Kee W; Fan, Xudong; Paul, Dibyadeep; Kurabayashi, Katsuo; Zellers, Edward T

    2016-01-01

    We describe first results from a micro-analytical subsystem that integrates a detector comprising a polymer-coated micro-optofluidic ring resonator (?OFRR) chip with a microfabricated separation module capable of performing thermally modulated comprehensive two-dimensional gas chromatographic separations (?GC ×?GC) of volatile organic compound (VOC) mixtures. The 2 × 2 cm ?OFRR chip consists of a hollow, contoured SiOx cylinder (250 ?m i.d.; 1.2 ?m wall thickness) grown from a Si substrate, and integrated optical and fluidic interconnection features. By coupling to a 1550 nm tunable laser and photodetector via an optical fiber taper, whispering gallery mode (WGM) resonances were generated within the ?OFRR wall, and shifts in the WGM wavelength caused by transient sorption of eluting vapors into the PDMS film lining the ?OFRR cylinder were monitored. Isothermal separations of a simple alkane mixture using a PDMS coated 1(st)-dimension ((1)D) ?column and an OV-215-coated 2(nd)- dimension ((2)D) ?column confirmed that efficient ?GC ×?GC-?OFRR analyses could be performed and that responses were dominated by film-swelling. Subsequent tests with more diverse VOC mixtures demonstrated that the modulated peak width and the VOC sensitivity were inversely proportional to the vapor pressure of the analyte. Modulated peaks as narrow as 120 ms and limits of detection in the low-ng range were achieved. Structured contour plots generated with the ?OFRR and a reference FID were comparable. PMID:26588451

  19. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    PubMed

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 ?g·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression. PMID:26032556

  20. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications

    NASA Astrophysics Data System (ADS)

    Stanca, Loredana; Petrache, Sorina Nicoleta; Serban, Andreea Iren; Staicu, Andrea Cristina; Sima, Cornelia; Munteanu, Maria Cristina; Z?rnescu, Otilia; Dinu, Diana; Dinischiotu, Anca

    2013-05-01

    Quantum dots (QDs) interaction with living organisms is of central interest due to their various biological and medical applications. One of the most important mechanisms proposed for various silicon nanoparticle-mediated toxicity is oxidative stress. We investigated the basic processes of cellular damage by oxidative stress and tissue injury following QD accumulation in the gibel carp liver after intraperitoneal injection of a single dose of 2 mg/kg body weight Si/SiO2 QDs after 1, 3, and 7 days from their administration. QDs gradual accumulation was highlighted by fluorescence microscopy, and subsequent histological changes in the hepatic tissue were noted. After 1 and 3 days, QD-treated fish showed an increased number of macrophage clusters and fibrosis, while hepatocyte basophilia and isolated hepatolytic microlesions were observed only after substantial QDs accumulation in the liver parenchyma, at 7 days after IP injection. Induction of oxidative stress in fish liver was revealed by the formation of malondialdehyde and advanced oxidation protein products, as well as a decrease in protein thiol groups and reduced glutathione levels. The liver enzymatic antioxidant defense was modulated to maintain the redox status in response to the changes initiated by Si/SiO2 QDs. So, catalase and glutathione peroxidase activities were upregulated starting from the first day after injection, while the activity of superoxide dismutase increased only after 7 days. The oxidative damage that still occurred may impair the activity of more sensitive enzymes. A significant inhibition in glucose-6-phosphate dehydrogenase and glutathione-S-transferase activity was noted, while glutathione reductase remained unaltered. Taking into account that the reduced glutathione level had a deep decline and the level of lipid peroxidation products remained highly increased in the time interval we studied, it appears that the liver antioxidant defense of Carassius gibelio does not counteract the oxidative stress induced 7 days after silicon-based QDs exposure in an efficient manner.

  1. 1 Purdue Micro Pattern Gas Detector R&D Miyamoto, Shipsey, Guirl (undergrad), Kane (undergrad), May (undergrad)

    E-print Network

    at the high sensitivity frontier of particle physics, for example in WIMP searches and in neutrino physics, P5, P6] included a MPGD with the highest gas amplification factor, the first amorphous silicon

  2. Neutral gas temperature maps of the pin-to-plate Argon micro discharge into the ambient air

    E-print Network

    Xu, Shaofeng; Majeed, Asif

    2015-01-01

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device (ICCD). The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  3. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-03-01

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  4. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    SciTech Connect

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15?K to 2621.14?K and vibrational temperature varies from 3010.38?K to 3774.69?K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  5. Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime.

    PubMed

    Huang, Danhong; Gumbs, Godfrey; Roslyak, Oleksiy

    2013-02-01

    A self-consistent theory involving Maxwell's equations and a density-matrix linear-response theory is solved for an electromagnetically coupled doped graphene micro-ribbon array (GMRA) and a quantum well (QW) electron gas sitting at an interface between a half-space of air and another half-space of a doped semiconductor substrate, which supports a surface-plasmon mode in our system. The coupling between a spatially modulated total electromagnetic (EM) field and the electron dynamics in a Dirac-cone of a graphene ribbon, as well as the coupling of the far-field specular and near-field higher-order diffraction modes, are included in the derived electron optical-response function. Full analytical expressions are obtained with nonlocality for the optical-response functions of a two-dimensional electron gas and a graphene layer with an induced bandgap, and are employed in our numerical calculations beyond the long-wavelength limit (Drude model). Both the near-field transmissivity and reflectivity spectra, as well as their dependence on different configurations of our system and on the array period, ribbon width, graphene chemical potential of QW electron gas and bandgap in graphene, are studied. Moreover, the transmitted E-field intensity distribution is calculated to demonstrate its connection to the mixing of specular and diffraction modes of the total EM field. An externally tunable EM coupling among the surface, conventional electron-gas and massless graphene intraband plasmon excitations is discovered and explained. Furthermore, a comparison is made between the dependence of the graphene-plasmon energy on the ribbon's width and chemical potential in this paper and the recent experimental observation given by [Nat. Nanotechnol.6, 630-634 (2011)] for a GMRA in the terahertz-frequency range. PMID:23385917

  6. Silicon Based Microchemical Concepts for Miniature Fuel Keyur Shah, R.S. Besser

    E-print Network

    Besser, Ronald S.

    Ox Microfabricated Vacuum Insulation d: thickness of insulation Kp: Thermal conductivity at given pressure Insulation bonding under vacuum) ANSYS Thermal Simulation of Insulator Packaged with SR Microreactor Micro Steam Insulation SR Microreactor (260°C) HX 6.29 W 2.14W Vaporized Methanol & Water H2 rich reformate Combustor Pr

  7. Micro-Discharge Micro-Thruster

    NASA Astrophysics Data System (ADS)

    Slough, John; Ewing, J. J.

    2004-09-01

    This talk summarizes the experiments and analysis of the micro-discharge micro-thruster developed jointly by Ewing Technology Associates and the University of Washington. The key experimental result has been demonstrating that a discharge can be struck in a micro-discharge type of structure (aperture < 300 microns) under very demanding flow conditions. In addition, the micro-discharge provides for power addition to the neutral gas in discharges that transition from high pressure ( 10-100 mTorr) to vacuum on the supersonic flow side of the limiting aperture "nozzle" separating the discharge region from the vacuum region. The fact that a fairly stable discharge is maintained on the downstream side suggests that the fairly hot plasma ( 2 eV) deposits power into the neutral gas (Argon) in a manner that produces a neutral flow of similar energy, much like an arcjet but at very low power (2-10 W). A crude measurement of the power deposition into the gas via an energy balance approach was obtained from thermocouple measurements, which also imply that the gas temperature may be as high as 1-2 eV. Coupling thrust measurements to measurements of discharge and plasma properties is an integral part of the path to future understanding. Ultimately a model needs to be developed to explain the gas and plasma dynamics involved in the device. High-temperature nozzle flows at low Reynolds numbers are typically studied numerically by the direct simulation Monte Carlo method, and results from initial calculations will be presented, as well as future plans.

  8. Sulfur and iron speciation in gas-rich impact-melt glasses from basaltic shergottites determined by microXANES

    SciTech Connect

    Sutton, S.R.; Rao, M.N.; Nyquist, L.E.

    2008-04-28

    Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1-12%). To determine sulfur speciation (sulfide, sulfate or elemental sulfur) in these glasses, Gooding et al. and Burgess et al. carried out vacuum pyrolysis experiments on these GRIM glasses (also called Lith C) using quadrupole mass-spectrometric methods. They found that the evolved S-bearing gases from these samples consisted of both SO{sub 2} (from sulfate) and H{sub 2}S (from sulfide) in varying proportions. However, as mass-spectrometric studies do not provide details about spatial association of these S-species in these samples, we have studied the spatial distribution of sulfides and sulfates in GRIM glasses using sulfur K micro-XANES techniques in the present study. The microscale speciation of S may have important implications for the Rb-Sr isotope systematics of EET79001 Lith C glasses. In reference to oxidative weathering of surface basalts on Mars yielding secondary iron sulfates, Solberg and Burns examined a GRIM glass in EET79001 by Moessbauer spectroscopic techniques and showed that the percentage of Fe{sup 3+} in Lith C is <2%. They suggested that the Lith C contains very little Fe{sup 3+} despite the occurrence of oxidized sulfate in them, indicating that the conditions leading to the formation of these glasses were insufficiently oxidizing to produce Fe{sup 3+} from Fe{sup 2+} in these glasses. To understand the implications of these observations for the formation of the GRIM glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques. The S and Fe K micro-XANES measurements were performed on thin sections from EET79001: 506 from Lith A and 507 from Lith B.

  9. The synthesis of porous Co{sub 3}O{sub 4} micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    SciTech Connect

    Jamil, Saba; Jing, Xiaoyan; Wang, Jun; Li, Songnan; Liu, Jingyuan; Zhang, Milin

    2013-11-15

    Graphical abstract: - Highlights: • Micro cuboid Co{sub 3}O{sub 4} particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co{sub 3}O{sub 4} from cuboid CoCO{sub 3}. • Investigation of gas sensing properties of porous Co{sub 3}O{sub 4}. • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 ?m from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co{sub 3}O{sub 4} with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co{sub 3}O{sub 4} are also investigated.

  10. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All circuits except the oscillators are shared between the two bands. A multi-functional injection-locked circuit is used after the oscillators to reconfigure the division ratio inside the phase-locked loop. The synthesizer is suitable for integration in automotive radar transceivers and heterodyne receivers for 94-GHz imaging applications. The transceiver chip includes a dual-band low noise amplifier, a shared downconversion chain, dual-band pulse formers, power amplifiers, a dual-band frequency synthesizer and a high-speed programmable baseband pulse generator. Radar functionality is demonstrated using loopback measurements.

  11. An Aging Study of a Gas Electron Multiplier with Micro-Strip Gas Chamber Readout J. Miyamoto and I.P.J Shipsey

    E-print Network

    is constructed from Kapton and copper, and the MSGC is constructed from semiconductive glass and gold. When the detector (GEM+MSGC) is operated in an argon-dimethyl ether (DME) gas mixture and irradiated with a 5.4 KeV photon beam, about 220 mC/cm of charge can be accumulated without degradation of the detector performance

  12. Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry.

    PubMed

    Chung, Wu-Hsun; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2013-09-13

    A simple and solvent-free method for the rapid analysis of five synthetic polycyclic musks in water samples is described. The method involves the use of dispersive micro solid-phase extraction (D-?-SPE) coupled with direct thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) operating in the selected-ion-storage (SIS) mode. The parameters affecting the extraction efficiency of the target analytes from water sample and the thermal desorption conditions in the GC injection-port were optimized using a central composite design method. The optimal extraction conditions involved immersing 3.2mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI-18) in a 10mL water sample. After extraction by vigorously shaking for 1.0min, the adsorbents were collected and dried on a filter. The adsorbents were transferred to a micro-vial, which was directly inserted into GC temperature-programmed injector, and the extracted target analytes were then thermally desorbed in the GC injection-port at 337°C for 3.8min. The limits of quantitation (LOQs) were determined to be 1.2-3.0ng/L. Precision, as indicated by relative standard deviations (RSDs), was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 and 90%. A preliminary analysis of the river water samples revealed that galaxolide (HHCB) and tonalide (AHTN) were the two most common synthetic polycyclic musks present. Using a standard addition method, their concentrations were determined to in the range from 11 to 140ng/L. PMID:23932027

  13. Silicon based nano-architectures for high power lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Krishnan, Rahul

    Lithium-ion batteries have now become an inseparable part of modern day society as the power source for several portable electronics like cell phones, digital cameras and laptops. Their high energy density compared with other electrochemical battery systems has been their most attractive feature. This has lead to a great interest in developing lithium-ion batteries for hybrid and all-electric vehicles. Eventually such vehicles will help drastically reduce the carbon footprint making the environment cleaner and healthier. In spite of their high energy density, Li-ion batteries are known to have poor power densities. This forms a major limitation in their deployment as a power source on vehicles. Electric vehicles need power sources that can provide both high energy and power densities. This requires the development of anode, cathode and electrolyte materials that would transform the capabilities of existing Li-ion batteries. Among anode materials silicon has received great attention because of its very large theoretical capacity of ˜4200 mAh/g based on the alloy Li22Si5. It should be noted that storage of charge in the anode occurs through the alloying of Li with the host anode material. However, the large specific capacity of silicon also results in a ˜400% volume expansion which could lead to pulverization and delamination reducing the cycle life of the electrode. These failure processes are exacerbated at high rates making it extremely difficult to use silicon for high-power Li-ion battery anodes. The major research thrust supporting this Ph.D. thesis involved exploring silicon based nano-architectures that would provide high energy and power densities over a long cycle life. The key technique used to design different nano-architectures was DC Magnetron sputtering with oblique angle deposition. The main development of this research was a functionally strain graded Carbon-Aluminum-Silicon nanoscoop architecture for high-power Li-ion battery anodes. This consisted of Carbon nanorods with an intermediate Aluminum layer finally capped by a nanoscoop of Silicon. The strain gradation arises from the fact that each of these materials has differential volumetric expansions due to different extents of Li uptake. Such a strain gradation from Carbon towards Silicon would provide for a less abrupt transition across the material interfaces thereby reducing interfacial mismatch and improving the tolerance to delamination at very high rates. This nano-architecture provided average capacities of ˜412 mAh/g with a power output of ˜100 kW/kg electrode continuously over 100 cycles. Even when the power output was as high as ˜250 kW/kgelectrode, the average capacity over 100 cycles is still ˜90 mAh/g. Furthermore, scanning electron microscopy and X-ray photoelectron spectroscopy investigations revealed that the functionally strain graded nanostructures were being partially lithiated in the bulk even at high rates. The fact that charge storage was not merely a surface phenomenon supported the high energy densities obtained at high charge/discharge rates. In an attempt to improve the mass loading density of Silicon based nano-architectures, a nano-compliant layer (NCL) supported thin film architecture was also explored. This consisted of an array of oblique nanorods (the nano-compliant layer) sandwiched between the substrate and the thin film. The NCL layer was used to improve the stress tolerance of the thin film thereby allowing the use of bulk thin films as opposed to nanostructures. This would directly improve the mass loading density. Silicon films with Carbon NCLs and Carbon films with Silicon NCLs were both deposited and tested. It was found that Li+ diffusivity is higher in carbon than in silicon by at least two orders of magnitude. This was calculated from cyclic voltammetry tests using the Randles-Sevcik equation. This difference in Li+ diffusivity within the two materials was found to be the C-rate limiting factor for a given nano-architecture design.

  14. Ultra-Micro Wave Rotor Investigations Florin Iancu, Janusz Piechna*

    E-print Network

    Müller, Norbert

    Ultra-Micro Wave Rotor Investigations Florin Iancu, Janusz Piechna* , Emmett Dempsey, Norbert Nowowiejska Str., 00-665 Warsaw, Poland Abstract Ultra Micro Gas Turbines (UµGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines

  15. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  16. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    SciTech Connect

    Alan Ludwiszewski

    2009-06-29

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  17. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    PubMed

    Esplandiu, Maria J; Afshar Farniya, Ali; Bachtold, Adrian

    2015-11-24

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ?-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids. PMID:26349036

  18. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light

    PubMed Central

    2015-01-01

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ?-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids. PMID:26349036

  19. Structural and Oxidative Changes in the Kidney of Crucian Carp Induced by Silicon-Based Quantum Dots

    PubMed Central

    Petrache, Sorina Nicoleta; Stanca, Loredana; Serban, Andreea Iren; Sima, Cornelia; Staicu, Andreia Cristina; Munteanu, Maria Cristina; Costache, Marieta; Burlacu, Radu; Zarnescu, Otilia; Dinischiotu, Anca

    2012-01-01

    Silicon-based quantum dots were intraperitoneally injected in Carassius auratus gibelio specimens and, over one week, the effects on renal tissue were investigated by following their distribution and histological effects, as well as antioxidative system modifications. After three and seven days, detached epithelial cells from the basal lamina, dilated tubules and debris in the lumen of tubules were observed. At day 7, nephrogenesis was noticed. The reduced glutathione (GSH) concentration decreased in the first three days and started to rise later on. The superoxide dismutase (SOD) activity increased only after one week, whereas catalase (CAT) was up-regulated in a time-dependent manner. The activities of glutathione reductase (GR) and glutathione peroxidise (GPX) decreased dramatically by approximately 50% compared to control, whereas the glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) increased significantly after 3 and 7 days of treatment. Oxidative modifications of proteins and the time-dependent increase of Hsp70 expression were also registered. Our data suggest that silicon-based quantum dots induced oxidative stress followed by structural damages. However, renal tissue is capable of restoring its integrity by nephron development. PMID:22949855

  20. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    PubMed

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (?GAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3. PMID:26653496

  1. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

    PubMed Central

    Chae, Myung-Sic; Kim, Jinsik; Yoo, Yong Kyoung; Kang, Ji Yoon; Lee, Jeong Hoon; Hwang, Kyo Seon

    2015-01-01

    Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT), which is a well-known by-product of the explosive molecule trinitrotoluene (TNT) and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg) that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC) was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance. PMID:26213944

  2. A carbon foam with a bimodal micro–mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption

    SciTech Connect

    Liu, Shouxin; Huang, Zhanhua; Wang, Rui

    2013-07-15

    Highlights: ? Network carbon foam containing a bimodal pore distribution was prepared from Larch. ? Liquefaction route was used for the preparation of morphology controllable carbon. ? Pore structure of carbon foam was controlled through KOH activation. - Abstract: A carbon foam with a bimodal micro–mesopore distribution, was prepared by submitting larch sawdust to liquefaction, resinification, foaming, carbonization and KOH activation. The morphology, pore texture and crystal microstructure was characterized by scanning and transmission electron microscopy, nitrogen adsorption analysis and X-ray powder diffraction. A honeycomb structure with adjacent cells was observed for the precursor of carbon foam. After KOH activation, the cell wall of precursor shrunk and broke. This lead to the formation of a well-connected 3D network and developed ligament pore structure (surface area of 554–1918 m{sup 2}/g) containing bimodal pores, 2.1 and 3.9 nm in diameter. The porous carbon foam prepared at 700 °C exhibited a much higher gas-phase toluene removal than commercial activated carbon fiber owing to the 3D network and bimodal pore structure.

  3. Forensic analysis of a single particle of partially burnt gunpowder by solid phase micro-extraction-gas chromatography-nitrogen phosphorus detector.

    PubMed

    Burleson, Garrett Lee; Gonzalez, Brittney; Simons, Kelsie; Yu, Jorn C C

    2009-05-29

    Solid phase micro-extraction (SPME) was adopted to extract organic gun shot residues (OGSRs) from a single particle of partially burnt gunpowder. The partially burnt particle samples were collected from gun shot residue (GSR) deposited near the target areas. OGSRs, such as diphenylamine (DPA), methyl centralite (MC), ethyl centralite (EC), from only one single particle of partially burnt gunpowder were successfully extracted by SPME and analyzed by a gas chromatography coupled to a nitrogen phosphorus detector (GC-NPD). The results confirmed that the new extraction procedure is capable of extracting trace amount of MC and EC as signature molecules for the identification of GSR. The method represents a solvent-free extraction as a complementary analytical procedure for the forensic analysis of GSR-related evidences. The new extraction scheme with the capability of analyzing single particle of partially burnt gunpowder can also be applied to the identification of explosive residues, such as in post-blast investigations of improvised explosive devices. PMID:19375082

  4. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    PubMed Central

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-?m-deep, and 60-?m-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m. PMID:24899869

  5. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.

    PubMed

    Xiao, Zuobing; Zhou, Xuan; Niu, Yunwei; Yu, Dan; Zhu, Jiancai; Zhu, Guangyong

    2015-01-26

    A simple, rapid and solvent-free multi-residue method has been developed and applied to confirm and quantify a series of volatile compounds in five cherry wines by gas chromatography coupled with mass spectrometry (GC-MS). Four parameters (e.g., coating material of fiber, temperature and time of extraction, and addition of sodium chloride in the solution) of headspace solid-phase micro-extraction (HS-SPME) were optimized, resulting in the best extraction condition including 50/30 ?m DVB/CAR/PDMS fiber, 45 min and 50 °C of SPME, and 2g of sodium chloride addition in the wine during the extraction. The SPME had LODs and LOQs ranging from 0.03 to 7.27 ?g L(-1) and 0.10 to 24.24 ?g L(-1) for analytic compounds, respectively. Repeatability and reproducibility values were all below 19.8%, with mean values of 12.7% and 10.5%, respectively. Regression coefficients (R(2)) of detective linearity of the standard curves was higher than 0.9852. Moreover, relative recoveries of analytical targets were achieved in a range of 60.7-125.6% with good relative standard deviation values (?20.6%). In addition, a principal component analysis (PCA) was used to analyze the aroma profiles of the wines, which indicated that five samples were distinctly divided into two groups based on their different geographical origins and volatile compounds. PMID:25544009

  6. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents.

    PubMed

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-?m-deep, and 60-?m-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m. PMID:24899869

  7. 4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system

    NASA Astrophysics Data System (ADS)

    Sanaye, Sepehr; Katebi, Arash

    2014-02-01

    Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 $kW-1 h-1, and payback period of about 6.3 years for the investment.

  8. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    NASA Astrophysics Data System (ADS)

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-05-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-?m-deep, and 60-?m-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as samples. The fabricated MCC allowed for the separation of all the components of the gaseous mixture within 24 s, even when the difference in boiling point was 4°C, as in the case of TEP and methyl salicylate. Furthermore, interfering agents - dichloromethane, ethanol, and toluene - were also included in the subsequent gaseous mixture samples. The boiling point of these six components ranged from 78°C to 219°C. All six components were clearly separated within 70 s. This study is the first to report the clear separation of gas mixtures of components with close boiling points. The column efficiency was experimentally determined to be 12,810 plates/m.

  9. Biocompatibility Assessment of Si-based Nano- and Micro-particles

    PubMed Central

    Jaganathan, Hamsa; Godin, Biana

    2012-01-01

    Silicon is one of the most abundant chemical elements found on the Earth. Due to its unique chemical and physical properties, silicon based materials and their oxides (e.g. silica) have been used in several industries such as building and construction, electronics, food industry, consumer products and biomedical engineering/medicine. This review summarizes studies on effects of silicon and silica nano- and micro-particles on cells and organs following four main exposure routes, namely, intravenous, pulmonary, dermal and oral. Further, possible genotoxic effects of silica based nanoparticles are discussed. The review concludes with an outlook on improving and standardizing biocompatibility assessment for nano- and micro-particles. PMID:22634160

  10. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  11. Micro-machined resonator

    DOEpatents

    Godshall, Ned A. (Albuquerque, NM); Koehler, Dale R. (Albuquerque, NM); Liang, Alan Y. (Albuquerque, NM); Smith, Bradley K. (Albuquerque, NM)

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  12. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  13. New Perspectives in Silicon Micro and Nanophotonics

    NASA Astrophysics Data System (ADS)

    Casalino, M.; Coppola, G.; De Stefano, L.; Calio, A.; Rea, I.; Mocella, V.; Dardano, P.; Romano, S.; Rao, S.; Rendina, I.

    2015-05-01

    In the last two decades, there has been growing interest in silicon-based photonic devices for many optical applications: telecommunications, interconnects and biosensors. In this work, an advance overview of our results in this field is presented. Proposed devices allow overcoming silicon intrinsic drawbacks limiting its application as a photonic substrate. Taking advantages of both non-linear and linear effects, size reduction at nanometric scale and new two-dimensional emerging materials, we have obtained a progressive increase in device performance along the last years. In this work we show that a suitable design of a thin photonic crystal slab realized in silicon nitride can exhibit a very strong field enhancement. This result is very promising for all photonic silicon devices based on nonlinear phenomena. Moreover we report on the fabrication and characterization of silicon photodetectors working at near-infrared wavelengths based on the internal photoemission absorption in a Schottky junction. We show as an increase in device performance can be obtained by coupling light into both micro-resonant cavity and waveguiding structures. In addition, replacing metal with graphene in a Schottky junction, a further improve in PD performance can be achieved. Finally, silicon-based microarray for biomedical applications, are reported. Microarray of porous silicon Bragg reflectors on a crystalline silicon substrate have been realized using a technological process based on standard photolithography and electrochemical anodization of the silicon. Our insights show that silicon is a promising platform for the integration of various optical functionalities on the same chip opening new frontiers in the field of low-cost silicon micro and nanophotonics.

  14. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  15. Continuous soil VOCl measurements with automated flux chambers and micro-ECD gas chromatography coupled with the thermal desorption and cooled injection systems

    NASA Astrophysics Data System (ADS)

    Molodovskaya, M. S.; Svensson, T.; Pitts, A.; Delmonte, J.; Nesic, Z.; Oberg, G.

    2010-12-01

    The volatile organic chlorinated compounds (VOCl) are important components of the global chlorine budget. The origin of VOCl in the environment was for decades thought to be strictly anthropogenic. Over the past decade, a number of studies have however shown that VOCls are naturally formed in soil, and nowadays this source is recognized as a crucial part of the global biogeochemical chlorine cycle. The relative contribution of soil VOCl to the global chlorine cycle is however unclear, a key reason being that monitoring of soil VOCl is complicated by low concentrations and high variability of emission rates. Static chamber deployments coupled with canister gas sampling and gas chromatography (GC) analysis is the most commonly used method for quantifying VOCl emissions. Static chambers are however of limited use for estimating larger scale fluxes since the method is highly labor intensive (leading low sampling frequency). The poor data resolution resulting from these limitations can strongly bias the data extrapolation. Here, we report a method that would allow more continuous and precise VOCl flux measurements. The study has been carried out in a forest in British Columbia, Canada, using automated dynamic chambers and advanced GC technique. The chamber setup is based on a design that previously has been employed and proven successful for carbon dioxide and soil respiration measurements. The method includes a collar permanently inserted into the ground and an attached dome-shaped cover. The air from the closed chamber is pumped through the on-site sampling device. The cover opens and closes automatically between deployments (40 min in average), which helps to minimize the chamber supervision and obtain more continuous data. Soil VOCl concentrations are commonly at the ppt-level, much lower than atmospheric carbon dioxide, so necessary adjustments were made to the chamber system to pre-concentrate the compounds of interest. During each deployment, soil air from the automated chamber was continuously pumped through the glass tubes filled with carbon-based absorbent (Carbotrap 300) to capture and retain VOCl. At the end of each measurement period, the tubes are brought back to the lab, and the content is analyzed by Agilent 7890 GC/micro-ECD coupled with the Gerstel Thermal Desorption System (TDS) and Cooled Injection System (CIS). The ultra sensitive micro-ECD detection and high-efficiency capillary column (Rtx®-VMS, 20m x 0.18mm ID x 1.0µm) allows rapid separation and quantification of the mid-weight VOCl such as chloroform, carbon tetrachloride, 1,1,1-trichloroethane and bromochloromethane. The GC-method dynamic range is linear within 0.1-200.0ng, and the analytical precision is determined to be 4%. The described system can be used for the analysis of soil/atmosphere exchange of VOCl at the detection limit of 1.9ng m-2 h-1, which is far below previously reported average soil emission levels from forest soils. The high precision GC analysis combined with the automatic chambers makes it possible to study the high spatial and temporal variability of soil VOCl fluxes.

  16. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  17. InGaAlAsPN: A Materials System for Silicon Based Optoelectronics and Heterostructure Device Technologies

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Tang, S.; Wallace, R. M.; Beam, E. A., III; Duncan, W. M.; Kao, Y. -C.; Liu, H. -Y.

    1995-01-01

    A new material system is proposed for silicon based opto-electronic and heterostructure devices; the silicon lattice matched compositions of the (In,Ga,Al)-(As,P)N 3-5 compounds. In this nitride alloy material system, the bandgap is expected to be direct at the silicon lattice matched compositions with a bandgap range most likely to be in the infrared to visible. At lattice constants ranging between those of silicon carbide and silicon, a wider bandgap range is expected to be available and the high quality material obtained through lattice matching could enable applications such as monolithic color displays, high efficiency multi-junction solar cells, opto-electronic integrated circuits for fiber communications, and the transfer of existing 3-5 technology to silicon.

  18. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K. (Lexington, MA)

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  19. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase micro-extraction with gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Sorenson, Mark; Beene, Matt; Krauter, Charles; Shamp, Brian; Hasson, Alam S.

    Dairies are a major source of volatile organic compounds (VOCs) in California's San Joaquin Valley; a region that experiences high ozone levels during summer. Short-chain carboxylic acids, or volatile fatty acids (VFAs), are believed to make up a large fraction of VOC emissions from these facilities, although there are few studies to substantiate this. In this work, a method using a flux chamber coupled to solid phase micro-extraction (SPME) fibers followed by analysis using gas chromatography/mass spectrometry was developed to quantify emissions of six VFAs (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid and 3-methyl butanoic acid) from non-enteric sources. The technique was then used to quantify VFA fluxes from a small dairy located on the campus of California State University Fresno. Both animal feed and animal waste are found to be major sources of VFAs, with acetic acid contributing 70-90% of emissions from the sources tested. Measured total acid fluxes during spring (with an average temperature of 20 °C) were 1.84 ± 0.01, 1.06 ± 0.08, (1.3 ± 0.5) × 10 -2, (1.7 ± 0.2) × 10 -2 and (1.2 ± 0.5) × 10 -2 g m -2 h -1 from silage, total mixed rations, flushing lane, open lot and lagoon sources, respectively. VFA emissions from the sources tested total 390 ± 80 g h -1. The data indicate high fluxes of VFAs from dairy facilities, but differences in the design and operation of dairies in the San Joaquin Valley as well as seasonal variations mean that additional measurements must be made to accurately determine emissions inventories for the region.

  20. Near infrared and Raman spectroscopy as Process Analytical Technology tools for the manufacturing of silicone-based drug reservoirs.

    PubMed

    Mantanus, J; Rozet, E; Van Butsele, K; De Bleye, C; Ceccato, A; Evrard, B; Hubert, Ph; Ziémons, E

    2011-08-01

    Using near infrared (NIR) and Raman spectroscopy as PAT tools, 3 critical quality attributes of a silicone-based drug reservoir were studied. First, the Active Pharmaceutical Ingredient (API) homogeneity in the reservoir was evaluated using Raman spectroscopy (mapping): the API distribution within the industrial drug reservoirs was found to be homogeneous while API aggregates were detected in laboratory scale samples manufactured with a non optimal mixing process. Second, the crosslinking process of the reservoirs was monitored at different temperatures with NIR spectroscopy. Conformity tests and Principal Component Analysis (PCA) were performed on the collected data to find out the relation between the temperature and the time necessary to reach the crosslinking endpoints. An agreement was found between the conformity test results and the PCA results. Compared to the conformity test method, PCA had the advantage to discriminate the heating effect from the crosslinking effect occurring together during the monitored process. Therefore the 2 approaches were found to be complementary. Third, based on the HPLC reference method, a NIR model able to quantify the API in the drug reservoir was developed and thoroughly validated. Partial Least Squares (PLS) regression on the calibration set was performed to build prediction models of which the ability to quantify accurately was tested with the external validation set. The 1.2% Root Mean Squared Error of Prediction (RMSEP) of the NIR model indicated the global accuracy of the model. The accuracy profile based on tolerance intervals was used to generate a complete validation report. The 95% tolerance interval calculated on the validation results indicated that each future result will have a relative error below ±5% with a probability of at least 95%. In conclusion, 3 critical quality attributes of silicone-based drug reservoirs were quickly and efficiently evaluated by NIR and Raman spectroscopy. PMID:21704763

  1. Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals

    PubMed Central

    Park, Ji-Ho; Derfus, Austin M.; Segal, Ester; Vecchio, Kenneth S.; Bhatia, Sangeeta N.; Sailor, Michael J.

    2012-01-01

    This paper describes a method for local heating of discrete micro-liter scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers: the top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic Si oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18A RMS current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 °C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/re-binding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems. PMID:16771508

  2. Recent Developments in Mems-Based Micro Fuel Cells

    E-print Network

    Pichonat, T

    2007-01-01

    Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

  3. Micro stereo lithography and fabrication of 3D microdevices

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-08-01

    Micro Stereo Lithography (MSL) is a poor man's LIGA for fabricating high aspect ratio MEMS devices in UV curable semiconducting polymers using either two computer-controlled low inertia galvanometric mirrors with the aid of focusing lens or an array of optical fibers. For 3D MEMS devices, the polymers need to have conductive and possibly piezoelectric or ferroelectric properties. Such polymers are being developed at Penn State resulting in microdevices for fluid and drug delivery. Applications may include implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components. With the invention of organic thin film transistor, now it is possible to fabricate 3D polymeric MEMS devices with built-in-electronics similar to silicon based microelectronics. In this paper, a brief introduction of MSL system is presented followed by a detailed design and development of micro pumps using this approach.

  4. Silicon-based nanoelectronic field-effect pH sensor with local gate control Yu Chen, Xihua Wang, Shyamsunder Erramilli, and Pritiraj Mohantya

    E-print Network

    Mohanty, Raj

    H sensor engineered from a functionalized silicon nanowire. With this nanofabricated pH sensor, the changeSilicon-based nanoelectronic field-effect pH sensor with local gate control Yu Chen, Xihua Wang on the nanowire sensor allows field-effect control of the surface charge on the nanowire by controlling

  5. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NASA Astrophysics Data System (ADS)

    Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.

    2014-07-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.

  6. PREFACE: E-MRS 2012 Spring Meeting, Symposium M: More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics

    NASA Astrophysics Data System (ADS)

    Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre

    2012-12-01

    More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible material systems piezoelectric films and nanostructures Atomic Layer Deposition (ALD) of oxides and nitrides characterization and metrology of very thin oxide layers We would like to take this opportunity to thank the Scientific Committee and Local Committee for bringing together a coherent and high quality Symposium at E-MRS 2012 Spring Meeting. Christian Wenger, Jean Fompeyrine, Christophe Vallée and Jean-Pierre Locquet Organizing Committee of Symposium M September 2012

  7. In vivo validation of custom-designed silicon-based microelectrode arrays for long-term neural recording and stimulation.

    PubMed

    Han, Martin; Manoonkitiwongsa, Panya S; Wang, Cindy X; McCreery, Douglas B

    2012-02-01

    We developed and validated silicon-based neural probes for neural stimulating and recording in long-term implantation in the brain. The probes combine the deep reactive ion etching process and mechanical shaping of their tip region, yielding a mechanically sturdy shank with a sharpened tip to reduce insertion force into the brain and spinal cord, particularly, with multiple shanks in the same array. The arrays' insertion forces have been quantified in vitro. Five consecutive chronically-implanted devices were fully functional from 3 to 18 months. The microelectrode sites were electroplated with iridium oxide, and the charge injection capacity measurements were performed both in vitro and after implantation in the adult feline brain. The functionality of the chronic array was validated by stimulating in the cochlear nucleus and recording the evoked neuronal activity in the central nucleus of the inferior colliculus. The arrays' recording quality has also been quantified in vivo with neuronal spike activity recorded up to 566 days after implantation. Histopathology evaluation of neurons and astrocytes using immunohistochemical stains indicated minimal alterations of tissue architecture after chronic implantation. PMID:22020666

  8. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys.

    PubMed

    Bonini, Luca; Maranesi, Monica; Livi, Alessandro; Bruni, Stefania; Fogassi, Leonardo; Holzhammer, Tobias; Paul, Oliver; Ruther, Patrick

    2014-08-01

    One of the fundamental challenges in behavioral neurophysiology in awake animals is the steady recording of action potentials of many single neurons for as long as possible. Here, we present single neuron data obtained during acute recordings mainly from premotor cortices of three macaque monkeys using a silicon-based linear multielectrode array. The most important aspect of these probes, compared with similar models commercially available, is that, once inserted into the brain using a dedicated insertion device providing an intermediate probe fixation by means of vacuum, they can be released and left floating in the brain. On the basis of our data, these features appear to provide (i) optimal physiological conditions for extracellular recordings, (ii) good or even excellent signal-to-noise ratio depending on the recorded brain area and cortical layer, and (iii) extreme stability of the signal over relatively long periods. The quality of the recorded signal did not change significantly after several penetrations into the same restricted cortical sector, suggesting limited tissue damage due to probe insertion. These results indicate that these probes offer several advantages for acute neurophysiological experiments in awake monkeys, and suggest the possibility to employ them for semichronic or even chronic studies. PMID:24434299

  9. Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber

    NASA Astrophysics Data System (ADS)

    Majeed, Bivragh; Jones, Ben; Tezcan, Deniz S.; Tutunjyan, Nina; Haspeslagh, Luc; Peeters, Sara; Fiorini, Paolo; de Beeck, Maaike Op; Van Hoof, Chris; Hiraoka, Maki; Tanaka, Hiroyuki; Yamashita, Ichiro

    2012-04-01

    A single nucleotide polymorphism (SNP) is a difference in the DNA sequence of one nucleotide only. We recently proposed a lab-on-a-chip (LoC) system which has the potentiality of fast, sensitive and highly specific SNP detection. Most of the chip components are silicon based and fabricated within a single process. In this paper, the newly developed fabrication method for the silicon chip is presented. The robust and reliable process allows etching structures on the same chip with very different aspect ratios. The characterization of a crucial component to the LoC SNP detector, the microreactor where DNA amplification is performed, is also detailed. Thanks to innovative design and fabrication methodologies, the microreactor has an excellent thermal isolation from the surrounding silicon substrate. This allows for highly localized temperature control. Furthermore, the microreactor is demonstrated to have rapid heating and cooling rates, allowing for rapid amplification of the target DNA fragments. Successful DNA amplification in the microreactor is demonstrated.

  10. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Ken A.; Avasthi, Sushobhan; Sahasrabudhe, Girija; Man, Gabriel; Jhaveri, Janam; Berg, Alexander H.; Schwartz, Jeffrey; Kahn, Antoine; Wagner, Sigurd; Sturm, James C.

    2015-03-01

    In this work, we use an electron-selective titanium dioxide (TiO2) heterojunction contact to silicon to block minority carrier holes in the silicon from recombining at the cathode contact of a silicon-based photovoltaic device. We present four pieces of evidence demonstrating the beneficial effect of adding the TiO2 hole-blocking layer: reduced dark current, increased open circuit voltage (VOC), increased quantum efficiency at longer wavelengths, and increased stored minority carrier charge under forward bias. The importance of a low rate of recombination of minority carriers at the Si/TiO2 interface for effective blocking of minority carriers is quantitatively described. The anode is made of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) heterojunction to silicon which forms a hole selective contact, so that the entire device is made at a maximum temperature of 100 °C, with no doping gradients or junctions in the silicon. A low rate of recombination of minority carriers at the Si/TiO2 interface is crucial for effective blocking of minority carriers. Such a pair of complementary carrier-selective heterojunctions offers a path towards high-efficiency silicon solar cells using relatively simple and near-room temperature fabrication techniques.

  11. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell

    SciTech Connect

    Nagamatsu, Ken A. Man, Gabriel; Jhaveri, Janam; Berg, Alexander H.; Kahn, Antoine; Wagner, Sigurd; Sturm, James C.; Avasthi, Sushobhan; Sahasrabudhe, Girija; Schwartz, Jeffrey

    2015-03-23

    In this work, we use an electron-selective titanium dioxide (TiO{sub 2}) heterojunction contact to silicon to block minority carrier holes in the silicon from recombining at the cathode contact of a silicon-based photovoltaic device. We present four pieces of evidence demonstrating the beneficial effect of adding the TiO{sub 2} hole-blocking layer: reduced dark current, increased open circuit voltage (V{sub OC}), increased quantum efficiency at longer wavelengths, and increased stored minority carrier charge under forward bias. The importance of a low rate of recombination of minority carriers at the Si/TiO{sub 2} interface for effective blocking of minority carriers is quantitatively described. The anode is made of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) heterojunction to silicon which forms a hole selective contact, so that the entire device is made at a maximum temperature of 100?°C, with no doping gradients or junctions in the silicon. A low rate of recombination of minority carriers at the Si/TiO{sub 2} interface is crucial for effective blocking of minority carriers. Such a pair of complementary carrier-selective heterojunctions offers a path towards high-efficiency silicon solar cells using relatively simple and near-room temperature fabrication techniques.

  12. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    NASA Astrophysics Data System (ADS)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 ?m and 0.5 ?m thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, ?) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  13. Strain-balanced silicon-germanium materials for near-IR photodetection in silicon-based optical interconnects

    NASA Astrophysics Data System (ADS)

    Giovane, Laura Marie

    Strain-balanced silicon-germanium superlattices grown on high quality compositionally graded buffers, or virtual substrates, make a complete range of alloy composition and biaxial strain combinations accessible. This structure is a unique way to achieve high quantum efficiency near IR photodetection for silicon-based optical interconnects. The growth of the strain-balanced superlattices by molecular beam epitaxy (MBE) and ultra high vacuum chemical vapor deposition (UHV-CVD) is presented and the role of adsorbed hydrogen during UHV- CVD growth is addressed. Hydrogen adsorption on the growth surface proved a useful technique to minimize coherent strain relaxation at the higher growth temperatures required for UHV-CVD silicon-germanium growth. The near IR absorption spectrum of the strained silicon-germanium materials possible using strain- balanced superlattices is critically required in the design of a photodetector. A model based on deformation potential theory and semiconductor absorption physics is used to predict the absorption coefficient as a function of strain and alloy composition. Photocurrent junction spectroscopy of strain-balanced silicon-germanium materials is used to confirm the results of the model. The effects of threading dislocations associated with the compositionally graded buffers on the bulk leakage current of photodiodes is determined using electron-beam induced current imaging techniques to measure dislocation density. The correlation between dislocation density and leakage current yielded a current per dislocation line length of 200 pA ?m-1. Coupling strategies for the integration of high dielectric contrast polycrystalline silicon/SiO 2 strip waveguides and silicon-germanium photodetectors are presented. The high optical power densities possible with the polycrystalline silicon waveguides permits the miniaturization of photodetectors. The effects of integration and miniaturization on photodetector performance are discussed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation

    NASA Astrophysics Data System (ADS)

    Neophytou, Neophytos

    2015-04-01

    Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as ? l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.

  15. The Micro-Groove Detector

    E-print Network

    Bellazzini, R; Brez, A; Gariano, G; Latronico, L; Lumb, N; Papanestis, A; Spandre, G; Massai, M M; Raffo, R; Spezziga, M A

    1999-01-01

    We introduce the Micro-Groove Detector (MGD), a new type of position-sensitive gas proportional counter produced using advanced printed circuit board (PCB) technology. The MGD is based on a thin kapt on foil, clad with gold-plated copper on both sides. An array of micro-strips at a typical pitch of 200um is defined on the top metal layer. Using as a protection mask the metal left after the patter ning, charge amplifying micro-grooves are etched into the kapton layer. These end on a second micro-strip pattern which is defined on the bottom metal plane. The two arrays of micro-strips can have a n arbitrary relative orientation and so can be used for read-out to obtain 2-D positional information. First results from our systematic assessment of this device are reported: gas gain > 15000, rat e capability above 10^6mm-2s-1, energy resolution 22% at 5.4 keV, no significant charging or aging effects up to 5mC/cm, full primary charge collection efficiency even at high drift fields.

  16. Isoporous micro/nanoengineered membranes.

    PubMed

    Warkiani, Majid Ebrahimi; Bhagat, Ali Asgar S; Khoo, Bee Luan; Han, Jongyoon; Lim, Chwee Teck; Gong, Hai Qing; Fane, Anthony Gordon

    2013-03-26

    Isoporous membranes are versatile structures with numerous potential and realized applications in various fields of science such as micro/nanofiltration, cell separation and harvesting, controlled drug delivery, optics, gas separation, and chromatography. Recent advances in micro/nanofabrication techniques and material synthesis provide novel methods toward controlling the detailed microstructure of membrane materials, allowing fabrication of membranes with well-defined pore size and shape. This review summarizes the current state-of-the-art for isoporous membrane fabrication using different techniques, including microfabrication, anodization, and advanced material synthesis. Various applications of isoporous membranes, such as protein filtration, pathogen isolation, cell harvesting, biosensing, and drug delivery, are also presented. PMID:23442009

  17. Development of a liquid-fueled micro-combustor

    E-print Network

    Peck, Jhongwoo, 1976-

    2008-01-01

    Advances in Micro-Electro-Mechanical Systems (MEMS) have made possible the development of shirtbutton-sized gas turbine engines for use as portable power sources. As part of an effort to develop a microscale gas turbine ...

  18. MicroED data collection and processing

    SciTech Connect

    Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; Cruz, M. Jason de la; Leslie, Andrew G. W.; Gonen, Tamir

    2015-07-01

    The collection and processing of MicroED data are presented. MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.

  19. Micropump and venous valve by micro stereo lithography

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    Micro Stereo Lithography (MSL) is a poor man's LIGA for fabricating high aspect ratio MEMS devices in UV curable semiconducting polymers using either two computer-controlled low inertia galvanometric mirrors with the aid of focusing lens or an array of optical fibers. For 3D MEMS devices, the polymers need to have conductive and possibly piezoelectric or ferroelectric properties. Such polymers are being developed at Penn State resulting in microdevices for fluid and drug delivery. Applications may include implanted medical delivery system, artificial heart valves, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components. With the invention of organic thin film transistor, now it is possible to fabricate 3D polymeric MEMS devices with built-in-electronics similar to silicon based microelectronics.

  20. An algorithm for selection and design of hybrid power supplies for MEMS with a case study of a micro-gas chromatograph system

    NASA Astrophysics Data System (ADS)

    Cook, K. A.; Sastry, A. M.

    The Wireless Integrated Microsystems (WIMS)-environmental monitor testbed (EMT) is a multi-component microelectromechanical system (MEMS), incorporating complementary metal oxide semiconductor (CMOS) materials for high-precision circuits used for integrated sensors such as micro-g accelerometers, micro-gyroscopes, and pressure sensors. The WIMS-EMT duty cycle, like many autonomous MEMS systems, has low-power standby periods for sensing, and high-power pulses for R/F transmission and reception. In this paper, we present results of three strategies for providing power to this system, including (1) specification of a single, aggregate power supply, resulting in a single battery electrochemistry and cell size; (2) specification of several power supplies, by a priori division of power sources by power range; and (3) specification of an arbitrary number of power "bundles," based on available space in the device. The second approach provided the best results of mass (0.032 kg) and volume (0.028 L) among the three approaches. The second and third approaches provided the best battery lifetime results; both systems produced lifetimes in excess of 2E3 h. Future work will incorporate CMOS operational amplifier (op-amp) technologies to accommodate large voltage fluxes in many MEMS devices, and implementation of our approaches into a user-friendly code.

  1. High volume methane gas hydrate deposits in fine grained sediments from the Krishna-Godavari Basin: Analysis from Micro CT scanning

    NASA Astrophysics Data System (ADS)

    Rees, E. V.; Clayton, C.; Priest, J.; Schultheiss, P. J.

    2009-12-01

    The Indian National Gas Hydrate Program (NGHP) Expedition 1, of 2006, investigated several methane gas hydrate deposits on the continental shelf around the coast of India. Using pressure coring techniques (HYACINTH and PCS), intact gas-hydrate bearing, fine-grained sediment cores were recovered during the expedition. Once recovered, these cores were rapidly depressurized and submerged in liquid nitrogen, therefore preserving the structure and form of the hydrate within the host sediment. High resolution X-Ray CT scanning was later employed to image the internal structure of the gas hydrate, analyze the trends in vein orientation, and collect volumetric data. A scanning resolution of 0.08mm allowed for a detailed view of the three-dimensional distribution of the hydrate within the sediment from which detailed analysis of vein orientation could be made. Two distinct directions of vein growth were identified in each core section studied, which suggested the presence of a specific stress regime in the Krishna-Godavari basin during hydrate formation. In addition, image segmentation of gas hydrate from the sediment allowed for volumetric analysis of the hydrate content within each core section. Results from this analysis showed that high volumes of gas hydrate, up to approximately 70% of the pore space, were present. This high volume of methane gas hydrate can have a significant impact on the stability of the host sediment if dissociation of the hydrate were to occur in-situ, through the development of excess pore pressure, increase in water content and change in salinity of the host sediment.

  2. Connecting the Micro-dynamics to the Emergent Macro-variables: Self-Organized Criticality and Absorbing Phase Transitions in the Deterministic Lattice Gas

    E-print Network

    Andrea Giometto; Henrik Jeldtoft Jensen

    2011-10-12

    We reinvestigate the Deterministic Lattice Gas introduced as a paradigmatic model of the 1/f spectra (Phys. Rev. Lett. V26, 3103 (1990)) arising according to the Self-Organized Criticality scenario. We demonstrate that the density fluctuations exhibit an unexpected dependence on systems size and relate the finding to effective Langevin equations. The low density behavior is controlled by the critical properties of the gas at the absorbing state phase transition. We also show that the Deterministic Lattice Gas is in the Manna universality class of absorbing state phase transitions. This is in contrast to expectations in the literature which suggested that the entirely deterministic nature of the dynamics would put the model in a different universality class. To our knowledge this is the first fully deterministic member of the Manna universality class.

  3. Connecting the Micro-dynamics to the Emergent Macro-variables: Self-Organized Criticality and Absorbing Phase Transitions in the Deterministic Lattice Gas

    E-print Network

    Giometto, Andrea

    2011-01-01

    We reinvestigate the Deterministic Lattice Gas introduced as a paradigmatic model of the 1/f spectra (Phys. Rev. Lett. V26, 3103 (1990)) arising according to the Self-Organized Criticality scenario. We demonstrate that the density fluctuations exhibit an unexpected dependence on systems size and relate the finding to effective Langevin equations. The low density behavior is controlled by the critical properties of the gas at the absorbing state phase transition. We also show that the Deterministic Lattice Gas is in the Manna universality class of absorbing state phase transitions. This is in contrast to expectations in the literature which suggested that the entirely deterministic nature of the dynamics would put the model in a different universality class. To our knowledge this is the first fully deterministic member of the Manna universality class.

  4. High-efficiency approach for fabricating MTE rotor by micro-EDM and micro-extrusion

    NASA Astrophysics Data System (ADS)

    Geng, Xuesong; Chi, Guanxin; Wang, Yukui; Wang, Zhenlong

    2014-07-01

    Micro-gas turbine engine (MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining (micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.

  5. Investigation of bonding properties of denture bases to silicone-based soft denture liner immersed in isobutyl methacrylate and 2-hydroxyethyl methacrylate

    PubMed Central

    Tugut, Faik; Mutaf, Burcu; Guney, Umit

    2014-01-01

    PURPOSE The purpose of this study was to investigate the bonding properties of denture bases to silicone-based soft denture liners immersed in isobutyl methacrylate (iBMA) and 2-hydroxyethyl methacrylate (HEMA) for various lengths of time. MATERIALS AND METHODS Polymethyl methacrylate (PMMA) test specimens were fabricated (75 mm in length, 12 mm in diameter at the thickest section, and 7 mm at the thinnest section) and then randomly assigned to five groups (n=15); untreated (Group 1), resilient liner immersed in iBMA for 1 minute (Group 2), resilient liner immersed in iBMA for 3 minutes (Group 3), resilient liner immersed in HEMA for 1 minute (Group 4), and resilient liner immersed in HEMA for 3 minutes (Group 5). The resilient liner specimens were processed between 2 PMMA blocks. Bonding strength of the liners to PMMA was compared by tensile test with a universal testing machine at a crosshead speed of 5 mm/min. Data were evaluated by 1-way ANOVA and post hoc Tukey-Kramer multiple comparisons tests (?=0.05). RESULTS The highest mean value of force was observed in Group 3 specimens. The differences between groups were statistically significant (P<.05), except between Group 1 and Group 4 (P=.063). CONCLUSION Immersion of silicone-based soft denture liners in iBMA for 3 minutes doubled the tensile bond strength between the silicone soft liner and PMMA denture base materials compared to the control group. PMID:24843397

  6. MicroED data collection and processing

    PubMed Central

    Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; de la Cruz, M. Jason; Leslie, Andrew G. W.; Gonen, Tamir

    2015-01-01

    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges. PMID:26131894

  7. Process development of silicon-silicon carbide hybrid structures for micro-engines (January 2002)

    E-print Network

    Choi, D.

    MEMS-based gas turbine engines are currently under development at MIT for use as a button-sized portable power generator or micro-aircraft propulsion sources. Power densities expected for the micro-engines require very ...

  8. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results. PMID:25353885

  9. Micro-machined thermo-conductivity detector

    DOEpatents

    Yu, Conrad (Antioch, CA)

    2003-01-01

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  10. Micro-physics simulations of columnar recombination along nuclear recoil tracks in high-pressure Xe gas for directional dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Long, M.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Directional sensitivity is one of the most important aspects of WIMP dark matter searches. Yet, making the direction of nuclear recoil visible with large target masses is a challenge. To achieve this, we are exploring a new method of detecting directions of short nuclear recoil tracks in high-pressure Xe gas, down to a few micron long, by utilizing columnar recombination. Columnar recombination changes the scintillation and ionization yields depending on the angle between a track and the electric field direction. In order to realize this, efficient cooling of electrons is essential. Trimethylamine(TMA) is one of the candidate additives to gaseous Xe in order to enhance the effect, not only by efficiently cooling the electrons, but also by increasing the amount of columnar recombination by Penning transfer. We performed a detailed simulation of ionization electrons transport created by nuclear recoils in a Xe + TMA gas mixture, and evaluated the size of the columnar recombination signal. The results show that the directionality signal can be obtained for a track longer than a few ?m in some ideal cases. Although more studies with realistic assumptions are still needed in order to assess feasibility of this technique, this potentially opens a new possibility for dark matter searches.

  11. Micro-physics simulations of columnar recombination along nuclear recoil tracks in high-pressure Xe gas for directional dark matter searches

    E-print Network

    Y. Nakajima; A. Goldschmidt; M. Long; D. Nygren; C. Oliveira; J. Renner

    2015-05-14

    Directional sensitivity is one of the most important aspects of WIMP dark matter searches. Yet, making the direction of nuclear recoil visible with large target masses is a challenge. To achieve this, we are exploring a new method of detecting directions of short nuclear recoil tracks in high-pressure Xe gas, down to a few micron long, by utilizing columnar recombination. Columnar recombination changes the scintillation and ionization yields depending on the angle between a track and the electric field direction. In order to realize this, efficient cooling of electrons is essential. Trimethylamine(TMA) is one of the candidate additives to gaseous Xe in order to enhance the effect, not only by efficiently cooling the electrons, but also by increasing the amount of columnar recombination by Penning transfer. We performed a detailed simulation of ionization electrons transport created by nuclear recoils in a Xe + TMA gas mixture, and evaluated the size of the columnar recombination signal. The results show that the directionality signal can be obtained for a track longer than a few micrometers in some ideal cases. Although more studies with realistic assumptions are still needed in order to assess feasibility of this technique, this potentially opens a new possibility for dark matter searches.

  12. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  13. Ejecta Particle-Size Measurements from the Break-Up of Micro-Jets in Vacuum and Helium Gas Using Ultraviolet In-Line Fraunhofer Holography.

    NASA Astrophysics Data System (ADS)

    Sorenson, Danny; Pazuchanics, Peter; Johnson, Randall; Malone, Robert; Kaufman, Morris; Tunnell, Thomas; Smalley, Duane; Marks, Daniel; Cappelle, Gene; Grover, Mike; Marshall, Bruce; Stevens, Gerald; Turley, Dale; Lalone, Brandon

    2015-06-01

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/ ?sec. Recent results will be presented for high-explosive shock-driven tin ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in both a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  14. Novel applications for micro-SOFCs

    NASA Astrophysics Data System (ADS)

    Tompsett, G. A.; Finnerty, C.; Kendall, K.; Alston, T.; Sammes, N. M.

    The application of micro-solid oxide fuels cells in small systems is discussed. Two types of application are examined, namely, leisure CHP systems and micro-hybrid vehicles. A unique triple layer catalyst-SOFC-catalyst system has been designed utilising propane/butane fuel. The system consists of a co-generating gas burner with a pre-reforming catalyst, a micro-SOFC stack and an oxidation catalyst. The pre-reforming catalyst comprising of Ru metal on Saffil® ceramic wool, was used to partially reform the propane/butane gas prior to entering the fuel cell, preventing carbon formation. The micro-SOFCs were YSZ tubes (Adelan, UK) with nickel/YSZ cermet anodes on the outside and strontium-doped lanthanum manganite cathodes on the inside. Final oxidation was provided by a cordierite honeycomb coated with platinum combustion catalyst producing most of the heat for the fuel cell operation. Initial performance results were obtained and it was shown that a co-generating system could be achieved using a propane/butane fuel supply, piezoelectric ignition system and air supply for the triple catalyst system. The application of this micro-SOFC system for leisure and micro-hybrid vehicles, such as golf trolleys and power-assisted bicycles, is described.

  15. Micro-Electro-Mechanical-Systems-Based Micro-Ro-Boat Utilizing Steam as Propulsion Power

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Choi, Young Chan; Kyoo Lee, June; Kong, Seong Ho

    2012-06-01

    We report the design and fabrication of a micro-electro-mechanical-systems (MEMS)-based microactuator, that floats on the surface of water and is driven by steam. We named the actuator “micro-Ro-boat”, a compound word created from the words “robot” and “boat”. The MEMS-based micro-Ro-boat utilizes steam as the propulsion power, giving it a high speed and long lifetime. A hydrophobic surface has been utilized for the wing of the actuator to enhance the buoyancy. Instead of using gas or fuel, the proposed micro-Ro-boat utilizes steam form electrically heated water. The velocity of the micro-Ro-boat is in the range of 0.5-2 cm/s and the maximum loading capability for a device size of 10 ×10 mm2 is 0.4 g.

  16. A progress report on the LDRD project entitled {open_quotes}Microelectronic silicon-based chemical sensors: Ultradetection of high value molecules{close_quotes}

    SciTech Connect

    Hughes, R.C.

    1996-09-01

    This work addresses a new kind of silicon based chemical sensor that combines the reliability and stability of silicon microelectronic field effect devices with the highly selective and sensitive immunoassay. The sensor works on the principle that thin SiN layers on lightly doped Si can detect pH changes rapidly and reversibly. The pH changes affect the surface potential, and that can be quickly determined by pulsed photovoltage measurements. To detect other species, chemically sensitive films were deposited on the SiN where the presence of the chosen analyte results in pH changes through chemical reactions. A invention of a cell sorting device based on these principles is also described. A new method of immobilizing enzymes using Sandia`s sol-gel glasses is documented and biosensors based on the silicon wafer and an amperometric technique are detailed.

  17. Theoretical studies of the electric field distribution and open-circuit voltage of amorphous silicon-based alloy p-i-n solar cells

    SciTech Connect

    Hack, M.; Shur, M.S.

    1984-06-15

    Using a computer model based on the solution of the complete set of transport equations we have investigated electric field profiles, carrier distributions and the open-circuit voltage of amorphous silicon-based alloy p-i-n solar cells illuminated through either the p/sup +/ or n/sup +/ layer. Our results indicate that even with a large difference in the electron and hole band mobilities there is no large difference (<50 mV) in the open-circuit voltage for the two cases. This difference is small because for optimized devices the open-circuit voltage is limited by the recombination current which is relatively insensitive to space charge and Dember effects. We also show that boron doping in the intrinsic layer can drastically alter the electric field profile in these devices, and can increase the open-circuit voltage of p-i-n solar cells with low built-in potentials.

  18. A micro-machined resonator

    SciTech Connect

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1991-12-31

    This invention is comprised of a micro-machined resonator, typically quartz, with upper and lower micromachinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrodes through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  19. Sensitive Detection of Protein and miRNA Cancer Biomarkers using Silicon-Based Photonic Crystals and A Resonance Coupling Laser Scanning Platform

    PubMed Central

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T.

    2013-01-01

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels (“enhanced excitation”) and the spatially biased funneling of fluorophore emissions through coupling to PC resonances (“enhanced extraction”), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couples fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 minute. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-? and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM. PMID:23963502

  20. Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform.

    PubMed

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T

    2013-10-21

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels ("enhanced excitation") and the spatially biased funneling of fluorophore emissions through coupling to PC resonances ("enhanced extraction"), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couple fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 min. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-? and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM. PMID:23963502

  1. Fabrication of a flexible micro CO sensor for micro reformer applications.

    PubMed

    Lee, Chi-Yuan; Chang, Chi-Chung; Lo, Yi-Man

    2010-01-01

    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100-300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection. PMID:22163494

  2. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min (Langhorne, PA); Bennett, Murray S. (Langhorne, PA); Yang, Liyou (Plainsboro, NJ)

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  3. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min (Langhorne, PA); Bennett, Murray S. (Langhorne, PA); Yang, Liyou (Plainsboro, NJ)

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  4. Invited Article: A materials investigation of a phase-change micro-valve for greenhouse gas collection and other potential applications

    NASA Astrophysics Data System (ADS)

    Manginell, Ronald P.; Moorman, Matthew W.; Rejent, Jerome A.; Vianco, Paul T.; Grazier, Mark J.; Wroblewski, Brian D.; Mowry, Curtis D.; Achyuthan, Komandoor E.

    2012-03-01

    The deleterious consequences of climate change are well documented. Future climate treaties might mandate greenhouse gas (GHG) emissions measurement from signatories in order to verify compliance. The acquisition of atmospheric chemistry would benefit from low cost, small size/weight/power of microsystems. In this paper, we investigated several key materials science aspects of a phase-change microvalve (PC?V) technology with low power/size/weight/cost for ubiquitous GHG sampling. The novel design, based on phase-change material low-melting-point eutectic metal alloys (indium-bismuth, InBi and tin-lead, SnPb), could be actuated at temperatures as low as 72 °C. Valve manufacturing was based on standard thick and thin-film processes and solder technologies that are commonly used in industry, enabling low-cost, high-volume fabrication. Aging studies showed that it was feasible to batch fabricate the PC?Vs and store them for future use, especially in the case of SnPb alloys. Hermetic sealing of the valve prototypes was demonstrated through helium leak testing, and Mil spec leak rates less than 1 × 10-9 atm cm3/s were achieved. This confirms that the sample capture and analysis interval can be greatly expanded, easing the logistical burdens of ubiquitous GHG monitoring. Highly conservative and hypothetical CO2 bias due to valve actuation at altitude in 1 cm3 microsamplers would be significantly below 1.0 and 2.2 ppmv for heat-treated InBi and SnPb solders, respectively. The CO2 bias from the PC?V scales well, as a doubling of sampler volume halved the bias. We estimated the shelf life of the SnPb PC?Vs to be at least 2.8 years. These efforts will enable the development of low cost, low dead volume, small size/weight microsystems for monitoring GHGs and volatile organic compounds.

  5. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOEpatents

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  6. The Nano-Micro Interface Bridging the Micro

    E-print Network

    Cao, Guozhong

    The Nano-Micro Interface Bridging the Micro and Nano Worlds. Edited by Hans-Jörg Fecht and Matthias- tion among researchers. The book The Nano-Micro Interface: Bridging the Micro and Nano Worlds fills one of these gaps. More specifically, this book, as its subtitle indicates, bridges the micro and nano worlds

  7. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  8. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K. (Lexington, MA)

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  9. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  10. MicroSight Optics

    ScienceCinema

    None

    2013-05-28

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  11. MicroSight Optics

    SciTech Connect

    2010-01-01

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  12. Micro-organ device

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); von Gustedt-Gonda, legal representative, Iris (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  13. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  14. Microcrystalline silicon germanium: An attractive bottom-cell material for thin-film silicon-based tandem-solar-cells

    SciTech Connect

    Ganguly, Gautam; Ikeda, Toru; Kajiwara, Kei; Matduda, Akihisa

    1997-07-01

    The authors have prepared hydrogenated microcrystalline silicon germanium by plasma enhanced CVD of a mixture of silane and germane gas diluted with hydrogen. The growth conditions have been systematically controlled to obtain large ({approximately}400{angstrom}) crystallites of silicon-germanium as observed using Raman scattering and x-ray diffraction. The dangling bond (germanium) density has been reduced to <5 x 10{sup 16} cm{sup {minus}3} at low substrate temperatures ({approximately}150 C). The optical absorption spectra of the 50% Ge containing material is red-shifted compared to microcrystalline silicon, consistent with a reduction of the indirect optical gap to 0.9 eV. Schottky type cells fabricated using Au on an n{sup +} crystalline silicon substrate confirm that the long wavelength response is remarkably enhanced in this material.

  15. Simulation of micro-magnet stray-field dynamics for spin qubit manipulation

    SciTech Connect

    Neumann, R.; Schreiber, L. R.

    2015-05-21

    High-fidelity control and unprecedented long dephasing times in silicon-based single spin qubits have recently confirmed the prospects of solid-state quantum computation. We investigate the feasibility of using a micro-magnet stray field for all-electrical, addressable spin qubit control in a Si/SiGe double quantum dot. For a micro-magnet geometry optimized for high Rabi-frequency, addressability, and robustness to fabrication misalignment as previously demonstrated by Yoneda et al. [Phys. Rev. Lett. 113, 267601 (2014)], we simulate the qubit decoherence due to magnetic stray-field fluctuations, which may dominate in nuclear spin-free systems, e.g., quantum dots in Si/SiGe, Si-MOS structures and (bilayer) graphene. With calculated Rabi-frequencies of 15 MHz, a qubit addressability error below 10{sup ?3} is achievable. Magnetic fluctuations from a micro-magnet limits the spin relaxation time to T{sub 1} ? 3?s, while pure spin dephasing is negligible. Our results show that micro-magnets are a promising tool for spin qubit computation in nuclear spin-free systems.

  16. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes.

    PubMed

    Menezes Filho, Adalberto; dos Santos, Fábio Neves; Pereira, Pedro Afonso de Paula

    2010-04-15

    A method was developed for the simultaneous analysis of 14 pesticide residues (clofentezine, carbofuran, diazinon, methyl parathion, malathion, fenthion, thiabendazole, imazalil, bifenthrin, permethrin, prochloraz, pyraclostrobin, difenoconazole and azoxystrobin) in mango fruit, based on solid-phase micro extraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Different parameters of the method were evaluated, such as fiber type, extraction mode (direct immersion and headspace), temperature, extraction and desorption times, stirring velocities and ionic strength. The best results were obtained using polyacrylate fiber and direct immersion mode at 50 degrees C for 30 min, along with stirring at 250 rpm and desorption for 5 min at 280 degrees C. The method was validated using mango samples spiked with pesticides at concentration levels ranging from 33.3 to 333.3 microg kg(-1). The average recoveries (n=3) for the lowest concentration level ranged from 71.6 to 117.5%, with relative standard deviations between 3.1 and 12.3%, respectively. Detection and quantification limits ranged from 1.0 to 3.3 microg kg(-1) and from 3.33 to 33.33 microg kg(-1), respectively. The optimized method was then applied to 16 locally purchased mango samples, all of them containing the pesticides bifenthrin and azoxystrobin in concentrations of 18.3-57.4 and 12.7-55.8 microg kg(-1), respectively, although these values were below the MRL established by Brazilian legislation. The method proved to be selective, sensitive, and with good precision and recovery rates, presenting LOQ below the MRL admitted by Brazilian legislation. PMID:20188930

  17. Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul G.

    2011-12-01

    The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous transparent conducting oxide film increases the current generated in the same cell by just 8%. Moreover, the benefit of using STCPC IRs in building integrated photovoltaics is also presented.

  18. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  19. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  20. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  1. Task B: Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules: Semiannual subcontract report, 1 February 1987--31 July 1987

    SciTech Connect

    Carlson, D.E.; Arya, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; Fortmann, C.M.; Goldstein, B.; Morris, J.; Newton, J.L.

    1988-07-01

    This semiannual report presents results of research on stable, high-efficiency, large-area, amorphous-silicon-based submodules. High conversion efficiencies (up to 11.95%) were obtained in small-area, single-junction, a-Si solar cells by using textured tin oxide, superlattice p-layers, graded carbon concentrations near the p-i interface, and highly relective ITO/silver back contacts. Researchers also fabricated single-junction a-SiC and a-SiGe p-i-n cells with efficiencies of 9%--11%. Stacked-junction cells of a-SiC/a-Si, a-SiC/a-SiGe, and a-SiC/a-Si/a-SiGe were fabricated, and efficiencies of about 10% were achieved in some of them. Boron-doped microcrystalline SiC films were developed that contain up to 6 at.% C with conductivities of 3 /times/ 10/sup /minus/3/ ohm /sup /minus/1/ cm/sup /minus/1/ at room temperature and activation energies of 0.11 eV. Stability studies showed that light-induced degradation is usually enhanced by the presence of C grading near the p-i interface. Light-induced degradation of the fill factor of p-i-n cells strongly correlates with optical absorption at 1.2 eV, as measured by photothermal deflection spectroscopy. 11 refs., 70 figs., 16 tabs.

  2. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry.

    PubMed

    Cunha, S C; Almeida, C; Mendes, E; Fernandes, J O

    2011-04-01

    The purpose of this study was to establish a reliable, cost-effective, fast and simple method to quantify simultaneously both bisphenol A (BPA) and bisphenol B (BPB) in liquid food matrixes such as canned beverages (soft drinks and beers) and powdered infant formula using dispersive liquid-liquid micro-extraction (DLLME) with in-situ derivatisation coupled with heart-cutting gas chromatography-mass spectrometry (GC-MS). For the optimisation of the DLLME procedure different amounts of various extractive and dispersive solvents as well as different amounts of the derivative reagent were compared for their effects on extraction efficiency and yields. The optimised procedure consisted of the injection of a mixture containing tetrachloroethylene (extractant), acetonitrile (dispersant) and acetic anhydride (derivatising reagent) directly into an aliquot of beverage samples or into an aqueous extract of powdered milk samples obtained after a pretreatment of the samples. Given the compatibility of the solvents used, and the low volumes involved, the procedure was easily associated with GC-MS end-point determination, which was accomplished by means of an accurate GC dual column (heart-cutting) technique. Careful optimisation of heart-cutting GC-MS conditions, namely pressure of front and auxiliary inlets, have resulted in a good analytical performance. The linearity of the matrix-matched calibration curves was acceptable, with coefficients of determination (r2) always higher than 0.99. Average recoveries of the BPA and BPB spiked at two concentration levels into beverages and powdered infant formula ranged from 68% to 114% and the relative standard deviation (RSD) was <15%. The limits of detection (LOD) in canned beverages were 5.0 and 2.0 ng l(-1) for BPA and BPB, respectively, whereas LOD in powdered infant formula were 60.0 and 30.0 ng l(-1), respectively. The limits of quantification (LOQ) in canned beverages were 10.0 and 7.0 ng l-1 for BPA and BPB, respectively, whereas LOQ in powdered infant formula were 200.0 and 100.0 ng l(-1), respectively. BPA was detected in 21 of 30 canned beverages (ranging from 0.03 to 4.70 µg l(-1)) and in two of seven powdered infant formula samples (0.23 and 0.40 µg l(-1)) collected in Portugal. BPB was only detected in canned beverages being positive in 15 of 30 samples analysed (ranging from 0.06 to 0.17 µg l(-1)). This is the first report about the presence of BPA and BPB in canned beverages and powdered infant formula in the Portuguese market. PMID:21240700

  3. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    NASA Astrophysics Data System (ADS)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (?c-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (?c-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (?c-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the ?c-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the ?c-SiOx:H (0 <= x = O/Si <=1) system with a combination of complementary x-ray and electron spectroscopies. The different surface sensitivities of the employed techniques help to reduce the impact of surface oxides on the spectral interpretation. For all samples, we find the valence band maximum to be located at a similar energy with respect to the Fermi energy. However, for x > 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor of Si 3p - O 2p hybridization in the upper valence band. This coincides with a significant increase of the material's resistivity, possibly indicating the breakdown of the conducting crystalline Si network. Silicon oxide layers with a thickness of several hundred nanometres were deposited in a PECVD (plasma-enhanced chemical vapor deposition) multi chamber system using an excitation frequency of 13.56 MHz with a plasma power density of 0.3 W/cm2. Glass (Corning type Eagle) and mono-crystalline silicon wafer substrates were coated in the same run at a substrate temperature of 185°C. The deposition pressure was 4 mbar and the substrate-electrode distance 20 mm. Mixtures of silane (SiH4), 1% TMB (B(CH3)3) diluted in helium, hydrogen (H2), and carbon dioxide (CO2) gases were used at flow rates of 1.25 - 0.18/0.32/500/0 - 1.07) sccm (standard cubic centimeters per minute) for the deposition of ?c-SiOx:H(B) layers. By changing the CO2/SiH4 gas flow rate ratio from 0 to 6, ?c-SiOx:H(B) layers with a composition of 0 <=? x = O/Si ?<= 1 were prepared using a constant sum of SiH4 and CO2. The TMB flow and the H2 flow were kept constant within the series. For more details see Ref. [1]. The oxygen content in the films was determined using Rutherford Backscattering Spectroscopy (RBS). With RBS, the area-related atomic density of oxygen and silicon can be determined (+/- 2% [2]), and thus x can be calculated. This quantity considers only the number of silicon / oxygen atoms and not the number of atoms of other elements, such as hydrogen, which is also incorporated to a considerable extent: up to 20% in ?c-SiOx:H (measured using the hydrogen effusion method). To avoid charging effects, the measurements were performed on films deposited on a substrate of mono-crystalline silicon wafers. The electrical conductivity was measured in the planar direction of the film in a vacuum cryostat, using voltages from - 100 V to + 100 V. For that two co-planar Ag contacts were evaporated on the film with a gap of 0.5 mm - 5 mm. In the present study, the

  4. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  5. Methods for fabricating a micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  6. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst.

    PubMed

    Ji, Li; McDaniel, Martin D; Wang, Shijun; Posadas, Agham B; Li, Xiaohan; Huang, Haiyu; Lee, Jack C; Demkov, Alexander A; Bard, Allen J; Ekerdt, John G; Yu, Edward T

    2015-01-01

    The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100?mW cm(-2), exhibits a maximum photocurrent density of 35?mA?cm(-2) and an open circuit potential of 450?mV; there was no observable decrease in performance after 35 hours of operation in 0.5?M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved. PMID:25437745

  7. Research on defects and transport in amorphous-silicon-based semiconductors. Final subcontract report, 20 February 1991--19 April 1994

    SciTech Connect

    Schiff, E.A.; Antoniadis, H.; Gu, Q.; Lee, J.K.; Wang, Q.; Zafar, S.

    1994-09-01

    This report describes work on three individual tasks as follows. (1) Electron and hole drift measurements in a-Si{sub 1-x}Ge{sub x}:H and a-Si{sub 1-x}C{sub x}:H p-i-n solar cells. Multijunction solar cells incorporating modified band gap a-Si:H in a triple-junction structure are generally viewed as the most promising avenue for achieving an amorphous silicon-based solar call with 15% stabilized conversion efficiency. The specific objective of this task was to document the mobilities and deep-trapping mobility-lifetime products for electrons and holes in a-Si{sub 1-x}Ge{sub x}:H and a-Si{sub 1-x}C{sub x}:H alloys materials. (2) Electroabsorption measurements and built-in potential (V{sub bi}) in solar cells. V{sub bi} in a p-i-n solar call may be limiting the open-circuit voltage (V{sub oc}) in wide-band-gap cells (E{sub g} > 1.8 eV) currently under investigation as the top cell for 15% triple junction devices. The research addressed four issues that need to be resolved before the method can yield an error less than 0.1 V for V{sub bi}. The details are presented in this report. (3) Defect relaxation and Shockley-Read kinetics in a-Si:H. Quantitative modeling of solar cells is usually based on Shockley-Read kinetics.`` An important assumption of this approach is that the rate of emission of a photocarrier trapped on a defect is independent of quasi-Fermi level location.

  8. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst

    NASA Astrophysics Data System (ADS)

    Ji, Li; McDaniel, Martin D.; Wang, Shijun; Posadas, Agham B.; Li, Xiaohan; Huang, Haiyu; Lee, Jack C.; Demkov, Alexander A.; Bard, Allen J.; Ekerdt, John G.; Yu, Edward T.

    2015-01-01

    The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100?mW cm-2, exhibits a maximum photocurrent density of 35?mA?cm-2 and an open circuit potential of 450?mV there was no observable decrease in performance after 35 hours of operation in 0.5?M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved.

  9. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100?°C.

    PubMed

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100?°C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100?°C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990?kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145?°C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems. PMID:24404024

  10. Collective Motion of Micro-organisms from Field Theoretical Viewpoint

    E-print Network

    Shin'ichi Nojiri; Masako Kawamura; Akio Sugamoto

    1995-12-13

    We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro- organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide can be regarded as a phase transition from the gas of micro-organisms to the liquid. (The number density of micro-organisms which generates the red tide is order estimated.)

  11. Microplasmas and micro-jets

    NASA Astrophysics Data System (ADS)

    Lazzaroni, C.; Aubert, X.; Marinov, D.; Guaitella, O.; Stancu, G.; Welzel, S.; Pipa, A.; Ropcke, J.; Sadeghi, N.; Rousseau, A.

    2008-07-01

    Microplasmas are now widely investigated, one of their advantages being to generate a plasma at relatively high pressure close to the Paschen minimum (Schoenbach et al. 1997). Here, the microplasma is generated in a microhollow cathode type configuration made of a hole drilled through a metal/dielectric/metal sandwich (Schoenbach et al. 1997). One of the electrodes acts as the cathode (K) and the other as the anode (A1). The hole diameter ranges from 100 to 400 mu m and the pressure ranges from 50 to 500 Torr. When a second electrode (A2) is added, a large volume of plasma plume may be generated between A1 and A2, at a low electric field (1-20Td depending upon the gas) (Stark et al. 1999). A microhollow cathode type discharge operates in three different regimes depending on the plasma current: abnormal, self-pulsing and normal regime. The self-pulsing regime is achieved in the range of 1-100 kHz, in argon, helium, nitrogen and oxygen. The self-pulsing frequency is controlled by the microplasma device capacitance, the gas breakdown voltage, and the average discharge current (Rousseau et al. 2006, Aubert et al. 2007). i) First, in pure argon, the radial dependence of atoms excitation mechanisms and of the electronic density is studied inside the micro-hole. Imaging of the emission from the microplasma is performed with a spatial resolution of few mu m. The electron density is estimated from the Stark broadening of the H beta-line. The radial distribution of the emission intensities of an Ar atomic line and an Ar^+ ionic line are used for the excitation study. Ar and Ar^+ lines are excited in the cathode sheath edge by beam electrons accelerated within the sheath. These two excitations show the decay of the energy of electrons in negative glow. The Ar line presents also production of excited atoms by recombination of argon ions with electrons at the center of the micro-hole.Work is in progress to evaluate the contribution of the static electric field on the strak broadening ii) Second, in oxygen containing mixture, a flowing micro-jet is generated: the reactor used is separated in 2 rooms by the MHC. Thus, the gas is constrained to flow only through the microhole and the quantity of treated gas is well known. The gas flow is supersonic in most operating conditions at the exit of the microhole; despite a very large injected power density (typically 10^4 W cm^-), the gas heating does not exceed few hundreds of degrees, so that the plasma is non equilibrium. Different measurements are realized on the plume in pure O_2 and in Air. O_3 concentration has been measured by UV absorption spectroscopy; NO and NO_2 have been measured by tuneable diode laser absorption spectroscopy (TDLAS) in the infrared region (Ropcke et al. 2006). The production of NO and NO_2 in air mixture scales as universal function of the injected power, independently of the working regime (continuous or self-pulsing).

  12. Method of fabricating a micro machine

    DOEpatents

    Stalford, Harold L

    2014-11-11

    A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.

  13. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M. (Livermore, CA)

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  14. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  15. An Autonomous Gliding Micro

    E-print Network

    Sanders, Seth

    are relevant to all MAV classes. Figure 1 shows the most recent version of the MicroGlider. A primary concern design considerations. To maximize the flight time for a given power source it is critical to optimize to a wind tunnel via a servo capable of sub- degree resolution rotations. An anemometer measures the air #12

  16. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  17. Micro Actuators Electrostatic actuator

    E-print Network

    Leu, Tzong-Shyng "Jeremy"

    #12;Micro Balloon Actuators ·Use polymer (silicon rubber, parylene, polyimide etc) to form flexible Microvalve #12;· Parylene membrane. - Smaller size => small dead-volume · Heaters on a free-standing silicon. Thermopneumatic Microvalve (II) #12;(KOH) (BOE) (BOE) (Oxygen Plasma) Parylene Membrane Fabrication Process #12

  18. Breakthrough: micro-electronic photovoltaics

    SciTech Connect

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  19. Breakthrough: micro-electronic photovoltaics

    ScienceCinema

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  20. Methods and systems for micro bearings

    SciTech Connect

    Stalford, Harold L.

    2012-10-09

    A micro drive assembly may comprise a substrate, a micro shall oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  1. Methods and systems for micro transmissions

    DOEpatents

    Stalford, Harold L

    2014-12-23

    Methods and systems for micro transmissions for a micro machine may comprise an input shaft assembly coupled to a micro actuator, an output shaft assembly coupled to a micro shaft, and one or more power conversion elements operable to convert a first type of movement from the micro actuator into a second, disparate type of movement for the micro shaft.

  2. Performance analysis and design optimization of micro-jet impingement heat sink

    NASA Astrophysics Data System (ADS)

    Husain, Afzal; Kim, Sun-Min; Kim, Kwang-Yong

    2013-11-01

    This study evaluated a silicon-based micro-jet impingement heat sink for electronic cooling applications. First, the pressure-drop and thermal characteristics were investigated for steady incompressible and laminar flow by solving three-dimensional Navier-Stokes equations, and the performance enhancement was carried out through parametric and optimization studies. Several parallel and staggered micro-jet configurations consisting of a maximum of 16 jet impingements were tested. The effectiveness of the micro-jet configurations, i.e. inline 2 × 2, 3 × 3 and 4 × 4 jets, and staggered 5-jet and 13-jet arrays with nozzle diameters 50, 76, and 100 ?m, were analyzed at various flow rates for the maximum temperature-rise and pressure-drop characteristics. A design with a staggered 13-jet array showed the best performance among the various configurations investigated in the present study. The design optimization based on three-dimensional numerical analysis, surrogate modeling and a multi-objective evolutionary algorithm were carried out to understand the thermal resistance and pumping power correlation of the micro-jet impingement heat sink. Two design variables, the ratio of height of the channel and nozzle diameter, and the ratio of nozzle diameter and interjet spacing, were chosen for design optimization. The global Pareto-optimal front was achieved for overall thermal resistance and required pumping power of the heat sink. The Pareto-optimal front revealed existing correlation between pumping power and thermal resistance of the heat sink. Of the range of Pareto-optimal designs available, some representative designs were selected and their functional relationships among the objective functions and design variables were examined to understand the Pareto-optimal sensitivity and optimal design space. A minimum of 66 °C of maximum-temperature-rise was obtained for a heat flux of 100 W/cm2 at a pressure drop of about 24 kPa.

  3. Micromachined thin-film gas flow sensor for microchemical reactors

    E-print Network

    Besser, Ronald S.

    by the emergence of MEMS (Micro Electro Mechanical Systems). Miniaturization of sensors has enabled many new applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas sensors [5], micro heaters [5,8], micro pressure sensors [5], etc. As an early example of a MEMS

  4. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester. Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  5. 3D Patterning of Micro and Nanostructures by Ion Controlled Etching (ICE) process

    E-print Network

    Arnold, Anton

    3D Patterning of Micro and Nanostructures by Ion Controlled Etching (ICE) process Technology offer Superior height-control by automated adaption of etch gas composition Y Unlimited 3D design possibilities as process features fully adaptable slopes Y Applications: lenses, micro-fluidics, biomimetic surfaces and 3D

  6. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  7. Scanning micro-sclerometer

    DOEpatents

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  8. Scanning micro-sclerometer

    DOEpatents

    Oliver, Warren C. (Knoxville, TN); Blau, Peter J. (Oak Ridge, TN)

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  9. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  10. Micro-Bubble Experiments at the Van de Graaff Accelerator

    SciTech Connect

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.; Gromov, Roman; Youker, A. J.; Makarashvili, Vakhtang; Bailey, James; Stepinski, D. C.; Chemerisov, S. D.; Vandegrift, G. F.

    2015-02-01

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O2 + H2) data were collected. The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.

  11. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    PubMed Central

    Park, Dong-Sam; Yun, Dae-Jin; Cho, Myeong-Woo; Shin, Bong-Cheol

    2007-01-01

    This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 ?m in minimum to 20 ?m in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  12. ASIAN SYMPOSIUM ON VISUALIZATION, 2003 Visualizing Heterogeneous Flows in Micro Fluidic Devices

    E-print Network

    Cubaud, Thomas

    with interesting practical applications in enhanced oil recovery, heat pipes, and micro methanol fuel cells. Gas. Introduction Flows in microfluidic devices provide a fertile ground for research because of their unique

  13. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 ?m) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  14. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2010-12-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 ?m) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  15. Micro-mechanics of micro-composites

    NASA Technical Reports Server (NTRS)

    Donovan, Richard P.

    1995-01-01

    The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.

  16. Furanic compounds and furfural in different coffee products by headspace liquid-phase micro-extraction followed by gas chromatography-mass spectrometry: survey and effect of brewing procedures.

    PubMed

    Chaichi, Maryam; Ghasemzadeh-Mohammadi, Vahid; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-01-01

    In this study, the levels of furan, 2-methylfuran, 2,5-dimethylfuran, vinyl furan, 2-methoxymethyl-furan and furfural in different coffee products were evaluated. Simultaneous determination of these six furanic compounds was performed by a head space liquid-phase micro-extraction (HS-LPME) method. A total of 67 coffee powder samples were analysed. The effects of boiling and espresso-making procedures on the levels of furanic compounds were investigated. The results showed that different types of coffee samples contained different concentrations of furanic compounds, due to the various processing conditions such as temperature, degree of roasting and fineness of grind. Among the different coffee samples, the highest level of furan (6320 µg kg?¹) was detected in ground coffee, while coffee-mix samples showed the lowest furan concentration (10 µg kg?¹). Levels in brewed coffees indicated that, except for furfural, brewing by an espresso machine caused significant loss of furanic compounds. PMID:25356540

  17. Electrochemical micro sensor

    DOEpatents

    Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-09-12

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  18. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Hetherington, Dale L. (Albuquerque, NM)

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  19. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold L. (Norman, OK)

    2012-04-17

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  20. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold

    2015-01-13

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  1. Micro-fabrication Employing UV Microstereolithography

    E-print Network

    Sussex, University of

    complexity in the third dimension. #12;Meshing gears on a moveable platform. A laminated comb actuator Interface Control #12;Micro- SLA System #12;MicroSLA System #12;A micro-gear (50 micron layers) #12;A case of a micro ­pyramid (25 layers of 50 microns each) #12;A micro-wheel (5 micron layers) #12;Photopolymer Rapid

  2. Methods and systems for positioning micro elements

    SciTech Connect

    Stalford; Harold L.

    2012-03-13

    A micro device may comprise a substrate, a first micro structure coupled to the substrate, a second micro structure coupled to the substrate, and port configured to receive an input. The first micro structure is configured to move into engagement with the second micro structure in response to the input.

  3. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  4. Micro-/nanofluidics based cell electroporation

    PubMed Central

    Wang, Shengnian; Lee, L. James

    2013-01-01

    Non-viral gene delivery has been extensively explored as the replacement for viral systems. Among various non-viral approaches, electroporation has gained increasing attention because of its easy operation and no restrictions on probe or cell type. Several effective systems are now available on the market with reasonably good gene delivery performance. To facilitate broader biological and medical applications, micro-/nanofluidics based technologies were introduced in cell electroporation during the past two decades and their advances are summarized in this perspective. Compared to the commercially available bulk electroporation systems, they offer several advantages, namely, (1) sufficiently high pulse strength generated by a very low potential difference, (2) conveniently concentrating, trapping, and regulating the position and concentration of cells and probes, (3) real-time monitoring the intracellular trafficking at single cell level, and (4) flexibility on cells to be transfected (from single cell to large scale cell population). Some of the micro-devices focus on cell lysis or fusion as well as the analysis of cellular properties or intracellular contents, while others are designed for gene transfection. The uptake of small molecules (e.g., dyes), DNA plasmids, interfering RNAs, and nanoparticles has been broadly examined on different types of mammalian cells, yeast, and bacteria. A great deal of progress has been made with a variety of new micro-/nanofluidic designs to address challenges such as electrochemical reactions including water electrolysis, gas bubble formation, waste of expensive reagents, poor cell viability, low transfection efficacy, higher throughput, and control of transfection dosage and uniformity. Future research needs required to advance micro-/nanofluidics based cell electroporation for broad life science and medical applications are discussed. PMID:23405056

  5. Infrared micro-optics technologies

    NASA Astrophysics Data System (ADS)

    Krogmann, Dirk; Tholl, Hans D.

    2004-08-01

    Bodenseewerk GmbH generally works on challenging projects comprising Microsystems, e.g. micro-optics (micro-lenses, micro-mirrors). We utilize state-of-the-art laboratory equipment and simulation software (e.g. optical design with ZEMAX, ASAP and GLAD). Our recent activities on the development of several infrared micro-optical devices focus on high speed imaging of scenes with high angular resolution including the analysis of physical properties of the detected light (e.g. spectral content, polarization) utilizing staring IR sensors with focal-plane-arrays operating in a snap shot mode at high frame rates. We report about the development of so called micro-optical multiplexers which: (a) comprise micro-optical arrays and electro-mechanical micro-actuators, (b) image several fields of view with high resolution onto a single focal-plane-array, (c) image several fields of view with enhanced spatial resolution [by the factor of four compared to (b)] in a modified realization onto one focal-plane-array and (d) analyze the spectral content of an image using a single-band photon detector-array and multi-frame processing. The micro-opto-electro-mechanical multiplexer (MOEM) systems all consist of a primary objective, a MOEM image-steering respectively image coding device and a secondary objective. The primary objective images one or more suitable formed individual fields of view onto a common intermediate image plane. The MOEM devices comprise combinations of focusing and defocusing micro-lens-arrays, micro-shutter-arrays and micro-filter-arrays which are mounted parallel to each other near the intermediate image plane. The MOEM devices exhibit their above mentioned function modes by laterally displacing the micro-arrays with the help of modern micro-actuators. The secondary objective is utilized as relay optical stage. A modern common focal-plane-array is used as detector device. The micro-actuators responsible for the relative displacement of the micro-arrays are highly miniaturized while maintaining large displacement ranges and high linearity, reproducable positioning and reliability. This paper outlines the general sensor concept, explains the underlying principles and delineates the optical systems layout. Recent hardware realizations useful in military applications concerning image and laser beam steering are presented.

  6. A Micro-Ultrastable Oscillator (micro-US0) for Micro/Nano Sciencecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Syntonics LLC developed a prototype micro-Ultra Stable Oscillator (micro-USO) under a Space Base Technology Grant (NAGS-10395). Syntonics conducted the micro-USO Program in two phases. In Phase I, we developed a set of verified analytical models (including thermal, electrical, and control models) for a baseline USO, conducted a series of six technology studies, and built three approx.9OOg prototype units. These prototypes provided a tool for evaluating competing design topologies. In Phase II we prepared the conceptual design of a approx.100-15Og micro-USO.

  7. Micro-column plasma emission liquid chromatograph

    DOEpatents

    Gay, Don D. (Aiken, SC)

    1984-01-01

    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  8. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, V.A.; Rice, G.W.; Lawrence, K.E.

    1984-03-06

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.

  9. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, Velmer A. (Ames, IA); Rice, Gary W. (Nevada, IA); Lawrence, Kimberly E. (Ames, IA)

    1986-03-11

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.

  10. Combustion of Micro- and Nanothermites under Elevating Pressure

    NASA Astrophysics Data System (ADS)

    Monogarov, K.; Pivkina, Alla; Muravyev, N.; Meerov, D.; Dilhan, D.

    Non-equilibrium process of combustion-wave propagation of thermite compositions (Mg/Fe2O3) inside the sealed steel tube have been investigated to study the burning rate at elevating pressure. Under confinement the hot gas-phase products, formed during thermite combustion result in considerable overpressure inside the tube that reverses the gas flow and leads to pressure-driven preheating effect of the burned-gas permeation. Convective origin of this preheating effect is discussed. The pressure-time dependency is obtained experimentally. The composition was pressed inside the steel tube in pellets; the size of each part was measured to obtain burning rate - pressure dependency. Both micro- and nanosized components were used to prepare thermite compositions under study. The significant difference in burning parameters of micron- and nanosized thermites is observed and analyzed. Based on obtained results, the combustion mechanism of thermites with the micro- and nanosized components is discussed.

  11. Thermal strain-induced dielectric anisotropy in Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown on silicon-based substrates

    SciTech Connect

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-07-15

    Dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  12. Stringy and Membranic Theory of Swimming of Micro-organisms

    E-print Network

    Masako Kawamura; Shin'ichi Nojiri; Akio Sugamoto

    1996-03-21

    When the swimming of micro-organisms is viewed from the string and membrane theories coupled to the velocity field of the fluid, a number of interesting results are derived; 1) importance of the area (or volume) preserving algebra, 2) usefulness of the $N$-point Reggeon (membranic) amplitudes, and of the gas to liquid transition in case of the red tide issues, 3) close relation between the red tide issue and the generation of Einstein gravity, and 4) possible understanding of the three different swimming ways of micro-organisms from the singularity structure of the shape space.

  13. Micro-channel plate detector

    SciTech Connect

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  14. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J. (Albuquerque, NM)

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  15. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  16. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    SciTech Connect

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-28

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Current–voltage (I–V) characteristics show an excellent rectification ratio (I{sub ON}/I{sub OFF} = 10?) at a bias voltage of ±1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on I–V (0.62 eV) and high frequency capacitance–voltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.35–2.5 ?m under different reverse bias conditions (0.0–1.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  17. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  18. Micro UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-09-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  19. Micro-UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-12-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  20. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  1. Micro Injection Moulding of Polymeric Components

    NASA Astrophysics Data System (ADS)

    Trotta, G.; Surace, R.; Modica, F.; Spina, R.; Fassi, I.

    2011-01-01

    Micro components and micro devices are strongly used in several fields: IT components, biomedical and medical products, automotive industry, telecommunication area and aerospace. A micro component is characterized by small dimensions of the product itself or small dimensions of the functional features. The development of new micro parts is highly dependent on manufacturing systems that can reliably and economically produce micro components in large quantities. In this context, micro-electrical discharge machining (EDM) for mould production and micro-injection moulding of polymer materials are the key technologies for micro manufacturing. This paper will focus on the production and quality evaluation of polymeric micro components manufactured by micro injection moulding. In particular the authors want to investigate the process parameters on the overall quality of the product. The factors affecting micro flow behavior, components weights and dimension definition are experimentally studied basing on DoE approach and then discussed.

  2. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  3. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  4. Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers.

    PubMed

    Gunnarsson, D; Richardson-Bullock, J S; Prest, M J; Nguyen, H Q; Timofeev, A V; Shah, V A; Whall, T E; Parker, E H C; Leadley, D R; Myronov, M; Prunnila, M

    2015-01-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300?mK to below 100?mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour. PMID:26620423

  5. Interfacial Engineering of Semiconductor–Superconductor Junctions for High Performance Micro-Coolers

    PubMed Central

    Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M.; Prunnila, M.

    2015-01-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300?mK to below 100?mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour. PMID:26620423

  6. Hard and Soft Micro- and Nanofabrication: An Integrated Approach to Hydrogel Based Biosensing and Drug Delivery

    PubMed Central

    Siegel, Ronald A.; Gu, Yuandong; Lei, Ming; Baldi, Antonio; Nuxoll, Eric E.; Ziaie, Babak

    2010-01-01

    We review efforts to produce microfabricated glucose sensors and closed loop insulin delivery systems. These devices function due to the swelling and shrinking of glucose-sensitive microgels that are incorporated into silicon-based microdevices. The glucose response of the hydrogel is due to incorporated phenylboronic acid (PBA) side chains. It is shown that in the presence of glucose, these polymers alter their swelling properties, either by ionization or by formation of glucose-mediated reversible crosslinks. Swelling pressures impinge on microdevice structures, leading either to a change in resonant frequency of a microcircuit, or valving action. Potential areas for future development and improvement are described. Finally, an asymmetric nano-microporous membrane, which may be integrated with the glucose sensitive devices, is described. This membrane, formed using photolithography and block polymer assembly techniques, can be functionalized to enhance its biocompatibility and solute size selectivity. The work described here features the interplay of design considerations at the supramolecular, nano, and micro scales. PMID:20036310

  7. A secure WDM ring access network employing silicon micro-ring based remote node

    NASA Astrophysics Data System (ADS)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Xu, Ke; Hsu, Chin-Wei; Su, Hong-Quan; Tsang, Hon-Ki

    2014-08-01

    A secure and scalable wavelength-division-multiplexing (WDM) ring-based access network is proposed and demonstrated using proof-of-concept experiments. In the remote node (RN), wavelength hopping for specific optical networking unit (ONU) is deployed by using silicon micro-ring resonators (SMR). Using silicon-based devices could be cost-effective for the cost-sensitive access network. Hence the optical physical layer security is introduced. The issues of denial of service (DOS) attacks, eavesdropping and masquerading can be made more difficult in the proposed WDM ring-based access network. Besides, the SMRs with different dropped wavelengths can be cascaded, such that the signals pass through the preceding SMRs can be dropped by a succeeding SMR. This can increase the scalability of the RN for supporting more ONUs for future upgrade. Here, error-free 10 Gb/s downlink and 1.25 Gb/s uplink transmission are demonstrated to show the feasibility of the proposed network.

  8. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is N, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  9. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; ?aja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  10. Sensing Materials for the Detection of Chlorine Gas Using Embedded Piezoresistive Microcantilever Sensors

    SciTech Connect

    T. L. Porter, T. Vail, A. Wooley, R. J. Venedam

    2008-10-01

    Embedded piezoresistive microcantilever (EPM) sensors may be constructed for a variety of sensing applications. In each application, a custom sensing material is designed that will respond volumetrically to the desired analyte. Here, we have constructed EPM sensors for the detection of chlorine gas (Cl2). The sensing materials used consisted of polymer matrices combined with sodium iodide crystals. Sensors constructed from a silicone-based matrix exhibited the greatest response to Cl2, with detection limits in an outdoor exposure setting of approximately 20 parts per million.

  11. Micro-sensors for space applications

    SciTech Connect

    Butler, M.A.; Frye-Mason, G.C.; Osbourn, G.C.

    1999-12-08

    Important factors in the application of sensing technology to space applications are low mass, small size, and low power. All of these attributes are enabled by the application of MEMS and micro-fabrication technology to microsensors. Two types of sensors are utilized in space applications: remotes sensing from orbit around the earth or another planetary body, and point sensing in the spacecraft or external to it. Several Sandia projects that apply microfabrication technologies to the development of new sensing capabilities having the potential for space applications will be briefly described. The Micro-Navigator is a project to develop a MEMS-based device to measure acceleration and rotation in all three axes for local area navigation. The Polychromator project is a joint project with Honeywell and MIT to develop an electrically programmable diffraction grating that can be programmed to synthesize the spectra of molecules. This grating will be used as the reference cell in a gas correlation radiometer to enable remote chemical detection of most chemical species. Another area of research where microfabrication is having a large impact is the development of a lab on a chip. Sandia's efforts to develop the {mu}ChemLab{trademark} will be described including the development of microfabricated pre-concentrators, chromatographic columns, and detectors. Smart sensors that allow the spacecraft independent decision making capabilities depend on pattern recognition. Sandia's development of a new pattern recognition methodology that can be used to interpret sensor response as well as for target recognition applications will be described.

  12. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3?m at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  13. Micro-layered-photolithography for Micro-Fabrication and Micro-Molding

    E-print Network

    Tang, Y.

    A novel process based on the principle of layered photolithography has been proposed and tested for making real three-dimensional micro-structures. An experimental setup was designed and built for doing experiments on this ...

  14. Micro hollow cathode discharges

    SciTech Connect

    Schoenbach, K.H.; Peterkin, F.E.; Verhappen, R.

    1995-12-31

    Hollow cathode discharges are glow discharges with the cathode fall and negative glow confined in a cavity in the cathode. For the discharge to develop, the cathode hole dimensions must be on the order of the mean free path. By reducing the cathode hole dimensions it is therefore possible to increase the pressure. Stable hollow cathode discharges in air have been observed at almost one atmosphere when the cathode diameter was reduced to 20 micrometers. In order to study the electrical parameters of a micro hollow cathode discharge, a set of experiments has been performed in argon at pressures in the torr range and a cathode hole diameter of 0.7 mm in molybdenum. The current-voltage characteristics and the appearance of the discharge plasma showed two distinct regions. At lower voltage or pressure the current varies linearly with voltage and the hollow cathode plasma is concentrated around the axis of the cathode hole (low glow mode). At higher values of voltage or pressure the current increases nonlinearly, up to a point where a transition into a low voltage hollow cathode arc was observed, and the plasma column expands and fills almost the entire cathode hole (high glow mode). Spectral measurements showed that the transition from the low glow mode into the high glow mode is related to an increased density of electrode vapor in the hollow cathode discharge. Up to the breakdown into a hollow cathode arc, the current voltage characteristic of the discharge has a positive slope. In this range, hollow cathode discharges can be operated in parallel without a ballast resistor.

  15. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  16. Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining

    NASA Astrophysics Data System (ADS)

    Hung, Jung-Chou; Lin, Jui-Kuan; Yan, Biing-Hwa; Liu, Hung-Sung; Ho, Ping-Hsing

    2006-12-01

    This paper presents a novel process using micro-electro-discharge- machining (micro-EDM) combined with ultrasonic vibration by a helical micro-tool electrode to drill and finish micro-holes. During the machining processes, a micro-tool is directly fabricated by wire electro-discharge grinding (WEDG) using micro-EDM combined with various methods for machining the micro-hole and by ultrasonic vibration to finish the hole wall. In this work, circular micro-holes are machined in a high nickel alloy by cylindrical and helical electrodes. Using a helical micro-tool electrode for micro-EDM combined with ultrasonic vibration (HE-MEDM-UV) can substantially reduce the EDM gap, taper and machining time for deep micro-hole drilling. In addition, using a helical micro-tool with micro ultrasonic vibration finishing (HE-MUVF), good surface quality and less taper of the hole wall can be obtained by applying a suitable electrode step variation, rotational speed and ultrasonic amplitude with a machining time of approximately 25 min. According to scanning electron microscopy (SEM) micrographs and atomic force microscopy (AFM) measurement, HE-MUVF can indeed improve the surface roughness from 1.345 µm Rmax before finishing to 0.58 µm Rmax after HE-MUVF. This result demonstrates that using HE-MEDM-UV combined with MUVF can yield micro-holes of precise shape and smooth surface.

  17. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition

    SciTech Connect

    Ye, Dong; Yu, Yao Liu, Lin; Wu, Shu-Qun; Lu, Xin-Pei; Wu, Yue

    2014-03-10

    In this work, a mask-free method is introduced for patterned nitrogen doping of graphene using a micro-plasma jet under ambient condition. Raman and X-ray photoelectron spectroscopy spectra indicate that nitrogen atoms are incorporated into the graphene lattice with the two-dimensional spatial distribution precisely controlled in the range of mm down to 10??m. Since the chemistry of the micro-plasma jet can be controlled by the choice of the gas mixture, this direct writing process with micro-plasma jet can be a versatile approach for patterned functionalization of graphene with high spatial resolution. This could have promising applications in graphene-based electronics.

  18. Tunable Micro- and Nanomechanical Resonators

    PubMed Central

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  19. Tunable Micro- and Nanomechanical Resonators.

    PubMed

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  20. The Micro Pulsed Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Spanjers, Gregory G.; Schilling, John H.; Engelman, Scott; Spores, Ronald A.

    1999-05-01

    There is an increased requirement for microsatellites to support such future missions as formation-flying space-based radar, space control, and on-orbit satellite servicing. Devices that can provide precise impulse bit in the 10 micro Newton range may be enabling for a new fleet of 25-kg class spacecraft supporting these missions. In response to this need the Air Force Research Laboratory is developing a miniaturized propulsion unit: the Micro Pulsed Plasma Thruster (Micro-PPT). Like a standard PPT, The Micro-PPT uses a surface discharge across the face of a solid Teflon(TM) propellant to create and accelerate a combination of plasma and neutral vapor. However the Micro-PPT substantially differs from the standard design by using a self-igniting discharge and eliminating the separate igniter and trigger circuit from the thruster. This simplification enables the order-of- magnitude reductions in the thruster size and operational power level required to meet the microsatellite propulsion requirement.

  1. Micro Machining Enhances Precision Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  2. In vitro and transdermal penetration of PHBV micro/nanoparticles.

    PubMed

    Eke, G; Kuzmina, A M; Goreva, A V; Shishatskaya, E I; Hasirci, N; Hasirci, V

    2014-06-01

    The purpose of this study was to develop micro and nano sized drug carriers from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and study the cell and skin penetration of these particles. PHBV micro/nanospheres were prepared by o/w emulsion method and were stained with a fluorescent dye, Nile Red. The particles were fractionated by centrifugation to produce different sized populations. Topography was studied by SEM and average particle size and its distribution were determined with particle sizer. Cell viability assay (MTT) was carried out using L929 fibroblastic cell line, and particle penetration into the cells were studied. Transdermal permeation of PHBV micro/nanospheres and tissue reaction were studied using a BALB/c mouse model. Skin response was evaluated histologically and amount of PHBV in skin was determined by gas chromatography-mass spectrometry. The average diameters of the PHBV micro/nanosphere batches were found to be 1.9 ?m, 426 and 166 nm. Polydispersity indices showed that the size distribution of micro sized particles was broader than the smaller ones. In vitro studies showed that the cells had a normal growth trend. MTT showed no signs of particle toxicity. The 426 and 166 nm sized PHBV spheres were seen to penetrate the cell membrane. The histological sections revealed no adverse effects. In view of this data nano and micro sized PHBV particles appeared to have potential to serve as topical and transdermal drug delivery carriers for use on aged or damaged skin or in cases of skin diseases such as psoriasis, and may even be used in gene transfer to cells. PMID:24510225

  3. Fluid inclusion volatile analysis by gas chromatography with photoionization/micro-thermal conductivity detectors: Applications to magmatic MoS sub 2 and other H sub 2 O-CO sub 2 and H sub 2 O-CH sub 4 fluids

    SciTech Connect

    Bray, C.J.; Spooner, E.T.C. )

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated on-line crushing, helium carrier gas, a single porous polymer column, two temperature programmed conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID), and off-line digital peak processing. In order of retention time these volatile peaks are: N{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, COS, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, C{sub 3}H{sub 4} (propyne), H{sub 2}O, SO{sub 2} {plus minus} iso-C{sub 4}H{sub 10} {plus minus} C{sub 4}H{sub 8} (1-butene) {plus minus} CH{sub 3}SH, C{sub 4}H{sub 8} (iso-butylene), ( ) C{sub 4}H{sub 6} (1,3 butadiene), and {plus minus} n-C{sub 4}H{sub 10} {plus minus}C{sub 4}H{sub 8} (trans-2-butene). H{sub 2}O is analyzed directly. O{sub 2} can be analyzed cryogenically between N{sub 2} and Ar, but has not been detected in natural samples to date in this study. Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS{sub 2} deposit, central British Columbia of 97 mol% H{sub 2}O, 3% CO{sub 2}, 140-150 ppm N{sub 2}, and 16-39 ppm CH{sub 4} are reasonable in comparison with high temperature volcanic gas analyses from four, active calc-alkaline volcanoes, e.g., the H{sub 2}O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, > 90%, 88-95% and 93%, respectively; CO{sub 2} contents are 3-10%, 1-10%, 3-8%, and 3.5%. It appears that low, but significant concentrations of alkanes, alkenes, and alkynes have been detected in magmatically derived fluids.

  4. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  5. Development of Micro UAV Swarms

    NASA Astrophysics Data System (ADS)

    Bürkle, Axel; Leuchter, Sandro

    Some complex application scenarios for micro UAVs (Unmanned Aerial Vehicles) call for the formation of swarms of multiple drones. In this paper a platform for the creation of such swarms is presented. It consists of modified commercial quadrocopters and a self-made ground control station software architecture. Autonomy of individual drones is generated through a micro controller equipped video camera. Currently it is possible to fly basic maneuvers autonomously, such as take-off, fly to position, and landing. In the future the camera's image processing capabilities will be used to generate additional control information. Different co-operation strategies for teams of UAVs are currently evaluated with an agent based simulation tool. Finally complex application scenarios for multiple micro UAVs are presented.

  6. Micro and nanomotors in diagnostics.

    PubMed

    Cha?upniak, Andrzej; Morales-Narváez, Eden; Merkoçi, Arben

    2015-12-01

    Synthetic micro/nanomotors are tiny devices than can be self-propelled or externally powered in the liquid phase by different types of energy source including but not limited to: catalytic, magnetic or acoustic. Showing a myriad of mechanical movements, building block materials, sizes, shapes and propulsion mechanisms micro/nanomotors are amenable to diagnostics and therapeutics. Herein we describe the most relevant micro/nanomotors, their fabrication pathways, propulsion strategies as well as in vivo and in vitro applications related with oligonucleotides, proteins, cells and tissues. We also discuss the main challenges in these applications such as the influence of complex media and toxicity issues as well as future perspectives. PMID:26408790

  7. Micro electric propulsion feasibility

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Aston, Martha

    1992-01-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability, minimal detectability and low cost are requirements. All these miniature spacecraft share a common characteristic: because of their on-board electronic equipment they have, by design, solar order 50-100 W. In a relative sense, such spacecraft are power rich when compared to other larger spacecraft. This power rich situation is offset by very tight mass budgets, which make reductions in propellant mass requirements a key issue in meeting overall spacecraft minimum mass goals. In principle, power rich and propellant poor brilliant pebbles class spacecraft can benefit from using high specific impulse electric propulsion to reduce chemical propellant mass requirements. However, at power levels of order 50 W, arcjets cannot be made to function, ion thrusters are too complex and heavy and resistojets have too low a specific impulse. Recognizing these capability limitations in existing electric propulsion technology, the SDIO/IST sponsored the Phase I SBIR Micro Electric Propulsion (MEP) thruster study described in this report. The objective of this study was to examine the feasibility of developing a very simple, low mass and small volume, electric thruster for operation on hydrazine at less than 100 W of input power. The feasibility of developing such a MEP thruster was successfully demonstrated by EPL by the discovery of a novel plasma acceleration process. The sections in this report summarize the approach, test results and major accomplishments of this proof-of-concept program.

  8. Micro electric propulsion feasibility

    NASA Astrophysics Data System (ADS)

    Aston, Graeme; Aston, Martha

    1992-11-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability, minimal detectability and low cost are requirements. All these miniature spacecraft share a common characteristic: because of their on-board electronic equipment they have, by design, solar order 50-100 W. In a relative sense, such spacecraft are power rich when compared to other larger spacecraft. This power rich situation is offset by very tight mass budgets, which make reductions in propellant mass requirements a key issue in meeting overall spacecraft minimum mass goals. In principle, power rich and propellant poor brilliant pebbles class spacecraft can benefit from using high specific impulse electric propulsion to reduce chemical propellant mass requirements. However, at power levels of order 50 W, arcjets cannot be made to function, ion thrusters are too complex and heavy and resistojets have too low a specific impulse. Recognizing these capability limitations in existing electric propulsion technology, the SDIO/IST sponsored the Phase I SBIR Micro Electric Propulsion (MEP) thruster study described in this report.

  9. Fabrication of a flexible micro temperature sensor for micro reformer applications.

    PubMed

    Lee, Chi-Yuan; Lin, Chien-Hen; Lo, Yi-Man

    2011-01-01

    Micro reformers still face obstacles in minimizing their size, decreasing the concentration of CO, conversion efficiency and the feasibility of integrated fabrication with fuel cells. By using a micro temperature sensor fabricated on a stainless steel-based micro reformer, this work attempts to measure the inner temperature and increase the conversion efficiency. Micro temperature sensors on a stainless steel substrate are fabricated using micro-electro-mechanical systems (MEMS) and then placed separately inside the micro reformer. Micro temperature sensors are characterized by their higher accuracy and sensitivity than those of a conventional thermocouple. To the best of our knowledge, micro temperature sensors have not been embedded before in micro reformers and commercial products, therefore, this work presents a novel approach to integrating micro temperature sensors in a stainless steel-based micro reformer in order to evaluate inner local temperature distributions and enhance reformer performance. PMID:22163817

  10. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN); Smith, Stephen F. (Loudon, TN); Oden, Patrick I. (Plano, TX); Bryan, William L. (Knoxville, TN); Moore, James A. (Powell, TN); Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN)

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  11. Modeling Micro-Damage Healing Mechanism at Micro-Scale 

    E-print Network

    Arastoo, Mahsa

    2013-08-06

    Intensity Factor (SIF) when micro-damage healing mechanism is in effect. It is shown that the larger values of both healing process zone and bonding strength decrease the value of SIF near the crack tip. In order to clearly capture this phenomenon, a novel...

  12. Hybrid gas bearings with controlled supply pressure to eliminate rotor vibrations while crossing system critical speeds 

    E-print Network

    Ryu, Keun

    2009-05-15

    Micro-turbomachinery (MTM) implements gas bearings in compact units of enhanced mechanical reliability. Gas bearings, however, have little damping and are prone to wear during frequent rotor start-up and shut down conditions. Externally pressurized...

  13. Gas chromatographic analysis of metaldehyde in urine and plasma.

    PubMed

    Booze, T F; Oehme, F W

    1985-01-01

    A gas chromatographic assay specific for the direct analysis of metaldehyde in plasma and urine is reported. This assay takes less than 30 min to perform, has good reproducibility, requires only routine equipment, and has a sensitivity of 1 ng/microL for urine and 2 ng/microL for plasma. PMID:4033074

  14. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin (Danbury, CT) [Danbury, CT; Chen, Philip S. H. (Bethel, CT) [Bethel, CT; Neuner, Jeffrey W. (Bethel, CT) [Bethel, CT; Welch, James (Fairfield, CT) [Fairfield, CT; Hendrix, Bryan (Danbury, CT) [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  15. Micro-Rockets for the Classroom.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  16. Parallel Coupled Micro-Macro Actuators

    E-print Network

    Morrell, John Bryant

    1996-01-01

    This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. ...

  17. Micro-Resistojet for Small Satellites

    NASA Technical Reports Server (NTRS)

    Brogan, Thomas; Robin, Mike; Delichatsios, Mary; Duggan, John; Hohman, Kurt; Hruby,Vlad

    2008-01-01

    An efficient micro-resistojet has been developed with thrust in the millinewton level, with a specific impulse of approximately 250 seconds and power input of 20 watts or less that is useful for applications of up to 1,000 hours of operation or more. The essential feature of this invention is a gas-carrying tube surrounding a central heating element. The propellant is flashed into vapor and then passes through a narrow annulus between the tube and the heater where it is cracked (in the case of methanol, into CO and H2) before being discharged through a de Laval nozzle to produce thrust. A multi-layer radiation shield around the gas tube minimizes heat loss. Also, if methanol is used as the propellant, the simultaneous heating and cracking does not need an additional device. This unit would be especially useful for small satellites, with mass up to 100 kg, and for delta v up to 500 m/sec, and is suited for use with green methanol as the propellant where a specific impulse of 220 seconds is expected. Noble metal alloys are the optimal materials of construction. While the microresistojet is especially suited to methanol, many other propellants may be used such as water or, in the case of de-orbiting, many other residual liquids onboard the vehicle.

  18. Switch on Micro*scope!

    ERIC Educational Resources Information Center

    Roland, Sarah; Bahr, Michele; Olendzenski, Lorraine; Patterson, David J.

    2005-01-01

    Scientists at the Marine Biological Laboratory in Woods Hole, Massachusetts, have created micro*scope, a free, searchable knowledge environment for exploring the microbial world. Microbiology can easily be incorporated into the curriculum, because microbial communities are easy to access. Organisms grow quickly, making certain arrays of…

  19. Micro-Encapsulation of Probiotics

    NASA Astrophysics Data System (ADS)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  20. Building a MicroSociety

    ERIC Educational Resources Information Center

    Dunton, Sheryl

    2006-01-01

    Talbot Hill Elementary School in Renton, Washington, uses the MicroSociety model to make learning relevant and engaging for its diverse student population. Three afternoons each week, every student participates in a for-profit business, a governmental agency, or a nonprofit organization. Teachers prepare students to participate in the school's…

  1. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  2. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); Bivens, Hugh M. (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  3. Micro-speculation, Micro-sandboxing, and Self-Correcting Assertions: Support for Self-Healing

    E-print Network

    Micro-speculation, Micro-sandboxing, and Self-Correcting Assertions: Support for Self the notion of Self-Healing Software by introducing three novel tech- niques: micro-sandboxing, micro-level framework to support Application Communities. ii #12;Contents 1 Introduction 1 1.1 Proposal Organization

  4. Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

    E-print Network

    Sitti, Metin

    Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators Zhou prior permission of the author and the American Institute of Physics. #12;Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators Zhou Ye,a) Eric Diller,b) and Metin

  5. EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems

    E-print Network

    Levi, Anthony F. J.

    EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems A.F.J. Levi as an introduction to micro and nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of micro and nano-technology into systems. It is a hands

  6. Micro Channel/Multibus-II Interface Circuit

    NASA Technical Reports Server (NTRS)

    D'Ambrose, John J.; Jaworski, Richard C.; Heise, Nyles N.; Thornton, David N.

    1991-01-01

    Micro Channel/Multibus-II interface circuit provides electrical interconnections enabling communications between Micro Channels of IBM Personal System/2 computers and IEEE 1296 standard Multibus-II parallel system bus (iPSB). Made mostly of commercially available parts, interface enables independent Micro Channels to communicate over iPSB without modification.

  7. Science with Micro-X: the TES Microcalorimeter X-ray Imaging Rocket

    SciTech Connect

    Figueroa-Feliciano, E; Bandler, S R; Bautz, M; Boyce, K R; Brown, G V; Deiker, S; Doriese, W B; Flanagan, K; Galeazzi, M; Hilton, G C; Hwang, U; Irwin, K D; Kallman, T; Kelley, R L; Kilbourne, C A; Kissel, S; Levine, A; Loewenstein, M; Martinez-Galarce, D; McCammon, D; Mushotzky, R; Petre, R; Porter, F S; Reistema, C D; Saab, T; Serlemitsos, P; Schulz, N; Smith, R; Ullom, J N

    2006-05-16

    Micro-X is a proposed sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high-spectral-resolution images of extended and point X-ray sources. We describe the payload and the science targeted by this mission including the discussion of three possible Micro-X targets: the Puppis A supernova remnant, the Virgo Cluster, and Circinus X-1. For example, a Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. Micro-X will utilize plasma diagnostics to determine the thermodynamic and ionization state of the plasma, to search for line shifts and broadening associated with dynamical processes, and seek evidence of ejecta enhancement. For clusters of galaxies, Micro-X can uniquely study turbulence and the temperature distribution function. For binaries, Micro-X's high resolution spectra will separate the different processes contributing to the Fe K lines at 6 keV and give a clear view of the geometry of the gas flows and circumstellar gas.

  8. Micro mass spectrometer on a chip.

    SciTech Connect

    Cruz, Dolores Y.; Blain, Matthew Glenn; Fleming, James Grant

    2005-11-01

    The design, simulation, fabrication, packaging, electrical characterization and testing analysis of a microfabricated a cylindrical ion trap ({mu}CIT) array is presented. Several versions of microfabricated cylindrical ion traps were designed and fabricated. The final design of the individual trap array element consisted of two end cap electrodes, one ring electrode, and a detector plate, fabricated in seven tungsten metal layers by molding tungsten around silicon dioxide (SiO{sub 2}) features. Each layer of tungsten is then polished back in damascene fashion. The SiO{sub 2} was removed using a standard release processes to realize a free-hung structure. Five different sized traps were fabricated with inner radii of 1, 1.5, 2, 5 and 10 {micro}m and heights ranging from 3-24 {micro}m. Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. The electrical characteristics of the ion trap arrays were determined. The capacitance was 2-500 pF for the various sized traps and arrays. The resistance was in the order of 1-2 {Omega}. The inductance of the arrays was calculated to be 10-1500 pH, depending on the trap and array sizes. The ion traps' field emission characteristics were assessed. It was determined that the traps could be operated up to 125 V while maintaining field emission currents below 1 x 10{sup -15} A. The testing focused on using the 5-{micro}m CITs to trap toluene (C{sub 7}H{sub 8}). Ion ejection from the traps was induced by termination of the RF voltage applied to the ring electrode and current measured on the collector electrode suggested trapping of ions in 1-10% of the traps. Improvements to the to the design of the traps were defined to minimize voltage drop to the substrate, thereby increasing trapping voltage applied to the ring electrode, and to allow for electron injection into, ion ejection from, and optical access to the trapping region.

  9. 2/1/2014 "Micro-Windmill" : une micro-olienne pour alimenter nos mobiles http://garage21.org/2014/01/17/micro-windmill-une-micro-eolienne-pour-alimenter-nos-mobiles/ 1/11

    E-print Network

    Chiao, Jung-Chih

    2/1/2014 "Micro-Windmill" : une micro-éolienne pour alimenter nos mobiles http://garage21.org/2014/01/17/micro-windmill-une-micro-eolienne-pour-alimenter-nos-mobiles/ 1/11 Search this website... 2 FÉVRIER 2014 0 COMMENTS « Micro-Windmill » : une micro-éolienne pour alimenter nos mobiles 17 JANVIER 2014

  10. The growth and harvesting of algae in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Wiltberger, Nancy L.

    1987-01-01

    Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space.

  11. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  12. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  13. Micro-spherical probes machining by EDM

    NASA Astrophysics Data System (ADS)

    Sheu, Dong-Yea

    2005-01-01

    This paper describes a new hybrid micro-machining method, which combines wire electro discharge grinding technology with one pulse electro discharge, to fabricate micro-spherical probes and micro-spherical cavities. The results show that a burnished micro-spherical probe with about 40 µm diameter could be formed instantaneously with the hybrid machining process, which is not available in the conventional micro-machining method. The deviation in diameter and roundness tolerances of micro-spherical probes is about 1 µm and 3 µm, respectively. Compared with conventional electro discharge machining, the surface roughness of the spherical probe is much smaller than a discharge crater. It will be possible to achieve more accurate three-dimensional measurements with the micro-spherical probe attached to the coordinate measuring machine in the future.

  14. Simulation of gas flows through micro-constrictions 

    E-print Network

    Ahmed, Imtiaz

    2001-01-01

    . The dependence of flow characteristics on Knudsen number, Reynolds number and Mach number is investigated. Analyses of these simulation results show that rarefaction causes velocity slip on the constriction walls, resulting in increased mass flowrate. Shear...

  15. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields ? rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.

  16. Silicon-based molecular switch junctions

    E-print Network

    Daijiro Nozaki; Gianaurelio Cuniberti

    2009-07-01

    In contrast to the static operations of conventional semiconductor devices, the dynamic conformational freedom in molecular devices opens up the possibility of using molecules as new types of devices such as a molecular conformational switch or for molecular data storage. Bistable molecules, with e.g. two stable cis and trans isomeric configurations, could provide, once clamped between two electrodes, a switching phenomenon in the nonequilibrium current response. Here, we model molecular switch junctions formed at silicon contacts and demonstrate the potential of tunable molecular switches in electrode/molecule/electrode configurations. Using the non equilibrium Green function approach implemented with the density-functional-based tight-binding theory, a series of properties such as electron transmissions, I-V characteristics in the different isomer-conformations, and potential energy surfaces as a function of the reaction coordinates along the trans to cis transition were calculated. Furthermore, in order to investigate stability of molecular switches in ambient conditions, molecular dynamics (MD) simulations at room temperature were performed and time- dependent fluctuations of the conductance along the MD pathways were calculated. Our numerical results show that the transmission spectra of the cis isomers are more conductive than trans counterparts inside the bias window for all two model molecules. The current-voltage characteristics consequently show the same trends. Additionally, the calculations of time-dependent transmission fluctuations along the MD pathways have shown that the transmission in cis isomers is always significantly larger than that of trans counterparts showing that molecular switches can be expected to work as robust molecular switching components.

  17. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen.

    PubMed

    Sato, E; Yuri, M; Fujii, S; Nishiyama, T; Nakamura, Y; Horibe, H

    2015-11-24

    Liquid marbles have been shown to be a novel micro-reactor to synthesize polyperoxides by the radical alternating copolymerization of the 1,3-diene monomer with oxygen in a good yield. Oxygen gas is effectively absorbed as a comonomer by the large and permeable gas-liquid interface of the liquid marbles. PMID:26459959

  18. Numerical study of cryogenic micro-slush particle production using a two-fluid nozzle

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun

    2009-01-01

    The fundamental characteristics of the atomization behavior of micro-slush nitrogen ( SN) jet flow through a two-fluid nozzle was numerically investigated and visualized by a new type of integrated simulation technique. Computational fluid dynamics (CFD) analysis is focused on the production mechanism of micro-slush nitrogen particles in a two-fluid nozzle and on the consecutive atomizing spray flow characteristics of the micro-slush jet. Based on the numerically predicted nozzle atomization performance, a new type of superadiabatic two-fluid ejector nozzle is developed. This nozzle is capable of generating and atomizing micro-slush nitrogen by means of liquid-gas impingement of a pressurized subcooled liquid nitrogen ( LN) flow and a low-temperature, high-speed gaseous helium (GHe) flow. The application of micro-slush as a refrigerant for long-distance high-temperature superconducting cables (HTS) is anticipated, and its production technology is expected to result in an extensive improvement in the effective cooling performance of superconducting systems. Computation indicates that the cryogenic micro-slush atomization rate and the multiphase spraying flow characteristics are affected by rapid LN-GHe mixing and turbulence perturbation upstream of the two-fluid nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stress between the liquid core and periphery of the LN jet. Calculation of the effect of micro-slush atomization on the jet thermal field revealed that high-speed mixing of LN-GHe swirling flow extensively enhances the heat transfer between the LN 2-phase and the GHe-phase. Furthermore, the performance of the micro-slush production nozzle was experimentally investigated by particle image velocimetry (PIV), which confirmed that the measurement results were in reasonable agreement with the numerical results.

  19. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  20. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D. (Aiken, SC)

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  1. Micro-Kelvin cold molecules.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  2. A 110 GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator

    NASA Astrophysics Data System (ADS)

    Yang, Ling-Gang; Jyu, Siao-Shan; Chow, Chi-Wai; Yeh, Chien-Hung; Wong, Chi-Yan; Tsang, Hon-Ki; Lai, Yinchieh

    2014-06-01

    Mode-locked fiber lasers have many important applications in science and engineering. In this work, we demonstrate for the first time a 110?GHz high repetition rate mode-locked fiber laser using a silicon-based micro-ring resonator (SMRR) to act as an intra-cavity optical comb filter, as well as an optical nonlinear element. No electrical bias for the SMRR is required to reduce free carrier absorption. The SMRR has a free spectral range of 0.88?nm, enforcing laser mode-locking at the 110?GHz high rate. The optical nonlinearity of the SMRR also supports the dissipative four-wave mixing effect for generating the mode-locked optical pulse trains. The mode-locked pulse-width, optical 3?dB spectral bandwidth and the time-bandwidth product (TBP) are experimentally measured under different pump currents to the erbium-doped fiber-amplifier module inside the laser cavity. The relative intensity noise and the line-width of the proposed laser are also evaluated. Furthermore, a long-term monitoring is performed. The experimental results show that the optical pulse train generated by the SMRR-based mode-locked fiber laser has a 2.6?ps pulse-width (pump current at 400 mA) at a 110?GHz high repetition rate, narrow line-width (1?kHz), high stability (under observation of an hour), and nearly Gaussian transform-limited (TBP is 0.455).

  3. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  4. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and knee) motion from the rest of the body. The double-bounce can be measured in polarimetric radar data by measuring the phase difference between HH and VV. Additionally, the cross-pol and co-pol Doppler signatures are analyzed, showing that the HH polarization may perform better on dismounts in open grass.

  5. Micro-reactors for characterization of nanostructure-based sensors.

    PubMed

    Savu, R; Silveira, J V; Flacker, A; Vaz, A R; Joanni, E; Pinto, A C; Gobbi, A L; Santos, T E A; Rotondaro, A L P; Moshkalev, S A

    2012-05-01

    Fabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 ?l) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding. The contact pins were electrically insulated from the body of the reactor using a borosilicate sealing glass and the reactor was hermetically sealed using a lid and an elastomeric o-ring. One of the advantages of the reactor lies in its simple assembly and ease of use with any vacuum/gas system, allowing the connection of more than one device. Moreover, the lid can be modified in order to fit a window for in situ optical characterization. In order to prove its versatility, carbon nanotube-based sensors were tested using this micro-reactor. The devices were fabricated by depositing carbon nanotubes over 1 ?m thick gold electrodes patterned onto Si/SiO(2) substrates. The sensors were tested using oxygen and nitrogen atmospheres, in the pressure range between 10(-5) and 10(-1) mbar. The small chamber volume allowed the measurement of fast sensor characteristic times, with the sensors showing good sensitivity towards gas and pressure as well as high reproducibility. PMID:22667654

  6. Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    E-print Network

    Savin, Daniel Wolf

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules of cold, gas-phase molecular ions Rev. Sci. Instrum. 81, 073107 (2010); 10.1063/1.3458014 Cryogenic.1063/1.2898990 Cryogenic Tests of the ATLAS Liquid Argon Calorimeter AIP Conf. Proc. 823, 1635 (2006); 10

  7. MicroRNAs--the micro steering wheel of tumour metastases.

    PubMed

    Nicoloso, Milena S; Spizzo, Riccardo; Shimizu, Masayoshi; Rossi, Simona; Calin, George A

    2009-04-01

    Recently, microRNAs (miRNAs) have been discovered to have a role in metastasis. Here we describe how miRNAs are involved in advanced stages of tumour progression, stressing their roles as metastasis activators or suppressors, and discuss their possible use in the clinic as predictive markers and as therapeutic strategies for patients with metastases. Furthermore, we develop the concept that the same miRNAs could be involved both in the cancer stem cell phenotype and in the ability of specific cancer cells to produce metastases, thus representing a mechanistic link between the initial and the final steps of tumorigenesis. PMID:19262572

  8. Micro-hole and strip plate-based photosensor

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Veloso, J. F. C. A.; Breskin, A.; Chechik, R.; Amaro, F. D.; Requicha Ferreira, L. F.; Maia, J. M.; dos Santos, J. M. F.

    2007-09-01

    The performance of a new VUV photosensor, based on an micro-hole and strip plate (MHSP) electron multiplier with a CsI photocathode deposited on its top electrode, is described. This photosensor presents gains above 10 4 when operating in an Ar-5%Xe gas mixture at 1 atm. Although the gain of a single MHSP is not sufficient for efficient detection of single photons, this simple UV photosensor may be useful for the detection of higher light levels, such as primary- and secondary scintillation in noble gases.

  9. Instability of plasma plume of micro-hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Levko, D.; Bliokh, Y. P.; Gurovich, V. Tz.; Krasik, Ya. E.

    2015-11-01

    The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper-anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

  10. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  11. A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices

    NASA Astrophysics Data System (ADS)

    Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.

    2015-12-01

    A new methodology is proposed to couple Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC) methods to simulate high Knudsen number (Kn) flows. For this purpose a two-dimensional hybrid MD-DSMC code is developed. In this method gas-surface interactions are modeled using MD, and gas-gas interactions are modeled using DSMC method. Two-way coupling between MD and DSMC is implemented by employing buffer zones for both MD and DSMC regions. Bootstrap sampling and energy minimization algorithms are employed for dynamic coupling of these two methods since MD utilizes real number of molecules during simulation whereas DSMC utilizes a lesser number of simulated molecules. The hybrid methodology combines the advantages of both methods; it has the capability of modeling the gas-surface interaction accurately considering the effect of the presence of neighboring real number of gas molecules, while in the bulk it utilizes DSMC with only the simulated number of molecules thus increasing the computational efficiency significantly compared to pure MD codes. As a result comparatively large domain sizes can be simulated with realistic behavior at the walls. The utility of the hybrid method is demonstrated by simulating high Kn flows through a micro-channel, micro-nozzle and micro-scale shock tube. The effect of partial accommodation of gas molecules with the wall is seen to be captured dynamically with this approach.

  12. Micro guidance and control technology overview

    NASA Technical Reports Server (NTRS)

    Kissel, Glen J.; Hadaegh, Fred Y.

    1993-01-01

    This paper gives an overview of micro-guidance and control technologies and in the process previews of the technology/user and systems issues presented in the guidance and control session at the workshop. We first present a discussion of the advantages of using micro-guidance and control components and then detail six micro-guidance and control thrusts that could have a revolutionary impact on space missions and systems. Specific technologies emerging in the micro-guidance and control field will be examined. These technologies fall into two broad categories: micro-attitude determination (inertial and celestial) and micro-actuation, control and sensing. Finally, the scope of the workshop's guidance and control panel are presented.

  13. Micro Bubble Trapping By Acoustic Energy

    NASA Astrophysics Data System (ADS)

    Yoshiki, Yamakoshi

    2005-03-01

    Micro bubble trapping by acoustic energy is a promising technology for a future drug or gene delivery system, because the method can control the bubble dynamics using an applied ultrasonic wave. In this paper, acoustic radiation forces which are applied to the micro bubbles are reviewed as well as their applications for micro bubble manipulation. One of the problems in micro bubble trapping by acoustic energy is that the force applied to the micro bubbles is insufficient for some bubbles. This is severe problem when the bubble has a relatively hard shell. In order to increase the trapping force on the micro bubbles, a novel method is proposed. This method uses seed bubbles in order to manipulate target bubbles.

  14. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  15. Micro-cogen AMTEC systems for residential and transportation opportunities

    SciTech Connect

    Mital, R.; Rasmussen, J.R.; Hunt, T.; Sievers, R.K.

    1998-07-01

    This paper describes the design and anticipated performance of high efficiency AMTEC systems suitable for natural gas fired micro-cogeneration for residential and transportation applications. AMTEC systems have a relatively flat efficiency curve from a few tens of watts to several kilowatts. This unique quality of AMTEC makes it well suited for micro-cogen as opposed to other technologies, such as internal combustion (IC) engines, which lose efficiency at low power levels. AMTEC also offers additional advantages of high efficiency, high reliability, low noise and low emissions. Combustion heated AMTEC cogeneration systems can also be used in trucks and trailers to keep the diesel engines and cabs warm, provide electrical power for charging the battery and maintain power to the electrical systems during stand down periods. A market study indicates that residential micro-cogen units should have a design generating capacity between 0.5--2 kW. AMTEC systems producing 500 W net electric power have been designed and are presently being built. A 350 W prototype unit is being manufactured for a European firm as a trial unit for central heat and power from a home furnace. Modular one kilowatt units are also being designed that will allow combination into multi-kilowatt systems. The results of feasibility studies focused on price/Watt, efficiency, noise, emission, vibrations, expected lifetime and maintenance cost are also presented in this paper.

  16. Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining

    NASA Astrophysics Data System (ADS)

    Morgan, Chris J.; Vallance, R. Ryan; Marsh, Eric R.

    2004-12-01

    Brittle materials are difficult to mechanically micro machine due to damage resulting from material removal by brittle fracture, cutting force-induced tool deflection or breakage and tool wear. This paper demonstrates the feasibility of micro machining glass materials with polycrystalline diamond (PCD) micro tools that are prepared in a variety of shapes using non-contact micro electro discharge machining. The PCD tools contain randomly distributed sharp protrusions of diamond with dimensions around 1 µm that serve as cutting edges for micro machining grooves in soda-lime glass and pockets in ultra-low expansion glass. Results indicate that smooth surfaces are obtained with process conditions allowing material removal by ductile regime cutting instead of brittle fractures, and the PCD tools show very little wear. With further improvements in material removal rate, micro machining with PCD tools is a promising approach for producing micro molds and micro fluidic devices in glass materials.

  17. Chemically powered micro- and nanomotors.

    PubMed

    Sánchez, Samuel; Soler, Lluís; Katuri, Jaideep

    2015-01-26

    Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago. PMID:25504117

  18. Micro-unmanned aerodynamic vehicle

    SciTech Connect

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  19. Flagellar motor based micro hybrid devices.

    PubMed

    Tung, S; Kim, J-W

    2004-01-01

    We are in the process of developing a series of micro hybrid devices based on tethered flagellar motors. Examples of the devices include a microfluidic pump and a micro AC dynamo. The microfluidic pump is realized through the tethering of a harmless strain of Escherichia coli cells to a MEMS based micro channel. Each E. coli cell is about 3 mum long and 1 mum in diameter, with several flagella that are driven at the base by molecular rotary motors. The operational principle of the micro pump is based on the viscous pumping effect where continuous rotation of the tethered cells forms a fluidic conveyor belt that 'drags' fluid from one end of the channel to the other. We used hydrodynamic loading to synchronize cell rotation in order to maximize the fluid pumping capability. The micro dynamo is realized through the integration of tethered flagellar motors with micro ferromagnetic beads and micro copper coils. The micro dynamo generates AC power by using the tethered cells to create a rotating magnetic field around the copper coils. Preliminary result indicates a high power density when compared to other biologically based micro power generators. PMID:17270806

  20. 3D micro-EDM machining technique

    NASA Astrophysics Data System (ADS)

    Kuo, Chia-Lung; Chen, Shung-Tong; Wu, Ying-Jeng E.; Yen, Albert T.

    1997-11-01

    The micro-EDM machining technique has been broadly applied to fabricate 2D and 3D micro-parts. It is difficult to produce a metal mold with dimension from several micrometers and with the accuracy in the level of micrometers . Poor accuracy comes from electrode wear during 3D micro-EDM machining. In this research, an efficient wear compensation cooperated with CAD/CAM path compensation is provided to improve the machining accuracy. In the experiments, by fabricating a micro-gear and sculpturing letters on surface of tiny steel ball, the technique provided in this research shows the expected results successfully.

  1. Assembly planning at the micro scale

    SciTech Connect

    Feddema, J.T.; Xavier, P.; Brown, R.

    1998-05-14

    This paper investigates a new aspect of fine motion planning for the micro domain. As parts approach 1--10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. It has been experimentally shown that assembly plans in the micro domain are not reversible, motions required to pick up a part are not the reverse of motions required to release a part. This paper develops the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool.

  2. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  3. Imaging micro-well proportional counters fabricated with masked UV laser ablation

    NASA Astrophysics Data System (ADS)

    Deines-Jones, P.; Black, J. K.; Crawford, H.; Hunter, S. D.

    2002-01-01

    The micro-well detector is a gas-proportional counter similar to the CAT (Bartol et al., J. Phys. III 6 (1996) 337) and WELL detectors (Bellazzini et al., Nucl. Instr. and Meth. A 423 (1999) 125). The micro-well is a cylindrical hole formed in the polymer substrate of commercially fabricated copper-clad flexible printed circuit board by UV laser ablation. The micro-wells are drilled at GSFC's UV laser-ablation facility. The cathode is a metal annulus that surrounds the opening of the well. The anode is a metal pad that fills the bottom of the well. Advantages of this topology include intrinsic two-dimensional sensing, thick robust electrodes, and large localized image charge on the cathodes. We have fabricated 5 cm×5 cm micro-well detectors with segmented anodes (1-d) and with both anodes and cathodes segmented (2-d), and have demonstrated: stable, proportional operation at gas gains in excess of 30,000 in Ar- and Xe-based gases; FWHM energy resolution of 20% at 6 keV in P-10; preliminary 1-d spatial resolution of ?150 ?m (rms) in P-10; and the capability of MWDs to produce 2-dimensional images. We report on the design, fabrication, and testing of 1-d, 2-d, and pixelized micro-well detectors.

  4. Micro-agglomerate flotation for deep cleaning of coal. Final report

    SciTech Connect

    Chander, S.; Hogg, R.

    1997-01-15

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

  5. The effects of gamma irradiation on micro-hotplates with integrated temperature sensing diodes

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; André, Nicolas; Boufouss, El Hafed; Gérard, Pierre; Ali, Zeeshan; Udrea, Florin; Flandre, Denis

    2014-06-01

    Micro-hotplates are MEMS structures of interest for low-power gas sensing, lab-on-chips and space applications, such as micro-thrusters. Micro-hotplates usually consist in a Joule heater suspended on a thin-film membrane while thermopiles or thermodiodes are added as temperature sensors and for feedback control. The implementation of micro-hotplates using a Silicon-On-Insulator technology makes them suited for co-integration with analog integrated circuits and operation at elevated environmental temperatures in a range from 200 to 300 °C, while the heater allows thermal cycling in the kHz regime up to 700 °C, e.g. necessary for the activation of gas sensitive metal-oxide on top of the membrane, with mWrange electrical power. The demonstrated resistance of micro-hotplates to gamma radiations can extend their use in nuclear plants, biomedical sterilization and space applications. In this work, we present results from electrical tests on micro-hotplates during their irradiation by Cobalt-60 gamma rays with total doses up to 18.90 kGy. The micro-hotplates are fabricated using a commercial 1.0 ?m Silicon-On-Insulator technology with a tungsten Joule heater, which allows power-controlled operation above 600 °C with less than 60 mW, and temperature sensing silicon diodes located on the membrane and on the bulk. We show the immunity of the sensing platform to the harsh radiation environment. Beside the good tolerance of the thermodiodes and the membrane materials to the total radiation dose, the thermodiode located on the heating membrane is constantly annealed during irradiation and keeps a constant sensitivity while post-irradiation annealing can restore the thermodiode.

  6. Experimental study of micro electrical discharge machining discharges

    SciTech Connect

    Braganca, I. M. F.; Rosa, P. A. R.; Martins, P. A. F.; Dias, F. M.; Alves, L. L.

    2013-06-21

    Micro electrical discharge machining ({mu}EDM) is an atmospheric-pressure plasma-assisted technology that uses point-to-plane discharges in liquid dielectrics to remove microscopic quantities of electrically conductive materials. In this work, an innovative {mu}EDM prototype machine was specifically designed and fabricated to produce and control single spark discharges, thus, resolving the typical limitations of (multi-discharge) commercial machines. The work analyses the type of discharge and the micro-plasma electron-density values obtained for 0.5-38 {mu}m gap sizes, 3-10 000 {mu}s pulse durations, 75-250 V low breakdown voltages, and 1-20 A discharge currents, using different combinations of metallic electrodes in oil and in water. Results allow fitting, for micro-scale and low voltages, an empirical law between the maximum gap-size for breakdown, the breakdown voltage, and the effective stress-time. The electron density n{sub e} is obtained by optical emission spectroscopy diagnostics of the H{sub {alpha}}-line Stark broadening (yielding n{sub e}{approx}10{sup 16}-10{sup 17} cm{sup -3}, i.e., ionization degrees of {approx}2 Multiplication-Sign 10{sup -5}-10{sup -4}) and by a semi-empirical resistive plasma model. The model uses the experimental values of several electrical and geometrical quantities, and of the gas pressure estimated as {approx}60 bar-2 kbar from measurements of the plasma mechanical action, obtained using a force sensor. The quantitative information of this phenomenological study can assist the optimization of this micro-fabrication technique.

  7. microRNA: Diagnostic Perspective

    PubMed Central

    Faruq, Omar; Vecchione, Andrea

    2015-01-01

    Biomarkers are biological measures of a biological state. An ideal marker should be safe and easy to measure, cost efficient, modifiable with treatment, and consistent across gender and ethnic groups. To date, none of the available biomarkers satisfy all of these criteria. In addition, the major limitations of these markers are low specificity, sensitivity, and false positive results. Recently identified, microRNAs (miRNAs) are endogenous, evolutionarily conserved small non-coding RNA (about 22–25?nt long), also known as micro-coordinators of gene expression, which have been shown to be an effective tools to study the biology of diseases and to have great potential as novel diagnostic and prognostic biomarkers with high specificity and sensitivity. In fact, it has been demonstrated that miRNAs play a pivotal role in the regulation of a wide range of developmental and physiological processes and their deficiencies have been related to a number of disease. In addition, miRNAs are stable and can be easily isolated and measured from tissues and body fluids. In this review, we provide a perspective on emerging concepts and potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, subtypes, cardiovascular diseases, diabetes, infectious diseases, and forensic test. PMID:26284247

  8. Micro-Electronic Nose System

    NASA Astrophysics Data System (ADS)

    Zee, Frank C.

    2011-12-01

    The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one at low gas concentrations between 100 and 600 ppm for two gas vapors and the other at high gas concentrations between 2000 ppm and the saturated vapor pressure of three gas vapors. The array of sensors and circuits were able to uniquely detect and measure these gas vapors and showed a linear response to their concentration levels for both experiments. The results also demonstrated that a reduction in the sensor area by two orders of magnitude (from 4.32 mm² to 0.0625 mm²) did not affect the sensor response. By applying pattern-recognition algorithms, the electronic nose system was able to correctly identify the different gas vapors from the pattern responses of the sensor array.

  9. Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator

    PubMed Central

    2014-01-01

    The survival rate of lung cancer can be significantly improved by monitoring biomarkers in exhaled air that indicate diseases in early stage, so it is very important to develop micro analytical systems which can offer a fast, on-site, real-time detecting biomarkers in exhaled air. In this paper, a mini-gas chromatography (GC)-photo-ionization detector (PID) system integrated with a micro GC column and a micro pre-concentrator was developed for forming an inexpensive, fast, and non-invasive diagnostic tool for lung cancer. This system has very strong concentrate ability owing to its integrated micro pre-concentrator, which make the detection of trace components in exhaled air very easy. In addition, the integrated micro GC column can separate complex mixtures, which overcome low resolution and poor anti-interference ability of other instruments. The results indicated that the mini-GC-PID system can effectively separate and detect the biomarkers at parts-per-billion (ppb) level. PMID:25339856

  10. Local Luminosity Function at 15 micro m and Galaxy Evolution Seen by ISOCAM 15 micro m Surveys

    NASA Technical Reports Server (NTRS)

    Xu, C.

    2000-01-01

    A local luminosity function at 15 micro m is derived using the bivariate (15 micro m vs. 60 micro m luminosities) method, based on the newly published ISOCAM LW3-band (15 micro m) survey of the very deep IRAS 60 micro m sample in the north ecliptic pole region (NEPR).

  11. Hydrogen isotope MicroChemLab FY15.

    SciTech Connect

    Robinson, David; Luo, Weifang; Stewart, Kenneth D.

    2015-09-01

    We have developed a new method to measure the composition of gaseous mixtures of any two hydrogen isotopes, as well as an inert gas component. When tritium is one of those hydrogen isotopes, there is usually some helium present, because the tritium decays to form helium at a rate of about 1% every 2 months. The usual way of measuring composition of these mixtures involves mass spectrometry, which involves bulky, energy-intensive, expensive instruments, including vacuum pumps that can quite undesirably disperse tritium. Our approach uses calorimetry of a small quantity of hydrogen-absorbing material to determine gas composition without consuming or dispersing the analytes. Our work was a proof of principle using a rather large and slow benchtop calorimeter. Incorporation of microfabricated calorimeters, such as those that have been developed in Sandia’s MicroChemLab program or that are now commercially available, would allow for faster measurements and a smaller instrument footprint.

  12. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  13. Micro-ultraviolet spectrograph (Micro-UVS). Final design report

    SciTech Connect

    Stern, S.A.; Slater, D.C.

    1994-04-30

    In this report, the authors present a low-mass (<2 kg), low-power (approximately 2 W), and low-cost (< $0.5M) Far UV spectrometer design, capable of performing high-resolution ({lambda}/{delta}{lambda} approximately equal to 100-200) spectroscopy of planetary atmospheres in the extreme ultraviolet wavelength regime (700 {angstrom} < {lambda} < 1500 {angstrom}). This spectrograph, referred to in this report as the MicroUVS, is in part based on the integrated UV/VIS/IR Pluto Fast Flyby (PFF) design being developed for NASA, but is tailored to be a stand-alone instrument suitable for future BMDO/LLNL missions. Design objectives and performance of the spectrometer are discussed in detail.

  14. Modelling of microwave-driven micro-plasmas in HCPCF

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2012-10-01

    New UV sources based on microwave-driven micro-plasmas filling a Hollow-Core Photonic Crystal Fibre (HCPCF) [1], exhibit an unprecedented compactness, flexibility, low-cost and high conversion efficiency. The micro-plasma (>10^14 cm-3 electron density, estimated by electromagnetic calculations) is produced by a surface-wave discharge (2.45 GHz frequency) in argon, at 1000-1400 K gas temperatures (measured by OES diagnostics). Our first approach to simulate this system replaces the cladding structure of the fibre (air-holes region) by a capillary cylindrical quartz tube. Simulations use a one-dimensional (radial) stationary model that solves the fluid transport equations for electrons and positive ions, the electron mean energy transport equations, Poisson's and Maxwell's equations for the fields and the gas energy balance equation, coupled to the electron Boltzmann equation for the calculation of the relevant electron parameters [2,3]. We analyze the modification of the plasma with changes in the work conditions, presenting simulations for various HCPCF core radii (50--500 ?m) and electron densities (1--5x10^14 cm-3), at 1mbar pressure. [1] B. Debord et al, ECOC conference Mo.2.LeCervin.5. (2011) [2] L.L. Alves et al, Phys. Rev. E 79, 016403 (2009) [3] J. Greg'orio et al, Plasma Sources Sci. Technol. 21, 015013 (2012)

  15. Micro-Pattern Gaseous Detector Technologies and RD51 Collaboration

    NASA Astrophysics Data System (ADS)

    Titov, Maxim; Ropelewski, Leszek

    2013-04-01

    Discoveries in particle physics vitally depend on parallel advances in radiation-detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements — the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel Prize in Physics in 1992. This invention revolutionized particle detection which moved from optical-readout devices (cloud chamber, emulsion or bubble chambers) to the electronics era. Over the past two decades advances in photo-lithography, microelectronics and printed-circuit board (PCB) techniques triggered a major transition in the field of gas detectors from wire structures to the Micro-Pattern Gas Detector (MPGD) concepts. The excellent spatial and time resolution, high rate capability, low mass, large active areas, and radiation hardness make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. Novel devices where MPGDs are directly coupled to the CMOS pixel readout serve as an "electronic bubble chamber" allowing to record space points and tracks in 3D. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the-art of the MPGD technologies and summarizes ongoing activities within the framework of the RD51 collaboration.

  16. Micro/nanoscale continuous printing: direct-writing of wavy micro/nano structures via electrospinning

    NASA Astrophysics Data System (ADS)

    Fang, Feiyu; Du, Zefeng; Zeng, Jun; Zhu, Ziming; Chen, Xin; Chen, Xindu; Lv, Yuanjun; Wang, Han

    2015-07-01

    Micro/nanofibers that are created by direct-writing using an electrospinning (ES) technique have aroused much recent attention, owing to their intriguing physical properties and great potential as building blocks for micro/nanoscale devices. In this work, a wavy direct-writing (WDW) process was developed to directly write wavy micro/nanostructures suitable for the fabrication of micro/nanoscale devices. The low voltage WDW technique is anticipated to be useful for a broad range of applications including flexible/stretchable electronics, micro optoelectronics, nano-antennas, microelectromechanical systems (MEMS), and biomedical engineering.

  17. Micro-coil detection of Nuclear Magnetic Resonance for nanofluidic samples

    E-print Network

    Shibahara, Aya; Lusher, Chris; Saunders, John; Aßmann, Cornelia; Schurig, Thomas; Drung, Dietmar

    2013-01-01

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair, enabling the sample to be at microkelvin temperatures. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ~ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to 3He in the gas phase at 4.2 K in a 30 mT magnetic field.

  18. Experimental and Computational Investigation of a RF Plasma Micro-Thruster

    SciTech Connect

    Olliges, J. D.; Ketsdever, A. D.; Stein, W. B.; Alexeenko, A. A.; Hrbud, I.

    2008-12-31

    A prototype RF plasma micro-thruster has been investigated numerically and experimentally. The experimental results were obtained on a thrust stand capable of micro-Newton resolution. Thrust and mass flow (hence specific impulse) were measured for an argon propellant at mass flows ranging from 0.4 to 5.5 mg/s. An increase over the cold gas thrust of up to 20% was observed for a discharge frequency of 100 MHz and an input power of 77 W. Propulsive efficiency was seen to increase both experimentally and numerically for increasing mass flow and decreasing discharge frequency.

  19. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    SciTech Connect

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-15

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ? 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to {sup 3}He in the gas phase at 4.2 K in a 30 mT magnetic field.

  20. Micro windmills to recharge your mobile phone

    E-print Network

    Chiao, Jung-Chih

    phones and tablet computers. Dr. Smitha Rao and J.C. Chiao from University of Texas at Arlington have it comes to potential applications of micro windmills, she's only scratched the surface. Rao's micro windmills use a nickel alloy and a smart aerodynamic design which solves the problem of durability which

  1. Magnetorheological polydimethylsiloxane micro-optical resonator

    E-print Network

    Ötügen, Volkan

    Magnetorheological polydimethylsiloxane micro-optical resonator Tindaro Ioppolo* and M. Volkan investigate the possibility of using magnetorheological polydimethylsiloxane (MR-PDMS) spheres as micro. © 2010 Optical Society of America OCIS codes: 230.0230, 080.0080, 350.0350, 120.0120. Magnetorheological

  2. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  3. Micro architecture : architecture for daily social activities within Beijing's hutongs

    E-print Network

    Chao, Yi-Hsiang

    2008-01-01

    This thesis is an attempt to propose the alternative architectural strategy which derives from the Micro Urbanism in the micro-scale realm in the Asian main cities. Based on the Micro Urbanism, the project is to propose a ...

  4. MicroRNAs and Their Regulatory Roles in Plants

    E-print Network

    Bartel, David

    Institute of Technology, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142; email: dbartel . . . . . . . . . . . . . . . . . . . 21 MicroRNA Gene Discovery: Cloning. . . . . . . . . . . . . . . . . . . . . . . 21 MicroRNA Gene Discovery: Genetics . . . . . . . . . . . . . . . . . . . . . . 22 MicroRNA Gene Discovery: Bioinformatics

  5. Global microRNA depletion suppresses tumor angiogenesis

    E-print Network

    Chen, Sidi

    MicroRNAs delicately regulate the balance of angiogenesis. Here we show that depletion of all microRNAs suppresses tumor angiogenesis. We generated microRNA-deficient tumors by knocking out Dicer1. These tumors are highly ...

  6. MicroComputed Tomography: Methodology and Applications

    SciTech Connect

    2009-04-02

    Due to the availability of commercial laboratory systems and the emergence of user facilities at synchrotron radiation sources, studies of microcomputed tomography or microCT have increased exponentially. MicroComputed Technology provides a complete introduction to the technology, describing how to use it effectively and understand its results. The first part of the book focuses on methodology, covering experimental methods, data analysis, and visualization approaches. The second part addresses various microCT applications, including porous solids, microstructural evolution, soft tissue studies, multimode studies, and indirect analyses. The author presents a sufficient amount of fundamental material so that those new to the field can develop a relative understanding of how to design their own microCT studies. One of the first full-length references dedicated to microCT, this book provides an accessible introduction to field, supplemented with application examples and color images.

  7. Biologically Inspired Micro-Flight Research

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  8. MicroRNA involvement in glioblastoma pathogenesis

    SciTech Connect

    Novakova, Jana; Department of Biochemistry, Faculty of Science, Masaryk University, Brno ; Slaby, Ondrej; Masaryk Memorial Cancer Institute, Department of Laboratory Medicine, Zluty kopec 7, 656 53 Brno ; Vyzula, Rostislav; Michalek, Jaroslav

    2009-08-14

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  9. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  10. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  11. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  12. Micro-hole machining using micro-EDM combined with electropolishing

    NASA Astrophysics Data System (ADS)

    Hung, Jung-Chou; Yan, Biing-Hwa; Liu, Hung-Sung; Chow, Han-Ming

    2006-08-01

    This paper presents a novel process of using micro-electro-discharge- machining (micro-EDM) combined with electropolishing to improve the surface roughness of micro-holes. During the machining process, a tool is fabricated by wire electro-discharge grinding (WEDG) directly by using micro-EDM for machining the micro-hole and by electropolishing to finish the hole wall. In this work, various micro-holes are machined on the high nickel alloy. By the electropolishing method, high surface quality of the hole wall is obtained by applying a suitable electrolytic voltage and an appropriate concentration of electrolyte in about 5 min of machining time. The taper and burrs of the inlet of holes are reduced, even for difficult- to-machine special-shaped micro-holes. The surface roughness reduced from 2.11 µm Rmax before grinding to 0.69 µm Rmax after electropolishing.

  13. Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Chang, Lingqian; Li, Lei

    2015-11-01

    Micro lenses and micro lens arrays have been widely used in numerous areas. In recent years, direct deposition of micro lenses and micro lens arrays by using drop-on-demand dispensers has been studied. However, the traditional drop-on-demand methods have issues such as expensive facilities and appropriateness for low viscosity materials. In this paper, a novel droplet-based method for fabricating polymeric micro lenses and lens arrays is presented. This method utilises microfluidic devices as dispensers to generate micro- to meso-scale droplets, and uses interfacial forces to control the lens profiles. This new method can create lenses with aperture sizes from 130 ?m to 2000 ?m for both low and high viscosity materials. It is also capable of fabricating self-organised lens arrays with high fill factors. This technology can simplify the manufacturing process and lower the manufacturing costs of micro lenses and lens arrays.

  14. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G. (Lenexa, KS)

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  15. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G. (Lenexa, KS)

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  16. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  17. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  18. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  19. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.

  20. RESEARCH PAPER Use of a porous membrane for gas bubble removal in microfluidic

    E-print Network

    Attinger, Daniel

    the performance of micro- channel-based micro fuel cells (Kamitani et al. 2008; 2009; Paust et al. 2009RESEARCH PAPER Use of a porous membrane for gas bubble removal in microfluidic channels: physical. Keywords Microfluidics Á Multiphase flow Á Bubble Á Segmented flow 1 Introduction Bubbles can be generated

  1. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R. (Livermore, CA); Belgrader, Phillip (Manteca, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  2. Some mechanisms for the formation of octopus-shaped iron micro-particles

    NASA Astrophysics Data System (ADS)

    Bica, Ioan

    2004-08-01

    Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the "dew point" for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out.

  3. Cryostatic micro-CT imaging of transient processes

    NASA Astrophysics Data System (ADS)

    Jorgensen, Steven M.; Blank, Basil; Ritman, Erik L.

    2002-01-01

    A double walled copper vessel, 32 cc in volume, was fabricated for micro-CT scanning tissue specimens maintained at cryogenic temperature. The space between the two nested vessels was evacuated and in two opposing sides of the vessel the copper has been replaced by beryllium foil. Nitrogen gas, boiling off liquid nitrogen, is injected continuously into the top of the chamber during the scanning process. Just prior to venting from the vessel the gas is heated and directed through a narrow gap over the outside of the beryllium windows so as to maintain the beryllium windows frost free. A temperature detector within the chamber is used to control the rate of inflow of the nitrogen gas. The frozen specimen is attached to a small horizontal platform on top of a vertical stainless steel pin which exits the base of the vessel through a closely fitting hole and is attached to the computer-controlled rotating stage under the vessel. The vessel and rotation-stage assembly is mounted on a computer-controlled horizontal translation stage which can move the specimen out of the x- ray beam, from time to time, for x-ray beam calibration purposes. The purpose of this arrangement is to permit scanning of specimens that: 1) either cannot be fixed (e.g., with formalin) because of biomolecular analyses which are incompatible with prior fixation, or 2) are snap-frozen during a transient process, such as the accumulation and/or washout of radiopaque indicators distributed in microvascular or extravascular compartments, which lasts only seconds and hence is too fast for normal micro-CT methods to capture.

  4. High rate behavior and discharge limits in micro-pattern detectors

    NASA Astrophysics Data System (ADS)

    Bressan, A.; Hoch, M.; Pagano, P.; Ropelewski, L.; Sauli, F.; Biagi, S.; Buzulutskov, A.; Gruwé, M.; De Lentdecker, G.; Moermann, D.; Sharma, A.

    1999-03-01

    We present and discuss a set of systematic measurements, carried out with gaseous proportional micro-pattern detectors, in order to assess their maximum gain when irradiated with high-rate soft X-rays and heavily ionizing alpha particles. The inventory of detectors tested includes: micro-strips, micromegas, micro-dot, gas electron multiplier, CAT (compteur à trous), trench (or groove), micro-CAT (or WELL) detectors, as well as systems with two elements of gaseous amplification in cascade. We confirm the general trend of all single-stage detectors to follow Raether's criterion, i.e. a spontaneous transition from avalanche to streamer, followed by a discharge, when the avalanche size reaches a value of a few 10 7; a noticeable exception is the micro-dot counter holding more than 10 8. In multiple structures, where the gain is shared between two devices in cascade, the maximum overall gain under irradiation is increased by at least one order of magnitude; we speculate this to be a consequence of a voltage dependence of Raether's limit, larger for low operating potentials. Our conclusion is that only multiple devices can guarantee a sufficient margin of reliability for operation in harsh LHC running conditions.

  5. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  6. A CAMAC and FASTBUS engineering test environment supported by a MicroVAX/MicroVMS system

    SciTech Connect

    Logg, C.A.

    1987-10-01

    A flexible, multiuser engineering test environment has been established for the engineers in SLAC's Electronic Instrumentation Engineering group. The system hardware includes a standard MicroVAX II and MicroVAX I with multiple CAMAC, FASTBUS, and GPIB instrumentation buses. The system software components include MicroVMS licenses with DECNET/SLACNET, FORTRAN, PASCAL, FORTH, and a versatile graphical display package. In addition, there are several software utilities available to facilitate FASTBUS and CAMAC prototype hardware debugging. 16 refs., 7 figs.

  7. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect

    Tapia-Ahumada, K.; Pérez-Arriaga, I. J.; Moniz, Ernest J.

    2013-10-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  8. Micro unattended mobility system (MUMS)

    NASA Astrophysics Data System (ADS)

    Rudakevych, Pavlo; Greiner, Helen; Pletta, Bryan

    1999-07-01

    This report covers work under phase one of the Micro Unattended Mobility System project investigating the addition of a mobile sensor components to existing and future ground penetrator delivered unattended sensor systems. A typical unattended sensor strategy consists of air-dropping sensor packages into a target terrain for remote observation and intelligence gathering. Existing and planned unattended systems have no control over their location after the drop is complete. We propose to augment the capability of these sensing packages by giving them a degree of local mobility. From an assumed operational scenario, vehicle design specifications are identified that would be required for mission success. Three basic mobility concepts are presented and evaluated for their strengths and weaknesses in the proposed mission. The mobility concepts are grouped into wheeled, jumping, and crawling systems. Of the three mobility concepts discussed, the system that shows the most promise is presented in a more detailed design. This design consists of two side by side wheels which drag a reaction tail behind them. The control electronics, batteries, and drive motors are housed in a central body connected to the tail and two sensor payloads can be placed in the wheel hubs. This design is proposed for further development and testing in the second phase of this project.

  9. Snow Micro-Structure Model

    Energy Science and Technology Software Center (ESTSC)

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore »using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  10. Snow Micro-Structure Model

    SciTech Connect

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  11. Interaction between catalytic micro motors

    E-print Network

    Parvin Bayati; Ali Najafi

    2015-10-27

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the transnational and rotational dynamics of the motors. We show that the overall interaction at the leading order, modifies the translational and rotational speeds of motors which scale as ${\\cal O}\\left([1/D]^3\\right)$ and ${\\cal O}\\left([1/D]^4\\right)$ with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro motors.

  12. Dropwise Condensation on Micro- and Nanostructured Surfaces

    E-print Network

    Miljkovic, Nenad

    In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...

  13. Tractor beam in micro-scale

    NASA Astrophysics Data System (ADS)

    Brzobohatý, O.; Karásek, V.; Šiler, M.; Chvátal, L.; ?ižmár, T.; Zemánek, P.

    2014-12-01

    Following the Keplerian idea of radiative forces one would intuitively expect that an object illuminated by sunlight radiation or a laser beam is accelerated along the direction of the photon flow. Such radiation pressure forms the basis for the concept of solar sail, or laser acceleration of micro-particles. In contrast, a hypothetical optical field known from the realm of science-fiction as the "tractor" beam attracts the matter from large distances against the beam propagation. We present a geometry of such"tractor" beam in micro-scale and experimentally demonstrate how it acts upon spherical micro-particles of various sizes or optically self-arranged structures of micro-particles.

  14. Evaluation of the micro-carburetor

    SciTech Connect

    Weiss, M.F.; Hall, R.A.; Mazor, S.D.

    1981-08-01

    A prototype sonic, variable-venturi automotive carburetor, developed by Micro Carburetor Corporation, was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions.

  15. Micro-systems in biomedical applications

    NASA Astrophysics Data System (ADS)

    Dario, Paolo; Chiara Carrozza, Maria; Benvenuto, Antonella; Menciassi, Arianna

    2000-06-01

    In this paper we analyse the main characteristics of some micro-devices which have been developed recently for biomedical applications. Among the many biomedical micro-systems proposed in the literature or already on the market, we have selected a few which, in our opinion, represent particularly well the technical problems to be solved, the research topics to be addressed and the opportunities offered by micro-system technology (MST) in the biomedical field. For this review we have identified four important areas of application of micro-systems in medicine and biology: (1) diagnostics (2) drug delivery; (3) neural prosthetics and tissue engineering; and (4) minimally invasive surgery. We conclude that MST has the potential to play a major role in the development of new medical instrumentation and to have a considerable industrial impact in this field.

  16. Printed electronics and micro-electromechanical systems

    E-print Network

    Wilhelm, Eric Jamesson, 1977-

    2004-01-01

    Current electronics and micro-electromechanical systems (MEMS) manufacture is optimized for the production of very high-volume parts on a limited range of substrates. These processes are long, consume large amounts of ...

  17. A microfabricated dielectrophoretic micro-organism concentrator

    E-print Network

    Muller, Rikky, 1980-

    2004-01-01

    This project focuses on the development of a micro-organism concentrator. Pathogen detection, particularly MEMS based detection, is often limited by sample concentration. The proposed concentrator will interface with a ...

  18. Multi-shelled hollow micro-/nanostructures.

    PubMed

    Qi, Jian; Lai, Xiaoyong; Wang, Jiangyan; Tang, Hongjie; Ren, Hao; Yang, Yu; Jin, Quan; Zhang, Lijuan; Yu, Ranbo; Ma, Guanghui; Su, Zhiguo; Zhao, Huijun; Wang, Dan

    2015-10-01

    Great progress has been made in the preparation and application of multi-shelled hollow micro-/nanostructures during the past decade. However, the synthetic methodologies and potential applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different synthetic methodologies for multi-shelled hollow micro-/nanostructures as well as their compositional and geometric manipulation and then review their applications in energy conversion and storage, sensors, photocatalysis, and drug delivery. The correlation between the geometric properties of multi-shelled hollow micro-/nanostructures and their specific performance in relevant applications are highlighted. These results demonstrate that the geometry has a direct impact on the properties and potential applications of such materials. Finally, the emerging challenges and future development of multi-shelled hollow micro-/nanostructures are further discussed. PMID:26135708

  19. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  20. Method for producing micro heat panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)

    1997-01-01

    Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.