Science.gov

Sample records for silk sericin protein

  1. Silk protein lithography as a route to fabricate sericin microarchitectures.

    PubMed

    Kurland, Nicholas E; Dey, Tuli; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2014-07-01

    Photolithographic fabrication via a "silk sericin photoresist" is used to form precise protein microstructures directly and rapidly on a variety of substrates. High-resolution and fidelity architectures in two and three dimensions with line widths down to 1 ?m are formed. Photo-crosslinked protein structures provide structural iridescence and guide cell adhesion with precise spatial control. PMID:24737390

  2. Potential applications of silk sericin, a natural protein from textile industry by-products.

    PubMed

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications. PMID:21558082

  3. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  4. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  5. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines.

    PubMed

    Cao, Ting-Ting; Zhang, Yu-Qing

    2016-04-01

    Bombyx mori silk is composed of 60-80% fibroin, 15-35% sericin and 1-5% non-sericin component including wax, pigments, sugars and other impurities. For two decades, the protein-based silk fibroin was extensively used in the research and development of medical biomaterials and biomedicines. Sericin is frequently ignored and abandoned as a byproduct or waste in the processing of traditional silk fabrics, silk floss or modern silk biomaterials. However, similar to fibroin, sericin is not only a highly useful biological material, but also a lot of biological activity. Moreover, the non-sericin component present with sericin in the cocoon shell also has a strong biological activity. In this review, the extraction and recovery methods of sericin and the non-sericin component from the cocoon layer are reported, and their composition, properties and biological activity are described to produce a comprehensive report on biomedical materials and biological drugs. In addition, related problems or concerns present in the research and development of sericin are discussed, and a potential application of sericin in sustainable development is also presented. PMID:26838924

  6. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  7. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  8. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. PMID:26332703

  9. Dietary silk protein, sericin, improves epidermal hydration with increased levels of filaggrins and free amino acids in NC/Nga mice.

    PubMed

    Kim, Hyunae; Lim, Yu-ji; Park, Ji-Ho; Cho, Yunhi

    2012-11-28

    Epidermal hydration is maintained primarily by natural moisturising factors (NMF), of which free amino acids (AA) are major constituents that are generated by filaggrin degradation. To identify dietary sources that may improve skin dryness of atopic dermatitis (AD), we investigated dietary effects of silk proteins, sericin and fibroin, on epidermal levels of hydration, filaggrins and free AA, as well as PPAR?, peptidylarginine deiminase-3 (PAD3) and caspase-14 proteins involved in filaggrin expression and degradation processes. NC/Nga mice, an animal model of AD, were fed a control diet (group CA: atopic control) or diets with 1 % sericin (group S) or fibroin (group F) for 10 weeks. In group S, epidermal levels of hydration, total filaggrins and total free AA, as well as PPAR?, PAD3 and caspase-14, which were reduced in group CA, were increased to higher or similar levels of a normal control group of BALB/c mice (group C). Furthermore, profilaggrin, a precursor with multiple filaggrin repeats, and three repeat intermediates were increased, while two repeat intermediates and filaggrin were decreased in parallel with increased levels of glutamate and serine, major AA of NMF in group S. Despite increased levels of total filaggrins, total free AA, PPAR? and PAD3, epidermal levels of hydration, glutamate, serine and caspase-14 were not increased, but other minor AA of NMF were highly detected in group F. Dietary sericin improves epidermal hydration in parallel with enhancing profilaggrin expression and degradation into free AA that is coupled with elevated levels of PPAR?, PAD3 and caspase-14 proteins. PMID:22244094

  10. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun; Mao, Chuanbin

    2014-08-27

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a ?-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating the scaffolds for tissue engineering. PMID:25050697

  11. Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

    Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

  12. Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds.

    PubMed

    Aramwit, Pornanong; Siritienthong, Tippawan; Srichana, Teerapol; Ratanavaraporn, Juthamas

    2013-01-01

    Silk sericin has recently been studied for its advantageous biological properties, including its ability to promote wound healing. This study developed a delivery system to accelerate the healing of full-thickness wounds. Three-dimensional scaffolds were fabricated from poly(vinyl alcohol) (PVA), glycerin (as a plasticizer) and genipin (as a crosslinking agent), with or without sericin. The physical and biological properties of the genipin-crosslinked sericin/PVA scaffolds were investigated and compared with those of scaffolds without sericin. The genipin-crosslinked sericin/PVA scaffolds exhibited a higher compressive modulus and greater swelling in water than the scaffolds without sericin. Sericin also exhibited controlled release from the scaffolds. The genipin-crosslinked sericin/PVA scaffolds promoted the attachment and proliferation of L929 mouse fibroblasts. After application to full-thickness rat wounds, the wounds treated with genipin-crosslinked sericin/PVA scaffolds showed a significantly greater reduction in wound size, collagen formation and epithelialization compared with the control scaffolds without sericin but lower numbers of macrophages and multinucleated giant cells. These results indicate that the delivery of sericin from the novel genipin-crosslinked scaffolds efficiently healed the wound. Therefore, these genipin-crosslinked sericin/PVA scaffolds represent a promising candidate for the accelerated healing of full-thickness wounds. PMID:23307034

  13. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society. PMID:26736132

  14. Silk sericin: A versatile material for tissue engineering and drug delivery.

    PubMed

    Lamboni, Lallepak; Gauthier, Mario; Yang, Guang; Wang, Qun

    2015-12-01

    Sericin is an inexpensive glycoprotein obtained as a by-product in the silk industry. Its variable amino acid composition and diverse functional groups confer upon it attractive bioactive properties, which are particularly interesting for biomedical applications. Because of its antioxidant character, moisturizing ability, and mitogenic effect on mammalian cells, sericin is useful in cell culture and tissue engineering. Its positive effects on keratinocytes and fibroblasts have led to the development of sericin-based biomaterials for skin tissue repair, mainly as wound dressings. Additionally, sericin can be used for bone tissue engineering owing to its ability to induce nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, such as films, sponges, and hydrogels, are prepared by cross-linking, ethanol precipitation, or blending with other polymers. Sericin may also be employed for drug delivery because its chemical reactivity and pH-responsiveness facilitate the fabrication of nano- and microparticles, hydrogels, and conjugated molecules, improving the bioactivity of drugs. Here, we summarized the recent advancements in the study of silk sericin for application in tissue engineering and drug delivery. PMID:26523781

  15. Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.

    PubMed

    Teuschl, Andreas Herbert; van Griensven, Martijn; Redl, Heinz

    2014-05-01

    Silk fibroin has previously been described as a promising candidate for ligament tissue engineering (TE) approaches. For biocompatibility reasons, silkworm silk requires removal of sericin, which can elicit adverse immune responses in the human body. One disadvantage of the required degumming process is the alteration of the silk fiber structural properties, which can hinder textile engineering of high order hierarchical structures. Therefore, the aim of this study was to find a way to remove sericin from a compact and highly ordered raw silk fiber matrix. The wire rope design of the test model scaffold comprises several levels of geometric hierarchy. Commonly used degumming solutions fail in removing sericin in this wire rope design. Weight loss measurements, picric acid and carmine staining as well as scanning electron microscopy demonstrated that the removal of sericin from the model scaffold of a wire rope design can be achieved through a borate buffer-based system. Furthermore, the borate buffer degummed silks were shown to be nontoxic and did not alter cell proliferation behavior. The possibility to remove sericin after the textile engineering process has taken place eases the production of highly ordered scaffold structures and may expand the use of silk as scaffold material in further TE and regenerative medicine applications. PMID:24066942

  16. pH responsive poly amino-acid hydrogels formed via silk sericin templating.

    PubMed

    Kurland, Nicholas E; Ragland, Robert B; Zhang, Aolin; Moustafa, Mahmoud E; Kundu, Subhas C; Yadavalli, Vamsi K

    2014-09-01

    Poly(amino acid) hydrogels have attracted a great deal of attention as biodegradable biomaterials that can limit products of synthetic polymer degradation. Here we report on a stimuli-responsive, porous, composite biomaterial based on the protein templating of the poly(amino acid) hydrogel from poly(aspartic acid) with the silk protein sericin. This low-cost, biocompatible and biodegradable hydrogel demonstrates a greatly increased porosity and improvement in volumetric swelling over networks formed from pure poly(aspartic acid). The swelling capacity measured over a range of pH values surrounding physiological pH 7.0 demonstrates a linear profile, in which hydrogel volume and mass increase to a maximum, with an increase as a function of higher sericin content. In comparison to pure poly(aspartic acid), this demonstrates a nearly 3-fold increase in retention volume at basic pH. The increase in swelling is also demonstrated by the increase in porosity and internal micro-architecture of the hydrogel networks. The biomaterial is then shown to perform well as a scaffold for cells with high mechanical strength and integrity. This protein- and homo poly(amino acid)-based super-swelling hydrogel has applications in drug delivery and tissue engineering as an economical and environmentally friendly biomaterial, in addition to ensuring the species incorporated maintain their biocompatibility during processing. PMID:25073107

  17. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin. PMID:23022662

  18. The effects of Bombyx mori silk strain and extraction time on the molecular and biological characteristics of sericin.

    PubMed

    Siritientong, Tippawan; Bonani, Walter; Motta, Antonella; Migliaresi, Claudio; Aramwit, Pornanong

    2016-02-01

    Sericin was extracted from three strains of Thai Bombyx mori silk cocoons (white shell Chul1/1, greenish shell Chul3/2, and yellow shell Chul4/2) by a high-pressure and high-temperature technique. The characteristics of sericin extracted from different fractions (15, 45, and 60min extraction process) were compared. No differences in amino acid composition were observed among the three fractions. For all silk strains, sericin extracted from a 15-min process presented the highest molecular weight. The biological potential of the different sericin samples as a bioadditive for 3T3 fibroblast cells was assessed. When comparing sericin extracted from three silk strains, sericin fractions extracted from Chul4/2 improved cell proliferation, while sericin from Chul 1/1 activated Type I collagen production to the highest extent. This study allows the natural variability of sericin obtained from different sources and extraction conditions to be addressed and provides clues for the selection of sericin sources. PMID:26399155

  19. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    NASA Astrophysics Data System (ADS)

    Mandal, Biman B.; Kundu, S. C.

    2009-09-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  20. Effect of silk protein processing on drug delivery from silk films.

    PubMed

    Pritchard, Eleanor M; Hu, Xiao; Finley, Violet; Kuo, Catherine K; Kaplan, David L

    2013-03-01

    Sericin removal from the core fibroin protein of silkworm silk is a critical first step in the use of silk for biomaterial-related applications, but degumming can affect silk biomaterial properties, including molecular weight, viscosity, diffusivity and degradation behavior. Increasing the degumming time (10, 30, 60, and 90?min) decreases the average molecular weight of silk protein in solution, silk solution viscosity, and silk film glass-transition temperature, and increases the rate of degradation of a silk film by protease. Model compounds spanning a range of physical-chemical properties generally show an inverse relationship between degumming time and release rate through a varied degumming time silk coating. Degumming provides a useful control point to manipulate silk's material properties. PMID:23349062

  1. The role of glycerol and water in flexible silk sericin film.

    PubMed

    Yun, Haesung; Kim, Moo Kon; Kwak, Hyo Won; Lee, Jeong Yun; Kim, Min Hwa; Lee, Ki Hoon

    2016-01-01

    Silk sericin (SS) can be obtained as a byproduct during the silk fiber process, but its application has been limited due to the brittleness of the SS film. To enhance the flexibility of the SS film, glycerol (Glc) has been added as a plasticizer. The addition of Glc enhanced the elongation property of the SS film when the Glc content was 50-70wt% of SS. Glc also induced the structural transition of SS from a random coil structure to a ?-sheet structure. The inconsistent increase of elongation and ?-sheet structure of the SS/Glc film were explained by the content of moisture in the SS/Glc film. The moisture content of the SS/Glc film increased proportionally when the Glc content was higher than 50wt% of SS, which was the same Glc content range that exhibited the plasticizing effect. Therefore, the plasticizing effect on the SS film may occur not only because of Glc but also because of water. Furthermore, water also contributed to the increase in the ?-sheet structure development. Our results suggest that the moisture content in the plasticized protein film may play an important role when the plasticizer has hygroscopic properties. PMID:26562547

  2. Vibrational spectroscopic study of sulphated silk proteins

    NASA Astrophysics Data System (ADS)

    Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.

    2007-05-01

    Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing ?-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the ?asSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the ?OH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.

  3. Viability and proliferation of L929, tumour and hybridoma cells in the culture media containing sericin protein as a supplement or serum substitute.

    PubMed

    Cao, Ting-Ting; Zhang, Yu-Qing

    2015-09-01

    Cell cultures often require the addition of animal serum and other supplements. In this study, silk sericin, a bioactive protein, recovered from the waste of silk floss production was hydrolysed into three pepsin-degraded sericin peptides with different ranges of molecular mass. Normal animal cells, tumour cells and hybridoma cells were cultured systematically in FBS culture media containing sericin as a supplement or serum substitute. The culture test and microscopic observation of L929 cells showed that the smaller molecular weight of the degraded sericin is most suitable for cell culture. The cell culture results showed that with the degradation of sericin, for normal mouse fibroblast L929 cells, addition of 0.75 % sericin into FBS culture medium yields cell viability that is superior to FBS culture medium alone. When all serum was replaced by sericin, cell viability in the sericin medium could reach about one half of that in FBS medium. When in a medium containing a mixture of FBS: sericin (6:4, v/v), the cell culture effect is about 80 %. For the cultures of four tumour and one hybridoma cells, regardless of the molecular weight range, these degraded sericin peptides could substitute all serum in FBS media. The cell viability and proliferation of these tumour and hybridoma cells are equivalent or superior to that in FBS medium. In other words, cell viability and proliferation of these tumour and hybridoma cells in sericin media are more preferable to serum media. The mechanism of the sericin protein to promote cell growth and proliferation will be further investigated later. PMID:25895088

  4. Biomedical Applications of Mulberry Silk and its Proteins: A Review

    NASA Astrophysics Data System (ADS)

    Nivedita, S.; Sivaprasad, V.

    2014-04-01

    Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.

  5. Isolation and processing of silk proteins for biomedical applications.

    PubMed

    Kundu, Banani; Kurland, Nicholas E; Yadavalli, Vamsi K; Kundu, Subhas C

    2014-09-01

    Silk proteins of silkworms are chiefly composed of core fibroin protein and glycoprotein sericin that glues fibroin. Unique mechanical properties, cyto-compatibility and controllable biodegradability facilitate the use of fibroin in biomedical applications. Sericin serves as additive in cosmetic and food industries, as mitotic factor in cell culture media, anti-cancerous drug, anticoagulant and as biocompatible coating. For all these uses; aqueous solutions of silk proteins are preferred. Therefore, an accurate understanding of extraction procedure of silk proteins from their sources is critical. A number of protocols exist, amongst which it is required to settle a precise and easy one with desired yield and least down-stream processing. Here, we report extraction of proteins employing methods mentioned in literature using cocoons of mulberry and nonmulberry silks. This study reveals sodium carbonate salt-boiling system is the most efficient sericin extraction procedure for all silk variants. Lithium bromide is observed as the effective fibroin dissolution system for mulberry silk cocoons; whereas heterogeneous species-dependent result is obtained in case of nonmulberry species. We further show the effect of common post processing on nanoscale morphology of mulberry silk fibroin films. This knowledge eases the adoption and fabrication of silk biomaterials in devices and therapeutic delivery systems. PMID:24971560

  6. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. PMID:26117747

  7. Bioengineered silk proteins to control cell and tissue functions.

    PubMed

    Preda, Rucsanda C; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-01-01

    Silks are defined as protein polymers that are spun into fibers by some lepidoptera larvae such as silkworms, spiders, scorpions, mites, and flies. Silk proteins are usually produced within specialized glands in these animals after biosynthesis in epithelial cells that line the glands, followed by secretion into the lumen of the gland prior to spinning into fibers.The most comprehensively characterized silks are from the domesticated silkworm (Bombyx mori) and from some spiders (Nephila clavipes and Araneus diadematus). Silkworm silk has been used commercially as biomedical sutures for decades and in textile production for centuries. Because of their impressive mechanical properties, silk proteins provide an important set of material options in the fields of controlled drug release, and for biomaterials and scaffolds for tissue engineering. Silkworm silk from B. mori consists primarily of two protein components, fibroin, the structural protein of silk fibers, and sericins, the water-soluble glue-like proteins that bind the fibroin fibers together. Silk fibroin consists of heavy and light chain polypeptides linked by a disulfide bond. Fibroin is the protein of interest for biomedical materials and it has to be purified/extracted from the silkworm cocoon by removal of the sericin. Characteristics of silks, including biodegradability, biocompatibility, controllable degradation rates, and versatility to generate different material formats from gels to fibers and sponges, have attracted interest in the field of biomaterials. Cell culture and tissue formation using silk-based biomaterials have been pursued, where appropriate cell adhesion, proliferation, and differentiation on or in silk biomaterials support the regeneration of tissues. The relative ease with which silk proteins can be processed into a variety of material morphologies, versatile chemical functionalization options, processing in water or solvent, and the related biological features of biocompatibility and enzymatic degradability make these proteins interesting candidates for biomedical applications. PMID:23504416

  8. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

    NASA Astrophysics Data System (ADS)

    Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.

    2006-02-01

    Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

  9. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  10. Production and properties of electrosprayed sericin nanopowder

    NASA Astrophysics Data System (ADS)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza

    2012-06-01

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  11. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin.

    PubMed

    Jo, Yoon Nam; Um, In Chul

    2015-07-01

    Sericin films have attracted much attention from researchers in biomedical and cosmetic fields because of its unique properties, including good cytocompatibility and its promotion of wound healing. However, poor mechanical properties of sericin films have restricted its application in these fields. In this study, a new solvent, formic acid, was used to fabricate sericin solutions and films. The effects of formic acid on the structural characteristics and mechanical properties of the sericin solutions and films were examined and compared with water. The sericin/formic acid solution showed fewer aggregated sericin molecules, resulting in a lower turbidity than that of the sericin/water solution. In addition, the gelation of the sericin solution was retarded in formic acid compared to that of water. Sericin films cast from the formic acid solution exhibited a much higher crystallinity index than that produced from water. The tensile strength and elongation of the sericin films cast from the formic acid solution were more than double that of the sericin films cast from water. It is expected that the more stable sericin solution and high-crystallinity sericin films, which have significantly improved mechanical properties, produced by using formic acid as the solvent could be utilized in biomedical and cosmetic applications. PMID:25869308

  12. In vitro development of OPU-derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozen-thawed embryos after transfer.

    PubMed

    Isobe, Tomohiro; Ikebata, Yoshihisa; Do, Lanh Thi Kim; Tanihara, Fuminori; Taniguchi, Masayasu; Otoi, Takeshige

    2015-07-01

    The optimization of single-embryo culture conditions is very important, particularly in the in vitro production of bovine embryos using the ovum pick-up (OPU) procedure. The purpose of this study was to examine the development of embryos derived from oocytes obtained by OPU that were cultured either individually or in groups in medium supplemented with or without sericin and to investigate the viability of the frozen-thawed embryos after a direct transfer. When two-cell-stage embryos were cultured either individually or in groups for 7 days in CR1aa medium supplemented with or without 0.5% sericin, the rates of development to blastocysts and freezable blastocysts were significantly lower for the embryos cultured individually without sericin than for the embryos cultured in groups with or without sericin. Moreover, the rate of development to freezable blastocysts of the embryos cultured individually with sericin was significantly higher than that of the embryos cultured without sericin. When the frozen-thawed embryos were transferred directly to recipients, the rates of pregnancy, abortion, stillbirth and normal calving in the recipients were similar among the groups, irrespective of the culture conditions and sericin supplementation. Our findings indicate that supplementation with sericin during embryo culture improves the quality of the embryos cultured individually but not the viability of the frozen-thawed embryos after transfer to recipients. PMID:25488699

  13. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner. PMID:25853731

  14. Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates.

    PubMed

    Anghileri, Anna; Lantto, Raija; Kruus, Kristiina; Arosio, Cristina; Freddi, Giuliano

    2007-01-10

    The capability of Agaricus bisporus tyrosinase to catalyze the oxidation of tyrosine residues of silk sericin was studied under homogeneous reaction conditions, by using sericin peptides purified from industrial wastewater as the substrate. Tyrosinase was able to oxidize about 57% of sericin-bound tyrosine residues. The reaction rate was higher than with silk fibroin, but lower than with other silk-derived model peptides, i.e. tryptic and chymotryptic soluble peptide fractions of silk fibroin, suggesting that the size and the molecular conformation of the substrate influenced the kinetics of the reaction. The concentration of tyrosine in oxidized sericin samples decreased gradually with increasing the enzyme-to-substrate ratio. The average molecular weight of sericin peptides significantly increased by oxidation, indicating that cross-linking occurred via self-condensation of o-quinones and/or coupling with the free amine groups of lysine and, probably, with sulfhydryl groups of cysteine. The high temperature shift of the main thermal transitions observed in the differential scanning calorimetry curves confirmed the formation of peptide species with higher molecular weight and higher thermal stability. Fourier transform-infrared spectra of oxidized sericin samples showed slight changes related to the loss of tyrosine and formation of oxidation products. Oxidized sericin peptides were able to undergo non-enzymatic coupling with chitosan. Infrared spectra provided clear evidence of the formation of sericin-chitosan bioconjugates under homogeneous reaction conditions. Spectral changes in the NH stretching region seem to support the formation of bioconjugates via the Michael addition mechanism. PMID:16934898

  15. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin.

    PubMed

    Aramwit, Pornanong; Ekasit, Sanong; Yamdech, Rungnapha

    2015-10-01

    Silk sericin is recently shown to possess various biological activities for biomedical applications. While various sericin carriers were developed for drug delivery system, very few researches considered sericin as a bioactive molecule itself. In this study, sericin incorporated in the chitosan-based microspheres was introduced as a bioactive molecule and bioactive carrier at the same time. The chitosan/sericin (CH/SS) microspheres at different composition (80/20, 70/30, 60/40, and 50/50) were successfully fabricated using anhydroustri-polyphosphate (TPP) as a polyanionic crosslinker. The microspheres with an average size of 1-4 ?m and narrow size distribution were obtained. From FT-IR spectra, the presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslink them within the microspheres. We also found that the CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage (37.28%) and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. On the other hand, the composition of CH/SS had no effect on the degradation rate of microspheres. All microspheres continuously degraded and remained around 20% after 14 days of enzymatic degradation. This explained that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Furthermore, we have verified that all CH/SS microspheres at any concentrations showed non-toxicity to L929 mouse fibroblast cells. Therefore, we suggested that the non-toxic ionic-crosslinked CH/SS microspheres could be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing. PMID:26233725

  16. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    PubMed Central

    2014-01-01

    In this study, a green chemistry approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO? and NH2?+ groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications. PMID:24533676

  17. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong

    2014-02-01

    In this study, a `green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.

  18. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods

    PubMed Central

    TAKECHI, TAYORI; WADA, RITSUKO; FUKUDA, TSUBASA; HARADA, KAZUKI; TAKAMURA, HITOSHI

    2014-01-01

    Recent efforts have focused on the use of sericin proteins extracted from cocoons of silkworm as a healthy food source for human consumption. In this study, we focused on the antioxidative properties of sericin proteins. The antioxidative properties were measured in sericin proteins extracted from the shell of the cocoon, designated hereafter as white sericin protein and yellow-green sericin protein, as well as bread without sericin protein and bread to which white sericin powder had been added using four measurement methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH), chemiluminescence, oxygen radical absorbance capacity (ORAC) and electron spin resonance (ESR). High antioxidative properties of sericin proteins were indicated by all four methods. A comparison of the two types of sericin proteins revealed that yellow-green sericin protein exhibited high antioxidative properties as indicated by the DPPH, chemiluminescence and ORAC methods. By contrast, a higher antioxidative property was determined in white sericin protein by the ESR method. Consequently, our findings confirmed that sericin proteins have antioxidative properties against multiple radicals. In addition, the antioxidative property of bread was enhanced by the addition of sericin powder to the bread. Therefore, findings of this study suggest that sericin proteins may be efficiently used as beneficial food for human health. PMID:24748975

  19. Genipin-cross-linked thermosensitive silk sericin/poly(N-isopropylacrylamide) hydrogels for cell proliferation and rapid detachment.

    PubMed

    Zhang, Qingsong; Dong, Panpan; Chen, Li; Wang, Xiaozhao; Lu, Si

    2014-01-01

    To overcome release of silk sericin (SS) from semi-interpenetrating polymer network (semi-IPN) SS/poly(N-isopropylacrylamide) (PNIPAm) hydrogels, natural biocompatible genipin (GNP) was adopted as cross-linking agent of SS. The GNP/SS/PNIPAm hydrogels with various GNP contents were prepared by radical polymerization. Depending on GNP content, the resultant hydrogels present white, yellow, or dark blue. Required time of color change for GNP/SS mixture solution shortened with increasing GNP ratio. The GNP/SS/PNIPAm hydrogels present good oscillatory shrinking-swelling behavior between 20 and 37C. The behaviors of L929 cell proliferation, desorption, and transshipment on the surface of hydrogels and tissue culture polystyrene were investigated by 3-(4,5-dimethy thioazol-2-yl)-2,5-di-phenytetrazoliumromide and scanning electron microscopy method. In comparison with pure SS/PNIPAm hydrogels, the introduction of certain GNP can accelerate cell adhesion and proliferation. Due to reversible change between hydrophobicity and hydrophilicity, by lowering temperature to 4C from 37C, L929 cells could spontaneously detach from the surface of hydrogels without the need for trypsin or ethylenediaminetetraacetic acid. The detached cells could subsequently be recultured. The prepared hydrogel and detached cells have potential applications in biomedical fields, such as organs or tissue regeneration and cancer or disease therapy. PMID:23606462

  20. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquria A; Rech, Elbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  1. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.

    PubMed

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  2. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.

  3. Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    PubMed Central

    Sutherland, Tara D.; Church, Jeffrey S.; Hu, Xiao; Huson, Mickey G.; Kaplan, David L.; Weisman, Sarah

    2011-01-01

    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk. PMID:21311767

  4. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  5. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    PubMed Central

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  6. Biocompatibility of silk-tropoelastin protein polymers.

    PubMed

    Liu, Hongjuan; Wise, Steven G; Rnjak-Kovacina, Jelena; Kaplan, David L; Bilek, Marcela M M; Weiss, Anthony S; Fei, Jian; Bao, Shisan

    2014-06-01

    Blended polymers are used extensively in many critical medical conditions as components of permanently implanted devices. Hybrid protein polymers containing recombinant human tropoelastin and silk fibroin have favorable characteristics as implantable scaffolds in terms of mechanical and biological properties. A firefly luciferase transgenic mouse model was used to monitor real-time IL-1? production localized to the site of biomaterial implantation, to observe the acute immune response (up to 5 days) to these materials. Significantly reduced levels of IL-1? were observed in silk/tropoelastin implants compared to control silk only implants at 1, 2 and 3 days post-surgery. Subsequently, mice (n = 9) were euthanized at 10 days (10D) and 3 weeks (3W) post-surgery to assess inflammatory cell infiltration and collagen deposition, using histopathology and immunohistochemistry. Compared to control silk only implants, fewer total inflammatory cells were found in silk/tropoelastin (?29% at 10D and ?47% at 3W). Also fewer ingrowth cells (?42% at 10D and ?63% at 3W) were observed within the silk/tropoelastin implants compared to silk only. Lower IL-6 (?52%) and MMP-2 (?84%) (pro-inflammatory) were also detected for silk/tropoelastin at 10 days. After 3 weeks implantation, reduced neovascularization (vWF ?43%), fewer proliferating cells (Ki67 ?58% and PCNA ?41%), macrophages (F4/80 ?64%), lower IL-10 (?47%) and MMP-9 (?55%) were also observed in silk/tropoelastin materials compared to silk only. Together, these results suggest that incorporation of tropoelastin improves on the established biocompatibility of silk fibroin, uniquely measured here as a reduced foreign body inflammatory response. PMID:24702962

  7. In vivo bioresponses to silk proteins.

    PubMed

    Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L

    2015-12-01

    Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body invivo. This review summarizes our current understanding of the invivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of invivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses invivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications. PMID:26322725

  8. Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility

    PubMed Central

    Wray, Lindsay S.; Hu, Xiao; Gallego, Jabier; Georgakoudi, Irene; Omenetto, Fiorenzo G.; Schmidt, Daniel; Kaplan, David L.

    2012-01-01

    Silk fibroin has been successfully used as a biomaterial for tissue regeneration. In order to prepare silk fibroin biomaterials for human implantation a series of processing steps are required to purify the protein. Degumming to remove inflammatory sericin is a crucial step related to biocompatibility and variability in the material. Detailed characterization of silk fibroin degumming is reported. The degumming conditions significantly affected cell viability on the silk fibroin material and the ability to form three-dimensional porous scaffolds from the silk fibroin, but did not affect macrophage activation or β-sheet content in the materials formed. Methods are also provided to determine the content of residual sericin in silk fibroin solutions and to assess changes in silk fibroin molecular weight. Amino acid composition analysis was used to detect sericin residuals in silk solutions with a detection limit between 1.0% and 10% wt/wt, while fluorescence spectroscopy was used to reproducibly distinguish between silk samples with different molecular weights. Both methods are simple and require minimal sample volume, providing useful quality control tools for silk fibroin preparation processes. PMID:21695778

  9. Silk protein aggregation kinetics revealed by Rheo-IR.

    PubMed

    Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris

    2014-02-01

    The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic. PMID:24200713

  10. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    PubMed

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  11. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein

    PubMed Central

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  12. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  13. Silks produced by insect labial glands

    PubMed Central

    Sutherland, Tara

    2008-01-01

    Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin ?-sheets interrupted with other structures such as ?-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement. PMID:19221523

  14. Sericin Accelerates the Production of Hyaluronan and Decreases the Incidence of Polyspermy Fertilization in Bovine Oocytes During In Vitro Maturation

    PubMed Central

    HOSOE, Misa; YOSHIDA, Nao; HASHIYADA, Yutaka; TERAMOTO, Hidetoshi; TAKAHASHI, Toru; NIIMURA, Sueo

    2014-01-01

    Fetal bovine serum (FBS) has been widely used as a supplement in the maturation medium of bovine oocytes in vitro. However, serum contains many undefined factors and is potentially infectious to humans and animals. As a serum replacement, we evaluated the feasibility of using the silk protein, sericin, derived from the cocoons of silkworm. To examine the rates of oocyte maturation and fertilization, cumulus-oocyte complexes were cultured in TCM-199 supplemented with 0.01%, 0.05%, 0.1% or 0.15% sericin or 5% FBS. The sizes of the perivitelline space that might relate to polyspermy, the expressions of Has2 and CD44 mRNA, the amount of hyaluronan (hyaluronic acid: HA) contained in the oocytes and the rates of blastocyst formation following insemination were then compared between the oocytes cultured with 0.05% sericin and 5% FBS, because the polyspermy rates in oocytes cultured with 0.05% sericin were significantly lower than in those cultured with 5% FBS. After in vitro maturation (IVM), the mean size of the perivitelline space was significantly greater in oocytes cultured with sericin than in those cultured with FBS, although the rates of nuclear maturation, fertilization and blastocyst formation of oocytes under both IVM conditions were not significantly different. The expression of HAS2 and CD44 mRNA and the amount of HA in the denuded oocytes cultured with 0.05% sericin were significantly greater than in those cultured with FBS. These results indicate the feasibility of sericin as an alternative protein supplement for IVM in bovine oocytes. PMID:24748396

  15. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery

    PubMed Central

    Brooks, Amanda E.

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery. PMID:26636069

  16. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment.

    PubMed

    Liu, Jia; Qi, Chao; Tao, Kaixiong; Zhang, Jinxiang; Zhang, Jian; Xu, Luming; Jiang, Xulin; Zhang, Yunti; Huang, Lei; Li, Qilin; Xie, Hongjian; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-16

    Severe side effects of cancer chemotherapy prompt developing better drug delivery systems. Injectable hydrogels are an effective site-target system. For most of injectable hydrogels, once delivered in vivo, some properties including drug release and degradation, which are critical to chemotherapeutic effects and safety, are challenging to monitor. Developing a drug delivery system for effective cancer therapy with in vivo real-time noninvasive trackability is highly desired. Although fluorescence dyes are used for imaging hydrogels, the cytotoxicity limits their applications. By using sericin, a natural photoluminescent protein from silk, we successfully synthesized a hydrazone cross-linked sericin/dextran injectable hydrogel. This hydrogel is biodegradable and biocompatible. It achieves efficient drug loading and controlled release of both macromolecular and small molecular drugs. Notably, sericin's photoluminescence from this hydrogel is directly and stably correlated with its degradation, enabling long-term in vivo imaging and real-time monitoring of the remaining drug. The hydrogel loaded with Doxorubicin significantly suppresses tumor growth. Together, the work demonstrates the efficacy of this drug delivery system, and the in vivo effectiveness of this sericin-based optical monitoring strategy, providing a potential approach for improving hydrogel design toward optimal efficiency and safety of chemotherapies, which may be widely applicable to other drug delivery systems. PMID:26900631

  17. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-03-31

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms. PMID:26996157

  18. Solution structure of eggcase silk protein and its implications for silk fiber formation.

    PubMed

    Lin, Zhi; Huang, Weidong; Zhang, Jingfeng; Fan, Jing-Song; Yang, Daiwen

    2009-06-01

    Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with alpha-helical and random coil structures in silk glands into insoluble fibers with mainly beta-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a approximately 366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at > or = 37 degrees C and a protein concentration of > 0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks. PMID:19458259

  19. Laser Ablation of Silk Protein (Fibroin) Films

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yasuyuki; Adachi, Hisanori; Yamada, Kazushi; Miyasaka, Hiroshi; Itaya, Akira

    2002-07-01

    Fibroin is the main protein component of silk and is expected to have functional applications in bioelectronics and medicine. We investigated nanosecond (ns) pulsed laser ablation of solid fibroin films with/without a dye as a photosensitizer. Laser lights at 248 nm and 532/355/351 nm excited the peptide bond of fibroin and the dye, respectively. The neat film irradiated at 248 nm was scarcely accessible to etching and swelling, and instead, a microscopic pattern (structure) was formed. In contrast, for ablation of the doped film at 532/355/351 nm, we found marked swelling (height 500 ?m) and deep etching (depth 10 ?m) on the irradiated surfaces. The dye-photosensitized ablation was brought about by a photothermal mechanism, whereas ablation of neat films may be induced by another process, such as a photochemical one. The ablation processes are discussed in terms of the properties of fibroin and the mode of excitation.

  20. Engineered spider silk protein-based composites for drug delivery.

    PubMed

    Hardy, John G; Leal-Egaa, Aldo; Scheibel, Thomas R

    2013-10-01

    Silk protein-based materials are promising materials for the delivery of drugs and other active ingredients, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) in combination with either a polyester (polycaprolactone) or a polyurethane (pellethane), and their physical properties are described. The release profiles are affected by both the film composition and the presence of enzymes, and release can be observed over a period of several weeks. Such silk-based composites have potential as drug eluting biocompatible coatings or implantable devices. PMID:23881554

  1. Bioengineered Chimeric Spider Silk-Uranium Binding Proteins

    PubMed Central

    Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.

    2014-01-01

    Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989

  2. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins

    PubMed Central

    Scheibel, Thomas

    2004-01-01

    Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due to their highly territorial and cannibalistic nature. Before spider silks can be copied or mimicked, not only the sequence of the underlying proteins but also their functions have to be resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various expression hosts have been reported previously. A new protein engineering approach, which combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that closely resemble silk proteins and that can be produced at high yields, which provides a basis for cost-efficient large scale production of spider silk-like proteins. PMID:15546497

  3. Controlled hydrogel formation of a recombinant spider silk protein.

    PubMed

    Schacht, Kristin; Scheibel, Thomas

    2011-07-11

    Due to their biocompatibility, biodegradability, and low immunogenicity, recombinant spider silk proteins have a high potential for a variety of applications when processed into morphologies such as films, capsules, beads, or hydrogels. Here, hydrogels made of the engineered and recombinantly produced spider silk protein eADF4(C16) were analyzed in detail. It has previously been shown that eADF4(C16) nanofibrils self-assemble by a mechanism of nucleation-aggregation, providing the basis of silk hydrogels. We focused on establishing a reproducible gelation process by employing different protein concentrations, chemical crosslinking, and functionalization of eADF4(C16) with fluorescein. Fluorescein strongly influenced assembly as well as the properties of the hydrogels, such as pore sizes and mechanical behavior, possibly due to its interference with packing of silk nanofibrils during hydrogel formation. PMID:21612299

  4. Carbon dioxide induced silk protein gelation for biomedical applications.

    PubMed

    Floren, Michael L; Spilimbergo, Sara; Motta, Antonella; Migliaresi, Claudio

    2012-07-01

    We present a novel method to fabricate silk fibroin hydrogels using high pressure carbon dioxide (CO(2)) as a volatile acid without the need for chemical cross-linking agents or surfactants. The simple and efficient recovery of CO(2) post processing results in a remarkably clean production method offering tremendous benefit toward materials processing for biomedical applications. Further, with this novel technique we reveal that silk protein gelation can be considerably expedited under high pressure CO(2) with the formation of extensive ?-sheet structures and stable hydrogels at processing times less than 2 h. We report a significant influence of the high pressure CO(2) processing environment on silk hydrogel physical properties such as porosity, sample homogeneity, swelling behavior and compressive properties. Microstructural analysis revealed improved porosity and homogeneous composition among high pressure CO(2) specimens in comparison to the less porous and heterogeneous structures of the citric acid control gels. The swelling ratios of silk hydrogels prepared under high pressure CO(2) were significantly reduced compared to the citric acid control gels, which we attribute to enhanced physical cross-linking. Mechanical properties were found to increase significantly for the silk hydrogels prepared under high pressure CO(2), with a 2- and 3-fold increase in the compressive modulus of the 2 and 4 wt % silk hydrogels over the control gels, respectively. We adopted a semiempirical theoretical model to elucidate the mechanism of silk protein gelation demonstrated here. Mechanistically, the rate of silk protein gelation is believed to be a function of the kinetics of solution acidification from absorbed CO(2) and potentially accelerated by high pressure effects. The attractive features of the method described here include the acceleration of stable silk hydrogel formation, free of residual mineral acids or chemical cross-linkers, reducing processing complexity, and avoiding adverse biological responses, while providing direct manipulation of hydrogel physical properties for tailoring toward specific biomedical applications. PMID:22657735

  5. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells?

    PubMed Central

    Song, Chengjun; Yang, Zhenjun; Zhong, Meirong; Chen, Zhihong

    2013-01-01

    Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L46 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells. PMID:25206693

  6. Tubuliform silk protein: A protein with unique molecular characteristics and mechanical properties in the spider silk fibroin family

    NASA Astrophysics Data System (ADS)

    Tian, M.; Lewis, R. V.

    2006-02-01

    Orb-web weavers can produce up to six different types of silk and a glue for various functions. Tubuliform silk is unique among them due to its distinct amino acid composition, specific time of production, and atypical mechanical properties. To study the protein composing this silk, tubuliform gland cDNA libraries were constructed from three orb-weaving spiders Argiope aurantia, Araneus gemmoides, and Nephila clavipes. Amino acid composition comparison between the predicted tubuliform silk protein sequence (TuSp1) and the corresponding gland protein confirms that TuSp1 is the major component in tubuliform gland in three spiders. Sequence analysis suggests that TuSp1 shares no significant similarity with its paralogues, while it has conserved sequence motifs with the most primitive spider, Euagrus chisoseus silk protein. The presence of large side-chain amino acids in TuSp1 sequence is consistent with the frustrated ?-sheet crystalline structure of tubuliform silk observed in transmission electron microscopy. Repeat unit comparison within species as well as among three spiders exhibits high sequence conservation. Parsimony analysis based on carboxy terminal sequence shows that Argiope and Araneus are more closely related than either is to Nephila which is consistent with phylogenetic analysis based on morphological evidence.

  7. A Neuroprotective Sericin Hydrogel As an Effective Neuronal Cell Carrier for the Repair of Ischemic Stroke.

    PubMed

    Wang, Zheng; Wang, Jian; Jin, Yang; Luo, Zhen; Yang, Wen; Xie, Hongjian; Huang, Kai; Wang, Lin

    2015-11-11

    Ischemic stroke causes extensive cellular loss that impairs brain functions, resulting in severe disabilities. No effective treatments are currently available for brain tissue regeneration. The need to develop effective therapeutic approaches for treating stroke is compelling. A tissue engineering approach employing a hydrogel carrying both cells and neurotrophic cytokines to damaged regions is an encouraging alternative for neuronal repair. However, this approach is often challenged by low in vivo cell survival rate, and low encapsulation efficiency and loss of cytokines. To address these limitations, we propose to develop a biomaterial that can form a matrix capable of improving in vivo survival of transplanted cells and reducing in vivo loss of cytokines. Here, we report that using sericin, a natural protein from silk, we have fabricated a genipin-cross-linked sericin hydrogel (GSH) with porous structure and mild swelling ratio. The GSH supports the effective attachment and growth of neurons in vitro. Strikingly, our data reveal that sericin protein is intrinsically neurotrophic and neuroprotective, promoting axon extension and branching as well as preventing primary neurons from hypoxia-induced cell death. Notably, these functions are inherited by the GSH's degradation products, which might spare a need of incorporating costly cytokines. We further demonstrate that this neurotrophic effect is dependent on the Lkb1-Nuak1 pathway, while the neuroprotective effect is realized through regulating the Bcl-2/Bax protein ratio. Importantly, when transplanted in vivo, the GSH gives a high cell survival rate and allows the cells to continuously proliferate. Together, this work unmasks the neurotrophic and neuroprotective functions for sericin and provides strong evidence justifying the GSH's suitability as a potential neuronal cell delivery vehicle for ischemic stroke repair. PMID:26478947

  8. Silk-tropoelastin protein films for nerve guidance

    PubMed Central

    White, James D.; Wang, Siran; Weiss, Anthony S.; Kaplan, David L.

    2014-01-01

    Peripheral nerve regeneration may be enhanced through the use of biodegradable thin film biomaterials as highly tuned inner nerve conduit liners. Dorsal root ganglion neuron and Schwann cell responses were studied on protein films comprised of silk fibroin blended with recombinant human tropoelastin protein. Tropoelastin significantly improved neurite extension and enhanced Schwann cell process length and cell area, while the silk provided a robust biomaterial template. Silk-tropoelastin blends afforded a 2.4 fold increase in neurite extension, when compared to silk films coated with poly-d-lysine. When patterned by drying on grooved polydimethylsiloxane (3.5 µm groove width, 0.5 µm groove depth), these protein blends induced both neurite and Schwann cell process alignment. Neurons were functional as assessed using patch-clamping, and displayed action potentials similar to those cultured on poly(lysine)-coated glass. Taken together, silk-tropoelastin films offer useful biomaterial interfacial platforms for nerve cell control which can be considered for neurite guidance, disease models for neuropathies, and surgical peripheral nerve repairs. PMID:25481743

  9. Silk-tropoelastin protein films for nerve guidance.

    PubMed

    White, James D; Wang, Siran; Weiss, Anthony S; Kaplan, David L

    2015-03-01

    Peripheral nerve regeneration may be enhanced through the use of biodegradable thin film biomaterials as highly tuned inner nerve conduit liners. Dorsal root ganglion neuron and Schwann cell responses were studied on protein films comprising silk fibroin blended with recombinant human tropoelastin protein. Tropoelastin significantly improved neurite extension and enhanced Schwann cell process length and cell area, while the silk provided a robust biomaterial template. Silk-tropoelastin blends afforded a 2.4-fold increase in neurite extension, when compared to silk films coated with poly-d-lysine. When patterned by drying on grooved polydimethylsiloxane (3.5 ?m groove width, 0.5 ?m groove depth), these protein blends induced both neurite and Schwann cell process alignment. Neurons were functional as assessed using patch-clamping, and displayed action potentials similar to those cultured on poly(lysine)-coated glass. Taken together, silk-tropoelastin films offer useful biomaterial interfacial platforms for nerve cell control, which can be considered for neurite guidance, disease models for neuropathies and surgical peripheral nerve repairs. PMID:25481743

  10. Characterization of silk gland ribosomes from a bivoltine caddisfly, Stenopsyche marmorata: translational suppression of a silk protein in cold conditions.

    PubMed

    Nomura, Takaomi; Ito, Miho; Kanamori, Mai; Shigeno, Yuta; Uchiumi, Toshio; Arai, Ryoichi; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku

    2016-01-01

    Larval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S.marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter. We recently reported constant transcript abundance of S.marmorata silk protein 1 (Smsp-1), a core S.marmorata silk fiber component, in all seasons, implying translational suppression in the silk gland during winter. Herein, we prepared and characterized silk gland ribosomes from seasonally collected S.marmorata larvae. Ribosomes from silk glands immediately frozen in liquid nitrogen (LN2) after dissection exhibited comparable translation elongation activity in spring, summer, and autumn. Conversely, silk glands obtained in winter did not contain active ribosomes and Smsp-1. Ribosomes from silk glands immersed in ice-cold physiological saline solution for approximately 4h were translationally inactive, despite summer collection and Smsp-1 expression. The ribosomal inactivation occurs because of defects in the formation of 80S ribosomes, presumably due to splitting of 60S subunits containing 28S rRNA with central hidden break, in response to cold stress. These results suggest a novel-type ribosome-regulated translation control mechanism. PMID:26646291

  11. Role of pH and charge on silk protein assembly in insects and spiders

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Hensman, J.; Knight, D. P.; Lewis, R. V.; Kaplan, D. L.

    2006-02-01

    Silk fibers possess impressive mechanical properties, dependant, in part, on the crystalline ?-sheets silk II conformation. The transition to silk II from soluble silk I-like conformation in silk glands, is thought to originate in the spinning ducts immediately before the silk is drawn down into a fiber. However the assembly process of these silk molecules into fibers, whether in silkworms or spiders, is not well understood. Extensional flow, protein concentration, pH and metal ion concentrations are thought to be most important in in vivo silk processing and in affecting structural conformations. We look at how parameters such as pH, [Ca2+], [K+], and [Cu2+], and water content, interact with the domain structure of silk proteins towards the successful storage and processing of these concentrated hydrophobic silk proteins. Our recent domain mapping studies of all known silk proteins, and 2D Raman spectroscopy, NMR, and DLS studies performed on sections of silkworm gland, suggest that low pH and gradual water removal promote intermolecular over intramolecular hydrogen bonding. This discussion helps to provide the necessary ground rules towards the design of silk protein analogues with specific hydrophobicity and charge profiles to optimize expression, solubility and assembly with implications in structural biology and material science.

  12. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    PubMed

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results. PMID:25712559

  13. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-07-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted `silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers.

  14. Bombyx mori silk protein films microprocessing with a nanosecond ultraviolet laser and a femtosecond laser workstation: theory and experiments

    NASA Astrophysics Data System (ADS)

    Lazare, S.; Sionkowska, A.; Zaborowicz, M.; Planecka, A.; Lopez, J.; Dijoux, M.; Loumna, C.; Hernandez, M.-C.

    2012-01-01

    Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments "horizontally suspended by both ends" (0.25 ?m diameter and 10 ?m length) of silk biopolymer were observed upon irradiation with large fluences.

  15. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  16. Silk: A Potential Medium for Tissue Engineering

    PubMed Central

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Objective: Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Methods: Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. Results: This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. Conclusion: The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs. PMID:18997857

  17. Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs.

    PubMed

    Huang, Lei; Tao, Kaixiong; Liu, Jia; Qi, Chao; Xu, Luming; Chang, Panpan; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-16

    The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs' side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin's application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of folate-conjugated sericin nanoparticles with cancer-targeting capability for pH-responsive release of doxorubicin (these nanoparticles are termed "FA-SND"). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo-cytotoxicity. Together, this study suggests that these FA-SND nanoparticles may be a potentially effective carrier particularly useful for delivering hydrophobic chemotherapeutic agents for treating cancers with high-level expression of folate receptors. PMID:26855027

  18. Stability of Silk and Collagen Protein Materials in Space

    PubMed Central

    Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.

    2013-01-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951

  19. Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition.

    PubMed

    Blamires, Sean J; Liao, Chen-Pan; Chang, Chung-Kai; Chuang, Yu-Chun; Wu, Chung-Lin; Blackledge, Todd A; Sheu, Hwo-Shuenn; Tso, I-Min

    2015-04-13

    Spider major ampullate (MA) silk is sought after as a biomimetic because of its high strength and extensibility. While the secondary structures of MA silk proteins (spidroins) influences silk mechanics, structural variations induced by spinning processes have additional effects. Silk properties may be induced by spiders feeding on diets that vary in certain nutrients, thus providing researchers an opportunity to assess the interplay between spidroin chemistry and spinning processes on the performance of MA silk. Here, we determined the relative influence of spidroin expression and spinning processes on MA silk mechanics when Nephila pilipes were fed solutions with or without protein. We found that spidroin expression differed across treatments but that its influence on mechanics was minimal. Mechanical tests of supercontracted fibers and X-ray diffraction analyses revealed that increased alignment in the amorphous region and to a lesser extent in the crystalline region led to increased fiber strength and extensibility in spiders on protein rich diets. PMID:25764227

  20. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  1. Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor.

    PubMed

    Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou

    2014-01-01

    Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576

  2. Structural Model for the Spider Silk Protein Spidroin-1.

    PubMed

    dos Santos-Pinto, Jos Roberto Aparecido; Arcuri, Helen Andrade; Priewalder, Helga; Salles, Heliana Clara; Palma, Mario Sergio; Lubec, Gert

    2015-09-01

    Most reports about the 3-D structure of spidroin-1 have been proposed for the protein in solid state or for individual domains of these proteins. A gel-based mass spectrometry strategy using collision-induced dissociation (CID) and electron-transfer dissociation (ETD) fragmentation methods was used to completely sequence spidroins-1A and -1B and to assign a series of post-translational modifications (PTMs) on to the spidroin sequences. A total of 15 and 16 phosphorylation sites were detected on spidroin-1A and -1B, respectively. In this work, we present the nearly complete amino acid sequence of spidroin-1A and -1B, including the nonrepetitive N- and C-terminal domains and a highly repetitive central core. We also described a fatty acid layer surrounding the protein fibers and PTMs in the sequences of spidroin-1A and -1B, including phosphorylation. Thus, molecular models for phosphorylated spidroins were proposed in the presence of a mixture fatty acids/water (1:1) and submitted to molecular dynamics simulation. The resulting models presented high content of coils, a higher percentage of ?-helix, and an almost neglected content of 310-helix than the previous models. Knowledge of the complete structure of spidroins-1A and -1B would help to explain the mechanical features of silk fibers. The results of the current investigation provide a foundation for biophysical studies of the mechanoelastic properties of web-silk proteins. PMID:26211688

  3. Synthesis and study of sericin-g-PLA

    NASA Astrophysics Data System (ADS)

    Saetae, S.; Magaraphan, R.

    2015-05-01

    In this paper we present an experiment for bulk synthesis of the sericin-g-PLA by using Sn(Oct)2 as catalyst and study the effect of Thai silk cocoon species (Dok Bua, Luang Pirote, Nang Noi and Nang Lai) on properties of the sericin-g-PLA. We investigated the chemical structure of the grafted copolymers by using FTIR and GPC. Moreover, the grafting percentage was determined by soxhlet extaction. The IR spectra of extracted sample showed peaks at 1188 and 1215 cm-1 that assigned to the symmetric C-O-C stretching modes of the ester group. The methyl rocking stretching and C-CH3 vibration of polylactide appeared at 1130 and 1045 cm-1, respectively. The peak positioned 3440 cm-1 belonged to the hydroxyl group and the amino group of sericin which became less after polymerized with lactide. These evidences suggested that the lactide was reacted with sericin. Also, the molecular weight of the grafted copolymers were in range from 5.2 to 6.1 kg/mole. And Nang Lai-g-PLA showed the highest grafting percentage of the grafted copolymers.

  4. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.

    PubMed

    Heim, Markus; Rmer, Lin; Scheibel, Thomas

    2010-01-01

    Biopolymers fulfil a variety of different functions in nature. They conduct various processes inside and outside cells and organisms, with a functionality ranging from storage of information to stabilization, protection, shaping, transport, cellular division, or movement of whole organisms. Within the plethora of biopolymers, the most sophisticated group is of proteinaceous origin: the cytoskeleton of a cell is made of protein filaments that aid in pivotal processes like intracellular transport, movement, and cell division; geckos use a distinct arrangement of keratin-like filaments on their toes which enable them to walk up smooth surfaces, such as walls, and even upside down across ceilings; and spiders spin silks that are extra-corporally used for protection of offspring and construction of complex prey traps. The following tutorial review describes the hierarchical organization of protein fibers, using spider dragline silk as an example. The properties of a dragline silk thread originate from the strictly controlled assembly of the underlying protein chains. The assembly procedure leads to protein fibers showing a complex hierarchical organization comprising three different structural phases. This structural organization is responsible for the outstanding mechanical properties of individual fibers, which out-compete even those of high-performance artificial fibers like Kevlar. Web-weaving spiders produce, in addition to dragline silk, other silks with distinct properties, based on slightly variant constituent proteins--a feature that allows construction of highly sophisticated spider webs with well designed architectures and with optimal mechanical properties for catching prey. PMID:20023846

  5. Biological responses to spider silk-antibiotic fusion protein

    PubMed Central

    Gomes, Slvia; Gallego-Llamas, Jabier; Leonor, Isabel B.; Mano, Joo F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    The development of a new generation of multifunctional biomaterials is a continual goal for the field of materials science. The in vivo functional behaviour of a new fusion protein that combines the mechanical properties of spider silk with the antimicrobial properties of hepcidin was addressed in this study. This new chimeric protein, termed 6mer+hepcidin, fuses spider dragline consensus sequences (6mer) and the antimicrobial peptide hepcidin as we have recently described, with retention of bactericidal activity and low cytotoxicity. In the present study mice subcutaneous implants were studied to access the in vivo biological response to the 6mer+hepcidin, which were compared with controls of silk alone (6mer), poly-lactic-glycolic-acid (PLGA) films and empty defects. Along with visual observations, flow cytometry and histology analyses were used to determine the number and type of inflammatory cells at the implantation site. The results show a mild to low inflammatory reaction to the implanted materials and no apparent differences between the 6mer+hepcidin films and the other experimental controls, demonstrating that the new fusion protein has good in vivo biocompatibility, while maintaining antibiotic function. PMID:22514077

  6. Processing and modification of films made from recombinant spider silk proteins

    NASA Astrophysics Data System (ADS)

    Huemmerich, D.; Slotta, U.; Scheibel, T.

    2006-02-01

    Protein films represent an interesting class of materials with various possibilities for applications. We investigated films made of two different synthetic spider silk proteins derived from the garden spiders (Araneus diadematus) two dragline silk proteins ADF-3 and ADF-4. Protein films cast from hexafluoroisopropanol solutions displayed a predominantly ?-helical secondary structure. Processing such films with potassium phosphate or methanol resulted in a transition to a ?-sheet rich structure. While as-cast films could be dissolved in water, processed ?-sheet rich films were water insoluble. The chemical stability of processed films depended on the amino acid sequence of the respective protein employed. As a proof of principle, fluorescent probes or enzymes were covalently attached to the film surface. The presented approach provides a basis for designing tailor-made protein films using silk proteins as scaffold, in which the film properties can be controlled by genetic engineering of the underlying silks.

  7. Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins.

    PubMed

    Pham, Thanh; Chuang, Tyler; Lin, Albert; Joo, Hyun; Tsai, Jerry; Crawford, Taylor; Zhao, Liang; Williams, Caroline; Hsia, Yang; Vierra, Craig

    2014-11-10

    Dragline silk has been proposed to contain two main protein constituents, MaSp1 and MaSp2. However, the mechanical properties of synthetic spider silks spun from recombinant MaSp1 and MaSp2 proteins have yet to approach natural fibers, implying the natural spinning dope is missing critical factors. Here we report the discovery of novel molecular constituents within the spinning dope that are extruded into dragline silk. Protein studies of the liquid spinning dope from the major ampullate gland, coupled with the analysis of dragline silk fibers using mass spectrometry, demonstrate the presence of a new family of low-molecular-weight cysteine-rich proteins (CRPs) that colocalize with the MA fibroins. Expression of the CRP family members is linked to dragline silk production, specifically MaSp1 and MaSp2 mRNA synthesis. Biochemical data support that CRP molecules are secreted into the spinning dope and assembled into macromolecular complexes via disulfide bond linkages. Sequence analysis supports that CRP molecules share similarities to members that belong to the cystine slipknot superfamily, suggesting that these factors may have evolved to increase fiber toughness by serving as molecular hubs that dissipate large amounts of energy under stress. Collectively, our findings provide molecular details about the components of dragline silk, providing new insight that will advance materials development of synthetic spider silk for industrial applications. PMID:25259849

  8. Review the role of terminal domains during storage and assembly of spider silk proteins.

    PubMed

    Eisoldt, Lukas; Thamm, Christopher; Scheibel, Thomas

    2012-06-01

    Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process. PMID:22057429

  9. Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons.

    PubMed

    Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2014-05-01

    In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. PMID:24632065

  10. Recombinant spider silk particles for controlled delivery of protein drugs.

    PubMed

    Hofer, Markus; Winter, Gerhard; Myschik, Julia

    2012-02-01

    The engineered and recombinant spider silk protein eADF4(C16) has been shown to be a promising biomaterial for the use as drug delivery system. In previous studies, eADF4(C16) particles were loaded with low molecular weight drugs exhibiting a positive net-charge and sufficient hydrophobicity. Here, we demonstrate that also macromolecular drugs like proteins can be loaded on eADF4(C16) particles. Using lysozyme as a model protein, remarkably high loading of up to 30% [w/w] was feasible and high loading efficiencies of almost 100% were obtained. Furthermore, using confocal laser scanning microscopy, it is demonstrated that fluorescently labeled lysozyme is not only adsorbed to the negatively charged particles' surface, but also diffusing into the matrix of eADF4(C16) particles. The release of lysozyme is shown to be dependent on the ionic strength and pH of the release medium. To improve the long-term stability of eADF4(C16) containing dispersions, lyophilization is shown as a suitable tool. Disaccharides (sucrose, trehalose) and mannitol served as stabilizers to prevent aggregation and/or particle degradation during freeze-drying. The slowly biodegradable eADF4(C16) particles are a promising new particulate drug carrier system for the delivery of susceptible drugs like therapeutic proteins. PMID:22079006

  11. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.

    PubMed

    Motriuk-Smith, Dagmara; Lewis, Randolph V

    2004-01-01

    Major ampullate (dragline) silk is the main web component as well as the silk that spiders use for a lifeline when they fall. This silk has a breaking stress of 4.6 GPa, which is similar to that of Kevlar. The majority of the previous mechanical testing studies involved the major ampullate silk from orb-weaving spiders. To date, there have been no reports on dragline silk mechanical properties from a cob-weaver, brown widow Latrodectus geometricus. L. geometricus dragline was found to be composed of MaSp1, MaSp2, and MaSp-like proteins all of which have highly conserved amino acid motifs, especially the GGX, GA and poly A for MaSp1 and GPGGX and poly A for MaSp2. These sequences are the same as those found in the silks of orb-weaving spiders. To determine if protein sequences influence the material properties of the silk, mechanical testing was performed on single strands of silk fibers from adult female L. geometricus spiders. The 3 cm long silk fibers were tested for breaking stress and strain with a MTS Synergie 100 mechanical testing system using a 50 g load cell with the cross-head speed set at 10 mm/min. The breaking stress and strain were measured for 20 replicate samples and averaged. The values of 0.83 +/- 0.19 GPa for stress and 0.14 +/- 0.06 for strain shows that brown widow dragline is weaker than the orb-weaving spiders. PMID:15133936

  12. Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

    PubMed Central

    Xu, Lingling; Rainey, Jan K.; Meng, Qing; Liu, Xiang-Qin

    2012-01-01

    Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strength. AcSp1 in Argiope trifasciata contains a 200-aa sequence motif that is repeated at least 14 times. Here, we produced in E. coli recombinant proteins consisting of only one to four of the 200-aa AcSp1 repeats, designated W1 to W4. We observed that purified W2, W3 and W4 proteins could be induced to form silk-like fibers by shear forces in a physiological buffer. The fibers formed by W4 were ?3.4 m in diameter and up to 10 cm long. They showed an average tensile strength of 115 MPa, elasticity of 37%, and toughness of 34 J cm?3. The smaller W2 protein formed fewer fibers and required a higher protein concentration to form fibers, whereas the smallest W1 protein did not form silk-like fibers, indicating that a minimum of two of the 200-aa repeats was required for fiber formation. Microscopic examinations revealed structural features indicating an assembly of the proteins into spherical structures, fibrils, and silk-like fibers. CD and Raman spectral analysis of protein secondary structures suggested a transition from predominantly ?-helical in solution to increasingly ?-sheet in fibers. PMID:23209681

  13. Bio-inspired Silicification of Silica-binding Peptide-Silk Protein Chimeras: Comparison of Chemically and Genetically Produced Proteins

    PubMed Central

    Canabady-Rochelle, Laetitia L.S.; Belton, David J.; Deschaume, Olivier; Currie, Heather A.; Kaplan, David L.; Perry, Carole C.

    2012-01-01

    Novel protein chimeras constituted of silk and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG]n) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 25 equivalents of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial compatible conditions the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared to the genetically derived variants. In all cases, the structure of the protein / chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source) and approach to synthesis (genetic or chemical) can be used to tune the properties of the composite materials formed and is a general approach which can be used to prepare a range of materials for biomedical and sensor based applications. PMID:22229696

  14. Light can transform the secondary structure of silk protein

    NASA Astrophysics Data System (ADS)

    Tsuboi, Y.; Ikejiri, T.; Shiga, S.; Yamada, K.; Itaya, A.

    Fibroin is the main component of silk and is expected to be used as a novel functional material in medicine and bioelectronics. The main secondary structures of this protein are of the random-coil and the ?-sheet types. In this study, we carried out laser-induced transformation of the secondary structure, from the random-coil type to the ?-sheettype, in solid fibroin films. We prepared two types of fibroin films with the random-coil structure. One is a fibroin film doped with a dye as a photosensitizer with a small amount (1 wt%), and the other is a neat fibroin film. The former was excited at 532 nm and the latter was excited at 266 nm. Irradiations were carried out with fluences much lower than each ablation threshold. The excitation of the dye at 532 nm did not affect the secondary structure of the random-coil type. By contrast, 266-nm laser irradiation, which excites tryptophan (an amino-acid residue) involved in fibroin, created the ?-sheetdomain in the film. The structural transformation was revealed by infrared absorption spectroscopy and atomic force microscopy.

  15. Carbonization of a stable ?-sheet-rich silk protein into a pseudographitic pyroprotein

    NASA Astrophysics Data System (ADS)

    Cho, Se Youn; Yun, Young Soo; Lee, Sungho; Jang, Dawon; Park, Kyu-Young; Kim, Jae Kyung; Kim, Byung Hoon; Kang, Kisuk; Kaplan, David L.; Jin, Hyoung-Joon

    2015-05-01

    Silk proteins are of great interest to the scientific community owing to their unique mechanical properties and interesting biological functionality. In addition, the silk proteins are not burned out following heating, rather they are transformed into a carbonaceous solid, pyroprotein; several studies have identified potential carbon precursors for state-of-the-art technologies. However, no mechanism for the carbonization of proteins has yet been reported. Here we examine the structural and chemical changes of silk proteins systematically at temperatures above the onset of thermal degradation. We find that the ?-sheet structure is transformed into an sp2-hybridized carbon hexagonal structure by simple heating to 350 C. The pseudographitic crystalline layers grew to form highly ordered graphitic structures following further heating to 2,800 C. Our results provide a mechanism for the thermal transition of the protein and demonstrate a potential strategy for designing pyroproteins using a clean system with a catalyst-free aqueous wet process for in vivo applications.

  16. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in l-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form ?-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  17. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    PubMed

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce ?-sheet formation. A higher density of condensed silica formed on the films containing the lowest ?-sheet content while the films with the highest ?-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the ?-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. PMID:25462851

  18. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  19. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification

    PubMed Central

    Plowright, Robyn; Dinjaski, Nina; Zhou, Shun; Belton, David J.; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins. PMID:26989487

  20. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning

    PubMed Central

    Teul, Florence; Cooper, Alyssa R; Furin, William A; Bittencourt, Daniela; Rech, Elibio L; Brooks, Amanda; Lewis, Randolph V

    2009-01-01

    The extreme strength and elasticity of spider silks originate from the modular nature of their repetitive proteins. To exploit such materials and mimic spider silks, comprehensive strategies to produce and spin recombinant fibrous proteins are necessary. This protocol describes silk gene design and cloning, protein expression in bacteria, recombinant protein purification and fiber formation. With an improved gene construction and cloning scheme, this technique is adaptable for the production of any repetitive fibrous proteins, and ensures the exact reproduction of native repeat sequences, analogs or chimeric versions. The proteins are solubilized in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at 2530% (wt/vol) for extrusion into fibers. This protocol, routinely used to spin single micrometer-size fibers from several recombinant silk-like proteins from different spider species, is a powerful tool to generate protein libraries with corresponding fibers for structurefunction relationship investigations in protein-based biomaterials. This protocol may be completed in 40 d. PMID:19229199

  1. Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics.

    PubMed

    Tabatabai, A Pasha; Kaplan, David L; Blair, Daniel L

    2015-01-28

    In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly versatile and can be produced using electrolysis with small DC electric fields. We characterize the linear and nonlinear rheological behavior of e-gels to provide fundamental insights into these distinct protein-based materials. We observe that e-gels form robust biopolymer networks that exhibit distinctive strain hardening and are recoverable from strains as large as ?=27, i.e. 2700%. We propose a simple microscopic model that is consistent with local restructuring of single proteins within the e-gel network. PMID:25489795

  2. Anti-fungal activity of maize silk proteins and role of chitinases in Aspergillus flavus resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins were extracted from silks of two Aspergillus flavus resistant maize (Zea mays L.) inbreds, two susceptible inbreds, and one intermediately-resistant inbred grown in the field. Two-dimensional gel electrophoresis was used to identify and compare expression patterns of the proteins in the m...

  3. Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses

    PubMed Central

    Hu, Xiao; Tang-Schomer, Min D.; Huang, Wenwen; Xia, Xiao-Xia; Weiss, Anthony S.

    2014-01-01

    Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge ?36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biomaterial platform. The alloys with weak positive charges (silk/tropoelastin mass ratio 75/25, net charge around +16) significantly improved the formation of neuronal networks and maintained cell viability of rat cortical neurons after 10 days in vitro. The data point to these protein alloys as an alternative to commonly used poly-L-lysine (PLL) coatings or other charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering. PMID:25093018

  4. Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.

  5. Protein composition of silk filaments spun under water by caddisfly larvae.

    PubMed

    Yonemura, Naoyuki; Sehnal, Frantisek; Mita, Kazuei; Tamura, Toshiki

    2006-12-01

    Silk fiber produced by the larvae of Trichoptera (caddisflies) and Lepidoptera (moths and butterflies) is composed of two filaments embedded in a layer of glue proteins. In an aerial environment Lepidoptera spin silk filaments assembled from heavy chain fibroin (H-fibroin), light chain fibroin (L-fibroin), and the glycoprotein P25. The silk filament of caddisflies, which is produced and persists in water, contained homologues of H-fibroin (>500 kDa) and L-fibroin (25 kDa) but not of P25. The amphiphilic nature of H-fibroin and its high content of charged amino acids probably facilitate the secretion and storage of a covalently linked L-fibroin/H-fibroin dimer in the absence of P25. Several types of short amino acid motifs were arranged in orderly fashion in the regularly reiterated repeats that made up more than 95% of the length of H-fibroin. The H-fibroins of Hydropsyche angustipennis and Limnephilus decipiens from different caddisfly suborders contained GPXGX, SXSXSXSX, and GGX motifs such as the lepidopteran and spider silks but differed from them by a lack of poly(A) and poly(GA) motifs. H-fibroins of both caddisfly species harbored a conserved repeat of 31 residues but were distinguished by a few species-specific motifs and their organization in higher order repeats. Structural differences may be related to the silk function as a catching net in H. angustipennis and a stitching fiber in L. decipiens. PMID:17154465

  6. Integration of silk protein in organic and light-emitting transistors.

    PubMed

    Capelli, R; Amsden, J J; Generali, G; Toffanin, S; Benfenati, V; Muccini, M; Kaplan, D L; Omenetto, F G; Zamboni, R

    2011-07-01

    We present the integration of a natural protein into electronic and optoelectronic devices by using silk fibroin as a thin film dielectric in an organic thin film field-effect transistor (OFET) ad an organic light emitting transistor device (OLET) structures. Both n- (perylene) and p-type (thiophene) silk-based OFETs are demonstrated. The measured electrical characteristics are in agreement with high-efficiency standard organic transistors, namely charge mobility of the order of 10(-2) cm(2)/Vs and on/off ratio of 10(4). The silk-based optolectronic element is an advanced unipolar n-type OLET that yields a light emission of 100nW. PMID:22899899

  7. Integration of silk protein in organic and light-emitting transistors

    PubMed Central

    Capelli, R.; Amsden, J. J.; Generali, G.; Toffanin, S.; Benfenati, V.; Muccini, M.; Kaplan, D. L.; Omenetto, F. G.; Zamboni, R.

    2012-01-01

    We present the integration of a natural protein into electronic and optoelectronic devices by using silk fibroin as a thin film dielectric in an organic thin film field-effect transistor (OFET) ad an organic light emitting transistor device (OLET) structures. Both n- (perylene) and p-type (thiophene) silk-based OFETs are demonstrated. The measured electrical characteristics are in agreement with high-efficiency standard organic transistors, namely charge mobility of the order of 10-2 cm2/Vs and on/off ratio of 104. The silk-based optolectronic element is an advanced unipolar n-type OLET that yields a light emission of 100nW. PMID:22899899

  8. Reinforcing Silk Scaffolds with Silk Particles

    PubMed Central

    Rajkhowa, Rangam; Gil, Eun Seok; Kluge, Jonathan; Numata, Keiji; Wang, Lijing; Kaplan, David L.

    2014-01-01

    Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds. PMID:20166230

  9. Protein unfolding versus ?-sheet separation in spider silk nanocrystals

    NASA Astrophysics Data System (ADS)

    Alam, Parvez

    2014-03-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of ?-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. ?-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. ?-sheet unfolding yields a secondary strain hardening effect once the ?-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-?-sheet separation strengths against residual intra-?-sheet unfolding strengths.

  10. Structural changes of thin films from recombinant spider silk proteins upon post-treatment

    NASA Astrophysics Data System (ADS)

    Metwalli, E.; Slotta, U.; Darko, C.; Roth, S. V.; Scheibel, T.; Papadakis, C. M.

    2007-11-01

    Engineering of spider silk proteins offers the possibility to control their molecular sequence and thus their material properties. Spin coating was used to prepare films of engineered spider silk protein derived from the garden spiders ( Araneus diadematus) dragline silk protein ADF-4. A conformational transition from ?-helix to ?-sheet-rich structures upon methanol treatment of the films was detected by external reflection IR spectroscopy. We present direct evidence for this structural transformation using grazing-incidence X-ray diffraction (GIXRD) and small-angle scattering (GISAXS). The protein film structure after the methanol treatment consists mainly of ?-sheet polyalanine crystals dispersed in an amorphous protein matrix. The GIXRD intensity profiles show Bragg peaks from ?-sheet polyalanine crystallites having an average size of 7.5 nm. The non-uniform and large crystal size distributions within the film were explained based on the protein composition. The effect of the chemical nature of the interface on the protein film structure was investigated as well.

  11. Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein

    PubMed Central

    Cho, Se Youn; Yun, Young Soo; Lee, Sungho; Jang, Dawon; Park, Kyu-Young; Kim, Jae Kyung; Kim, Byung Hoon; Kang, Kisuk; Kaplan, David L.; Jin, Hyoung-Joon

    2015-01-01

    Silk proteins are of great interest to the scientific community owing to their unique mechanical properties and interesting biological functionality. In addition, the silk proteins are not burned out following heating, rather they are transformed into a carbonaceous solid, pyroprotein; several studies have identified potential carbon precursors for state-of-the-art technologies. However, no mechanism for the carbonization of proteins has yet been reported. Here we examine the structural and chemical changes of silk proteins systematically at temperatures above the onset of thermal degradation. We find that the β-sheet structure is transformed into an sp2-hybridized carbon hexagonal structure by simple heating to 350 °C. The pseudographitic crystalline layers grew to form highly ordered graphitic structures following further heating to 2,800 °C. Our results provide a mechanism for the thermal transition of the protein and demonstrate a potential strategy for designing pyroproteins using a clean system with a catalyst-free aqueous wet process for in vivo applications. PMID:25990218

  12. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    SciTech Connect

    Liu Yan; Yu Lian; Guo Xiuyang; Guo Tingqing; Wang Shengpeng; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  13. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins.

    PubMed

    Bogush, Vladimir G; Sokolova, Olga S; Davydova, Lyubov I; Klinov, Dmitri V; Sidoruk, Konstantin V; Esipova, Natalya G; Neretina, Tatyana V; Orchanskyi, Igor A; Makeev, Vsevolod Yu; Tumanyan, Vladimir G; Shaitan, Konstantin V; Debabov, Vladimir G; Kirpichnikov, Mikhail P

    2009-03-01

    Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins--spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 microm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel beta-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery. PMID:18839314

  14. Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells.

    PubMed

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 10.7 nm, and the average zeta potential was +13.33 0.3 mV. The SF coating on the SF-CSNP was 6.27 0.17 ?g/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  15. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    PubMed Central

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 10.7 nm, and the average zeta potential was +13.33 0.3 mV. The SF coating on the SF-CSNP was 6.27 0.17 ?g/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  16. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture

    PubMed Central

    Haritos, Victoria S.; Niranjane, Ajay; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Sutherland, Tara D.

    2010-01-01

    Onychophora are ancient, carnivorous soft-bodied invertebrates which capture their prey in slime that originates from dedicated glands located on either side of the head. While the biochemical composition of the slime is known, its unusual nature and the mechanism of ensnaring thread formation have remained elusive. We have examined gene expression in the slime gland from an Australian onychophoran, Euperipatoides rowelli, and matched expressed sequence tags to separated proteins from the slime. The analysis revealed three categories of protein present: unique high-molecular-weight proline-rich proteins, and smaller concentrations of lectins and small peptides, the latter two likely to act as protease inhibitors and antimicrobial agents. The predominant proline-rich proteins (200 kDa+) are composed of tandem repeated motifs and distinguished by an unusually high proline and charged residue content. Unlike the highly structured proteins such as silks used for prey capture by spiders and insects, these proteins lack ordered secondary structure over their entire length. We propose that on expulsion of slime from the gland onto prey, evaporative water loss triggers a glass transition change in the protein solution, resulting in adhesive and enmeshing thread formation, assisted by cross-linking of complementary charged and hydrophobic regions of the protein. Euperipatoides rowelli has developed an entirely new method of capturing prey by harnessing disordered proteins rather than structured, silk-like proteins. PMID:20519222

  17. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture.

    PubMed

    Haritos, Victoria S; Niranjane, Ajay; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Sutherland, Tara D

    2010-11-01

    Onychophora are ancient, carnivorous soft-bodied invertebrates which capture their prey in slime that originates from dedicated glands located on either side of the head. While the biochemical composition of the slime is known, its unusual nature and the mechanism of ensnaring thread formation have remained elusive. We have examined gene expression in the slime gland from an Australian onychophoran, Euperipatoides rowelli, and matched expressed sequence tags to separated proteins from the slime. The analysis revealed three categories of protein present: unique high-molecular-weight proline-rich proteins, and smaller concentrations of lectins and small peptides, the latter two likely to act as protease inhibitors and antimicrobial agents. The predominant proline-rich proteins (200 kDa+) are composed of tandem repeated motifs and distinguished by an unusually high proline and charged residue content. Unlike the highly structured proteins such as silks used for prey capture by spiders and insects, these proteins lack ordered secondary structure over their entire length. We propose that on expulsion of slime from the gland onto prey, evaporative water loss triggers a glass transition change in the protein solution, resulting in adhesive and enmeshing thread formation, assisted by cross-linking of complementary charged and hydrophobic regions of the protein. Euperipatoides rowelli has developed an entirely new method of capturing prey by harnessing disordered proteins rather than structured, silk-like proteins. PMID:20519222

  18. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    NASA Astrophysics Data System (ADS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  19. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.

    PubMed

    Leclerc, Jrmie; Lefvre, Thierry; Pottier, Fabien; Morency, Louis-Philippe; Lapointe-Verreault, Camille; Gagn, Stphane M; Auger, Michle

    2012-06-01

    The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins. PMID:21898365

  20. Engineered silk fibroin protein 3D matrices for in vitro tumor model.

    PubMed

    Talukdar, Sarmistha; Mandal, Mahitosh; Hutmacher, Dietmar W; Russell, Pamela J; Soekmadji, Carolina; Kundu, Subhas C

    2011-03-01

    3D in vitro model systems that are able to mimic the in vivo microenvironment are now highly sought after in cancer research. Antheraea mylitta silk fibroin protein matrices were investigated as potential biomaterial for in vitro tumor modeling. We compared the characteristics of MDA-MB-231 cells on A. mylitta, Bombyx mori silk matrices, Matrigel, and tissue culture plates. The attachment and morphology of the MDA-MB-231 cell line on A. mylitta silk matrices was found to be better than on B. mori matrices and comparable to Matrigel and tissue culture plates. The cells grown in all 3D cultures showed more MMP-9 activity, indicating a more invasive potential. In comparison to B. mori fibroin, A. mylitta fibroin not only provided better cell adhesion, but also improved cell viability and proliferation. Yield coefficient of glucose consumed to lactate produced by cells on 3D A. mylitta fibroin was found to be similar to that of cancer cells in vivo. LNCaP prostate cancer cells were also cultured on 3D A. mylitta fibroin and they grew as clumps in long term culture. The results indicate that A. mylitta fibroin scaffold can provide an easily manipulated microenvironment system to investigate individual factors such as growth factors and signaling peptides, as well as evaluation of anticancer drugs. PMID:21167597

  1. Influence of sericin/TiO? nanocomposite on cotton fabric: part 1. Enhanced antibacterial effect.

    PubMed

    Doakhan, S; Montazer, M; Rashidi, A; Moniri, R; Moghadam, M B

    2013-05-15

    Sericin as a biological material was extracted from raw silk by boiling in hot water and nano-TiO2 was dispersed in its solution. The prepared finishing agents with and without polycarboxylic acid cross-linking agents were treated on cotton fabric using pad-dry-cure. Presence of sericin, nano-TiO2, and cross-linking agents on cotton fabric was confirmed by at least one of the following experimental FTIR, SEM, EDX, and XRD. The antibacterial activity and the durability of modified cotton fabrics were investigated against one Gram-positive bacterium (Staphylococcus aureus) and one Gram-negative bacterium (Escherichia coli). The finishing treatment on the cotton fabric was more effective against S. aureus than E. coli. The fabrics treated with nano-TiO2 were possessed more activity against bacteria as compared to sericin and also considerably improved with given nanocomposite. The antibacterial activity of treated fabrics with cross-linking agents has not been considerably changed after 20 and 40 launderings. The fabrics treated with given nanocomposites did not dramatically affect the breaking strength. PMID:23544628

  2. Silk as a Biomaterial

    PubMed Central

    Vepari, Charu

    2009-01-01

    Silks are fibrous proteins with remarkable mechanical properties produced in fiber form by silkworms and spiders. Silk fibers in the form of sutures have been used for centuries. Recently regenerated silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films, for medical applications. Silks can be chemically modified through amino acid side chains to alter surface properties or to immobilize cellular growth factors. Molecular engineering of silk sequences has been used to modify silks with specific features, such as cell recognition or mineralization. The degradability of silk biomaterials can be related to the mode of processing and the corresponding content of beta sheet crystallinity. Several primary cells and cell lines have been successfully grown on different silk biomaterials to demonstrate a range of biological outcomes. Silk biomaterials are biocompatible when studied in vitro and in vivo. Silk scaffolds have been successfully used in wound healing and in tissue engineering of bone, cartilage, tendon and ligament tissues. PMID:19543442

  3. Electroresponsive Aqueous Silk Protein As “Smart” Mechanical Damping Fluid

    PubMed Central

    2015-01-01

    Here we demonstrate the effectiveness of an electroresponsive aqueous silk protein polymer as a smart mechanical damping fluid. The aqueous polymer solution is liquid under ambient conditions, but is reversibly converted into a gel once subjected to an electric current, thereby increasing or decreasing in viscosity. This nontoxic, biodegradable, reversible, edible fluid also bonds to device surfaces and is demonstrated to reduce friction and provide striking wear protection. The friction and mechanical damping coefficients are shown to modulate with electric field exposure time and/or intensity. Damping coefficient can be modulated electrically, and then preserved without continued power for longer time scales than conventional “smart” fluid dampers. PMID:24750065

  4. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    PubMed Central

    Yang, Ming-Hui; Yuan, Shyng-Shiou; Chung, Tze-Wen; Jong, Shiang-Bin; Lu, Chi-Yu; Tsai, Wan-Chi; Chen, Wen-Cheng; Lin, Po-Chiao; Chiang, Pei-Wen; Tyan, Yu-Chang

    2014-01-01

    The purpose of this study was to develop the pathway of silk fibroin (SF) biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs) and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM) greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed. PMID:24818131

  5. A novel marine silk

    NASA Astrophysics Data System (ADS)

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex ?-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.

  6. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  7. E-Spun Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation

    PubMed Central

    2015-01-01

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagensilk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  8. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the scaffolds' biochemical input and matrix stiffness. It is reported herein that in the hybrid scaffolds, collagen provides essential biochemical cues needed to promote cell attachment and function while SELP imparts matrix stiffness tunability. To obtain tissue-specificity in matrix stiffness that spans over several orders of magnitude covering from soft brain to stiff cartilage, the hybrid SELP-Collagen scaffolds were crosslinked by transglutaminase at physiological conditions compatible for simultaneous cell encapsulation. The effect of the increase in matrix stiffness induced by such enzymatic crosslinking on cellular viability and proliferation was also evaluated using in vitro cell assays.

  9. Histochemical and ultrastructural evidence of lipid secretion by the silk gland of the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae).

    PubMed

    Victoriano, Eliane; Pinheiro, Daniela O; Gregrio, Elisa A

    2007-01-01

    The silk gland in Lepidoptera larvae is responsible for the silk production used for shelter or cocoon construction. The secretion of fibroin and sericin by the different silk gland regions are well established. There are few attempts to detect lipid components in the insect silk secretion, although the presence of such element may contribute to the resistance of the shelter to wet environment. This study characterizes the glandular region and detects the presence of lipid components in the secretion of the silk gland of Diatraea saccharalis(Fabricius). The silk gland was submitted to histochemical procedure for lipid detection or conventionally prepared for ultrastructural analyses. Lipid droplets were histochemically detected in both the apical cytoplasm of cell of the anterior region and in the lumen among the microvilli. Ultrastructural analyses of the anterior region showed lipid material, visualized as myelin-like structures within the vesicular Golgi complex and in the apical secretory globules, mixed up with the sericin; similar material was observed into the lumen, adjacent to the microvilli. Lipids were not detected in the cells neither in the lumen of the posterior region. Our results suggest that the silk produced by D. saccharalis has a minor lipid content that is secreted by the anterior region together with the sericin. PMID:18060296

  10. Influence of polymer structure and biodegradation on DNA release from silk-elastinlike protein polymer hydrogels.

    PubMed

    Hwang, David; Moolchandani, Vikas; Dandu, Ramesh; Haider, Mohamed; Cappello, Joseph; Ghandehari, Hamidreza

    2009-02-23

    Silk-elastinlike protein polymers (SELPs) of varying ratios and lengths of silk and elastin blocks capable of hydrogel formation were evaluated as matrices for controlled delivery of plasmid DNA. Influence of polymer structure, ionic strength of the media and gelation time on DNA release from two structurally related hydrogels, SELP-47K and SELP-415K, was evaluated. The influence of elastase-induced degradation on the swelling behavior and DNA release from these hydrogels was investigated. Results indicate that release is a function of polymer structure, concentration and cure time. SELP-415K which has twice the number of elastin units as that of SELP-47K demonstrated higher release than that of SELP-47K. DNA release from these hydrogels is an inverse function of polymer concentration and cure time, with higher release observed at lower polymer concentration and shorter cure time. Results indicate that ionic strength of the media governs the rate of release. An increase in swelling ratio was observed in the presence of elastase at 12 wt.% composition for both SELP analogs. Release in the presence of elastase was enhanced due to increased swelling ratio and loss of hydrogel integrity. These studies allude to the utility of recombinant techniques to control plasmid DNA release and biodegradation in SELP hydrogels. PMID:19027056

  11. Permeability of silk microcapsules made by the interfacial adsorption of protein.

    PubMed

    Hermanson, Kevin D; Harasim, Markus B; Scheibel, Thomas; Bausch, Andreas R

    2007-12-28

    The assembly of colloidal particles at a liquid/liquid interface is a useful technique for the formation of a large variety of structures. Recently, we created a new method which uses liquid/liquid interfaces to assemble recombinant silk proteins into thin-shelled microcapsules. These microcapsules are mechanically stable and well suited to applications such as enzyme therapy and artificial cells. In this paper the permeability properties of these microcapsules are investigated using a novel measurement technique. It is found that the microcapsules are polydisperse in their permeabilities, but for all measured microcapsules the permeability is in the range required to protect encapsulants from immunoglobulin proteins, while allowing small molecules to enter the capsule freely. PMID:18060175

  12. Hydrogen bonding-assisted thermal conduction in ?-sheet crystals of spider silk protein.

    PubMed

    Zhang, Lin; Chen, Teli; Ban, Heng; Liu, Ling

    2014-07-21

    Using atomistic simulations, we demonstrate that ?-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the ?-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. ?-strands. Phonon analysis identifies inter-?-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through ?-sheet structures. PMID:24811747

  13. High yield exogenous protein HPL production in the Bombyx mori silk gland provides novel insight into recombinant expression systems.

    PubMed

    Wang, Huan; Wang, Lu; Wang, Yulong; Tao, Hui; Yin, Weimin; SiMa, Yanghu; Wang, Yujun; Xu, Shiqing

    2015-01-01

    The silk gland of Bombyx mori (BmSG) has gained significant attention by dint of superior synthesis and secretion of proteins. However, the application of BmSG bioreactor is still a controversial issue because of low yields of recombinant proteins. Here, a 3057?bp full-length coding sequence of Hpl was designed and transformed into the silkworm genome, and then the mutant (Hpl/Hpl) with specific expression of Hpl in posterior BmSG (BmPSG) was obtained. In the mutants, the transcription level of Fib-L and P25, and corresponding encoding proteins, did not decrease. However, the mRNA level of Fib-H was reduced by 71.1%, and Fib-H protein in the secreted fibroin was decreased from 91.86% to 71.01%. The mRNA level of Hpl was 0.73% and 0.74% of Fib-H and Fib-L, respectively, while HPL protein accounted for 18.85% of fibroin and 15.46% of the total amount of secreted silk protein. The exogenous protein was therefore very efficiently translated and secreted. Further analysis of differentially expressed gene (DEG) was carried out in the BmPSG cells and 891 DEGs were detected, of which 208 genes were related to protein metabolism. Reduced expression of endogenous silk proteins in the BmPSG could effectively improve the production efficiency of recombinant exogenous proteins. PMID:26370318

  14. High yield exogenous protein HPL production in the Bombyx mori silk gland provides novel insight into recombinant expression systems

    PubMed Central

    Wang, Huan; Wang, Lu; Wang, Yulong; Tao, Hui; Yin, Weimin; SiMa, Yanghu; Wang, Yujun; Xu, Shiqing

    2015-01-01

    The silk gland of Bombyx mori (BmSG) has gained significant attention by dint of superior synthesis and secretion of proteins. However, the application of BmSG bioreactor is still a controversial issue because of low yields of recombinant proteins. Here, a 3057 bp full-length coding sequence of Hpl was designed and transformed into the silkworm genome, and then the mutant (Hpl/Hpl) with specific expression of Hpl in posterior BmSG (BmPSG) was obtained. In the mutants, the transcription level of Fib-L and P25, and corresponding encoding proteins, did not decrease. However, the mRNA level of Fib-H was reduced by 71.1%, and Fib-H protein in the secreted fibroin was decreased from 91.86% to 71.01%. The mRNA level of Hpl was 0.73% and 0.74% of Fib-H and Fib-L, respectively, while HPL protein accounted for 18.85% of fibroin and 15.46% of the total amount of secreted silk protein. The exogenous protein was therefore very efficiently translated and secreted. Further analysis of differentially expressed gene (DEG) was carried out in the BmPSG cells and 891 DEGs were detected, of which 208 genes were related to protein metabolism. Reduced expression of endogenous silk proteins in the BmPSG could effectively improve the production efficiency of recombinant exogenous proteins. PMID:26370318

  15. Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1).

    PubMed

    Ayoub, Nadia A; Garb, Jessica E; Kuelbs, Amanda; Hayashi, Cheryl Y

    2013-03-01

    Spider silk fibers have impressive mechanical properties and are primarily composed of highly repetitive structural proteins (termed spidroins) encoded by a single gene family. Most characterized spidroin genes are incompletely known because of their extreme size (typically >9 kb) and repetitiveness, limiting understanding of the evolutionary processes that gave rise to their unusual gene architectures. The only complete spidroin genes characterized thus far form the dragline in the Western black widow, Latrodectus hesperus. Here, we describe the first complete gene sequence encoding the aciniform spidroin AcSp1, the primary component of spider prey-wrapping fibers. L. hesperus AcSp1 contains a single enormous (?19 kb) exon. The AcSp1 repeat sequence is exceptionally conserved between two widow species (?94% identity) and between widows and distantly related orb-weavers (?30% identity), consistent with a history of strong purifying selection on its amino acid sequence. Furthermore, the 16 repeats (each 371-375 amino acids long) found in black widow AcSp1 are, on average, >99% identical at the nucleotide level. A combination of stabilizing selection on amino acid sequence, selection on silent sites, and intragenic recombination likely explains the extreme homogenization of AcSp1 repeats. In addition, phylogenetic analyses of spidroin paralogs support a gene duplication event occurring concomitantly with specialization of the aciniform glands and the tubuliform glands, which synthesize egg-case silk. With repeats that are dramatically different in length and amino acid composition from dragline spidroins, our L. hesperus AcSp1 expands the knowledge base for developing silk-based biomimetic technologies. PMID:23155003

  16. Sericin enhances the bioperformance of collagen-based matrices preseeded with human-adipose derived stem cells (hADSCs).

    PubMed

    Dinescu, Sorina; Galateanu, Bianca; Albu, Madalina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta

    2013-01-01

    Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can't face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPAR?2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications. PMID:23325052

  17. Deciphering the mechanism of protein interaction with silk fibroin for drug delivery systems.

    PubMed

    Germershaus, Oliver; Werner, Vera; Kutscher, Marika; Meinel, Lorenz

    2014-03-01

    Silk fibroin (SF) is an exceptional drug delivery carrier with respect to stabilizing, protecting, and delivering sensitive biologics. A synopsis of thermodynamic, static light scattering, hydrophobicity probing, and nanoparticle tracking analyses served as a basis to decipher the mechanism of interaction between SF and two model proteins, protamine and polylysine. The impact of salts aiding (chaotropic), not affecting (neutral), or opposing (cosmotropic) SF unfolding was a major determinant, ranging from complete abolishment to maximal interaction efficacy. Evidence is provided, that the underlying mechanism of the remarkable ability to tailor drug/SF interaction throughout such large ranges and by appropriate salt selection is the control of structural breakdown of SF micelles as present in pure SF ad initium. This study provides a mechanistically justified and hypothesis driven blueprint for future experimental designs addressing the controlled interaction of biologics and SF. PMID:24461326

  18. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films.

    PubMed

    Machado, Raul; da Costa, Andr; Sencadas, Vitor; Pereira, Ana Margarida; Collins, Tony; Rodrguez-Cabello, Jos Carlos; Lanceros-Mndez, Senentxu; Casal, Margarida

    2015-12-01

    Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated ?-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180?C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers. PMID:26214274

  19. Distribution of cuticular protein mRNAs in silk moth integument and imaginal discs.

    PubMed

    Gu, Subin; Willis, Judith H

    2003-12-01

    The distributions of mRNAs for two cuticular proteins of Hyalophora cecropia were examined with RT-PCR and in situ hybridization. For major regions of larval and pupal cuticle, there was a strong correspondence between the type of cuticle and the predominant cuticular protein message found. Epidermal cells underlying soft cuticle had mRNA for HCCP12, with a RR-1 consensus attributed to soft cuticle, while the epidermal cells associated with hard cuticle had predominantly mRNA for HCCP66, a protein with the RR-2 consensus attributed to hard cuticle. Both messages were found in all areas of the pupal fore- and hind-wings, with modest area-specific difference in concentration being much less than differences in the relative abundance of these cuticular proteins.mRNA for HCCP12 was present in imaginal discs of feeding larvae of H cecropia. Data from Bombyx mori available at SilkBase (http://www.ab.a.u-tokyo.ac.jp/silkbase/) revealed that imaginal discs from feeding larvae had abundant mRNA for RR-1 cuticular proteins, representing six distinct gene products. Only discs from spinning larvae had mRNAs that coded for RR-2 proteins arising from 10 distinct genes. Thus, lepidopteran wing imaginal discs can no longer be regarded as inactive in larval cuticle production. PMID:14599490

  20. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.

    PubMed

    Chaw, Ro Crystal; Correa-Garhwal, Sandra M; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2015-10-01

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ?5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes. PMID:26302244

  1. Genetically programmable thermoresponsive plasmonic gold/silk-elastin protein core/shell nanoparticles.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Wang, Ming; Wang, Qianrui; An, Bo; Tao, Hu; Xu, Qiaobing; Omenetto, Fiorenzo; Kaplan, David L

    2014-04-22

    The design and development of future molecular photonic/electronic systems pose the challenge of integrating functional molecular building blocks in a controlled, tunable, and reproducible manner. The modular nature and fidelity of the biosynthesis method provides a unique chemistry approach to one-pot synthesis of environmental factor-responsive chimeric proteins capable of energy conversion between the desired forms. In this work, facile tuning of dynamic thermal response in plasmonic nanoparticles was facilitated by genetic engineering of the structure, size, and self-assembly of the shell silk-elastin-like protein polymers (SELPs). Recombinant DNA techniques were implemented to synthesize a new family of SELPs, S4E8Gs, with amino acid repeats of [(GVGVP)4(GGGVP)(GVGVP)3(GAGAGS)4] and tunable molecular weight. The temperature-reversible conformational switching between the hydrophilic random coils and the hydrophobic ?-turns in the elastin blocks were programmed to between 50 and 60 C by site-specific glycine mutation, as confirmed by variable-temperature proton NMR and circular dichroism (CD) spectroscopy, to trigger the nanoparticle aggregation. The dynamic self-aggregation/disaggregation of the Au-SELPs nanoparticles was regulated in size and pattern by the ?-sheet-forming, thermally stable silk blocks, as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The thermally reversible, shell dimension dependent, interparticle plasmon coupling was investigated by both variable-temperature UV-vis spectroscopy and finite-difference time-domain (FDTD)-based simulations. Good agreement between the calculated and measured spectra sheds light on design and synthesis of responsive plasmonic nanostructures by independently tuning the refractive index and size of the SELPs through genetic engineering. PMID:24712906

  2. Genetically Programmable Thermoresponsive Plasmonic Gold/Silk-Elastin Protein Core/Shell Nanoparticles

    PubMed Central

    2015-01-01

    The design and development of future molecular photonic/electronic systems pose the challenge of integrating functional molecular building blocks in a controlled, tunable, and reproducible manner. The modular nature and fidelity of the biosynthesis method provides a unique chemistry approach to one-pot synthesis of environmental factor-responsive chimeric proteins capable of energy conversion between the desired forms. In this work, facile tuning of dynamic thermal response in plasmonic nanoparticles was facilitated by genetic engineering of the structure, size, and self-assembly of the shell silk-elastin-like protein polymers (SELPs). Recombinant DNA techniques were implemented to synthesize a new family of SELPs, S4E8Gs, with amino acid repeats of [(GVGVP)4(GGGVP)(GVGVP)3(GAGAGS)4] and tunable molecular weight. The temperature-reversible conformational switching between the hydrophilic random coils and the hydrophobic ?-turns in the elastin blocks were programmed to between 50 and 60 C by site-specific glycine mutation, as confirmed by variable-temperature proton NMR and circular dichroism (CD) spectroscopy, to trigger the nanoparticle aggregation. The dynamic self-aggregation/disaggregation of the Au-SELPs nanoparticles was regulated in size and pattern by the ?-sheet-forming, thermally stable silk blocks, as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The thermally reversible, shell dimension dependent, interparticle plasmon coupling was investigated by both variable-temperature UVvis spectroscopy and finite-difference time-domain (FDTD)-based simulations. Good agreement between the calculated and measured spectra sheds light on design and synthesis of responsive plasmonic nanostructures by independently tuning the refractive index and size of the SELPs through genetic engineering. PMID:24712906

  3. Toward spinning artificial spider silk.

    PubMed

    Rising, Anna; Johansson, Jan

    2015-05-01

    Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk. PMID:25885958

  4. Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata.

    PubMed

    Bai, Xue; Sakaguchi, Mayo; Yamaguchi, Yuko; Ishihara, Shiori; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku; Nomura, Takaomi; Arai, Ryoichi

    2015-08-28

    Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S.marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S.marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S.marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications. PMID:26168724

  5. Clinical Application of a Silk Fibroin Protein Biologic Scaffold for Abdominal Wall Fascial Reinforcement

    PubMed Central

    Downey, Susan; Agullo, Frank; Lehfeldt, Max R.; Kind, Gabriel M.; Palladino, Humberto; Marshall, Deirdre; Jewell, Mark L.; Mathur, Anshu B.; Bengtson, Bradley P.

    2014-01-01

    Background: Preclinical studies have demonstrated that macroporous silk fibroin protein scaffolds are capable of promoting physiologically durable supportive tissue, which favors application of these engineered tissues for clinical implantation. The safety and effectiveness of a long-lasting, transitory, 510(k)-cleared purified silk fibroin biologic scaffold (SBS) are investigated for soft-tissue support and repair of the abdominal wall. Methods: We conducted a multicenter retrospective review of all consecutive patients who underwent abdominal wall soft-tissue reinforcement with an SBS device between 2011 and 2013. Indications, comorbid conditions, surgical technique, complications, and outcomes were evaluated. Results: We reviewed the records of 172 consecutive patients who received an SBS for soft-tissue support. Of those, 77 patients underwent abdominal wall fascial repair, with a mean follow-up of 18.4??7.5 months. Procedures using an SBS included reinforcement of an abdominal-based flap donor site (31.2%), ventral hernia repair (53.2%), and abdominoplasty (15.6%). The overall complication rate was 6.5%, consisting of 2 wound dehiscences, 1 with device exposure, 1 seroma, 1 infection with explantation, and a perioperative bulge requiring reoperation. There were no reports of hernia. Conclusions: Postoperative complication rates after 18 months were low, and most surgical complications were managed nonoperatively on an outpatient basis without mesh removal. To our knowledge, this is the only series to report on a long-lasting, transitory SBS for abdominal wall repair and reinforcement. Procedure-specific outcome studies are warranted to delineate optimal patient selection and define potential device characteristic advantages. PMID:25506529

  6. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    PubMed Central

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-01-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments. PMID:25761668

  7. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  8. Skin Equivalent Tissue-Engineered Construct: Co-Cultured Fibroblasts/ Keratinocytes on 3D Matrices of Sericin Hope Cocoons

    PubMed Central

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C.

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from “Sericin Hope” silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair. PMID:24058626

  9. More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials.

    PubMed

    Jones, Justin A; Harris, Thomas I; Tucker, Chauncey L; Berg, Kyle R; Christy, Stacia Y; Day, Breton A; Gaztambide, Danielle A; Needham, Nate J C; Ruben, Ashley L; Oliveira, Paula F; Decker, Richard E; Lewis, Randolph V

    2015-04-13

    Spider silk is a striking and robust natural material that has an unrivaled combination of strength and elasticity. There are two major problems in creating materials from recombinant spider silk proteins (rSSps): expressing sufficient quantities of the large, highly repetitive proteins and solvating the naturally self-assembling proteins once produced. To address the second problem, we have developed a method to rapidly dissolve rSSps in water in lieu of traditional organic solvents and accomplish nearly 100% solvation and recovery of the protein. Our method involves generating pressure and temperature in a sealed vial by using short, repetitive bursts from a conventional microwave. The method is scalable and has been successful with all rSSps used to date. From these easily generated aqueous solutions of rSSps, a wide variety of materials have been produced. Production of fibers, films, hydrogels, lyogels, sponges, and adhesives and studies of their mechanical and structural properties are reported. To our knowledge, ours is the only method that is cost-effective and scalable for mass production. This solvation method allows a choice of the physical form of product to take advantage of spider silks' mechanical properties without using costly and problematic organic solvents. PMID:25789668

  10. A silk hydrogel-based delivery system of bone morphogenic protein for the treatment of large bone defects

    PubMed Central

    Diab, Tamim; Pritchard, Eleanor M.; Uhrig, Brent A.; Boerckel, Joel D.; Kaplan, David L.; Guldberg, Robert E.

    2011-01-01

    The use of tissue grafting for the repair of large bone defects has numerous limitations including donor site morbidity and the risk of disease transmission. These limitations have prompted research efforts to investigate the effects of combining biomaterial scaffolds with biochemical cues to augment bone repair. The goal of this study was to use a critically-sized rat femoral segmental defect model to investigate the efficacy of a delivery system consisting of an electrospun polycaprolactone (PCL) nanofiber mesh tube with a silk fibroin hydrogel for local recombinant bone morphogenetic protein 2 (BMP-2) delivery. Bilateral 8 mm segmental femoral defects were formed in 13-week-old Sprague Dawley rats. Perforated electrospun PCL nanofiber mesh tubes were fitted into the adjacent native bone such that the lumen of the tubes contained the defect (Kolambkar et al., 2011b). Silk hydrogels with or without BMP-2 were injected into the defect. Bone regeneration was longitudinally assessed using 2D X-ray radiography and 3D microcomputed topography (µCT). Following sacrifice at 12 weeks after surgery, the extracted femurs were either subjected to biomechanical testing or assigned for histology. The results demonstrated that silk was an effective carrier for BMP-2. Compared to the delivery system without BMP-2, the delivery system that contained BMP-2 resulted in more bone formation (p < 0.05) at 4, 8, 12 weeks after surgery. Biomechanical properties were also significantly improved in the presence of BMP-2 (p < 0.05) and were comparable to age-matched intact femurs. Histological evaluation of the defect region indicated that the silk hydrogel have completely been degraded by the end of the study. Based on these results, we conclude that a BMP-2 delivery system consisting of an electrospun PCL nanofiber mesh tube with a silk hydrogel presents an effective strategy for functional repair of large bone defects. PMID:22658161

  11. Seed-Specific Expression of Spider Silk Protein Multimers Causes Long-Term Stability.

    PubMed

    Weichert, Nicola; Hauptmann, Valeska; Helmold, Christine; Conrad, Udo

    2016-01-01

    Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes. PMID:26858734

  12. Seed-Specific Expression of Spider Silk Protein Multimers Causes Long-Term Stability

    PubMed Central

    Weichert, Nicola; Hauptmann, Valeska; Helmold, Christine; Conrad, Udo

    2016-01-01

    Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes. PMID:26858734

  13. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  14. Silk inverse opals

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Mitropoulos, Alexander N.; Spitzberg, Joshua D.; Tao, Hu; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-12-01

    Periodic nanostructures provide the facility to control and manipulate the flow of light through their lattices. Three-dimensional photonic crystals enable the controlled design of structural colour, which can be varied by infiltrating the structure with different (typically liquid) fillers. Here, we report three-dimensional photonic crystals composed entirely of a purified natural protein (silk fibroin). The biocompatibility of this protein, as well as its favourable material properties and ease of biological functionalization, present opportunities for otherwise unattainable device applications such as bioresorbable integration of structural colour within living tissue or lattice functionalization by means of organic and inorganic material doping. We present a silk inverse opal that demonstrates a pseudo-photonic bandgap in the visible spectrum and show its associated structural colour beneath biological tissue. We also leverage silk's facile dopability to manufacture a gold nanoparticle silk inverse opal and demonstrate patterned heating mediated by enhancement of nanoparticle absorption at the band-edge frequency of the photonic crystal.

  15. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    PubMed

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  16. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  17. A Juvenile Hormone Transcription Factor Bmdimm-Fibroin H Chain Pathway Is Involved in the Synthesis of Silk Protein in Silkworm, Bombyx mori*

    PubMed Central

    Zhao, Xiao-Ming; Liu, Chun; Jiang, Li-Jun; Li, Qiong-Yan; Zhou, Meng-Ting; Cheng, Ting-Cai; Mita, Kazuei; Xia, Qing-You

    2015-01-01

    The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori. PMID:25371208

  18. Self-assembled semi-crystallinity at parallel ?-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins.

    PubMed

    Sintya, Erly; Alam, Parvez

    2016-01-01

    In this communication, we use molecular dynamics methods to model the self-assembly of semi-crystalline domains at ?-sheet nanocrystal interfaces in clusters of spider silk (MaSp1) proteins. Our research elucidates that the energetics at interfaces between crystalline and amorphous domains control effectively, the extent to which semi-crystalline domains can form at interfaces. Stability at nanocrystal interfaces is not linearly related to the internal (bulk) stability of the ?-sheet nanocrystal. Rather, interfacial stability is found to be highly sensitive to the number of alanine repeat units that make up each sheet. Intriguingly, the most stable interface for the development of semi-crystallinity is built up of polyalanine ?-sheets of a length similar to that which is spun naturally in spider dragline silk. PMID:26478322

  19. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.

    PubMed

    Teul, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J Joe; Fraser, Malcolm J; Lewis, Randolph V; Jarvis, Donald L

    2012-01-17

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk proteins integrated in an extremely stable manner. Furthermore, these composite fibers were, on average, tougher than the parental silkworm silk fibers and as tough as native dragline spider silk fibers. These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers. PMID:22215590

  20. High level biosynthesis of a silk-elastin-like protein in E. coli.

    PubMed

    Collins, Tony; Barroca, Mrio; Branca, Fernando; Padro, Jorge; Machado, Raul; Casal, Margarida

    2014-07-14

    Silk-elastin-like proteins (SELPs) have enormous potential for use as customizable biomaterials in numerous biomedical and materials applications, yet success in harnessing this potential has been limited by the lack of a commercially viable industrially relevant production process. We have developed a scalable fed-batch production approach which enables a SELP volumetric productivity of 4.3 g L(-1) with E. coli BL21(DE3). This is the highest SELP productivity reported to date and is 50-fold higher than that reported by other groups. As compared to typical fed-batch processes, high preinduction growth rates and low inducer and oxygen concentrations are allowed whereas reduced postinduction feeding rates are preferred. Limiting factors were identified and productivity was found to be strongly influenced by a trade-off between the rate of production and plasmid stability. The process developed is robust, reproducible, and applicable to scale up to the industrial level and moves these biopolymers a step closer to the marketplace. PMID:24884240

  1. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction.

    PubMed

    Jenkins, Janelle E; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W; Holland, Gregory P; Yarger, Jeffery L

    2013-10-14

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked ?-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) (13)C-(13)C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about the amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and, hence, to the amino acids that make up the motifs. Specifically, alanine is incorporated in ?-sheet (poly(Alan) and poly(Gly-Ala)), 3(1)-helix (poly(Gly-Gly-Xaa), and ?-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in ?-sheet (poly(Gly-Ala)) and 3(1)-helical (poly(Gly-Gly-X(aa))) regions, while serine is present in ?-sheet (poly(Gly-Ala-Ser)), 3(1)-helix (poly(Gly-Gly-Ser)), and ?-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  2. Recent progress in development of transgenic silkworms overexpressing recombinant human proteins with therapeutic potential in silk glands.

    PubMed

    Itoh, Kohji; Kobayashi, Isao; Nishioka, So-Ichiro; Sezutsu, Hideki; Machii, Hiroaki; Tamura, Toshiki

    2016-01-01

    Since 2000, transgenic silkworms have been developed to produce recombinant proteins with therapeutic potential for future clinical use, including antibody preparations. Lysosomal storage diseases (LSDs) are inherited metabolic disorders caused by mutations of lysosomal enzymes associated with excessive accumulation of natural substrates and neurovisceral symptoms. Over the past few years, enzyme replacement therapy (ERT) with human lysosomal enzymes produced by genetically engineered mammalian cell lines has been used clinically to treat several patients with an LSD involving multi-organ symptoms. ERT is based on the incorporation of recombinant glycoenzymes by their binding to glycan receptors on the surface of target cells and their subsequent delivery to lysosomes. However, ERT has several disadvantages, including difficulty mass producing human enzymes, dangers of pathogen contamination, and high costs. Recently, the current authors have succeeded in producing transgenic silkworms overexpressing human lysosomal enzymes in the silk glands and the authors have purified catalytically active enzymes from the middle silk glands. Silk gland-derived human enzymes carrying high-mannose and pauci-mannose N-glycans were endocytosed by monocytes via the mannose receptor pathway and were then delivered to lysosomes. Conjugates with cell-penetrating peptides were also taken up by cultured fibroblasts derived from patients with enzyme deficiencies to restore intracellular catalytic activity and reduce the excessive accumulation of substrates in patient fibroblasts. Transgenic silkworms overexpressing human lysosomal enzymes in the silk glands could serve as future bioresources that provide safe therapeutic enzymes for the treatment of LSDs. Combining recent developments in transglycosylation technology with microbial endoglycosidases will promote the development of therapeutic glycoproteins as bio-medicines. PMID:26971553

  3. Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution.

    PubMed

    Belton, David J; Mieszawska, Aneta J; Currie, Heather A; Kaplan, David L; Perry, Carole C

    2012-03-01

    The aim of the study was to determine the extent and mechanism of influence on silica condensation that is presented by a range of known silicifying recombinant chimeras (R5: SSKKSGSYSGSKGSKRRIL; A1: SGSKGSKRRIL; and Si4-1: MSPHPHPRHHHT and repeats thereof) attached at the N-terminus end of a 15-mer repeat of the 32 amino acid consensus sequence of the major ampullate dragline Spindroin 1 (Masp1) Nephila clavipes spider silk sequence ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](15)X). The influence of the silk/chimera ratio was explored through the adjustment of the type and number of silicifying domains (denoted X above), and the results were compared with their non-chimeric counterparts and the silk from Bombyx mori. The effect of pH (3-9) on reactivity was also explored. Optimum conditions for rate and control of silica deposition were determined, and the solution properties of the silks were explored to determine their mode(s) of action. For the silica-silk-chimera materials formed there is a relationship between the solution properties of the chimeric proteins (ability to carry charge), the pH of reaction, and the solid state materials that are generated. The region of colloidal instability correlates with the pH range observed for morphological control and coincides with the pH range for the highest silica condensation rates. With this information it should be possible to predict how chimeric or chemically modified proteins will affect structure and morphology of materials produced under controlled conditions and extend the range of composite materials for a wide spectrum of uses in the biomedical and technology fields. PMID:22313382

  4. Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution

    PubMed Central

    Belton, David J.; Mieszawska, Aneta J.; Currie, Heather A.; Kaplan, David L.; Perry, Carole C.

    2012-01-01

    The aim of the study was to determine the extent and mechanism of influence on silica condensation that is presented by a range of known silicifying recombinant chimeras (R5- SSKKSGSYSGSKGSKRRIL; A1- SGSKGSKRRIL; and Si4-1- MSPHPHPRHHHT and repeats thereof) attached at the N-terminus end of a 15 mer repeat of the 32 amino acid consensus sequence of the major ampullate dragline Spindroin 1 (Masp1) Nephila clavipes spider silk sequence ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG]15X). The influence of the silk/chimera ratio was explored through the adjustment of the type and number of silicifying domains, (denoted X above), and the results were compared with their non chimeric counterparts and the silk from Bombyx mori. The effect of pH (39) on reactivity was also explored. Optimum conditions for rate and control of silica deposition were determined and the solution properties of the silks were explored to determine their mode(s) of action. For the silica-silk-chimera materials formed there is a relationship between the solution properties of the chimeric proteins (ability to carry charge), the pH of reaction and the solid state materials that are generated. The region of colloidal instability correlates with the pH range observed for morphological control and coincides with the pH range for the highest silica condensation rates. With this information it should be possible to predict how chimeric or chemically modified proteins will affect structure and morphology of materials produced under controlled conditions and extend the range of composite materials for a wide spectrum of uses in the biomedical and technology fields. PMID:22313382

  5. Mechanical Improvements to Reinforced Porous Silk Scaffolds

    PubMed Central

    Gil, Eun Seok; Kluge, Jonathan A.; Rockwood, Danielle N.; Rajkhowa, Rangam; Wang, Lijing; Wang, Xungai; Kaplan, David L

    2012-01-01

    Load bearing porous biodegradable scaffolds are required to engineer functional tissues such as bone. Mechanical improvements to porogen leached scaffolds prepared from silk proteins were systematically studied through the addition of silk particles in combination with silk solution concentration, exploiting interfacial compatibility between the two components. Solvent solutions of silk up to 32 w/v% were successfully prepared in hexafluoroisopropanaol (HFIP) for the study. The mechanical properties of the reinforced silk scaffolds correlated to the material density and matched by a power law relationship, independent of the ratio of silk particles to matrix. These results were similar to the relationships previously shown for cancellous bone. The mechanism behind the increased mechanical properties was a densification effect, and not the effect of including stiffer silk particles into the softer silk continuous matrix. A continuous interface between the silk matrix and the silk particles, as well as homogeneous distribution of the silk particles within the matrix were observed. Furthermore, we note that the roughness of the pore walls was controllable by varying the ratio of particles matrix, providing a route to control topography. The rate of proteolytic hydrolysis of the scaffolds decreased with increase in mass of silk used in the matrix and with increasing silk particle content. PMID:21793193

  6. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation.

    PubMed

    Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou

    2015-10-12

    Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more ?-helix and ?-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties. PMID:26302212

  7. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  8. Structural Origins of Silk Piezoelectricity.

    PubMed

    Yucel, Tuna; Cebe, Peggy; Kaplan, David L

    2011-02-22

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of ?= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, ?-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(?)? e(2.5) (?)), the concomitant increasing degree of orientation of ?-sheet crystals detected via WAXD (FWHM = 0.22 for ?= 2.7), and the improvement in silk piezoelectricity (d(14)? e(2.4) (?)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the ?-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, ?-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein. PMID:23335872

  9. Structural Origins of Silk Piezoelectricity

    PubMed Central

    Yucel, Tuna; Cebe, Peggy

    2012-01-01

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of ?= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d14 = ?1.5 pC/N, corresponding to over two orders of magnitude increase in d14 due to film drawing. A strong correlation was observed between the increase in the silk II, ?-sheet content with increasing draw ratio measured by FTIR spectroscopy (C?? e2.5 ?), the concomitant increasing degree of orientation of ?-sheet crystals detected via WAXD (FWHM = 0.22 for ?= 2.7), and the improvement in silk piezoelectricity (d14? e2.4 ?). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the ?-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, ?-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein. PMID:23335872

  10. Silk Electrogel Rheology

    NASA Astrophysics Data System (ADS)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  11. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-01-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. PMID:26112753

  12. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    NASA Astrophysics Data System (ADS)

    Tremblay, Marie-Laurence; Xu, Lingling; Lefvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jrmie; Meng, Qing; Pzolet, Michel; Auger, Michle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-06-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable beads-on-a-string concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly ?-helical dope to a mixed ?-helix/?-sheet-containing fibre can be directly related to spidroin architecture and stability.

  13. Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain.

    PubMed

    Gronau, Greta; Qin, Zhao; Buehler, Markus J

    2013-03-01

    A spider's ability to store silk protein solutions at high concentration is believed to be related to the protein's terminal domains. It has been suggested that a shift in salt concentration and pH can have a significant influence on the assembly process. Based on experimental data, a model has been proposed in which the N-terminal domain exists as a monomer during storage and assembles into a homodimer upon spinning. Here we perform a systematic computational study using atomistic, coarse-grained and well-tempered metadynamics simulation to understand how the NaCl concentration in the solution affects the N-terminal domain of the silk protein. Our results show that a high salt concentration, as found during storage, weakens key salt bridges between the monomers, inducing a loss in bond energy by 28.6% in a single salt bridge. As a result dimer formation is less likely as 35.5% less energy is required to unfold the dimer by mechanical force. Conversely, homodimer formation appears to be more likely at low salt concentrations as the salt bridge stays at the lower energy state. The link between salt concentration, structure and stability of the N-terminal domain provides a possible mechanism that prevents premature fiber formation during storage. PMID:23833703

  14. Silk-I is a Hydrate

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun; Strey, Helmut H.; Gido, Samuel P.

    2004-03-01

    In order to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin, the osmotic stress method was applied. Precise control of the protein and LiBr concentration enables us to manipulate the phases of the silk fibroin, thus the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. Under the experimental osmotic pressure range of 0.2-7.6MPa applied by poly(ethylene glycol), it is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form a water-soluble crystalline mesophase (silk-I), and then with further increase in osmotic pressure become anti-parallel beta-sheet structure (silk-II). A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on X-ray results. The microscopic data clearly indicate that silk-I is a hydrated structure since water of hydration is found to be lost in the conversion to silk-II. A rough estimate of the number of water molecules lost by the structure upon converting from silk-I to silk-II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. The phase diagram suggests that processes, such as natural, regenerated or biomimetic silk fibroin spinning, that convert random coil fibroin to silk-II are likely to require a silk-I intermediate structure. This intermediate is necessary for the pre-alignment of the fibroin molecules and to shed water. We tried to utilize hydrated silk-I mesophase to pre-structure the silk fibroin by applying osmotic pressure, for the wet-spinning of silk fibroin.

  15. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, ?-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc?0.98. The size of the nanocrystallites was determined to be on average 2.5nm3.3nm3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa?0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that ?-sheet nanocrystallites constitutes 40.01.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 181% of alanine, 602% glycine and 542% serine are incorporated into helical conformations. PMID:26226457

  16. Biomimetic magnetic silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Shelyakova, Tatiana; Declercq, Heidi A; Uhlarz, Marc; Baobre-Lpez, Manuel; Dubruel, Peter; Cornelissen, Maria; Herrmannsdrfer, Thomas; Rivas, Jose; Padeletti, Giuseppina; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-03-25

    Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications. PMID:25734962

  17. Prediction of the structure of a silk-like protein in oligomeric states using explicit and implicit solvent models.

    PubMed

    Razzokov, Jamoliddin; Naderi, Saber; van der Schoot, Paul

    2014-08-01

    We perform Replica Exchange Molecular Dynamics (REMD) simulations on a silk-like protein design with amino-acid sequence [(Gly-Ala)3-Gly-Glu]5 to investigate the stability of a single protein, a dimer, a trimer and a tetramer made up of these proteins starting from ?-roll and ?-sheet structures in both explicit (TIP3P) and implicit (GBSA) solvent models. Our simulation results for the implicit solvent model agree with those for the explicit solvent model for simulation times up to the longest tested, being 30 ns per replica. From this we infer that the implicit solvent model that we use is reliable, allowing us to reach much longer time scales (up to 200 ns per replica). We find that the self-assembly of fibers of these proteins in solution must be a nucleated process, involving nuclei made up of at least three monomers. We also find that the conformation of the protein changes upon assembly, i.e., there is a transition from a disordered globular state to an ordered ?-sheet structure in the self-assembled state of aggregates containing more than two monomers. This indicates that autosteric effects must be important in the polymerization of this protein, reminiscent of what is observed for ?-amyloids. Our findings are consistent with recent experimental results on a protein with an amino acid sequence similar to that of the protein we study. PMID:24937549

  18. Interaction of recombinant analogs of spider silk proteins 1F9 and 2E12 with phospholipid membranes.

    PubMed

    Antonenko, Yuri N; Perevoshchikova, Irina V; Davydova, Lyubov I; Agapov, Igor A; Bogush, Vladimir G

    2010-06-01

    Recombinant analogs of spider dragline silk proteins 1F9 and 2E12 are characterized by numerous repeats consisting of hydrophobic poly-Ala blocks and Gly-rich sequences with a substantial number of positively charged amino acid residues which suggest a pronounced ability to interact with negatively charged phospholipid membranes. Actually both proteins displayed substantial binding affinity towards lipid vesicles formed of acidic lipids as measured by fluorescence correlation spectroscopy (FCS) using rhodamine-labeled conjugates of the proteins. Both proteins did not induce liposome leakage, fusion or breakdown, but were able to bring about liposome aggregation. 1F9 was more active in the induction of liposome aggregation compared to 2E12. Interestingly, 2E12 markedly decreased the rate of calcium-induced liposome fusion. Circular dichroism data showed that binding of the proteins to negatively charged phosphatidylserine liposomes provoked transition from the left-handed helix of polyproline II (PPII) type to beta-structures and alpha-helices. The data suggested predominantly surface location of membrane bound proteins without significant perturbation of their hydrophobic core. PMID:20214876

  19. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.

    PubMed

    Correa-Garhwal, Sandra M; Garb, Jessica E

    2014-12-01

    Spider silks have outstanding mechanical properties. Most research has focused on dragline silk proteins (major ampullate spidroins, MaSps) from orb-weaving spiders. Using silk gland expression libraries from the haplogyne spider Scytodes thoracica, we discovered two novel spidroins (S. thoracica fibroin 1 and 2). The amino acid composition of S. thoracica silk glands and dragline fibers suggest that fibroin 1 is the major component of S. thoracica dragline silk. Fibroin 1 is dominated by glycine-alanine motifs, and lacks sequence motifs associated with orb-weaver MaSps. We hypothesize fibroin 2 is a piriform or aciniform silk protein, based on amino acid composition, spigot morphology, and phylogenetic analyses. S. thoracica's dragline silk is less tough than previously reported, but is still comparable to other dragline silks. Our analyses suggest that dragline silk proteins evolved multiple times. This demonstrates that spider dragline silk is more diverse than previously understood, providing alternative high performance silk designs. PMID:25340514

  20. Reproducing Natural Spider Silks Copolymer Behavior in Synthetic Silk Mimics

    PubMed Central

    An, Bo; Jenkins, Janelle E.; Sampath, Sujatha; Holland, Gregory P.; Hinman, Mike; Yarger, Jeffery L.; Lewis, Randolph

    2012-01-01

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into ?-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  1. Composition and Hierarchical Organisation of a Spider Silk

    PubMed Central

    Sponner, Alexander; Vater, Wolfram; Monajembashi, Shamci; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2007-01-01

    Albeit silks are fairly well understood on a molecular level, their hierarchical organisation and the full complexity of constituents in the spun fibre remain poorly defined. Here we link morphological defined structural elements in dragline silk of Nephila clavipes to their biochemical composition and physicochemical properties. Five layers of different make-ups could be distinguished. Of these only the two core layers contained the known silk proteins, but all can vitally contribute to the mechanical performance or properties of the silk fibre. Understanding the composite nature of silk and its supra-molecular organisation will open avenues in the production of high performance fibres based on artificially spun silk material. PMID:17912375

  2. Silk from Crickets: A New Twist on Spinning

    PubMed Central

    Walker, Andrew A.; Weisman, Sarah; Church, Jeffrey S.; Merritt, David J.; Mudie, Stephen T.; Sutherland, Tara D.

    2012-01-01

    Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks. PMID:22355311

  3. Silk as an innovative biomaterial for cancer therapy.

    PubMed

    Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2015-01-01

    Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields. PMID:25859397

  4. The elaborate structure of spider silk

    PubMed Central

    Römer, Lin

    2008-01-01

    Biomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable. This article focuses on the structure-function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products. PMID:19221522

  5. Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk

    PubMed Central

    Zhang, Yaopeng; Yang, Hongxia; Shao, Huili; Hu, Xuechao

    2010-01-01

    The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of the A. pernyi silks prepared by forcible reeling. It is surprising that the stress-strain curves of the A. pernyi fibers show similar sigmoidal shape to those of spider dragline silk. Under a controlled reeling speed of 95?mm/s, the breaking energy was 1.04 105?J/kg, the tensile strength was 639 MPa and the initial modulus was 9.9 GPa. It should be noted that this breaking energy of the A. pernyi silk approaches that of spider dragline silk. The tensile properties, the optical orientation and the ?-sheet structure contents of the silk fibers are remarkably increased by raising the spinning speeds up to 95?mm/s. PMID:20454537

  6. Microdissection of black widow spider silk-producing glands.

    PubMed

    Jeffery, Felicia; La Mattina, Coby; Tuton-Blasingame, Tiffany; Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-01-01

    Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk], tubuliform [synthesizes egg case silk], flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] and pyriform [produces attachment disc silk]. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments. PMID:21248709

  7. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells.

    PubMed

    Verdanova, Martina; Pytlik, Robert; Kalbacova, Marie Hubalek

    2014-04-01

    A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO. PMID:24749876

  8. Molecular nanosprings in spider capture-silk threads

    NASA Astrophysics Data System (ADS)

    Becker, Nathan; Oroudjev, Emin; Mutz, Stephanie; Cleveland, Jason P.; Hansma, Paul K.; Hayashi, Cheryl Y.; Makarov, Dmitrii E.; Hansma, Helen G.

    2003-04-01

    Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.

  9. Post-secretion processing influences spider silk performance

    PubMed Central

    Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min

    2012-01-01

    Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteinsMaSp1 predominately contains alanine and glycine and forms strength enhancing ?-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ground state with wild native silks. Native silk mechanics varied less among species compared with ground state silks. Variability in the mechanics of ground state silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213

  10. Identification and classification of silks using infrared spectroscopy

    PubMed Central

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-01-01

    ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557

  11. Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films

    SciTech Connect

    Tsuboi, Yasuyuki; Goto, Masaharu; Itaya, Akira

    2001-06-15

    Silk fibroin is a simple protein expected to have functional applications in medicine and bioelectronics. The primary structure of this protein is quite simple, and the main secondary structures are {beta}-sheet crystals and amorphous random coils. In the present study, we investigated pulsed laser deposition (PLD) of fibroin with the {beta}-sheet structures as targets. The primary and secondary structures in films deposited were analyzed using infrared spectroscopy. Normal laser deposition at 351 nm using neat fibroin targets produced thin films of fibroin with a random coiled structure. Ablation was triggered by two-photonic excitation of the peptide chains, which resulted in the destruction of {beta}-sheet structure in PLD. In order to avoid the two-photonic excitation, we adopted a PLD method utilizing anthracene (5{endash}0.1 wt%) in a photosensitized reaction involving doped fibroin targets. Laser light (351 or 355 nm) was absorbed only by anthracene, which plays an important role converting photon energy to thermal energy with great ablation efficiency. Thin fibroin films deposited by this method had both random coil and {beta}-sheet structures. As the dopant concentration and laser fluence decreased, the ratio of {beta}-sheet domain to random coil increased in thin deposited films. {copyright} 2001 American Institute of Physics.

  12. Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yasuyuki; Goto, Masaharu; Itaya, Akira

    2001-06-01

    Silk fibroin is a simple protein expected to have functional applications in medicine and bioelectronics. The primary structure of this protein is quite simple, and the main secondary structures are ?-sheet crystals and amorphous random coils. In the present study, we investigated pulsed laser deposition (PLD) of fibroin with the ?-sheet structures as targets. The primary and secondary structures in films deposited were analyzed using infrared spectroscopy. Normal laser deposition at 351 nm using neat fibroin targets produced thin films of fibroin with a random coiled structure. Ablation was triggered by two-photonic excitation of the peptide chains, which resulted in the destruction of ?-sheet structure in PLD. In order to avoid the two-photonic excitation, we adopted a PLD method utilizing anthracene (5-0.1 wt %) in a photosensitized reaction involving doped fibroin targets. Laser light (351 or 355 nm) was absorbed only by anthracene, which plays an important role converting photon energy to thermal energy with great ablation efficiency. Thin fibroin films deposited by this method had both random coil and ?-sheet structures. As the dopant concentration and laser fluence decreased, the ratio of ?-sheet domain to random coil increased in thin deposited films.

  13. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like ?-helix.

    PubMed

    Lin, Feng-Hsu; Davies, Peter L; Graham, Laurie A

    2011-05-31

    Inchworm larvae of the pale beauty geometer moth, Campaea perlata, exhibit strong (6.4 C) freezing point depression activity, indicating the presence of hyperactive antifreeze proteins (AFPs). We have purified two novel Thr- and Ala-rich AFPs from the larvae as small (?3.5 kDa) and large (?8.3 kDa) variants and have cloned the cDNA sequences encoding both. They have no homology to known sequences in current BLAST databases. However, these proteins and the newly characterized AFP from the Rhagium inquisitor beetle both contain stretches rich in alternating Thr and Ala residues. On the basis of these repeats, as well as the discontinuities between them, a detailed structural model is proposed for the 8.3 kDa variant. This 88-residue protein is organized into an extended parallel-stranded ?-helix with seven strands connected by classic ?-turns. The alternating ?-strands form two ?-sheets with a thin core composed of interdigitating Ala and Ser residues, similar to the thin hydrophobic core proposed for some silks. The putative ice-binding face of the protein has a 4 5 regular array of Thr residues and is remarkably flat. In this regard, it resembles the nonhomologous Thr-rich AFPs from other moths and some beetles, which contain two longer rows of Thr in contrast to the five shorter rows in the inchworm protein. Like that of some other hyperactive AFPs, the spacing between these ice-binding Thr residues is a close match to the spacing of oxygen atoms on several planes of ice. PMID:21486083

  14. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  15. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed Central

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-01-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought. PMID:8968613

  16. Spider Webs and Silks.

    ERIC Educational Resources Information Center

    Vollrath, Fritz

    1992-01-01

    Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)

  17. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin.

    PubMed

    Jo, Yoon Nam; Park, Byung-Dae; Um, In Chul

    2015-11-01

    Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements. PMID:26407900

  18. Insoluble and flexible silk films containing glycerol.

    PubMed

    Lu, Shenzhou; Wang, Xiaoqin; Lu, Qiang; Zhang, Xiaohui; Kluge, Jonathan A; Uppal, Neha; Omenetto, Fiorenzo; Kaplan, David L

    2010-01-11

    We directly prepared insoluble silk films by blending with glycerol and avoiding the use of organic solvents. The ability to blend a plasticizer like glycerol with a hydrophobic protein like silk and achieve stable material systems above a critical threshold of glycerol is an important new finding with importance for green chemistry approaches to new and more flexible silk-based biomaterials. The aqueous solubility, biocompatibility, and well-documented use of glycerol as a plasticizer with other biopolymers prompted its inclusion in silk fibroin solutions to assess impact on silk film behavior. Processing was performed in water rather than organic solvents to enhance the potential biocompatibility of these biomaterials. The films exhibited modified morphologies that could be controlled on the basis of the blend composition and also exhibited altered mechanical properties, such as improved elongation at break, when compared with pure silk fibroin films. Mechanistically, glycerol appears to replace water in silk fibroin chain hydration, resulting in the initial stabilization of helical structures in the films, as opposed to random coil or beta-sheet structures. The use of glycerol in combination with silk fibroin in materials processing expands the functional features attainable with this fibrous protein, and in particular, in the formation of more flexible films with potential utility in a range of biomaterial and device applications. PMID:19919091

  19. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the development of innovative procedures and technologies for corneal repair.

  20. Silk layering as studied with neutron reflectivity.

    PubMed

    Wallet, Brett; Kharlampieva, Eugenia; Campbell-Proszowska, Katie; Kozlovskaya, Veronika; Malak, Sidney; Ankner, John F; Kaplan, David L; Tsukruk, Vladimir V

    2012-08-01

    Neutron reflectivity (NR) measurements of ultrathin surface films (below 30 nm) composed of Bombyx mori silk fibroin protein in combination with atomic force microscopy and ellipsometry were used to reveal the internal structural organization in both dry and swollen states. Reconstituted aqueous silk solution deposited on a silicon substrate using the spin-assisted layer-by-layer (SA-LbL) technique resulted in a monolayer silk film composed of random nanofibrils with constant scattering length density (SLD). However, a vertically segregated ordering with two different regions has been observed in dry, thicker, seven-layer SA-LbL silk films. The vertical segregation of silk multilayer films indicates the presence of a different secondary structure of silk in direct contact with the silicon oxide surface (first 6 nm). The layered structure can be attributed to interfacial ?-sheet crystallization and the formation of well-developed nanofibrillar nanoporous morphology for the initially deposited silk surface layers with the preservation of less dense, random coil secondary structure for the layers that follow. This segregated structure of solid silk films defines their complex nonuniform behavior in the D(2)O environment with thicker silk films undergoing delamination during swelling. For a silk monolayer with an initial thickness of 6 nm, we observed the increase in the effective thickness by 60% combined with surprising decrease in density. Considering the nanoporous morphology of the hydrophobic silk layer, we suggested that the apparent increase in its thickness in liquid environment is caused by the air nanobubble trapping phenomenon at the liquid-solid interface. PMID:22697306

  1. Phosphorylated silk fibroin matrix for methotrexate release.

    PubMed

    Volkov, Vadim; Srria, Marisa P; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-01-01

    Silk-based matrix was produced for delivery of a model anticancer drug, methotrexate (MTX). The calculation of net charge of silk fibroin and MTX was performed to better understand the electrostatic interactions during matrix formation upon casting. Silk fibroin films were cast at pH 7.2 and pH 3.5. Protein kinase A was used to prepare phosphorylated silk fibroin. The phosphorylation content of matrix was controlled by mixing at specific ratios the phosphorylated and unphosphorylated solutions. In vitro release profiling data suggest that the observed interactions are mainly structural and not electrostatical. The release of MTX is facilitated by use of proteolytic enzymes and higher pHs. The elevated ?-sheet content and crystallinity of the acidified-cast fibroin solution seem not to favor drug retention. All the acquired data underline the prevalence of structural interactions over electrostatical interactions between methotrexate and silk fibroin. PMID:25435334

  2. Functionalized Silk Biomaterials for Wound Healing

    PubMed Central

    Gil, Eun Seok; Panilaitis, Bruce; Bellas, Evangelia

    2013-01-01

    Silk protein-biomaterial wound dressings with epidermal growth factor (EGF) and silver sulfadiazine were studied with a cutaneous excisional mouse wound model. Three different material designs (silk films, lamellar porous silk films, electrospun silk nanofibers) and two different drug functionalization techniques (drug coatings or drug loading into the materials) were studied to compare wound healing responses. Changes in wound size and histological assessments of wound tissues over time confirmed that functionalized silk biomaterial wound dressings increased wound healing rate, including reepithelialization, dermis proliferation, collagen synthesis, epidermal differentiation into hair follicles and sebaceous glands, and reduced scar formation, when compared to air-permeable Tegaderm™ tape (3M) (− control) and a commercially sold wound dressing (Tegaderm™ Hydrocolloid dressing) (+ control). All silk biomaterials studied were effective for wound healing, while the porous features of the silk biomaterials (lamellar porous films and electrospun nanofibers) and the incorporation of EGF/silver sulfadiazine, via drug loading or coating, provided the most rapid wound healing responses. This systematic approach to evaluate functionalized silk biomaterial wound dressings demonstrates a useful strategy to select formulations for further study towards new treatment options for chronic wounds. PMID:23184644

  3. Clay enriched silk biomaterials for bone formation.

    PubMed

    Mieszawska, Aneta J; Llamas, Jabier Gallego; Vaiana, Christopher A; Kadakia, Madhavi P; Naik, Rajesh R; Kaplan, David L

    2011-08-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone-specific uses. Clay montmorillonite (Cloisite Na(+)) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared with silk films doped with sodium silicate as controls for the support of human bone marrow derived mesenchymal stem cells in osteogenic culture. The cells adhered to and proliferated on the silk/clay composites over 2 weeks. Quantitative real time polymerase chain reaction analysis revealed increased transcript levels for alkaline phosphatase, bone sialoprotein, and collagen type 1 osteogenic markers in the cells cultured on the silk/clay films in comparison with the controls. Early evidence of bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that silk/clay composite systems may be useful for further study for bone regenerative needs. PMID:21549864

  4. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines.

    PubMed

    Stewart, Russell J; Wang, Ching Shuen

    2010-04-12

    Aquatic caddisflies diverged from a silk-spinning ancestor shared with terrestrial moths and butterflies. Caddisfly larva spin adhesive silk underwater to construct protective shelters with adventitiously gathered materials. A repeating (SX)(n) motif conserved in the H-fibroin of several caddisfly species is densely phosphorylated. In total, more than half of the serines in caddisfly silk may be phosphorylated. Major molecular adaptations allowing underwater spinning of an ancestral dry silk appear to have been phosphorylation of serines and the accumulation of basic residues in the silk proteins. The amphoteric nature of the silk proteins could contribute to silk fiber assembly through electrostatic association of phosphorylated blocks with arginine-rich blocks. The presence of Ca(2+) in the caddisfly larval silk proteins suggest phosphorylated serines could contribute to silk fiber periodic substructure through Ca(2+) crossbridging. PMID:20196534

  5. Structural characterization of nanofiber silk produced by embiopterans (webspinners)

    PubMed Central

    Addison, J. Bennett; Popp, Thomas M. Osborn; Weber, Warner S.; Edgerly, Janice S.; Holland, Gregory P.; Yarger, Jeffery L.

    2014-01-01

    Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species Antipaluria urichi and Aposthonia ceylonica are studied in this work. Electron microscopy images show that the fibers are about 90100 nm in diameter, making webspinner silks among the finest of all known animal silks. Structural studies reveal that the silk protein core is dominated by ?-sheet structures, and that the protein core is coated with a hydrophobic alkane-rich surface coating. FTIR spectra of native embiid silk shows characteristic alkane CH2 stretchings near 28002900 cm?1, which decrease approximately 50% after washing the silk with 2 : 1 CHCl3 : MeOH. Furthermore, 13C ssNMR data shows a significant CH2 resonance that is strongly affected by the presence of water, supporting the idea that the silk fibers are coated with a hydrocarbon-rich layer. Such a layer is likely used to protect the colonies from rain. FTIR data also suggests that embiid silks are dominated by ?-sheet secondary structures similar to spider and silkworm silk fibers. NMR data confirms the presence of ?-sheet nanostructures dominated by serine-rich repetitive regions. A deconvolution of the serine C? NMR resonance reveals that approximately 70% of all seryl residues exist in a ?-sheet structure. This is consistent with WAXD results that suggest webspinner silks are 70% crystalline, which is the highest crystalline fraction reported for any animal silks. The work presented here provides a molecular level structural picture of silk fibers produced by webspinners. PMID:25383190

  6. Silk fibroin rods for sustained delivery of breast cancer therapeutics.

    PubMed

    Yucel, Tuna; Lovett, Michael L; Giangregorio, Raffaella; Coonahan, Erin; Kaplan, David L

    2014-10-01

    A silk-protein based reservoir rod was developed for zero-order and long-term sustained drug delivery applications. Silk reservoir rod formulations were processed in three steps. First, a regenerated silk fibroin solution, rich in random-coil content was transformed into a tubular silk film with controllable dimensions, uniform film morphology and a structure rich in silk II, ?-sheet content via "film-spinning." Second, the drug powder was loaded into swollen silk tubes followed by tube end clamping. Last, clamped silk tube ends were sealed completely via dip coating. Anastrozole, an FDA approved active ingredient for the treatment of breast cancer, was used as a model drug to investigate viability of the silk reservoir rod technology for sustained drug delivery. The in vitro and in vivo pharmacokinetic data (in a female Sprague-Dawley rat model) analyzed via liquid chromatography-tandem mass spectroscopy indicated zero-order release for 91 days. Both in vitro and in vivo anastrozole release rates could be controlled simply by varying silk rod dimensions. The swelling behavior of silk films and zero-order anastrozole release kinetics indicated practically immediate film hydration and formation of a linear anastrozole concentration gradient along the silk film thickness. The dependence of anastrozole release rate on the overall silk rod dimensions was in good agreement with an essentially diffusion-controlled sustained release from a reservoir cylindrical geometry. In vivo results highlighted a strong in vitro-in vivo pharmacokinetic correlation and a desirable biocompatibility profile of silk reservoir rods. During a 6-month implantation in rats, the apparent silk molecular weight values decreased gradually, while rod dry mass and ?-sheet crystal content values remained essentially constant, providing a suitable timeframe for controlled, long-term sustained delivery applications. Overall, the silk reservoir rod may be a viable candidate for sustained delivery of breast cancer therapeutics. PMID:25009069

  7. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.

    PubMed

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena

    2016-05-01

    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process. PMID:26946262

  8. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids.

    PubMed

    Teramoto, Hidetoshi; Kojima, Katsura

    2014-07-14

    Silk fibroin incorporated with unnatural amino acids was produced by in vivo feeding of p-chloro-, p-bromo-, and p-azido-substituted analogues of L-phenylalanine (Phe) to transgenic silkworms (Bombyx mori) that expressed a mutant of phenylalanyl-tRNA synthetase with expanded substrate recognition capabilities in silk glands. Cutting down the content of Phe in the diet was effective for increasing the incorporation of Phe analogues but simultaneously caused a decrease of fibroin production. The azide groups incorporated in fibroin were active as chemical handles for click chemistry in both the solubilized and the solid (fibrous) states. The azides survived degumming in the boiling alkaline solution that is required for complete removal of the sericin layer, demonstrating that AzPhe-incorporated silk fibroin could be a versatile platform to produce "clickable" silk materials in various forms. This study indicates the huge potential of UAA mutagenesis as a novel methodology to alter the characteristics of B. mori silk. PMID:24884258

  9. The effect of sterilization on silk fibroin biomaterial properties.

    PubMed

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, ? radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, ? irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  10. Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences

    NASA Astrophysics Data System (ADS)

    Gatesy, John; Hayashi, Cheryl; Motriuk, Dagmara; Woods, Justin; Lewis, Randolph

    2001-03-01

    Spiders (Araneae) spin high-performance silks from liquid fibroin proteins. Fibroin sequences from basal spider lineages reveal mosaics of amino acid motifs that differ radically from previously described spider silk sequences. The silk fibers of Araneae are constructed from many protein designs. Yet, the repetitive sequences of fibroins from orb-weaving spiders have been maintained, presumably by stabilizing selection, over 125 million years of evolutionary history. The retention of these conserved motifs since the Mesozoic and their convergent evolution in other structural superproteins imply that these sequences are central to understanding the exceptional mechanical properties of orb weaver silks.

  11. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  12. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber.

    PubMed

    Cao, Ting-Ting; Wang, Yuan-Jing; Zhang, Yu-Qing

    2013-01-01

    Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+) concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1?40?80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin. PMID:23824061

  13. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber

    PubMed Central

    Cao, Ting-Ting; Wang, Yuan-Jing; Zhang, Yu-Qing

    2013-01-01

    Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1?40?80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin. PMID:23824061

  14. Bioactivity of porous biphasic calcium phosphate enhanced by recombinant human bone morphogenetic protein 2/silk fibroin microsphere.

    PubMed

    Chen, Liang; Gu, Yong; Feng, Yu; Zhu, Xue-Song; Wang, Chun-Zeng; Liu, Hai-Long; Niu, Hai-Yun; Zhang, Chi; Yang, Hui-Lin

    2014-07-01

    To prepare a bioactive bone substitute, which integrates biphasic calcium phosphate (BCP) and rhBMP-2/silk fibroin (SF) microsphere, and to evaluate its characteristics. Hydroxyapatite and ?-tricalcium phosphate were integrated with a ratio of 6040%. RhBMP-2/SF (0.5 ?g/1 mg) microsphere was prepared, and its rhBMP-2-release kinetics was assed. After joining pore-forming agent (Sodium chloride, NaCl), porous BCP/rhBMP-2/SF were manufactured, and its characteristics and bioactivity in vitro were evaluated. Mean diameter of rhBMP-2/SF microsphere was 398.7 99.86 nm, with a loading rate of 4.53 0.08%. RhBMP-2 was released in a dual-phase pattern, of which fast-release (nearly half of protein released) focused on the initial 3 days, and slow-release sustained more than 28 days. With the increase in concentration of NaCl, greater was porosity and pore size, but smaller mechanical strength of BCP/rhBMP-2/SF. Material with 150% (w/v) NaCl had an optimal performance, with a porosity of 78.83%, pore size of 293.25 42.77?m and mechanical strength of 31.03 MPa. Proliferation of human placenta-derived mesenchymal stem cells (hPMSCs) on leaching extract medium was similar to the normal medium (P = 0.89), which was better than that on control group (P = 0.03). Activity of alkaline phosphatase on BCP/rhBMP-2/SF surface was higher than on pure BCP at each time point except at 1 day (P < 0.05). RhBMP-2 has a burst release on early times and a sustaining release on later times. BCP/rhBMP-2/SF with 150% (w/v) pore-forming agent has excellent porosity, pore size and mechanical strength. The biomaterial induces proliferation and differentiation hPMSCs effectively. PMID:24659100

  15. Materials Fabrication from Bombyx mori Silk Fibroin

    PubMed Central

    Rockwood, Danielle N.; Preda, Rucsanda C.; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L.; Kaplan, David L.

    2013-01-01

    Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years, and it can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent processing methods can be used to generate silk biomaterials for a range of applications. In this protocol we include methods to extract silk from B. mori cocoons in order to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, and for drug delivery. PMID:21959241

  16. Mechanism of silk processing in insects and spiders

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Kaplan, David L.

    2003-08-01

    Silk spinning by insects and spiders leads to the formation of fibres that exhibit high strength and toughness. The lack of understanding of the protein processing in silk glands has prevented the recapitulation of these properties in vitro from reconstituted or genetically engineered silks. Here we report the identification of emulsion formation and micellar structures from aqueous solutions of reconstituted silkworm silk fibroin as a first step in the process to control water and protein-protein interactions. The sizes (100-200nm diameter) of these structures could be predicted from hydrophobicity plots of silk protein primary sequence. These micelles subsequently aggregated into larger `globules' and gel-like states as the concentration of silk fibroin increased, while maintaining solubility owing to the hydrophilic regions of the protein interspersed among the larger hydrophobic regions. Upon physical shearing or stretching structural transitions, increased birefringence and morphological alignment were demonstrated, indicating that this process mimics the behaviour of similar native silk proteins in vivo. Final morphological features of these silk materials are similar to those observed in native silkworm fibres.

  17. Mechanism of silk processing in insects and spiders.

    PubMed

    Jin, Hyoung-Joon; Kaplan, David L

    2003-08-28

    Silk spinning by insects and spiders leads to the formation of fibres that exhibit high strength and toughness. The lack of understanding of the protein processing in silk glands has prevented the recapitulation of these properties in vitro from reconstituted or genetically engineered silks. Here we report the identification of emulsion formation and micellar structures from aqueous solutions of reconstituted silkworm silk fibroin as a first step in the process to control water and protein-protein interactions. The sizes (100-200 nm diameter) of these structures could be predicted from hydrophobicity plots of silk protein primary sequence. These micelles subsequently aggregated into larger 'globules' and gel-like states as the concentration of silk fibroin increased, while maintaining solubility owing to the hydrophilic regions of the protein interspersed among the larger hydrophobic regions. Upon physical shearing or stretching structural transitions, increased birefringence and morphological alignment were demonstrated, indicating that this process mimics the behaviour of similar native silk proteins in vivo. Final morphological features of these silk materials are similar to those observed in native silkworm fibres. PMID:12944968

  18. Silk nanospheres and microspheres from silk/pva blend films for drug delivery.

    PubMed

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L

    2010-02-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 microm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  19. Silks as scaffolds for skin reconstruction.

    PubMed

    Reimers, Kerstin; Liebsch, Christina; Radtke, Christine; Kuhbier, Jrn W; Vogt, Peter M

    2015-11-01

    In this short review, we describe the use of high molecular weight proteins produced in the glands of several arthropods-commonly called silks-for the purpose to enhance human skin wound healing. To this end an extensive literature search has been performed, the publications have been categorized concerning silk preparation and application and summarized accordingly: Scaffolds to promote wound healing were prepared by processing the silks in different ways including solubilization of the protein fibers followed by casting or electrospinning. The silk scaffolds were additionally modified by coating or blending with the intention of further functionalization. In several approaches, the scaffolds were also vitalized with skin cells or stem cells. In vitro and in vivo models were implied to test for safety and efficiency. We conclude that silk scaffolds are characterized by an advantageous biocompatibility as well as an impressive versatility rendering them ideally suited for application in wounds. Nevertheless, further investigation is needed to exploit the full capacity of silk in different wound models and to achieve clinical transfer in time. Biotechnol. Bioeng. 2015;112: 2201-2205. 2015 Wiley Periodicals, Inc. PMID:25995140

  20. Flexible bio-composites based on silks and celluloses.

    PubMed

    Heo, Semi; Yun, Young Soo; Cho, Se Youn; Jin, Hyoung-Joon

    2012-01-01

    Biomaterials have attracted worldwide attention due to the concerns regarding health and the environment. Silk, a natural protein produced by several species of insects, has been examined as a potential material for applications in many biotechnological and biomedical fields. However, regenerated silk fibroin has poor ductility and mechanical properties. Therefore, in this study, silk fibroin-cellulose composite films were prepared in an aqueous system to increase the ductility of regenerated silk fibroin. The morphology of the silk fibroin-cellulose composite film was observed by field emission scanning electron microscopy. The structure of the silk fibroin-cellulose composite films was examined by Fourier transform-infrared spectroscopy. The flexibility was analyzed using a bending test. PMID:22524062

  1. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  2. Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk

    PubMed Central

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.

    2013-01-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644

  3. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings.

    PubMed

    Zhao, Rui; Li, Xiang; Sun, Bolun; Zhang, Ying; Zhang, Dawei; Tang, Zhaohui; Chen, Xuesi; Wang, Ce

    2014-07-01

    Chitosan and sericin are natural and low cost biomaterials. Both biomaterials displayed good compatibility to human tissues and antibacterial properties for biomedical application. In this study, we have successfully fabricated chitosan/sericin composite nanofibers by electrospinning. The obtained composite nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) studies. The composite nanofibers had good morphology with diameter between 240nm and 380nm. In vitro methyl thiazolyl tetrazolium (MTT) assays demonstrated that the chitosan/sericin composite nanofibers were biocompatible and could promote the cell proliferation. Furthermore, the composite nanofibers showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. Thus, the chitosan/sericin composite nanofibers are promising for wound dressing applications. PMID:24769088

  4. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk

    PubMed Central

    Walker, Andrew A.; Holland, Chris; Sutherland, Tara D.

    2015-01-01

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and ‘non-canonical’ silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid–solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials. PMID:26041350

  5. Sequential origin in the high performance properties of orb spider dragline silk

    NASA Astrophysics Data System (ADS)

    Blackledge, Todd A.; Prez-Rigueiro, Jos; Plaza, Gustavo R.; Perea, Beln; Navarro, Andrs; Guinea, Gustavo V.; Elices, Manuel

    2012-10-01

    Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers.

  6. Sequential origin in the high performance properties of orb spider dragline silk

    PubMed Central

    Blackledge, Todd A.; Prez-Rigueiro, Jos; Plaza, Gustavo R.; Perea, Beln; Navarro, Andrs; Guinea, Gustavo V.; Elices, Manuel

    2012-01-01

    Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376?MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230?MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers. PMID:23110251

  7. Electrodeposited silk coatings for bone implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462

  8. Biomedical applications of chemically-modified silk fibroin

    PubMed Central

    Murphy, Amanda R.

    2009-01-01

    Silk proteins belong to a class of unique, high molecular weight, block copolymer-like proteins that have found widespread use in biomaterials and regenerative medicine. The useful features of these proteins, including self-assembly, robust mechanical properties, biocompatibility and biodegradability can be enhanced through a variety of chemical modifications. These modifications provide chemical handles for the attachment of growth factors, cell binding domains and other polymers to silk, expanding the range of cell and tissue engineering applications attainable. This review focuses on the chemical reactions that have been used to modify the amino acids in silk proteins, and describes their utility in biomedical applications. PMID:20161439

  9. Early events in the evolution of spider silk genes.

    PubMed

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of spidroins that perform different ecological functions. PMID:22761664

  10. Water-insoluble Silk Films with Silk I Structure

    SciTech Connect

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  11. Antimicrobial functionalized genetically engineered spider silk

    PubMed Central

    Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use. Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide sequences encoding different peptides or proteins that are otherwise not found together in nature. In the present study, three new fusion proteins were designed, cloned and expressed and assessed for function, by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides. The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4 (HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the formation of β-sheets to lock in structures via physical interactions without the need for chemical cross-linking. These new functional silk proteins were assessed for antimicrobial activity against Gram - Escherichia coli and Gram + Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed. Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism (CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins with mammalian cells. PMID:21458065

  12. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.

    PubMed

    Xu, Dian; Guo, Chengchen; Holland, Gregory P

    2015-07-13

    Spiders utilize fine adjustment of the physicochemical conditions within its silk spinning system to regulate spidroin assembly into solid silk fibers with outstanding mechanical properties. However, the exact mechanism about which this occurs remains elusive and is still hotly debated. In this study, the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. Incubating the protein-rich MA silk gland fluid at acidic pH conditions results in the formation of silk fibers that are 10-100 ?m in length and ?2 ?m in diameter as judged by optical and electron microscope methods. The in vitro spider silk assembly kinetics were monitored as a function of pH with a (13)C solid-state MAS NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation as well as the percentage of ?-sheet structure in the grown fibers depend on the pH. These results confirm the importance of an acidic pH gradient along the spinning duct for spider silk formation and provide a powerful spectroscopic approach to probe the kinetics of spider silk formation under various biochemical conditions. PMID:26030517

  13. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres.

    PubMed

    Zhang, Xiuli; Fan, Zhihai; Lu, Qiang; Huang, Yongli; Kaplan, David L; Zhu, Hesun

    2013-06-01

    As an analog of the main protein contained in nacre regenerated Bombyx mori silk fibroin has a significant influence on the morphology and polymorphic nature of CaCO3 in the biomineralization process. A number of studies have implied that the self-assembling aggregate structure of silk fibroin is a key factor in controlling CaCO3 aggregation. Further insight into this role is necessary with a particular need to prepare silk fibroin aggregates with homogeneous structures to serve as templates for the mineralization process. Here we have prepared homogeneous silk microspheres to serve as templates for CaCO3 mineralization in order to provide an experimental insight into silk-regulated crystallization processes. CaCO3 particles with different nano- and microstructures, and their polymorphs, were successfully formed by controlling the mineralization process. The key function of silk aggregation in controlling the morphology and polymorphic nature of CaCO3 particles was confirmed. A regulating effect of silk on the spatial features was also observed. A two-step process for silk fibroin-regulated biomineralization was found, with different levels of heterogeneous nucleation and aggregation. A full understanding of silk fibroin-regulated biomineralization mechanisms would help in understanding the function of organic polymers in natural biomineralization, and provide a way forward in the design and synthesis of new materials in which organic-inorganic interfaces are the keys to function, biological interfaces and many related material features. PMID:23518477

  14. Silk Fibroin Films Crystallized by Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, H.-S.; Park, W.-I.; Kim, Y.; Jin, H.-J.

    Silk films prepared from regenerated silk fibroin are normally stabilized by ?-sheet formation through the use of solvents (methanol, water etc.). Herein, we report a new method of preparing water-stable films without a ?-sheet conformation from regenerated silk fibroin solutions by incorporating a small amount (0.2 wt%) of multiwalled carbon nanotubes (MWCNTs). To extend the biomaterial utility of silk proteins, forming water-stable silk-based materials with enhanced mechanical properties is essential. Scanning electron microscopy and transmission electron microscopy were used to observe the morphology of the MWCNT-incorporated silk films. The wide-angle X-ray diffraction provided clear evidence of the crystallization of the silk fibroin induced by MWCNT in the composite films without any additional annealing processing. The tensile modulus and strength of the composite films were improved by 108% and 51%, respectively, by the incorporation of 0.2 wt% of MWCNTs, as compared with those of the pure silk films. The method described in this study will provide an alternative means of crystallizing silk fibroin films without using an organic solvent or blending with any other polymers, which may be important in biomedical applications.

  15. Multifunctional silk-tropoelastin biomaterial systems

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2015-01-01

    New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both in vitro and in vivo environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate ad hoc biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering. PMID:26005219

  16. Bone Tissue Engineering with Premineralized Silk Scaffolds

    PubMed Central

    Kim, Hyeon Joo; Kim, Ung-Jin; Kim, Hyun Suk; Li, Chunmei; Wada, Masahisa; Leisk, Gary G.; Kaplan, David L.

    2009-01-01

    Silks fibroin biomaterials are being explored as novel protein-based systems for cell and tissue culture. In the present study, biomimetic growth of calcium phosphate on porous silk fibroin polymeric scaffolds was explored to generate organic/inorganic composites as scaffolds for bone tissue engineering. Aqueous-derived silk fibroin scaffolds were prepared with the addition of polyaspartic acid during processing, followed by the controlled deposition of calcium phosphate by exposure to CaCl2 and Na2HPO4. These mineralized protein-composite scaffolds were subsequently seeded with human bone marrow stem cells (hMSC) and cultured in vitro for 6 weeks under osteogenic conditions with or without BMP-2. The extent of osteoconductivity was assessed by cell numbers, alkaline phosphatase and calcium deposition, along with immunohistochemistry for bone related outcomes. The results suggest increased osteoconductive outcomes with an increase in initial content of apatite and BMP-2 in the silk fibroin porous scaffolds. The premineralization of these highly porous silk fibroin protein scaffolds provided enhanced outcomes for the bone tissue engineering. PMID:18387349

  17. Silk Batik using Cochineal Dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of silk, including sericulture (the production of raw silk, which requires the raising of silkworms on their natural diet, mulberry leaves) and silk manufacturing, is rich and extensive. It encompasses several famous silk roads (trade routes), various cultures and technologies, ideas,...

  18. Art on Silk Hoops

    ERIC Educational Resources Information Center

    Padrick, Deborah

    2012-01-01

    Painting on silk has a magic all its own. Versions of painting on silk can be found throughout the world from Japan and Europe to the United States. Themes for the paintings can be most any type of design or imagery. Applying the liquid dyes is exciting, as the vivid liquid colors flow and blend into the fabric. The process captures students'…

  19. Art on Silk Hoops

    ERIC Educational Resources Information Center

    Padrick, Deborah

    2012-01-01

    Painting on silk has a magic all its own. Versions of painting on silk can be found throughout the world from Japan and Europe to the United States. Themes for the paintings can be most any type of design or imagery. Applying the liquid dyes is exciting, as the vivid liquid colors flow and blend into the fabric. The process captures students'

  20. Production of scFv-conjugated affinity silk film and its application to a novel enzyme-linked immunosorbent assay.

    PubMed

    Sato, Mitsuru; Kojima, Katsura; Sakuma, Chisato; Murakami, Maria; Tamada, Yasushi; Kitani, Hiroshi

    2014-01-01

    Bombyx mori (silkworm) silk proteins have been utilized as unique biomaterials for various medical applications. To develop a novel affinity silk material, we generated a transgenic silkworm that spins silk protein containing the fibroin L-chain linked with the single-chain variable fragment (scFv) as a fusion protein. Previously, the scFv-conjugated "affinity" silk powder specifically immunoprecipitated its target protein, Wiskott-Aldrich syndrome protein. To expand the applicability of affinity silk materials, we processed the scFv-conjugated silk protein into a thin film by dissolving it in lithium bromide, then drying it in the wells of 96-well plates. Enzyme-linked immunosorbent assay demonstrated specific detection of Wiskott-Aldrich syndrome protein, both as a recombinant protein and in its native form extracted from mouse macrophages. These findings suggest that this scFv-conjugated silk film serves as the basis for an alternative immunodetection system. PMID:24518284

  1. Biofabrication of cell-loaded 3D spider silk constructs.

    PubMed

    Schacht, Kristin; Jngst, Tomasz; Schweinlin, Matthias; Ewald, Andrea; Groll, Jrgen; Scheibel, Thomas

    2015-02-23

    Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication. PMID:25640578

  2. Safety evaluation of silk protein film (a novel wound healing agent) in terms of acute dermal toxicity, acute dermal irritation and skin sensitization.

    PubMed

    Padol, Amol R; Jayakumar, K; Shridhar, N B; Narayana Swamy, H D; Narayana Swamy, M; Mohan, K

    2011-01-01

    Acute dermal toxicity study was conducted in rats. The parameters studied were body weight, serum biochemistry and gross pathology. The animals were also observed for clinical signs and mortality after the application of test film. The dermal irritation potential of silk protein film was examined using Draize test. In the initial test, three test patches were applied sequentially for 3 min, 1 and 4 hours, respectively, and skin reaction was graded. The irritant or negative response was confirmed using two additional animals, each with one patch, for an exposure period of 4 hours. The responses were scored at 1, 24, 48 and 72 hours after the patch removal. Skin sensitization study was conducted according to Buehler test in guinea pigs, in which on day 0, 7 and 14, the animals were exposed to test material for 6 hours (Induction phase) and on day 28, the animals were exposed for a period of 24 hours (Challenge phase). The skin was observed and recorded at 24 and 48 hours after the patch removal. In acute dermal toxicity study, the rats dermally treated with silk film did not show any abnormal clinical signs and the body weight, biochemical parameters and gross pathological observations were not significantly different from the control group. In acute dermal irritation study, the treated rabbits showed no signs of erythema, edema and eschar, and the scoring was given as "0" for all time points of observations according to Draize scoring system. In skin sensitization study, there were no skin reactions 24 and 48 hours after the removal of challenge patch, which was scored "0" based on Magnusson/Kligman grading scale. PMID:21430915

  3. GC/MS-based metabolomic studies reveal key roles of glycine inregulating silk synthesis in silkworm, Bombyx mori.

    PubMed

    Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou

    2015-02-01

    Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis. PMID:25533535

  4. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands.

    PubMed

    Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L

    2015-10-01

    Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers. PMID:26365738

  5. Carbondioxide gating in silk cocoon.

    PubMed

    Roy, Manas; Meena, Sunil Kumar; Kusurkar, Tejas Sanjeev; Singh, Sushil Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Sarkar, Sabyasachi; Das, Mainak

    2012-12-01

    Silk is the generic name given to the fibrous proteins spun by a number of arthropods. During metamorphosis, the larva of the silk producing arthropods excrete silk-fiber from its mouth and spun it around the body to form a protective structure called cocoon. An adult moth emerges out from the cocoon after the dormant phase (pupal phase) varying from 2 weeks to 9 months. It is intriguing how CO(2)/O(2) and ambient temperature are regulated inside the cocoon during the development of the pupa. Here we show that the cocoon membrane is asymmetric, it allows preferential gating of CO(2) from inside to outside and it regulates a physiological temperature inside the cocoon irrespective of the surrounding environment temperature. We demonstrate that under simulating CO(2) rich external environment, the CO(2) does not diffuse inside the cocoon. Whereas, when CO(2) was injected inside the cocoon, it diffuses out in 20 s, indicating gating of CO(2) from inside to outside the membrane. Removal of the calcium oxalate hydrate crystals which are naturally present on the outer surface of the cocoon affected the complete blockade of CO(2) flow from outside to inside suggesting its role to trap most of the CO(2) as hydrogen bonded bicarbonate on the surface. The weaved silk of the cocoon worked as the second barrier to prevent residual CO(2) passage. Furthermore, we show that under two extreme natural temperature regime of 5 and 50 C, a temperature of 25 and 34 C respectively were maintained inside the cocoons. Our results demonstrate, how CO(2) gating and thermoregulation helps in maintaining an ambient atmosphere inside the cocoon for the growth of pupa. Such natural architectural control of gas and temperature regulation could be helpful in developing energy saving structures and gas filters. PMID:22791361

  6. Silk material modification and microfabrication strategies for applications in biosensors and drug delivery

    NASA Astrophysics Data System (ADS)

    Tsioris, Konstantinos

    Silk has proven to be a promising biomaterial for the development of a novel generation of biomedical devices due to the material's intrinsic properties of biocompatibility and biodegradability. To further the development of silk-based devices, augmented functionality can be provided to silk by means of microfabrication and material functionalization. In this dissertation, we set out to explore possibilities of silk-based biomedical device development with particular attention to different fabrication strategies that can be leveraged for this purpose, taking inspiration from conventional lithography, contact imprinting and chemical modification of the silk biomaterial. In particular, we have produced a novel silk-based drug delivery device, in the form of microneedles. For this purpose we have developed micromolding strategies which allow the fabrication of high aspect ratio silk structures. Furthermore, we have produced a THz split ring resonator based sensor device on silk films. To realize this device, we have developed a convenient fabrication method, allowing transfer of previously microfabricated metal and oxide microstructures to the silk film surface. This method has proven useful for hard masking and patterning silk films with reactive ion etching. Moreover, we have explored patterning semiconductor and glass substrates with silk films. For this purpose we have modified a standard microfabrication method -lift off- to be amendable to silk. Furthermore, combining silk based fabrication and material functionalization has lead to microfluidics pH sensing applications. Finally we have explored the possibility of utilizing silk for injectable and biodegradable glucose sensors. For this purpose, we have doped silk hydrogels with a fluorescence based protein biosensor. The advanced silk fabrication and material synthesis strategies and the resulting novel devices presented here could potentially lead to a new class of biomedical applications.

  7. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering.

    PubMed

    Liu, Haifeng; Li, Xiaoming; Zhou, Gang; Fan, Hongbin; Fan, Yubo

    2011-05-01

    One of the major downfalls of tissue-engineered small-diameter vascular grafts is the inability to obtain a confluent endothelium on the lumenal surface. Loosely attached endothelial cells (ECs) are easily separated from the vessel wall when exposed to the in vivo vascular system. Thus any denuded areas on the lumenal surface of vascular grafts may lead to thrombus formation via platelet deposition and activation. If the denuded areas could express anticoagulant activity until the endothelial cell lining is fully achieved, it may greatly improve the chances of successful vascular reconstruction. In this study, we fabricate sulfated silk fibroin nanofibrous scaffolds (S-silk scaffolds) and assess the anticoagulant activity and cytocompatibility of S-silk scaffolds in vitro in order to improve the antithrombogenicity and get some insights into its potential use for vascular tissue engineering. Sulfated silk fibroin was prepared by reaction with chlorosulphonic acid in pyridine, and then was developed to form an S-silk scaffold by electrospinning technique. FTIR analyses identified the successful incorporation of sulfate groups in silk fibroin molecules. It was found that the anticoagulant activity of S-silk scaffolds was significantly enhanced compared with silk fibroin nanofibrous scaffolds (Silk scaffolds). Vascular cells, including ECs and smooth muscle cells (SMCs), demonstrated strong attachment to S-silk scaffolds and proliferated well with higher expression of some phenotype-related marker genes and proteins. Overall, the data in this study suggest the suitability of S-silk scaffolds used along with vascular cells for the development of tissue-engineered vascular grafts. PMID:21376391

  8. An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

    SciTech Connect

    Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Church, Jeffrey S.; Sutherland, Tara D.; Haritos, Victoria S.

    2009-01-15

    Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.

  9. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Mller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  10. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  11. Stabilization and release of enzymes from silk films.

    PubMed

    Lu, Qiang; Wang, Xiaoqin; Hu, Xiao; Cebe, Peggy; Omenetto, Fiorenzo; Kaplan, David L

    2010-04-01

    A significant challenge remains to protect protein drugs from inactivation during production, storage, and use. In the present study, the stabilization and release of horseradish peroxidase (HRP) in silk films was investigated. Water-insoluble silk films were prepared under mild aqueous conditions, maintaining the activity of the entrapped enzyme. Depending on film processing and post-processing conditions, HRP retained more than 90% of the initial activity at 4 degrees C, room temperature and 37 degrees C over two months. The stability of protein drugs in silk films is attributed to intermolecular interactions between the silk and the enzymes, based on Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The unique structural feature of silk molecules, periodic hydrophobic-hydrophilic domains, enabled strong interactions with proteins. The entrapped protein was present in two states, untrapped active and trapped inactive forms. The ratio between the two forms varied according to processing conditions. Proteolytic degradation and dissolution of the silk films resulted in the release of the bound enzyme which was otherwise not released by diffusion; enzyme recovered full activity upon release. There was a linear relationship between silk degradation/dissolution and the release of entrapped enzyme. Modifying the secondary structure of the silk matrix and the interactions with the non-crystalline domains resulted in control of the film degradation or dissolution rate, and therefore the release rate of the entrapped enzyme. Based on the above results, silk materials are an intriguing carrier for proteins in terms of both retention of activity and controllable release kinetics from the films. PMID:20217856

  12. Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies

    PubMed Central

    Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.

    2011-01-01

    The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering ?-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004

  13. Unraveled mechanism in silk engineering: Fast reeling induced silk toughening

    NASA Astrophysics Data System (ADS)

    Wu, Xiang; Liu, Xiang-Yang; Du, Ning; Xu, Gangqin; Li, Baowen

    2009-08-01

    We theoretically and experimentally study the mechanical response of silkworm and spider silks against stretching and the relationship with the underlying structural factors. It is found that the typical stress-strain profiles are predicted in good agreement with experimental measurements by implementing the "?-sheet splitting" mechanism we discovered and verified, primarily varying the secondary structure of protein macromolecules. The functions of experimentally observed structural factors responding to the external stress have been clearly addressed, and optimization of the microscopic structures to enhance the mechanical strength will be pointed out, beneficial to their biomedical and textile applications.

  14. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Ar?, Hatice; zpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features.

  15. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study.

    PubMed

    Ar?, Hatice; zpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features. PMID:25677985

  16. Solid-state NMR comparison of various spiders' dragline silk fiber.

    PubMed

    Creager, Melinda S; Jenkins, Janelle E; Thagard-Yeaman, Leigh A; Brooks, Amanda E; Jones, Justin A; Lewis, Randolph V; Holland, Gregory P; Yarger, Jeffery L

    2010-08-01

    Major ampullate (dragline) spider silk is a coveted biopolymer due to its combination of strength and extensibility. The dragline silk of different spiders have distinct mechanical properties that can be qualitatively correlated to the protein sequence. This study uses amino acid analysis and carbon-13 solid-state NMR to compare the molecular composition, structure, and dynamics of major ampullate dragline silk of four orb-web spider species ( Nephila clavipes , Araneus gemmoides , Argiope aurantia , and Argiope argentata ) and one cobweb species ( Latrodectus hesperus ). The mobility of the protein backbone and amino acid side chains in water exposed silk fibers is shown to correlate to the proline content. This implies that regions of major ampullate spidroin 2 protein, which is the only dragline silk protein with any significant proline content, become significantly hydrated in dragline spider silk. PMID:20593757

  17. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy

    PubMed Central

    Oroudjev, E.; Soares, J.; Arcidiacono, S.; Thompson, J. B.; Fossey, S. A.; Hansma, H. G.

    2002-01-01

    Despite its remarkable materials properties, the structure of spider dragline silk has remained unsolved. Results from two probe microscopy techniques provide new insights into the structure of spider dragline silk. A soluble synthetic protein from dragline silk spontaneously forms nanofibers, as observed by atomic force microscopy. These nanofibers have a segmented substructure. The segment length and amino acid sequence are consistent with a slab-like shape for individual silk protein molecules. The height and width of nanofiber segments suggest a stacking pattern of slab-like molecules in each nanofiber segment. This stacking pattern produces nano-crystals in an amorphous matrix, as observed previously by NMR and x-ray diffraction of spider dragline silk. The possible importance of nanofiber formation to native silk production is discussed. Force spectra for single molecules of the silk protein demonstrate that this protein unfolds through a number of rupture events, indicating a modular substructure within single silk protein molecules. A minimal unfolding module size is estimated to be around 14 nm, which corresponds to the extended length of a single repeated module, 38 amino acids long. The structure of this spider silk protein is distinctly different from the structures of other proteins that have been analyzed by single-molecule force spectroscopy, and the force spectra show correspondingly novel features. PMID:11959907

  18. Effect of Sequence Features on Assembly of Spider Silk Block Copolymers

    PubMed Central

    Tokareva, Olena S.; Lin, Shangchao; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel; Li, David; Simon, Marc; Staii, Cristian; Cebe, Peggy; Wong, Joyce Y.; Buehler, Markus J.; Kaplan, David L.

    2014-01-01

    Bioengineered spider silk block copolymers were studied to understand the effect of protein chain length and sequence chemistry on the formation of secondary structure and materials assembly. Using a combination of in vitro protein design and assembly studies, we demonstrate that silk block copolymers possessing multiple repetitive units self-assemble into lamellar microstructures. Additionally, the study provides insights into the assembly behavior of spider silk block copolymers in concentrated salt solutions. PMID:24613991

  19. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    NASA Astrophysics Data System (ADS)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  20. Highly tunable elastomeric silk biomaterials

    PubMed Central

    Partlow, Benjamin P.; Hanna, Craig W.; Rnjak-Kovacina, Jelena; Moreau, Jodie E.; Applegate, Matthew B.; Burke, Kelly A.; Marelli, Benedetto; Mitropoulos, Alexander N.; Omenetto, Fiorenzo G.

    2014-01-01

    Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 – 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine. PMID:25395921

  1. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.

    PubMed

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-11-14

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g(-1) at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g(-1), which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries. PMID:26456870

  2. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-10-01

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g-1 at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g-1, which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  3. Lysine-doped polypyrrole/spider silk protein/poly(l-lactic) acid containing nerve growth factor composite fibers for neural application.

    PubMed

    Zhang, Hong; Wang, Kefeng; Xing, Yiming; Yu, Qiaozhen

    2015-11-01

    Lysine-doped polypyrrole (PPy)/regenerated spider silk protein (RSSP)/poly(l-lactic) acid (PLLA)/nerve growth factor (NGF) (L-PRPN) composite scaffold was fabricated by co-axial electrospraying and electrospinning. This L-PRPN composite scaffold had a structure of microfibers with a core-shell structure as the stems and nanofibers as branches. Assessment in vitro demonstrated that the L-PRPN composite micro/nano-fibrous scaffold could maintain integrated structure for at least 4months and the pH value of PBS at about 7.28. It had good biocompatibility and cell adhesion and relatively stable conductivity. PC 12 cells cultured on this scaffold, anisotropic cell-neurite-cell-neurite or neurite-neurite sheets were formed after being cultured for 6days. Evaluations in vivo also showed that L-PRPN composite fibrous conduit was effective at bridging 2.0cm sciatic nerve gap in adult rat within 10months. This conduit and electrical stimulation (ES) through it promoted Schwann cell migration and axonal regrowth. PMID:26249628

  4. Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using Silk-Collagen Scaffold and Comparison with Autograft

    PubMed Central

    Bi, Fanggang; Shi, Zhongli; Liu, An; Guo, Peng; Yan, Shigui

    2015-01-01

    The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application. PMID:25938408

  5. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    PubMed

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. PMID:23426575

  6. An Australian webspinner species makes the finest known insect silk fibers

    SciTech Connect

    Okada, Shoko; Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Haritos, Victoria S.; Sutherland, Tara D.

    2009-01-15

    Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet protein structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.

  7. Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs.

    PubMed

    Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang

    2015-05-01

    We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures. PMID:25804731

  8. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids

    PubMed Central

    Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  9. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids.

    PubMed

    Ma, Zhihui; Qin, Yongtian; Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928Zong3 and Lx9801Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  10. Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus.

    PubMed

    Lawrence, Barbara A; Vierra, Craig A; Moore, Anne M F

    2004-01-01

    Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks. PMID:15132648

  11. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.

    PubMed

    Shalumon, K T; Lai, Guo-Jyun; Chen, Chih-Hao; Chen, Jyh-Ping

    2015-09-30

    The presence of both osteoconductive and osteoinductive factors is important in promoting stem cell differentiation toward the osteogenic lineage. In this study, we prepared silk fibroin/chitosan/nanohydroxyapatite/bone morphogenetic protein-2 (SF/CS/nHAP/BMP-2, SCHB2) nanofibrous membranes (NFMs) by incorporating BMP-2 in the core and SF/CS/nHAP as the shell layer of a nanofiber with two different shell thicknesses (SCHB2-thick and SCHB-thin). The physicochemical properties of SCHB2 membranes were characterized and compared with those of SF/CS and SF/CS/nHAP NFMs. When tested in release studies, the release rate of BMP-2 and the concentration of BMP-2 in the release medium were higher for SCHB2-thin NFMs because of reduced shell thickness. The BMP-2 released from the nanofiber retained its osteoinductive activity toward human-bone-marrow-derived mesenchymal stem cells (hMSCs). Compared with SF/CS and SF/CS/nHAP NFMs, the incorporation of BMP-2-promoted osteogenic differentiation of hMSCs and the SCHB-thin NFM is the best scaffold during in vitro cell culture. Gene expression analysis by real-time quantitative polymerase chain reaction detected the evolution of both early and late marker genes of bone formation. The relative mRNA expression is in accordance with the effect of BMP-2 incorporation and shell thickness, while the same was reconfirmed through the quantification of bone marker protein osteocalcin. In vivo experiments were carried out by subcutaneously implanting hMSC-seeded SCHB2-thin NFMs and acellular controls on the back sides of nude mice. Immunohistochemical and histological staining confirmed ectopic bone formation and osteogenesis of hMSCs in SCHB2-thin NFMs. In conclusion, the SCHB2-thin NFM could be suggested as a promising scaffold for bone tissue engineering. PMID:26355766

  12. Recombinant spider silk particles as drug delivery vehicles.

    PubMed

    Lammel, Andreas; Schwab, Martin; Hofer, Markus; Winter, Gerhard; Scheibel, Thomas

    2011-03-01

    Spider silk has been in the focus of research mainly due to the superior mechanical characteristics of silk fibers. However, it has been previously shown that spider silk proteins can also adopt other morphologies such as submicroparticles. This study examines the applicability of such particles as drug carriers. Particle characterization revealed that particles made of the engineered spider silk protein eADF4(C16) arecolloidally stable in solution. Here, it is shown that small molecules with positive net-charge can diffuse into the negatively charged spider silk protein matrix driven by electrostatic interactions. The loading efficiencies correlate with the distribution coefficient (logD) of small molecules of weak alkaline nature. Interestingly, constant release rates can be realized for a period of two weeks at physiological conditions in vitro, with accelerated release rates within acidic environments. Enzymatic degradation studies of eADF4(C16) particles indicated that the silk proteins degrade slowly and the particles decrease in size. Along with their all-aqueous and easy preparation, drug loaded eADF4(C16) particles provide a high potential for diverse applications in which controlled release from biodegradable carriers is desired. PMID:21186052

  13. Evidence for antimicrobial activity associated with common house spider silk

    PubMed Central

    2012-01-01

    Background Spider silk is one of the most versatile materials in nature with great strength and flexibility. Native and synthetically produced silk has been used in a wide range of applications including the construction of artificial tendons and as substrates for human cell growth. In the literature there are anecdotal reports that suggest that native spider silk may also have antimicrobial properties. Findings In this study we compared the growth of a Gram positive and a Gram negative bacterium in the presence and absence of silk produced by the common house spider Tegenaria domestica. We demonstrate that native web silk of Tegenaria domestica can inhibit the growth of the Gram positive bacterium, Bacillus subtilis. No significant inhibition of growth was detected against the Gram negative bacterium, Escherichia coli. The antimicrobial effect against B. subtilis appears to be short lived thus the active agent potentially acts in a bacteriostatic rather than bactericidal manner. Treatment of the silk with Proteinase K appears to reduce the ability to inhibit bacterial growth. This is consistent with the active agent including a protein element that is denatured or cleaved by treatment. Tegenaria silk does not appear to inhibit the growth of mammalian cells in vitro thus there is the potential for therapeutic applications. PMID:22731829

  14. Spider genomes provide insight into composition and evolution of venom and silk

    PubMed Central

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  15. Spider genomes provide insight into composition and evolution of venom and silk.

    PubMed

    Sanggaard, Kristian W; Bechsgaard, Jesper S; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thgersen, Ida B; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J; Schauser, Leif; Andersen, Stig U; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  16. Structural Properties of Silk Electro-Gels

    NASA Astrophysics Data System (ADS)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2013-03-01

    The interest in Bombyx Mori silk emerges from its biocompatibility and its structural superiority to synthetic polymers. Our particular interest lies in understanding the capabilities of silk electro-gels because of their reversibility and tunable adhesion. We create an electro-gel by applying a DC electric potential across a reconstituted silk fibroin solution derived directly from Bombyx Mori cocoons. This process leads to the intermolecular self-assembly of fibroin proteins into a weak gel. In this talk we will present our results on the effects of applied shear on electro-gels. We quantify the structural properties while dynamically imaging shear induced fiber formation; known as fibrillogenesis. It is observed that the mechanical properties and microstructure of these materials are highly dependent on shear history. We will also discuss the role of surface modification, through micro-patterning, on the observed gel structure. Our results provide an understanding of both the viscoelastiticity and microstucture of reconstituted silks that are being utilized as tissue scaffolds. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  17. Functionalized spider silk spheres as drug carriers for targeted cancer therapy.

    PubMed

    Florczak, Anna; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2014-08-11

    Bioengineered spider silk is a biomaterial that combines the properties of self-assembly, biocompatibility and biodegradability with reasonable accessibility and a simple purification procedure. Moreover, genetic engineering enables the functionalization of silk by adding the peptide coding sequences of the desired attribute. Hybrids composed of Her2 binding peptides (H2.1 or H2.2) and bioengineered silk MS1 (based on the MaSp1 sequence from N. clavipes) were designed. Bioengineered silks were expressed in a bacterial system and purified using a tag-free thermal method. The hybrid silks with N-terminal functionalization were bound more efficiently to cells that were overexpressing Her2 than those with the C-terminal fusion. Moreover, the functionalization did not impede the self-assembly property of bioengineered silk, enabling the processing of silk proteins into spheres. The binding domains were exposed on the surface of the spheres, because the functionalized particles specifically bound and internalized into Her2-overexpressing cells. The binding of the functionalized spheres to Her2-positive cells was significantly higher compared with the control sphere and Her2-negative cell binding. Silk spheres were loaded with doxorubicin and showed pH-dependent drug release. The silk spheres were not cytotoxic, unless they were loaded with the drug doxorubicin. This study indicates the ability of drug-loaded functionalized spider silk spheres to serve as a carrier for targeted cancer therapy. PMID:24963985

  18. The elaborate structure of spider silk: structure and function of a natural high performance fiber.

    PubMed

    Rmer, Lin; Scheibel, Thomas

    2008-01-01

    Biomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable. This article focuses on the structure-function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products. PMID:19221522

  19. Cross-linking in the silks of bees, ants and hornets.

    PubMed

    Campbell, Peter M; Trueman, Holly E; Zhang, Qiang; Kojima, Katsura; Kameda, Tsunenori; Sutherland, Tara D

    2014-05-01

    Silk production is integral to the construction of nests or cocoons for many Aculeata, stinging Hymenopterans such as ants, bees and wasps. Here we report the sequences of new aculeate silk proteins and compare cross-linking among nine native silks from three bee species (Apis mellifera, Bombus terrestris and Megachile rotundata), three ant species (Myrmecia forficata, Oecophylla smaragdina and Harpegnathos saltator) and three hornets (Vespa analis, Vespa simillima and Vespa mandarinia). The well studied silks of spiders and silkworms are comprised of large proteins that are cross-linked and stabilized predominantly by intra and intermolecular beta sheet structure. In contrast, the aculeate silks are comprised of relatively small proteins that contain central coiled coil domains and comparatively reduced amounts of beta sheet structure. The hornet silks, which have the most beta sheet structure and the greatest amount of amino acid sequence outside the coiled-coil domains, dissolve in concentrated LiBr solution and appear to be stabilized predominantly by beta sheet structure like the classic silks. In contrast, the ant and bee silks, which have less beta sheet and less sequence outside the coiled-coil domains, could not be dissolved in LiBr and appear to be predominantly stabilized by covalent cross-linking. The iso-peptide cross-linker, ?-(?-glutamyl)-lysine that is produced by transglutaminase enzymes, was demonstrated to be present in all silks by mass spectrometry, but at greater levels in silks of ants and bees. The bee silks and ant cocoons, but not the Oecophylla nest silks, appeared to be further stabilized by tanning reactions. PMID:24607851

  20. Optically switchable natural silk

    NASA Astrophysics Data System (ADS)

    Krasnov, Igor; Krekiehn, Nicolai R.; Krywka, Christina; Jung, Ulrich; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady; Magnussen, Olaf M.; Mller, Martin

    2015-03-01

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore moleculesazobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  1. Optically switchable natural silk

    SciTech Connect

    Krasnov, Igor Mller, Martin; Krekiehn, Nicolai R.; Jung, Ulrich; Magnussen, Olaf M.; Krywka, Christina; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady

    2015-03-02

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore moleculesazobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  2. Functional silk: colored and luminescent.

    PubMed

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others. PMID:22302383

  3. Scrutinizing the datasets obtained from nanoscale features of spider silk fibres

    PubMed Central

    Silva, Luciano P; Rech, Elibio L

    2014-01-01

    Spider silk fibres share unprecedented structural and mechanical properties which span from the macroscale to nanoscale and beyond. This is possible due to the molecular features of modular proteins termed spidroins. Thus, the investigation of the organizational scaffolds observed for spidroins in spider silk fibres is of paramount importance for reverse bioengineering. This dataset consists in describing a rational screening procedure to identify the nanoscale features of spider silk fibres. Using atomic force microscopy operated in multiple acquisition modes, we evaluated silk fibres from nine spider species. Here we present the complete results of the analyses and decrypted a number of novel features that could even rank the silk fibres according to desired mechanostructural features. This dataset will allow other researchers to select the most appropriate models for synthetic biology and also lead to better understanding of spider silk fibres extraordinary performance that is comparable to the best manmade materials. PMID:25977795

  4. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was modulated over a 10-fold range and implant insertion into bone mimics demonstrated that the coatings were able to withstand delamination forces experienced during these mock implantations. Antibiotic release from coated implant studs inhibited bacterial growth and dexamethasone release was shown to stimulate calcium deposition in mesenchymal stem cells.

  5. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  6. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) – Insight into the Mechanism of Silk Formation and Spinning

    PubMed Central

    Chang, Huaipu; Cheng, Tingcai; Wu, Yuqian; Hu, Wenbo; Long, Renwen; Liu, Chun; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms. PMID:26418001

  7. [Engineered spider silk: the intelligent biomaterial of the future. Part II].

    PubMed

    Kaźmierska, Katarzyna; Florczak, Anna; Piekoś, Konrad; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna

    2011-01-01

    The development and progress in engineered spider silk manufacturing has enabled its practical application. Recombinant spider silk can assemble in several morphological forms such as films, hydrogels, fibers, scaffolds, microcapsules, and micro- and nanospheres. The in vitro fiber formation takes place by mimicking the natural spinning process in the spider spinning gland: in the presence of phosphate ions and dragging forces. Films are obtained by evaporation of solvent from the silk solution, while the result of evaporation of the solvent in the presence of porogens is a silk scaffold. Hydrogels are formed by spontaneous polymerization of silk particles in solutions at low pH. The silk film assembled at the interface of two immiscible phases forms microcapsules. The smallest of the described forms--silk spheres--are obtained by salting out the silk protein solution after addition of the phosphate ions. Common properties of the silk biomaterials are biocompatibility and biodegradability, which make them suitable for a number of applications in medicine and pharmacy. Moreover, the strategy of hybrid proteins which provides the desired function to biomaterial will further expand their potential use. PMID:21734323

  8. Modulation of vincristine and doxorubicin binding and release from silk films.

    PubMed

    Coburn, Jeannine M; Na, Elim; Kaplan, David L

    2015-12-28

    Sustained release drug delivery systems remain a major clinical need for small molecule therapeutics in oncology. Here, mechanisms of small molecule interactions with silk protein films were studied with cationic oncology drugs, vincristine and doxorubicin, with a focus on hydrophobicity (non-ionic surfactant) and charge (pH and ionic strength). Interactions were primarily driven by charge interactions between the positively charged drugs and the negatively charged groups within the silk films. Exploiting chemical modifications of silk further modulated the drug interactions in a controlled fashion. Increasing anionic side groups via carboxylate- and sulfonate-modifications of tyrosine side chains in the silk protein using diazonium coupling chemistry, increased drug binding and altered drug release. The effects of silk film protein crystallinity, beta sheet content, on drug binding and release were also explored. Lower crystallinity supported more rapid drug binding when compared to higher crystalline silk films. The drug release kinetics were governed by the protonation state of vincristine and doxorubicin and were tunable based on silk crystallinity and chemistry. These studies depict an approach to characterize small molecule-silk protein interactions and methods to tune drug binding and release kinetics from this protein delivery matrix. PMID:26500149

  9. Flexibility regeneration of silk fibroin in vitro.

    PubMed

    Zhang, Cencen; Song, Dawei; Lu, Qiang; Hu, Xiao; Kaplan, David L; Zhu, Hesun

    2012-07-01

    Although natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process. Silk fibroin films composed of silk I structure were first prepared by slow drying process. Then, the silk fibroin films were stretched in the wet state, following the structural transition from silk I to silk II. The difference between the flexible film and different brittle regenerated films was investigated to reveal the critical factors in regulating the flexibility of regenerated silk materials. Compared with the methanol-treated silk films, although having similar silk II structure and water content, the flexible silk films contained more bound water rather than free water, implying the great influence of bound water on the flexibility. Then, further studies revealed that the distribution of bound water was also a critical factor in improving silk flexibility in the dry state, which could be regulated by the nanoassembly of silk fibroin. Importantly, the results further elucidate the relation between mechanical properties and silk fibroin structures, pointing to a new mode of generating new types of silk materials with enhanced mechanical properties in the dry state, which would facilitate the fabrication and application of regenerated silk fibroin materials in different fields. PMID:22632113

  10. Spider silk reduces insect herbivory

    PubMed Central

    Rypstra, Ann L.; Buddle, Christopher M.

    2013-01-01

    The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes. PMID:23193048

  11. Spider silk reduces insect herbivory.

    PubMed

    Rypstra, Ann L; Buddle, Christopher M

    2013-02-23

    The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes. PMID:23193048

  12. Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk**

    PubMed Central

    Raja, Waseem K.; MacCorkle, Scott; Diwan, Izzuddin M.; Abdurrob, Abdurrahman; Lu, Jessica; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, we report the fabrication of dense microneedle arrays from silk with different drug release kinetics. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs were delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery. PMID:23653252

  13. Ingrowth of Human Mesenchymal Stem Cells into Porous Silk Particle Reinforced Silk Composite Scaffolds: An In Vitro Study

    PubMed Central

    Rockwood, Danielle N.; Gil, Eun Seok; Park, Sang-Hyug; Kluge, Jonathan A.; Grayson, Warren; Bhumiratana, Sarindr; Rajkhowa, Rangam; Wang, Xungai; Kim, Sung Jun; Vunjak-Novakovic, Gordana; Kaplan, David L

    2010-01-01

    Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous 3D silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (nonreinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to six weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microCT (?CT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per ?g of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1 and 1:2, respectively. In addition, ?CT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for nonreinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes. PMID:20656075

  14. Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study.

    PubMed

    Rockwood, Danielle N; Gil, Eun Seok; Park, Sang-Hyug; Kluge, Jonathan A; Grayson, Warren; Bhumiratana, Sarindr; Rajkhowa, Rangam; Wang, Xungai; Kim, Sung Jun; Vunjak-Novakovic, Gordana; Kaplan, David L

    2011-01-01

    Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (?CT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per ?g of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, ?CT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes. PMID:20656075

  15. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn silk and corn silk extract. 184.1262 Section... Affirmed as GRAS § 184.1262 Corn silk and corn silk extract. (a) Corn silk is the fresh styles and stigmas of Zea mays L. collected when the corn is in milk. The filaments are extracted with dilute ethanol...

  16. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Corn silk and corn silk extract. 184.1262 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1262 Corn silk and corn silk extract. (a) Corn silk is the fresh styles and stigmas of Zea mays L. collected when the corn is in milk....

  17. Silk constructs for delivery of muskuloskeletal therapeutics

    PubMed Central

    Meinel, Lorenz; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  18. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  19. Silk Microgels Formed by Proteolytic Enzyme Activity

    PubMed Central

    Samal, Sangram K.; Dash, Mamoni; Chiellini, Federica; Kaplan, David L.; Chiellini, Emo

    2013-01-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMG) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer scaled crystals in native silkworm fibers. SDS-PAGE and zeta potential results demonstrated that α-chymotrypsin utilized only the nonamorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient potential and that the prepared SMGS have useful features for studies related to biomaterials and pharmaceutical needs. This process is also an easy approach to obtain the amorphous peptide chains for further study. PMID:23756227

  20. Preparation of hexagonal GeO? particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras.

    PubMed

    Boix, Estefania; Puddu, Valeria; Perry, Carole C

    2014-11-28

    We demonstrate the use of silk based proteins to control the particle/crystallite size during GeO2 formation, using a bio-mimetic approach at circumneutral pH and ambient temperature. Multicrystalline GeO2 was prepared from germanium tetraethoxide (TEOG) in the presence of different silk-based proteins: Bombyx mori silk (native silk) and two chimeric proteins prepared by linking a germania binding peptide (Ge28: HATGTHGLSLSH) with Bombyx mori silk via chemical coupling at different peptide loadings (silk-Ge28 10% and silk-Ge28 50%). The mineralisation activity of the silk-based proteins was compared with that of peptide Ge28 as a control system. GeO2 mineralisation was investigated in water and in citric acid/bis-tris propane buffer at pH 6. Morphology, particle size, crystallinity, water and organic content of the materials obtained were analysed to study the effect of added biomolecules and mineralisation environment on material properties. In the presence of silk additives well-defined cube-shape hybrid materials composed of hexagonal germania and up to ca. 5 wt% organic content were obtained. The cubic particles ranged from 0.4 to 1.4 ?m in size and were composed of crystalline domains in the range 35-106 nm depending on the additive used and synthesis conditions. The organic material incorporated in the mineral did not appear to affect the unit cell dimensions. The silk and chimeric proteins in water promote material formation and crystal growth, possibly via an effective ion-channelling mechanism, however further studies are needed to assert to what extent the presence of the silk impacts on nucleation and growth stages. The germania binding peptide alone did not have any significant effect on reaction rate, yield or the material's properties compared to the blank. Interestingly, the peptide content in the silk chimeras tested did not affect mineralisation. The presence of buffer inhibited mineral condensation rate and yield. The use of silk-based biomolecules allows control of crystallite/particle size of hybrid materials opening up opportunities for bio-inspired approaches to be applied for the synthesis of functional germania based devices and materials. PMID:25300352

  1. A green salt-leaching technique to produce sericin/PVA/glycerin scaffolds with distinguished characteristics for wound-dressing applications.

    PubMed

    Aramwit, Pornanong; Ratanavaraporn, Juthamas; Ekgasit, Sanong; Tongsakul, Duangta; Bang, Nipaporn

    2015-05-01

    Sericin/PVA/glycerin scaffolds could be fabricated using the freeze-drying technique; they showed good physical and biological properties and can be applied as wound dressings. However, freeze-drying is an energy- and time-consuming process with a high associated cost. In this study, an alternative, solvent-free, energy- and time-saving, low-cost salt-leaching technique is introduced as a green technology to produce sericin/PVA/glycerin scaffolds. We found that sericin/PVA/glycerin scaffolds were successfully fabricated without any crosslinking using a salt-leaching technique. The salt-leached sericin/PVA/glycerin scaffolds had a porous structure with pore interconnectivity. The sericin in the salt-leached scaffolds had a crystallinity that was as high as that of the freeze-dried scaffolds. Compared to the freeze-dried scaffolds with the same composition, the salt-leached sericin/PVA/glycerin scaffolds has larger pores, a lower Young's modulus, and faster rates of biodegradation and sericin release. When cultured with L929 mouse fibroblast cells, a higher number of cells were found in the salt-leached scaffolds. Furthermore, the salt-leached scaffolds were less adhesive to the wound, which would reduce pain upon removal. Therefore, salt-leached sericin/PVA/glycerin scaffolds with distinguished characteristics were introduced as another choice of wound dressing, and their production process was simpler, more energy efficient, and saved time and money compared to the freeze-dried scaffolds. PMID:25175958

  2. Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver.

    PubMed

    Hadipour-Goudarzi, Elmira; Montazer, Majid; Latifi, Masoud; Aghaji, Ali Akbar Ghare

    2014-11-26

    Here, chitosan/sericin/poly(vinyl alcohol) as a biodegradable nanofibrous membrane was prepared through electrospinning with and without silver nitrate. The influences of spinning conditions including volume ratio of chitosan and sericin, voltage and spinning distance at constant feed rate on the fiber morphology and size distribution were examined by SEM and Image J software. The FT-IR spectrum and EDAX were used to indicate the chemical structure of nanofibrous membrane. In addition, the effect of AgNO3 on the nanofibers diameter and its antibacterial activity was investigated. The optimum conditions obtained with chitosan:sericin (50:50, v/v), 22 kV voltage, 10 cm spinning distance at 0.25 mL/h feed rate to prepare nanofibers with small diameter and narrow size distribution without beads. The mean diameter of nanofibers was about 180 nm while introducing AgNO3 led to smaller nanofibers diameter about 95 nm. Moreover, the presence of AgNO3 produced an excellent antibacterial activity against Escherchia coli. PMID:25256480

  3. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  4. Synthetic Spider Silk Production on a Laboratory Scale

    PubMed Central

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  5. Synthetic spider silk production on a laboratory scale.

    PubMed

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  6. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor.

    PubMed

    Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2015-05-13

    Novel concepts for manipulating plasmonic resonances and the biocompatibility of plasmonic devices offer great potential in versatile applications involving real-time and in vivo monitoring of analytes with high sensitivity in biomedical and biological research. Here we report a biocompatible and highly tunable plasmonic bio/chemical sensor consisting of a natural silk protein and a gold nanostructure. Our silk plasmonic absorber sensor (SPAS) takes advantage of the strong local field enhancement in the metal-insulator-metal resonator in which silk protein is used as an insulating spacer and substrate. The silk insulating spacer has hydrogel properties and therefore exhibits a controllable swelling when exposed to water-alcohol mixtures. We experimentally and numerically show that drastic spectral shifts in reflectance minima arise from the changing physical volume and refractive index of the silk spacer during swelling. Furthermore, we apply this SPAS device as a glucose sensor with a very high sensitivity of 1200 nm/RIU (refractive index units) and high relative intensity change. PMID:25821994

  7. Silk electrogel coatings for titanium dental implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-04-01

    The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654?m thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369??0.09?MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83?MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings. PMID:25425563

  8. Nutrient deprivation induces property variations in spider gluey silk.

    PubMed

    Blamires, Sean J; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  9. Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

    PubMed Central

    Blamires, Sean J.; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A.; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  10. Sericin/Poly(ethylcyanoacrylate) Nanospheres by Interfacial Polymerization for Enhanced Bioefficacy of Fenofibrate: In Vitro and In Vivo Studies.

    PubMed

    Parisi, Ortensia I; Fiorillo, Marco; Scrivano, Luca; Sinicropi, Maria S; Dolce, Vincenza; Iacopetta, Domenico; Puoci, Francesco; Cappello, Anna R

    2015-10-12

    Fenofibrate is a lipophilic drug used in hypercholesterolemia and hypertriglyceridemia as a lipid-regulating agent; however, it is characterized by poor water solubility and low dissolution rate, which result in a low oral bioavailability. In the present study, sericin/poly(ethylcyanoacrylate) nanospheres are synthesized by interfacial polymerization in aqueous media and investigated as a novel sericin-based delivery system for improved and enhanced oral bioefficacy of fenofibrate. The incorporation of sericin into the prepared cyanoacrylate nanoparticles and their spherical shape are confirmed by Lowry assay and scanning electron microscopy, respectively. Hydrophilic and mucoadhesive properties of the synthesized nanospheres are also evaluated. Finally, both in vitro release and in vivo studies are performed and the oral absorbable amount of fenofibrate is calculated to be higher than 70% when incorporated into the polymeric material, reducing the levels of total cholesterol (TC), triacylglycerols (TG), very low-density lipoproteins (VLDL), and low-density lipoproteins (LDL) compared to fenofibrate alone. PMID:26348208

  11. Physical characterization of functionalized spider silk: electronic and sensing properties

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Branco Lopes, Elsa; Brooks, James S.; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G.

    2011-10-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of ?-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70?C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and ?-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of ?-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples.

  12. Material properties of cobweb silk from the black widow spider Latrodectus hesperus.

    PubMed

    Moore, A M; Tran, K

    1999-01-01

    We present the material analysis of scaffolding silk from the cobweb of the black widow spider Latrodectus hesperus. 30 strands were tested from the webs of nine spiders. Strands were stretched at 0.211 mm/s as force and extension were recorded. Cross-sectional area was measured under 1000 x oil-immersion light microscopy. The stress strain curve shows that cobweb silk is a distinct material from other known spider silks. The average breaking point for this cobweb silk is 1.1 +/- 0.5 GPa at 0.22 +/- 0.05 strain. All samples increased stiffness as they were stretched, but to different extents. Variation in stiffness might be due to differential crystallization or alignment of the silk proteins during stretching. PMID:10342775

  13. Persistence and variation in microstructural design during the evolution of spider silk

    NASA Astrophysics Data System (ADS)

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Prez-Rigueiro, J.

    2015-10-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers.

  14. Persistence and variation in microstructural design during the evolution of spider silk

    PubMed Central

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Pérez-Rigueiro, J.

    2015-01-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers. PMID:26438975

  15. Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study

    PubMed Central

    2012-01-01

    Background Uremic pruritus (UP) is a significant complication in ESRD patients and substantially impairs their quality of life. UP is considered to be a skin manifestation of chronic inflammation. Because sericin can suppress the release of pro-inflammatory cytokines, the purpose of this study was to investigate the short-term safety and efficacy of sericin cream for treating UP in hemodialysis patients. Methods This study used a double-blind design to investigate the effects of random topical administration of sericin cream and cream base (placebo) on either the right or left extremities of hemodialysis patients for 6?weeks. Skin hydration, irritation and pigmentation were evaluated every 2?weeks using Skin Diagnostic SD27. The visual analog scale for itching was also evaluated every 2?weeks, and the Kidney Disease Quality of Life Short Form was performed on the day of each patients enrollment and after 6?weeks of treatment. Results Fifty dialysis patients were enrolled, 47 of which completed the study. The hydration of the skin of the patients extremities increased significantly after administration of sericin cream; significant differences were found between sericin treatment and control after 6?weeks of treatment (p?=?0.041 for arms and p?=?0.022 for legs, respectively). Moreover, a significant difference was also found in skin irritation between the two treatments (p?=?0.013 for arms and p?=?0.027 for legs, respectively). At the end of the study, the skin pigmentation level was significantly reduced on both the arms (p?=?0.032) and legs (p?=?0.021) of the sericin-treated side compared with the side treated with cream base. The mean itching score decreased significantly from moderate to severe at the time of enrollment to mild pruritus after 6?weeks of treatment (p?=?0.002). A better quality of life was found in all domains tested although statistically significant differences before and after treatment was found only in the patients pain scores, the effect of kidney disease on daily life, sleep quality and symptoms or problems related to kidney disease. Conclusions We conclude that sericin cream has a high potential for reducing UP in hemodialysis patients. The trial registration number of this study is ISRCTN16019033; its public title is sericin cream reduces pruritus in hemodialysis patients. PMID:23006933

  16. Silk Properties Determined by Gland-Specific Expression of a Spider Fibroin Gene Family

    NASA Astrophysics Data System (ADS)

    Guerette, Paul A.; Ginzinger, David G.; Weber, Bernhard H. F.; Gosline, John M.

    1996-04-01

    Spiders produce a variety of silks that range from Lycra-like elastic fibers to Kevlar-like superfibers. A gene family from the spider Araneus diadematus was found to encode silk-forming proteins (fibroins) with different proportions of amorphous glycine-rich domains and crystal domains built from poly(alanine) and poly(glycine-alanine) repeat motifs. Spiders produce silks of different composition by gland-specific expression of this gene family, which allows for a range of mechanical properties according to the crystal-forming potential of the constituent fibroins. These principles of fiber property control may be important in the development of genetically engineered structural proteins.

  17. Silk properties determined by gland-specific expression of a spider fibroin gene family.

    PubMed

    Guerette, P A; Ginzinger, D G; Weber, B H; Gosline, J M

    1996-04-01

    Spiders produce a variety of silks that range from Lycra-like elastic fibers to Kevlar-like superfibers. A gene family from the spider Araneus diadematus was found to encode silk-forming proteins (fibroins) with different proportions of amorphous glycine-rich domains and crystal domains built from poly(alanine) and poly(glycine-alanine) repeat motifs. Spiders produce silks of different composition by gland-specific expression of this gene family, which allows for a range of mechanical properties according to the crystal-forming potential of the constituent fibroins. These principles of fiber property control may be important in the development of genetically engineered structural proteins. PMID:8600519

  18. All-water-based electron-beam lithography using silk as a resist

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Marelli, Benedetto; Brenckle, Mark A.; Mitropoulos, Alexander N.; Gil, Eun-Seok; Tsioris, Konstantinos; Tao, Hu; Kaplan, David L.; Omenetto, Fiorenzo G.

    2014-04-01

    Traditional nanofabrication techniques often require complex lithographic steps and the use of toxic chemicals. To move from the laboratory scale to large scales, nanofabrication should be carried out using alternative procedures that are simple, inexpensive and use non-toxic solvents. Recent efforts have focused on nanoimprinting and the use of organic resists (such as quantum dot-polymer hybrids, DNA and poly(ethylene glycol)), which still require, for the most part, noxious chemicals for processing. Significant advances have been achieved using `green' resists that can be developed with water, but so far these approaches have suffered from low electron sensitivity, line edge roughness and scalability constraints. Here, we present the use of silk as a natural and biofunctional resist for electron-beam lithography. The process is entirely water-based, starting with the silk aqueous solution and ending with simple development of the exposed silk film in water. Because of its polymorphic crystalline structure, silk can be used either as a positive or negative resist through interactions with an electron beam. Moreover, silk can be easily modified, thereby enabling a variety of `functional resists', including biologically active versions. As a proof of principle of the viability of all-water-based silk electron-beam lithography (EBL), we fabricate nanoscale photonic lattices using both neat silk and silk doped with quantum dots, green fluorescent proteins (GFPs) or horseradish peroxidase (HRP).

  19. A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices.

    PubMed

    Widhe, Mona; Shalaly, Nancy Dekki; Hedhammar, My

    2016-01-01

    The cell binding motif RGD is the most widely used peptide to improve cell binding properties of various biomaterials, including recombinant spider silk. In this paper we use genetic engineering to further enhance the cell supportive capacity of spider silk by presenting the RGD motif as a turn loop, similar to the one found in fibronectin (FN), but in the silk stabilized by cysteines, and therefore denoted FNCC. Human primary cells cultured on FNCC-silk showed increased attachment, spreading, stress fiber formation and focal adhesions, not only compared to RGD-silk, but also to silk fused with linear controls of the RGD containing motif from fibronectin. Cell binding to FNCC-silk was shown to involve the ?5?1 integrin, and to support proliferation and migration of keratinocytes. The FNCC-silk protein allowed efficient assembly, and could even be transformed into free standing films, on which keratinocytes could readily form a monolayer culture. The results hold promise for future applications within tissue engineering. PMID:26461118

  20. Controlled Release from Multilayer Silk Biomaterial Coatings to Modulate Vascular Cell Responses

    PubMed Central

    Wang, Xianyan; Zhang, Xiaohui; Castellot, John; Herman, Ira; Iafrati, Mark

    2009-01-01

    A multilayered silk fibroin protein coating system was employed as a drug carrier and delivery system to evaluate vascular cell responses to heparin, paclitaxel, and clopidogrel. The results demonstrated that the silk coating system was an effective system for drug-eluting coatings, such as for stent applications, based on its useful micromechanical properties and biological outcomes. Cell attachment and viability studies with human aortic endothelial cells (HAECs) and human coronary artery smooth muscle cells (HCASMCs) on the drug-incorporated silk coatings demonstrated that paclitaxel and clopidogrel inhibited smooth muscle cell proliferation and retarded endothelial cell proliferation. Heparin loaded silk multilayers promoted HAEC proliferation while inhibiting HCASMC proliferation, desired outcomes for the prevention of restenosis. The preservation of the phenotype of endothelial cells on silk and heparin loaded silk coatings was confirmed with the presence of endothelial markers CD-31, CD-146, vWF and VE-Cadherin using immunocytochemistry assays. A preliminary in-vivo study in a porcine aorta showed integrity of the silk coatings after implantation and the reduction of platelet adhesion on the heparin-loaded silk coatings. PMID:18048096

  1. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 ?m wide 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 ?m wide 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  2. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes

    PubMed Central

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ?16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  3. Total X-Ray Scattering of Spider Dragline Silk

    NASA Astrophysics Data System (ADS)

    Benmore, C. J.; Izdebski, T.; Yarger, J. L.

    2012-04-01

    Total x-ray scattering measurements of spider dragline silk fibers from Nephila clavipes, Argiope aurantia, and Latrodectus hesperus all yield similar structure factors, with only small variations between the different species. Wide-angle x-ray scattering from fibers orientated perpendicular to the beam shows a high degree of anisotropy, and differential pair distribution functions obtained by integrating over wedges of the equatorial and meridian planes indicate that, on average, the majority (95%) of the atom-atom correlations do not extend beyond 1 nm. Futhermore, the atom-atom correlations between 1 and 3 nm are not associated with the most intense diffraction peaks at Q=1-2-1. Disordered molecular orientations along the fiber axis are consistent with proteins in similar structural arrangements to those in the equatorial plane, which may be associated with the silks greater flexibility in this direction.

  4. Anisotropic growth of hydroxyapatite on the silk fibroin films

    NASA Astrophysics Data System (ADS)

    Li, Yucheng; Cai, Yurong; Kong, Xiangdong; Yao, Juming

    2008-12-01

    Bombyx mori silk fibroin is of practical interest for its excellent intrinsic properties utilizable in the biotechnological and biomedical fields. Here, the silk fibroin films were pretreated with different methods and then used as the template for the hydroxyapatite (HA) crystal growth. To study the effect of silk films' surface structure on the protein biomineralization, the films were immersed into 1.5 times simulated body fluid (1.5 SBF) to induce the HA deposition at 37 C. The results showed that an anisotropic growth of HA crystals was observed on the different films as judging from XRD, TEM and HRTEM data. This was thought that the positions and density of carboxyl groups, C dbnd O and amino groups on the surface of SF films may be different, which play the key effect on HA crystal growth.

  5. Carbon nanotubes on a spider silk scaffold.

    PubMed

    Steven, Eden; Saleh, Wasan R; Lebedev, Victor; Acquah, Steve F A; Laukhin, Vladimir; Alamo, Rufina G; Brooks, James S

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  6. Carbon nanotubes on a spider silk scaffold

    PubMed Central

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  7. A new route for silk

    NASA Astrophysics Data System (ADS)

    Omenetto, Fiorenzo G.; Kaplan, David L.

    2008-11-01

    Famous for its use in clothing since early times, silk is now finding a new application as a useful biocompatible material in photonic devices. Thin films, diffraction gratings and organic photonic crystals are just a few of the exciting possibilities.

  8. Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays.

    PubMed

    Thatikonda, Naresh; Delfani, Payam; Jansson, Ronnie; Petersson, Linn; Lindberg, Diana; Wingren, Christer; Hedhammar, My

    2016-03-01

    Immobilizing biomolecules with retained functionality and stability on solid supports is crucial for generation of sensitive immunoassays. However, upon use of conventional immobilization strategies, a major portion of the biomolecules (e.g. antibodies) frequently tends to lose their bioactivity. In this study, we describe a procedure to immobilize human single-chain variable fragment (scFv) via genetic fusion to partial spider silk, which have a high tendency to adhere to solid supports. Two scFvs, directed towards serum proteins, were genetically fused to partial spider silk proteins and expressed as silk fusion proteins in E. coli. Antigen binding ability of scFvs attached to a partial silk protein denoted RC was investigated using microarray analysis, whereas scFvs fused to the NC silk variant were examined using nanoarrays. Results from micro- and nanoarrays confirmed the functionality of scFvs attached to both RC and NC silk, and also for binding of targets in crude serum. Furthermore, the same amount of added scFv gives higher signal intensity when immobilized via partial spider silk compared to when immobilized alone. Together, the results suggest that usage of scFv-silk fusion proteins in immunoassays could improve target detection, in the long run enabling novel biomarkers to be detected in crude serum proteomes. PMID:26470853

  9. Different Types of Peptide Detected by Mass Spectrometry among Fresh Silk and Archaeological Silk Remains for Distinguishing Modern Contamination

    PubMed Central

    Li, Li; Gong, Yuxuan; Yin, Hao; Gong, Decai

    2015-01-01

    Archaeological silk provides abundant information for studying ancient technologies and cultures. However, due to the spontaneous degradation and the damages from burial conditions, most ancient silk fibers which suffered the damages for thousands of years were turned into invisible molecular residues. For the obtained rare samples, extra care needs to be taken to accurately identify the genuine archaeological silk remains from modern contaminations. Although mass spectrometry (MS) is a powerful tool for identifying and analyzing the ancient protein residues, the traditional approach could not directly determine the dating and contamination of each sample. In this paper, a series of samples with a broad range of ages were tested by MS to find an effective and innovative approach to determine whether modern contamination exists, in order to verify the authenticity and reliability of the ancient samples. The new findings highlighted that the detected peptide types of the fibroin light chain can indicate the degradation levels of silk samples and help to distinguish contamination from ancient silk remains. PMID:26186676

  10. Structure to function: Spider silk and human collagen

    NASA Astrophysics Data System (ADS)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure, morphological features and assembly. Aside from fundamental perspectives, we anticipate that these results will provide a blueprint for the design of precise materials for a range of potential applications such as controlled release devices, functional coatings, components of tissue regeneration materials and environmentally friendly polymers in future studies. In the second part of this work, human collagen type I was studied as another representative of the family of fibrous proteins. Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has a complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study we assessed the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation with a focus on changes in the primary structure, conformation, microstructure and material properties. Free radical reactions are involved in collagen degradation and a mechanism for UV-induced collagen degradation related to structure was proposed. The results from this study demonstrated the role of collagen supramolecular organization (triple helix) in the context of the effects of electromagnetic radiation on extracellular matrices. Owing to the fact that both silks and collagens are proteins that have found widespread interest for biomaterial related needs, we anticipate that the current studies will serve as a foundation for future biomaterial designs with controlled properties. Furthermore, fundamental insight into self-assembly and environmentally-2mediated degradation, will build a foundation for fundamental understanding of the remodeling and functions of these types of fibrous proteins in vivo and in vitro. This type of insight is essential for many areas of scientific inquiry, from drug delivery, to scaffolds for tissue engineering, and to the stability of materials in space.

  11. A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells

    PubMed Central

    Benfenati, Valentina; Toffanin, Stefano; Capelli, Raffaella; Camassa, Laura M. A.; Ferroni, Stefano; Kaplan, David L.; Omenetto, Fiorenzo G.; Muccini, Michele; Zamboni, Roberto

    2010-01-01

    Astroglial cell survival and ion channel activity are relevant molecular targets for the mechanistic study of neural cell interactions with biomaterials and/or electronic interfaces. Astrogliosis is the most typical reaction to in-vivo brain implants and needs to be avoided by developing biomaterials that preserve astroglial cell physiological function. This cellular phenomenon is characterized by a proliferative state and altered expression of astroglial potassium (K+) channels. Silk is a natural polymer with potential for new biomedical applications due to its ability to support in vitro growth and differentiation of many cell types. We report on silk interactions with cultured neocortical astroglial cells. Astrocytes survival is similar when plated on silk-coated glass and on poly-D-lysine (PDL), a well-known polyionic substrate used to promote astroglial cell adhesion to glass surfaces. Comparative analyses of whole-cell and single-cell patch-clamp experiments reveal that silk- and PDL-coated cells display depolarized resting membrane potentials (? -40 mV), very high input resistance, and low specific conductance, with values similar to those of undifferentiated glial cells. Analysis of K+ channel conductance reveals that silk-astrocytes express large outwardly delayed rectifying K+ current (KDR). The magnitude of KDR in PDL- and silk-coated astrocytes is similar, indicating that silk does not alter the resting K+ current. We also demonstrate that guanosine-(GUO) embedded silk enables the direct modulation of astroglial K+ conductance in vitro. Astrocytes plated on GUO-embedded silk are more hyperpolarized and express inward rectifying K+ conductance (Kir). The K+ inward current increase and this is paralleled by upregulation and membrane-polarization of Kir4.1 protein signal. Collectively these results indicate that silk is a suitable biomaterial platform for the in vitro studies of astroglial ion channel responses and related physiology. PMID:20688390

  12. Bioconjugation of silk fibroin nanoparticles with enzyme and Peptide and their characterization.

    PubMed

    Wang, Fei; Zhang, Yu-Qing

    2015-01-01

    Bombyx mori silk fibroin is a type of protein-based polymer with unique characteristics that is widely used in the research and development of medical biomaterials. The degummed filament of silk fibroin can be dissolved in a highly concentrated salt solution. After desalination, the regenerated liquid silk fibroin (LSF) solution could be made into various forms of silk biomaterials, such as powder, fiber, film, porous matrix, 3D scaffold, and hydrogel, depending on its application. In this study, we mixed the liquid silk solution with enzymes, including oxidase and hydrolase, and rapidly injected the mixture into an excess of acetone. The enzyme retained most of its enzymatic activity and was also captured in silk fibroin nanoparticles (SFNs), which instantly formed via a configuration transition of the regenerated silk protein from a random coil and ?-helix to a ?-sheet. The resulting enzyme-captured SFNs displayed a fine crystal structure with a high activity recovery and good thermal stability. Moreover, the affinities of these modified enzymes to their substrate did not evidently suffer from the capture. When only the liquid silk solution was rapidly injected into acetone, the resulting globular SFNs with the same crystallinity were also a good carrier that was covalently conjugated to enzymes and insulin. Thus, silk protein nanoparticles are of potential value as an enzyme or peptide delivery system for the research and development of medical biomaterials. In this report, the bioconjugation of SFNs with glucose oxidase, superoxidase, ?-glucosidase, l-asparaginase, neutral protease, and insulin and their characterization are described in detail. PMID:25819282

  13. Morphological changes and patterns of ecdysone receptor B1 immunolocalization in the anterior silk gland undergoing programmed cell death in the silkworm, Bombyx mori.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2009-01-01

    The silk gland is a specific larval tissue of Lepidopteran insects and begins to degenerate shortly before pupation. The steroid hormone ecdysone triggers the stage specific programmed cell death of the anterior silk glands during metamorphosis in the silkworm, Bombyx mori. The anterior silk gland expresses ecdysone receptors, which are involved in regulation processes in response to ecdysone. In this study, the morphological changes, immunohistochemical localization and protein levels of ecdysone receptor B1 (EcR-B1) in the anterior silk gland of B. mori were investigated during programmed cell death. Morphological changes observed during the degeneration process involve the appearance of large vacuoles, probably autophagic vacuoles, which increase in number in pupal anterior silk glands. No macrophages were found in the silk gland during the prepupal and pupal stage unlike in apoptosis, which strongly suggests that programmed cell death of the anterior silk gland is carried out by autophagy. Morphological changes of the silk glands were accompanied by changes in the immunolocalization and protein levels of EcR-B1. The differences in tissue distribution and protein levels of EcR-B1 during the programmed cell death indicate that the receptor plays a major role in the modulation and function of ecdysone activity in Bombyx anterior silk glands. Our results indicate that EcR-B1 expression may be important for the process of programmed cell death in the anterior silk glands. PMID:18554690

  14. Optically probing torsional superelasticity in spider silks

    SciTech Connect

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  15. Simulation of flow in the silk gland.

    PubMed

    Breslauer, David N; Lee, Luke P; Muller, Susan J

    2009-01-12

    Spiders and silkworms employ the complex flow of highly concentrated silk solution as part of silk fiber spinning. To understand the role of fluidic forces in this process, the flow of silk solution in the spider major ampullate and silkworm silk glands was investigated using numerical simulation. Our simulations demonstrate significant differences between flow in the spider and silkworm silk glands. In particular, shear flow effects are shown to be much greater in the spider than the silkworm, the silkworm gland exhibits a much different flow extension profile than the spider gland, and the residence time within the spider gland is eight times greater than in the silkworm gland. Lastly, simulations on the effect of spinning speed on the flow of silk solution suggest that a critical extension rate is the initiating factor for fiber formation from silk solution. These results provide new insight into silk spinning processes and will guide the future development of novel fiber spinning technologies. PMID:19053289

  16. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction.

    PubMed

    Wu, Jinhong; Rong, Yuzhi; Wang, Zhengwu; Zhou, Yanfu; Wang, Shaoyun; Zhao, Bo

    2015-05-01

    This study aimed to isolate and characterise a novel sericin antifreeze peptide and investigate its ice-binding molecular mechanism. The thermal hysteresis activity of ice-binding sericin peptides (I-SP) was measured and their activity reached as high as 0.94 °C. A P4 fraction, with high hypothermia protective activity and inhibition activity of ice recrystallisation, was obtained from I-SP, and a purified sericin peptide, named SM-AFP, with the sequence of TTSPTNVSTT and a molecular weight of 1009.50 Da was then isolated from the P4 fraction. Treatment of Lactobacillus delbrueckii Subsp. bulgaricus LB340 LYO with 100 μg/ml synthetic SM-AFP led to 1.4-fold increased survival (p < 0.05). Finally, an SM-AFP/ice binding model was constructed and results of molecular dynamics simulation suggested that the binding of SM-AFP with ice and prevention of ice crystal growth could be attributed to hydrogen bond formation, hydrophobic interaction and non-bond interactions. Sericin peptides could be developed into beneficial cryoprotectants and used in frozen food processing. PMID:25529728

  17. Nephila clavipes Flagelliform Silk-like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers

    PubMed Central

    Adrianos, Sherry L.; Teul, Florence; Hinman, Michael B.; Jones, Justin A.; Weber, Warner S.; Yarger, Jeffery L.; Lewis, Randolph V.

    2013-01-01

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are: GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  18. Fifty Years Later: The Sequence, Structure and Function of Lacewing Cross-beta Silk

    SciTech Connect

    Weisman, Sarah; Okada, Shoko; Mudie, Stephen T.; Huson, Mickey G.; Trueman, Holly E.; Sriskantha, Alagacone; Haritos, Victoria S.; Sutherland, Tara D.

    2009-12-01

    Classic studies of protein structure in the 1950s and 1960s demonstrated that green lacewing egg stalk silk possesses a rare native cross-beta sheet conformation. We have identified and sequenced the silk genes expressed by adult females of a green lacewing species. The two encoded silk proteins are 109 and 67 kDa in size and rich in serine, glycine and alanine. Over 70% of each protein sequence consists of highly repetitive regions with 16-residue periodicity. The repetitive sequences can be fitted to an elegant cross-beta sheet structural model with protein chains folded into regular 8-residue long beta strands. This model is supported by wide-angle X-ray scattering data and tensile testing from both our work and the original papers. We suggest that the silk proteins assemble into stacked beta sheet crystallites bound together by a network of cystine cross-links. This hierarchical structure gives the lacewing silk high lateral stiffness nearly threefold that of silkworm silk, enabling the egg stalks to effectively suspend eggs and protect them from predators.

  19. Increasing silk fibre strength through heterogeneity of bundled fibrils

    PubMed Central

    Cranford, Steven W.

    2013-01-01

    Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk—imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear ‘locking’ between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres. PMID:23486175

  20. Design and Optimization of Resorbable Silk Internal Fixation Devices

    NASA Astrophysics Data System (ADS)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed improved bone deposition and remodeling with functionalization and showed promising feasibility of fracture fixations with minor adjustments to geometry. The proposed silk orthopedic hardware exhibits high potential as a resorbable fixation system that can bridge the gap between the current materials for internal fixation devices.

  1. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications.

    PubMed

    Kundu, Joydip; Mohapatra, Riti; Kundu, S C

    2011-01-01

    The potential of silk protein is increased because of its importance as natural biopolymer for biotechnological and biomedical applications. The main disadvantage of silk fibroin films is their high brittleness. Thus, we studied blends of fibroin with other polymers to improve the film properties. Considering the possible applications of films in biomedical applications, we used a natural and biodegradable polymer as the second component. This study reports the fabrication and characterization of mulberry silk protein fibroin and sodium carboxymethylcellulose (NaCMC) blended films as potential substrates for in vitro cell culture. The blended films are investigated of their chemical interactions, morphologies, thermal, mechanical properties in addition to its swelling properties and biocompatibility. The addition of NaCMC improves the elasticity of fibroin films and its thermal properties. The change of morphology, swelling behavior and increase of surface roughness of the films were also observed in the blended films. The films become insoluble on alcohol treatment and are stable for longer duration in hydrolytic medium. The blended films are cytocompatible and supported adhesion and growth of mouse fibroblast cells. The results suggest that NaCMC blended silk fibroin films are found to be potential substratum for supporting cell adhesion and proliferation. PMID:20566044

  2. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Kong, X. D.; Cui, F. Z.; Wang, X. M.; Zhang, M.; Zhang, W.

    2004-09-01

    In the present study, silk fibroin was employed to regulate the mineralization of hydroxyapatite (HA) nanocrystals. The calcium phosphate crystals precipitated in the aqueous solution of silk fibroin at pH 8 and room temperature. The depositions collected at different reaction time were detected by X-ray diffraction analysis to investigate the mineralization process of calcium phosphate. The results indicated that fibroin protein could significantly promote the crystal growth of HA. The formed HA crystals were also studied by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR results revealed that the HA crystals are carbonate-substituted HA and compounded with fibroin. There are strong chemical interactions between HA and fibroin protein, which can be derived from the blue shift of amide II peak (from the position of 1517-1539 cm-1). TEM images showed that the mineralized nanofibrils in the composites are rod like in shape with the diameter of about 2-3 nm. Selected area electron diffraction patterns from the composites exhibit polycrystalline rings, which were well indexed as the HA phase with 0 0 2 preferential orientations.

  3. Effect of sericin supplementation in maturation medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season.

    PubMed

    Aghaz, F; Hajarian, H; Shabankareh, H Karami; Abdolmohammadi, A

    2015-12-01

    The purpose of this study was to evaluate the effect of sericin with different concentrations (0% [control], 0.1%, 0.5%, 1.0%, and 2.5%) added to the IVM medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. The resumption of meiosis was assessed by the frequency of germinal vesicle breakdown and the first polar body extrusion. After IVF with fresh ram semen, presumptive zygotes were cultured 8days in potassium simplex optimization medium supplemented by amino acids, and the percentages developing to the two-cell and blastocyst stages were measured as the indicators of early embryonic developmental competence. More cumulus-oocyte complexes matured with 0.5% sericin underwent germinal vesicle breakdown and reached metaphase II stage compared with the control cumulus-oocyte complexes matured without sericin (P?0.05). The present findings indicated that supplementation with 0.5% sericin during the maturation culture may improve the nuclear maturation and the cumulus cell expansion. Furthermore, the percentage of blastocysts obtained from 0.5% and 0.1% sericin (37.81.76% and 34.81.09%, respectively) was higher (P?0.05) than that of the control medium (29.601.67%). However, addition of 1% and 2.5% of sericin to the IVM medium oocytes had a negative effect on nuclear maturation and cumulus cell expansion. Furthermore, the percentage of cleavage and blastocyst rate was significantly lower in the 1% and 2.5% sericin groups than in the control group. These findings showed that supplementation of IVM medium with 0.5% sericin may improve the meiotic competence of oocytes and early embryonic development in Sanjabi ewes during the breeding season. PMID:26411362

  4. Will silk fibroin nanofiber scaffolds ever hold a useful place in Translational Regenerative Medicine?

    PubMed Central

    Ubaldo, Armato; Ilaria, Dal Pr; Anna, Chiarini; Giuliano, Freddi

    2011-01-01

    Presently, some view silk fibroin-based biomaterials as obsolete, being outperformed by a host of newly discovered biomaterials. But several lines of evidence support the notion that silk fibroin proteins, especially those from B. mori and spiders and their recombinant forms, particularly in the form of electrospun nanofiber scaffolds, still represent promising tools for human tissue engineering/regeneration. Inevitably, the allure of recently reported biomaterials turns away many scientists and resources from the aim of more deeply elucidating the biological interactions of the various kinds of silk fibroin nanofiber scaffolds in vivo. But, even the biological features of newly reported biomaterials are not investigated in adequate depth. Hence, collaborative efforts among biomaterialists, biomedical experts, and private firms must be undertaken on a much greater scale than hitherto done to assess the real usefulness of silk fibroin proteins, thereby allowing or denying their useful introduction into the fields of Translational Regenerative Medicine. PMID:22928155

  5. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    PubMed Central

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  6. Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori.

    PubMed

    Zhou, Li; Chen, Xin; Shao, Zhengzhong; Huang, Yufang; Knight, David P

    2005-09-01

    A protein conformation transition from random coil and/or helical conformation to beta-sheet is known to be central to the process used by silk-spinning spiders and insects to convert concentrated protein solutions to tough insoluble threads. Several factors including pH, metallic ions, shear force, and/or elongational flow can initiate this transition in both spiders and silkworms. Here, we report the use of proton induced X-ray emission (PIXE), inductively coupled plasma mass spectroscopy (ICP-MS) and atomic adsorption spectroscopy (AAS) to investigate the concentrations of six metal elements (Na, K, Mg, Ca, Cu, and Zn) at different stages in the silk secretory pathway in the Bombyx mori silkworm. We also report the use of Raman spectra to monitor the effects of these six metallic ions on the conformation transition of natural silk fibroin dope and concentrated regenerated silk fibroin solution at concentrations similar to the natural dope. The results showed that the metal element contents increased from the posterior part to the anterior part of silk gland with the exception of Ca which decreased significantly in the anterior part. We show that these changes in composition can be correlated with (i) the ability of Mg2+, Cu2+, and Zn2+ to induce the conformation transition of silk fibroin to beta-sheet, (ii) the effect of Ca2+ in forming a stable protein network (gel), and (iii) the ability of Na+ and K+ to break down the protein network. PMID:16853155

  7. Impact of processing parameters on the haemocompatibility of Bombyx mori silk films

    PubMed Central

    Seib, F. Philipp; Maitz, Manfred F.; Hu, Xiao; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Silk has traditionally been used for surgical sutures due to its lasting strength and durability; however, the use of purified silk proteins as a scaffold material for vascular tissue engineering goes beyond traditional use and requires application-orientated biocompatibility testing. For this study, a library of Bombyx mori silk films was generated and exposed to various solvents and treatment conditions to reflect current silk processing techniques. The films, along with clinically relevant reference materials, were exposed to human whole blood to determine silk blood compatibility. All substrates showed an initial inflammatory response comparable to polylactide-co-glycolide (PLGA), and a low to moderate haemostasis response similar to polytetrafluoroethylene (PTFE) substrates. In particular, samples that were water annealed at 25 C for 6 h demonstrated the best blood compatibility based on haemostasis parameters (e.g. platelet decay, thrombin-antithrombin complex, platelet factor 4, granulocytes-platelet conjugates) and inflammatory parameters (e.g. C3b, C5a, CD11b, surface-associated leukocytes). Multiple factors such as treatment temperature and solvent influenced the biological response, though no single physical parameter such as ?-sheet content, isoelectric point or contact angle accurately predicted blood compatibility. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based vascular grafts. PMID:22079005

  8. Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131

  9. Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices

    NASA Astrophysics Data System (ADS)

    Georgakoudi, Irene; Tsai, Irene; Greiner, Cherry; Wong, Cheryl; Defelice, Jordy; Kaplan, David

    2007-02-01

    Silk fibroin is emerging as an important biomaterial for tissue engineering applications. The ability to monitor non-invasively the structural conformation of silk matrices prior to and following cell seeding could provide important insights with regards to matrix remodeling and cell-matrix interactions that are critical for the functional development of silk-based engineered tissues. Thus, we examined the potential of intrinsic fluorescence as a tool for assessing the structural conformation of silk proteins. Specifically, we characterized the intrinsic fluorescence spectra of silk in solution, gel and scaffold configurations for excitation in the 250 to 335 nm range and emission from 265 to 600 nm. We have identified spectral components that are attributed to tyrosine, tryptophan and crosslinks based on their excitation-emission profiles. We have discovered significant spectral shifts in the emission profiles and relative contributions of these components among the silk solution, gel and scaffold samples that represent enhancements in the levels of crosslinking, hydrophobic and intermolecular interactions that are consistent with an increase in the levels of -sheet formation and stacking. This information can be easily utilized for the development of simple, non-invasive, ratiometric methods to assess and monitor the structural conformation of silk in engineered tissues.

  10. Silk self-assembly mechanisms and control from thermodynamics to kinetics.

    PubMed

    Lu, Qiang; Zhu, Hesun; Zhang, Cencen; Zhang, Feng; Zhang, Bing; Kaplan, David L

    2012-03-12

    Silkworms and spiders generate fibers that exhibit high strength and extensibility. The underlying mechanisms involved in processing silk proteins into fiber form remain incompletely understood, resulting in the failure to fully recapitulate the remarkable properties of native fibers in vitro from regenerated silk solutions. In the present study, the extensibility and high strength of regenerated silks were achieved by mimicking the natural spinning process. Conformational transitions inside micelles, followed by aggregation of micelles and their stabilization as they relate to the metastable structure of silk are described. Subsequently, the mechanisms to control the formation of nanofibrous structures were elucidated. The results clarify that the self-assembly of silk in aqueous solution is a thermodynamically driven process where kinetics also play a key role. Four key factors, molecular mobility, charge, hydrophilic interactions, and concentration underlie the process. Adjusting these factors can balance nanostructure and conformational composition, and be used to achieve silk-based materials with properties comparable to native fibers. These mechanisms suggest new directions to design silk-based multifunctional materials. PMID:22320432

  11. Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study

    NASA Astrophysics Data System (ADS)

    Monti, Patrizia; Freddi, Giuliano; Sampaio, Sandra; Tsukada, Masuhiro; Taddei, Paola

    2005-06-01

    Raman spectroscopy was used to investigate various enzyme-catalyzed reactions onto silk fibroin, i.e. the biodegradation of Tussah ( Antheraea pernyi) silk fibroin films by a proteolytic enzyme, the oxidation of domestic ( Bombyx mori) silk fibroin by mushroom tyrosinase and the subsequent grafting of chitosan onto oxidized silk. The spectra of Tussah silk fibroin films exposed to a bacterial protease for different times demonstrated that the cleavage of sensitive peptide bonds in the amorphous glycine-rich domains resulted in the loss of various amino acid residues (Tyr, Trp, Asp, etc.). The bands attributed to the crystalline alanine-rich sequences increased in intensity, and the β-sheet molecular conformation was not affected by biodegradation. Following oxidation with mushroom tyrosinase, the tyrosine bands of Bombyx mori fibroin decreased in intensity but did not disappear. The increase of the I853/ I829 intensity ratio indicated that the Tyr residues not accessible to the enzyme were located in a strongly hydrophobic environment. Raman spectroscopy provided evidence that chitosan was effectively grafted onto oxidized silk, probably via the Schiff-base mechanism, as shown by the behavior of the imine band at about 1646 cm -1. Grafting chitosan onto silk fibroin resulted in a β-sheet→random coil conformational transition of the protein component in the bioconjugated product.

  12. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  13. Biocompatible silk step-index optical waveguides.

    PubMed

    Applegate, Matthew B; Perotto, Giovanni; Kaplan, David L; Omenetto, Fiorenzo G

    2015-11-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  14. Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer.

    PubMed

    Kim, Sally Yunsun; Naskar, Deboki; Kundu, Subhas C; Bishop, David P; Doble, Philip A; Boddy, Alan V; Chan, Hak-Kim; Wall, Ivan B; Chrzanowski, Wojciech

    2015-01-01

    The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs. PMID:26234773

  15. Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer

    PubMed Central

    Kim, Sally Yunsun; Naskar, Deboki; Kundu, Subhas C.; Bishop, David P.; Doble, Philip A.; Boddy, Alan V.; Chan, Hak-Kim; Wall, Ivan B.; Chrzanowski, Wojciech

    2015-01-01

    The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs. PMID:26234773

  16. Analytical markers for silk degradation: comparing historic silk and silk artificially aged in different environments.

    PubMed

    Vilaplana, Francisco; Nilsson, Johanna; Sommer, Dorte V P; Karlsson, Sigbritt

    2015-02-01

    Suitable analytical markers to assess the degree of degradation of historic silk textiles at molecular and macroscopic levels have been identified and compared with silk textiles aged artificially in different environments, namely (i) ultraviolet (UV) exposure, (ii) thermo-oxidation, (iii) controlled humidity and (iv) pH. The changes at the molecular level in the amino acid composition, the formation of oxidative moieties, crystallinity and molecular weight correlate well with the changes in the macroscopic properties such as brightness, pH and mechanical properties. These analytical markers are useful to understand the degradation mechanisms that silk textiles undergo under different degradation environments, involving oxidation processes, hydrolysis, chain scission and physical arrangements. Thermo-oxidation at high temperatures proves to be the accelerated ageing procedure producing silk samples that most resembled the degree of degradation of early seventeenth-century silk. These analytical markers will be valuable to support the textile conservation tasks currently being performed in museums to preserve our heritage. PMID:25492090

  17. Degradation Mechanism and Control of Silk Fibroin

    PubMed Central

    Lu, Qiang; Zhang, Bing; Li, Mingzhong; Zuo, Baoqi; Kaplan, David L.; Huang, Yongli; Zhu, Hesun

    2012-01-01

    Controlling the degradation process of silk is an important and interesting subject in biomaterials field. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study the degradation behavior. Silk fibroin films with highest ?-sheet content achieved highest degradation rate, different from the previous studies. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content, but also hydrophilic interaction and crystal-noncrystal alternant nanostructures. The hydrophilic blocks of silk were firstly degraded. Then, the hydrophobic crystal blocks which were formerly surrounded and immobilized by hudrophilic blocks, became free particles and moved into solution. Based on the mechanism, which enables the process more controllable and flexible, controlling the degradation behavior of silk fibroin without sacrificing other performances such as mechanical or hydrophilic properties become feasible, and this would greatly expand the applications of silk as a biomedical material. PMID:21361368

  18. Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: effect of potassium ions on Nephila spidroin films.

    PubMed

    Chen, Xin; Knight, David P; Shao, Zhengzhong; Vollrath, Fritz

    2002-12-17

    We used time-resolved Fourier transform infrared spectroscopy (FTIR) to follow a conformation transition in Nephila spidroin film from random coil and/or helical structures to beta-sheet induced by the addition of KCl from 0.01 to 1.0 mol/L in D(2)O. Time series difference spectra showed parallel increases in absorption at 1620 and 1691 cm(-)(1), indicating formation of beta-sheet, together with a coincident loss of intensity of approximately 1650 cm(-)(1), indicating decrease of random coil and/or helical structures. Increase in KCl concentration produced an increased rate of the conformation transition that may attributable to weakening of hydrogen bonds within spidroin macromolecules. The conformation transition was a biphasic process with [KCl] > or = 0.3 mol/L but monophasic with [KCl] < or = 0.1 mol/L. This suggests that, at high KCl concentrations, segments of the molecular chain are adjusted first and then the whole molecule undergoes rearrangement. We discuss the possible significance of these findings to an understanding of the way that spiders spin silk. PMID:12475243

  19. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties.

    PubMed

    Wang, Xin; Li, Yi; Xie, Kang; Yi, Qiying; Chen, Quanmei; Wang, Xiaohuan; Shen, Hong; Xia, Qingyou; Zhao, Ping

    2015-02-01

    Calcium ions (Ca(2+)) are crucial for the conformational transition of silk fibroin in vitro, and silk fibroin conformations correlate with the mechanical properties of silk fibers. To investigate the relationship between Ca(2+) and mechanical properties of silk fibers, CaCl2 was injected into silkworms (Bombyx mori). Fourier-transform infrared spectroscopy (FTIR) analysis and mechanical testing revealed that injection of CaCl2 solution (7.5mg/g body weight) significantly increased the levels of ?-helix and random coil structures of silk proteins. In addition, extension of silk fibers increased after CaCl2 injection. In mammals, sarcoplasmic reticulum Ca(2+)-ATPase in muscle and endoplasmic reticulum Ca(2+)-ATPase in other tissues (together denoted by SERCA) are responsible for calcium balance. Therefore, we analyzed the expression pattern of silkworm SERCA (BmSERCA) in silk glands and found that BmSERCA was abundant in the anterior silk gland (ASG). After injection of thapsigargin (TG) to block SERCA activity, silkworms showed a silk-spinning deficiency and their cocoons had higher calcium content compared to that of controls. Moreover, FTIR analysis revealed that the levels of ?-helix and ?-sheet structures increased in silk fibers from TG-injected silkworms compared to controls. The results provide evidence that BmSERCA has a key function in calcium transportation in ASG that is related to maintaining a suitable ionic environment. This ionic environment with a proper Ca(2+) concentration is crucial for the formation of silk fibers with favorable mechanical performances. PMID:25602367

  20. Toughened hydrogels inspired by aquatic caddisworm silk.

    PubMed

    Lane, Dwight D; Kaur, Sarbjit; Weerasakare, G Mahika; Stewart, Russell J

    2015-09-21

    Aquatic caddisworm silk is a tough adhesive fiber. Part of the toughening mechanism resides in serial, Ca(2+)-phosphate crosslinked nano-domains that comprise H-fibroin, the major structural protein. To mimic the toughening mechanism, a synthetic phosphate-graft-methacrylate prepolymer, as a simple H-fibroin analog, was copolymerized within a covalent elastic network of polyacrylamide. Above a critical phosphate sidechain density, hydrogels equilibrated with Ca(2+) or Zn(2+) ions displayed greatly increased initial stiffness, strain-rate dependent yield behavior, and required 100 times more work to fracture than hydrogels equilibrated with Mg(2+) or Na(+) ions. Conceptually, the enhanced toughness is attributed to energy-dissipating, viscous unfolding of clustered phosphate-metal ion crosslinks at a critical stress. The toughness of the bioinspired hydrogels exceeds the toughness of cartilage and meniscus suggesting potential application as prosthetic biomaterials. The tough hydrogels also provide a simplified model to test hypotheses about caddisworm silk architecture, phosphate metal ion interactions, and mechanochemical toughening mechanisms. PMID:26234366

  1. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    NASA Astrophysics Data System (ADS)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  2. Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model.

    PubMed

    Chen, Liang; Liu, Hai-Long; Gu, Yong; Feng, Yu; Yang, Hui-Lin

    2015-03-01

    Biphasic calcium phosphate (BCP) has been investigated extensively as a bone substitute nowadays. However, the bone formation capacity of BCP is limited owing to lack of osteoinduction. Silk fibroin (SF) has a structure similar to type I collagen, and could be developed to a microsphere for the sustained-release of rhBMP-2. In our previous report, bioactivity of BCP could be enhanced by rhBMP-2/SF microsphere (containing 0.5 g rhBMP-2) in vitro. However, the bone regeneration performance of the composite in vivo was not investigated. Thus, the purpose of this study was to evaluate the efficacy of BCP/rhBMP-2/SF in a sheep lumbar fusion model. A BCP and rhBMP-2/SF microsphere was developed, and then was integrated into a BCP/rhBMP-2/SF composite. BCP, BCP/rhBMP-2 and BCP/rhBMP-2/SF were implanted randomly into the disc spaces of 30 sheep at the levels of L1/2, L3/4 and L5/6. After sacrificed, the fusion segments were evaluated by manual palpation, CT scan, biomechanical testing and histology at 3 and 6 months, respectively. The composite demonstrated a burst-release of rhBMP-2 (39.1 2.8 %) on the initial 4 days and a sustained-release (accumulative 81.3 4.9 %) for more than 28 days. The fusion rates, semi-quantitative CT scores, fusion stiffness in bending in all directions and histologic scores of BCP/rhBMP-2/SF were significantly greater than BCP and BCP/rhBMP-2 at each time point, respectively (P < 0.05). These findings indicate that the SF microspheres containing a very low dose of rhBMP-2 improve fusion in sheep using BCP constructs. PMID:25690620

  3. Judaism and the Silk Route.

    ERIC Educational Resources Information Center

    Foltz, Richard

    1998-01-01

    Demonstrates that the Judeans traveled along the Ancient Silk Route. Discusses the Iranian influence on the formation of Jewish religious ideas. Considers the development of Jewish trade networks, focusing on the Radanites (Jewish traders), the Jewish presence in the Far East, and the survival of Judaism in central Asia. (CMK)

  4. Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics.

    PubMed

    Wang, Shaohua; You, Zhengying; Feng, Mao; Che, Jiaqian; Zhang, Yuyu; Qian, Qiujie; Komatsu, Setsuko; Zhong, Boxiong

    2016-01-01

    Silkworm is used as a model organism to analyze two standard complex traits, which are high and low silk yields. To understand the molecular mechanisms of silk production, the posterior silk glands aged to the third day of the fifth instar were analyzed from the ZB strain with low silk production and from the control strain Lan10. Using isobaric tags for relative and absolute quantification (iTRAQ) quantitative shotgun proteomics and RNA-sequencing-based transcriptomics, 139 proteins and 630 transcripts were identified as novel in the ZB strain compared with the Lan10 strain, indicating that these results significantly expand the coverage of proteins and transcripts of the posterior silk glands in the silkworm. Of the 89 differently changed proteins, 23 were increased, and 66 were decreased. Of the 788 transcripts, 779 were upregulated, and 9 were downregulated. These results confirm that decreased energy utilization/protein translation and enhanced protein degradation are the key factors in lower silk production. Moreover, this study provides novel insight into the molecular changes that may result in lower silk production, namely, a combination of impaired transcription activity, missed protein folding/transport, and lowered yields of the main components of fibroin, along with weakened growth/development of the posterior silk gland. PMID:26626507

  5. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines. PMID:26418537

  6. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    PubMed

    Johansson, Ulrika; Ria, Massimiliano; vall, Karin; Dekki Shalaly, Nancy; Zaitsev, Sergei V; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets added. PMID:26090859

  7. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices

    PubMed Central

    Johansson, Ulrika; Dekki Shalaly, Nancy; Zaitsev, Sergei V.; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets added. PMID:26090859

  8. The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-?-sheet crystallites in an abundant amorphous fraction.

    PubMed

    Walker, Andrew A; Weisman, Sarah; Trueman, Holly E; Merritt, David J; Sutherland, Tara D

    2015-09-01

    Glow-worms (larvae of dipteran genus Arachnocampa) are restricted to moist habitats where they capture flying prey using snares composed of highly extensible silk fibres and sticky mucus droplets. Little is known about the composition or structure of glow-worm snares, or the extent of possible convergence between glow-worm and arachnid capture silks. We characterised Arachnocampa richardsae silk and mucus using X-ray scattering, Fourier transform infrared spectroscopy and amino acid analysis. Silk but not mucus contained crystallites of the cross-?-sheet type, which occur in unrelated insect silks but have not been reported previously in fibres used for prey capture. Mucus proteins were rich in Gly (28.5%) and existed in predominantly a random coil structure, typical of many adhesive proteins. In contrast, the silk fibres were unusually rich in charged and polar residues, particularly Lys (18.1%), which we propose is related to their use in a highly hydrated state. Comparison of X-ray scattering, infrared spectroscopy and amino acid analysis data suggests that silk fibres contain a high fraction of disordered protein. We suggest that in the native hydrated state, silk fibres are capable of extension via deformation of both disordered regions and cross-?-sheet crystallites, and that high extensibility is an adaptation promoting successful prey capture. This study illustrates the rich variety of protein motifs that are available for recruitment into biopolymers, and how convergently evolved materials can nevertheless be based on fundamentally different protein structures. PMID:26006749

  9. Thromboelastometric and platelet responses to silk biomaterials

    PubMed Central

    Kundu, Banani; Schlimp, Christoph J.; Nürnberger, Sylvia; Redl, Heinz; Kundu, S. C.

    2014-01-01

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls. PMID:24824624

  10. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  11. Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation

    PubMed Central

    Murphy, Amanda R.; John, Peter St.; Kaplan, David L.

    2009-01-01

    A simple chemical modification method using diazonium coupling chemistry was developed to tailor the structure and hydrophilicity of silk fibroin protein. The extent of modification using several aniline derivatives was characterized using UV/vis and 1H NMR spectroscopy, and the resulting protein structure was analyzed with ATR-FTIR spectroscopy. Introduction of hydrophobic functional groups facilitated rapid conversion of the protein from a random coil to a ?-sheet structure, while addition of hydrophilic groups inhibited this process. hMSCs were grown on these modified silks to assess the biocompatibility of these materials. The hydrophilicity of the silk derivatives was found to affect the growth rate and morphology, but hMSCs were able to attach, proliferate and differentiate into an osteogenic lineage on all of the silk derivatives. PMID:18417206

  12. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.

    PubMed

    Freddi, Giuliano; Anghileri, Anna; Sampaio, Sandra; Buchert, Johanna; Monti, Patrizia; Taddei, Paola

    2006-09-01

    The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers. PMID:16621091

  13. Effect of silicon on the formation of silk fibroin/calcium phosphate composite.

    PubMed

    Li, Li; Wei, Ke-Min; Lin, Feng; Kong, Xiang-Dong; Yao, Ju-Ming

    2008-02-01

    The silk fibroin/calcium phosphate composites were prepared by adding the different amount of Na(2)SiO(3) to assess the effect of silicon on the HA (hydroxyapatite) formation in the composites. FTIR and XRD results suggested that the inorganic phase was constituted mainly by the amorphous DCPD (dicalcium phosphate dehydrate), a precursor of HA in the bone mineral, when the composites were prepared at the final Na(2)SiO(3) concentration lower than 0.008%. Otherwise, HA was formed as the predominant one in the as-prepared composite, accompanied with a conformational transition in the organic phase of silk fibroin protein from silk I (alpha-helix and/or polyglycine II (3(1)-helix) conformations) to silk II (antiparallel beta-sheet conformation). SEM images showed the different morphologies with the samples, i.e., sheet-like crystals in the composites prepared at a low Na(2)SiO(3) concentration and rod-like bundles in other composites. The rod-like bundles were connected together to form the porous network, due to the fact that the HA crystals grew with the aggregation of silk fibroin, and further accreted onto the silk fibroin fibrils. TG curves indicated that the composites prepared with a certain amount of additional SiO (3) (2-) had the higher thermal stability because of its high molecular orientation and crystallinity, and high water-holding capacity due to the porous microstructure. PMID:17619986

  14. Effect of β-sheet crystalline content on mass transfer in silk films

    PubMed Central

    Karve, Kiran A.; Gil, Eun Seok; McCarthy, Stephen P.; Kaplan, David L.

    2011-01-01

    The material properties of silk are favorable for drug delivery due to the ability to control material structure and morphology under ambient, aqueous processing conditions. Mass transport of compounds with varying physical-chemical characteristics was studied in silk fibroin films with control of β-sheet crystalline content. Two compounds, vitamin B12 and fluorescein isothiocynate (FITC) labeled lysozyme were studied in a diffusion apparatus to determine transport through silk films. The films exhibited size exclusion phenomenon with permeability coefficients with contrasting trends with increases in β-sheet crystallinity. The size exclusion phenomenon observed with the two model compounds was characterized by contrasting trends in permeability coefficients of the films as a function of β-sheet crystallinity. The diffusivity of the compounds was examined in the context of free volume theory. Apart from the β-sheet crystallinity, size of the compound and its interactions with silk influenced mass transfer. Diffusivity of vitamin B12 was modeled to define a power law relationship with β-sheet crystallinity. The results of the study demonstrate that diffusion of therapeutic agents though silk fibroin films can be directed to match a desired rate by modulating secondary structure of the silk proteins. PMID:22135474

  15. NMR study of the structures of repeated sequences, GAGXGA (X = S, Y, V), in Bombyx mori liquid silk.

    PubMed

    Suzuki, Yu; Yamazaki, Toshimasa; Aoki, Akihiro; Shindo, Heisaburo; Asakura, Tetsuo

    2014-01-13

    The silk fibroin stored in the silk gland of the Bombyx mori silkworm, called "liquid silk", is spun out and converted into the silk fiber with extremely high strength and high toughness. Therefore it is important to determine the silk structure before spinning called Silk I at an atomic level to clarify the fiber formation mechanism. We proposed the repeated type II ?-turn structure as Silk I in the solid state with the model peptide (AG)15 and several solid state NMR techniques previously. In this paper, the solution structure of native "liquid silk" was determined with solution NMR, especially for tandem repeated sequences with (GAGXGA)n (X = S, Y, V) and GAASGA motifs in the B. mori silk fibroin. The assignment of the (13)C, (15)N, and (1)H solution NMR spectra for the repetitive sequence motifs was achieved, and the chemical shifts were obtained. The program, TALOS-N, to predict the backbone torsion angles from the chemical shifts of proteins was applied to these motifs with (13)C?, (13)C?, (13)CO, (1)H?, (1)HN, and (15)N chemical shifts. The twenty-five best matches of torsion angles (?, ?) were well populated and mainly fell into the regions for typical type II ?-turn structures in the (?, ?) map for the GAGXGA (X = S, Y, V) motifs. In contrast, (?, ?) plots for motif GAASGA were scattered, indicating that the motif is in a disordered structure. Furthermore, inter-residue HN-H? NOE cross peaks between i-th and (i+2)th residues in GAGXGA (X = S, Y, V) motifs were observed, supporting the repeated type II ?-turn structure. Thus, we could show the presence of the repeated type II ?-turn structure in "liquid silk". PMID:24266784

  16. Spatially controlled delivery of neurotrophic factors in silk fibroin-based nerve conduits for peripheral nerve repair.

    PubMed

    Lin, Yen-Chih; Ramadan, Mostafa; Hronik-Tupaj, Marie; Kaplan, David L; Philips, Brian J; Sivak, Wesley; Rubin, J Peter; Marra, Kacey G

    2011-08-01

    Restoration with sufficient functional recovery after long-gap peripheral nerve damage remains a clinical challenge. Silk has shown clinical promise for numerous tissue engineering applications due to its biocompatibility, impressive mechanical properties, and Food and Drug Administration approval. The aim of this study was to evaluate the efficacy of silk fibroin--based nerve guides containing glial cell line-derived neurotrophic factor (GDNF) in a long-gap sized (15 mm) rat sciatic nerve defect model. Four groups of nerve conduits were prepared: (1) silk conduits with empty silk microspheres, (2) silk conduits with GDNF-loaded silk microspheres uniformly distributed in the conduit wall, (3) silk conduits with GDNF-loaded silk microspheres in a controlled manner with the highest GDNF concentration at the distal end, and (4) isograft. After 6 weeks, the nerve grafts were explanted, harvested, and fixed for histologic analysis. Nerve tissue stained with the S-100, and neuroendocrine marker PGP 9.5 antibodies demonstrated a significantly increased density of nerve tissue in the GDNF-treated groups compared with the empty microsphere (control) group (P < 0.05). GDNF-treated animals with a higher concentration of GDNF in the distal portion possessed a significantly higher density of PGP 9.5 protein middle conduit part than comparison to GDNF uniform-treated animals (P < 0.05). Silk-based nerve conduits possess optimal mechanical and degradative properties, rendering them potentially useful in peripheral nerve repair. This study demonstrates that novel, porous silk fibroin--based nerve conduits, infused with GDNF in a controlled manner, represent a potentially viable conduit for Schwann cell migration and proliferation in the regeneration of peripheral nerves. PMID:21712696

  17. Pyriform Spidroin 1, a Novel Member of the Silk Gene Family That Anchors Dragline Silk Fibers in Attachment Discs of the Black Widow Spider, Latrodectus hesperus*

    PubMed Central

    Blasingame, Eric; Tuton-Blasingame, Tiffany; Larkin, Leah; Falick, Arnold M.; Zhao, Liang; Fong, Justine; Vaidyanathan, Veena; Visperas, Anabelle; Geurts, Paul; Hu, Xiaoyi; La Mattina, Coby; Vierra, Craig

    2009-01-01

    Spiders spin high performance threads that have diverse mechanical properties for specific biological applications. To better understand the molecular mechanism by which spiders anchor their threads to a solid support, we solubilized the attachment discs from black widow spiders and performed in-solution tryptic digests followed by MS/MS analysis to identify novel peptides derived from glue silks. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and cDNA library screening, we isolated a novel member of the silk gene family called pysp1 and demonstrate that its protein product is assembled into the attachment disc silks. Alignment of the PySp1 amino acid sequence to other fibroins revealed conservation in the non-repetitive C-terminal region of the silk family. MS/MS analysis also confirmed the presence of MaSp1 and MaSp2, two important components of dragline silks, anchored within the attachment disc materials. Characterization of the ultrastructure of attachment discs using scanning electron microscopy studies support the localization of PySp1 to small diameter fibers embedded in a glue-like cement, which network with large diameter dragline silk threads, producing a strong, adhesive material. Consistent with elevated PySp1 mRNA levels detected in the pyriform gland, MS analysis of the luminal contents extracted from the pyriform gland after tryptic digestion support the assertion that PySp1 represents one of the major constituents manufactured in the pyriform gland. Taken together, our data demonstrate that PySp1 is spun into attachment disc silks to help affix dragline fibers to substrates, a critical function during spider web construction for prey capture and locomotion. PMID:19666476

  18. To spin or not to spin: spider silk fibers and more.

    PubMed

    Doblhofer, Elena; Heidebrecht, Aniela; Scheibel, Thomas

    2015-11-01

    Spider silk fibers have a sophisticated hierarchical structure composed of proteins with highly repetitive sequences. Their extraordinary mechanical properties, defined by a unique combination of strength and extensibility, are superior to most man-made fibers. Therefore, spider silk has fascinated mankind for thousands of years. However, due to their aggressive territorial behavior, farming of spiders is not feasible on a large scale. For this reason, biotechnological approaches were recently developed for the production of recombinant spider silk proteins. These recombinant proteins can be assembled into a variety of morphologies with a great range of properties for technical and medical applications. Here, the different approaches of biotechnological production and the advances in material processing toward various applications will be reviewed. PMID:26362683

  19. Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale.

    PubMed

    Lee, Myeongsang; Kwon, Junpyo; Na, Sungsoo

    2016-02-01

    Spider and silkworm silk proteins have received much attention owing to their inherent structural stability, biodegradability, and biocompatibility. These silk protein materials have various mechanical characteristics such as elastic modulus, ultimate strength and fracture toughness. While the considerable mechanical characteristics of the core crystalline regions of spider silk proteins at the atomistic scale have been investigated through several experimental techniques and computational studies, there is a lack of comparison between spider and silkworm fibroins in the atomistic scale. In this study, we investigated the differences between the mechanical characteristics of spider and silkworm fibroin structures by applying molecular dynamics and steered molecular dynamics. We found that serine amino acids in silkworm fibroins not only increased the number of hydrogen bonds, but also altered their structural characteristics and mechanical properties. PMID:26806791

  20. Development and characterization of silk fibroin coated quantum dots

    NASA Astrophysics Data System (ADS)

    Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

    2008-02-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

  1. Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds

    PubMed Central

    Bellas, Evangelia; Panilaitis, Bruce J.B.; Glettig, Dean L.; Kirker-Head, Carl A.; Yoo, James J.; Marra, Kacey G.; Rubin, J. Peter; Kaplan, David L.

    2013-01-01

    Current approaches to soft tissue regeneration include the use of fat grafts, natural or synthetic biomaterials as filler materials. Fat grafts and natural biomaterials resorb too quickly to maintain tissue regeneration, while synthetic materials do not degrade or regenerate tissue. Here, we present a simple approach to volume stable filling of soft tissue defects. In this study, we combined lipoaspirate with a silk protein matrix in a subcutaneous rat model. Silk biomaterials can be tailored to fit a variety of needs, and here were processed silk biomaterials into a porous sponge format to allow for tissue ingrowth while remaining mechanically robust. Over an 18 month period, the lipoaspirate seeded silk protein matrix regenerated subcutaneous adipose tissue while maintaining the original implanted volume. A silk protein matrix alone was not sufficient to regenerate adipose tissue, but yielded a fibrous tissue, although implanted volume was maintained. This work presents a significant improvement to the standard approaches to filling soft tissue defects by matching biomaterial degradation and tissue regeneration profiles. PMID:23374707

  2. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter

    NASA Astrophysics Data System (ADS)

    Madurga, Rodrigo; Plaza, Gustavo R.; Blackledge, Todd A.; Guinea, Gustavo. V.; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk.

  3. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter

    PubMed Central

    Madurga, Rodrigo; Plaza, Gustavo R.; Blackledge, Todd A.; Guinea, Gustavo.V.; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk. PMID:26755434

  4. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.

    PubMed

    Madurga, Rodrigo; Plaza, Gustavo R; Blackledge, Todd A; Guinea, Gustavo V; Elices, Manuel; Prez-Rigueiro, Jos

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the ?-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk. PMID:26755434

  5. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.

    PubMed

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin scaffolds. Finally, it can be deduced that modified silk fibroin scaffolds with collagen/decellularized pulp had the performance for bone tissue engineering and a promise for cleft palate treatment. PMID:26478414

  6. Dispersion of multiwalled carbon nanotubes in aqueous silk fibroin solutions.

    PubMed

    Kim, Hyunsuk; Kim, Hun-Sik; Lee, Heon Sang; Chin, In-Joo; Jin, Hyoung-Joon

    2008-10-01

    A simple method was developed to densely assemble multiwalled carbon nanotubes (MWCNTs) onto single native spider silk and silkworm silk fibers in aqueous system. The interactions between the MWCNTs and the silk fibroin were investigated using scanning electron microscopy and transmission electron microscopy. Furthermore, the role of pure silk fibroin in dispersing MWCNTs in aqueous systems was also assessed. PMID:19198494

  7. Expression of hIGF-I in the silk glands of transgenic silkworms and in transformed silkworm cells.

    PubMed

    Zhao, Yue; Li, Xi; Cao, GuangLi; Xue, RenYu; Gong, ChengLiang

    2009-12-01

    To express human insulin-like growth factor-I (hIGF-I) in transformed Bombyx mori cultured cells and silk glands, the transgenic vector pigA3GFP-hIGF-ie-neo was constructed with a neomycin resistance gene driven by the baculovirus ie-1 promoter, and with the hIGF-I gene under the control of the silkworm sericin promoter Ser-1. The stably transformed BmN cells expressing hIGF-I were selected by using the antibiotic G418 at a final concentration of 700-800 microg/mL after the BmN cells were transfected with the piggyBac vector and the helper plasmid. The specific band of hIGF-I was detected in the transformed cells by Western blot. The expression level of hIGF-I, determined by ELISA, was about 7800 pg in 5x10(5) cells. Analysis of the chromosomal insertion sites by inverse PCR showed that exogenous DNA could be inserted into the cell genome randomly or at TTAA target sequence specifically for piggyBac element transposition. The transgenic vector pigA3GFP-hIGF-ie-neo was transferred into the eggs using sperm-mediated gene transfer. Finally, two transgenic silkworms were obtained after screening for the neo and gfp genes and verified by PCR and dot hybridization. The expression level of hIGF-I determined by ELISA was about 2440 pg/g of silk gland of the transgenic silkworms of the G1 generation. PMID:20016970

  8. The effect of water on the structure and dynamics of spider silk and silk-like polymers studied by magnetic resonance and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Zhitong

    Due to its unique combination of tensile strength and elasticity, the dragline silk of the orb-weaving spider Nephila clavipes has attracted much attention. Most importantly, it has a high energy to break that is unparalleled in other fibers. Though the basis for the strength of the silk fiber has been uncovered, the molecular reason of the fiber's large shrinkage in water is unknown. This has been a major hurdle in the practical applications of the fiber, and to any man-made copy of this material. Small-angle X-ray scattering (SAXS) is used to probe of the long-range structures in the semicrystalline silk. Scattering patterns of wet and dry samples indicate that the crystalline regions stack along the fiber axis to form lamellar structures. These structures are sparsely dispersed in a softer matrix with a long spacing of 8.4 nm. This spacing increases reversibly by 4% when fibers are stretched by 10%, and shrinks to 5.8 nm when fibers shrink 45% in length on wetting. Solid-state nuclear magnetic resonance (NMR) experiments are performed to reveal the microscopic details of the dynamics in the silk. Cross-polarization magic-angle spinning 13C NMR demonstrates that a substantial fraction of the glycine, glutamine, tyrosine, serine, and leucine residues experience dramatic increases in the rate of large-amplitude reorientation at the protein backbone when fibers are wet. Variable temperature deuterium NMR measurements were carried out on silk samples that incorporate leucine deuterated at the methyl group. Results show that only a subset of these leucine residues is strongly affected by water. Quantitative analysis and chemical considerations suggest that the highly conserved YGGLGS(N)QGAGR blocks, only found in the dragline silk protein, play a major role in the supercontraction process. Protein sequences are proposed to produce artificial spider silk with similar mechanical properties, but without the undesired phenomenon of supercontraction. The spinning and postspinning processing procedures are investigated by regenerating fibers from dissolved native dragline silk. Tensile tests and structural characterization of the regenerated fibers have correlated the properties of the final material and the processing history of the fiber. An aqueous environment is important in the annealing of the material.

  9. Structural study of Bombyx mori silk fibroin during processing for regeneration

    NASA Astrophysics Data System (ADS)

    Ha, Sung-Won

    Bombyx mori silk fibroin has excellent mechanical properties combined with flexibility, tissue compatibility, and high oxygen permeability in the wet condition. This important material should be dissolved and regenerated to be utilized as useful forms such as gel, film, fiber, powder, or non-woven. However, it has long been a problem that the regenerated fibroin materials show poor mechanical properties and brittleness. These problems were technically solved by improving a fiber processing method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the original silk fibers. This improved technique for the fiber processing of Bombyx mori silk fibroin may be used as a model system for other semi-crystalline fiber forming proteins, becoming available through biotechnology. The physical and chemical properties of the regenerated fibers were characterized by SinTechRTM tensile testing, X-ray diffraction, solid state 13C NMR spectroscopy, and SEM. Unlike synthetic polymers, the molecular weight distribution of Bombyx mori silk fibroin is mono-disperse because silk fibroin is synthesized from DNA template. Genetic studies have revealed the entire amino acid sequence of Bombyx mori silk fibroin. It is known that the crystalline silk II structure is composed of hexa-amino acid sequences, GAGAGS. However, in the amino acid sequence of Bombyx mori silk fibroin heavy chain, there are present 11 chemically irregular but evolutionarily conserved sequences with about 31 amino acid residues (irregular GTGT sequences). The structure and role of these irregular sequences have remained unknown. One of the most frequently appearing irregular sequences was synthesized by a peptide synthesizer. The three-dimensional structure of this irregular silk peptide was studied by the high resolution two-dimensional NMR technique. The three-dimensional structure of this peptide shows that it makes a turn or loop structure (distorted O shape), which means the proceeding backbone direction is changed 180 by this sequence. This may facilitate the beta-sheet formation of the crystal forming building blocks, GAGAGS/GYGY sequences, in fibroin heavy chain. It may also facilitate the solubilization of the fibroin heavy chain within the silk gland.

  10. Gel spinning of silk tubes for tissue engineering

    PubMed Central

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  11. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.

    PubMed

    Mallepally, Rajendar R; Marin, Michael A; Surampudi, Vasudha; Subia, Bano; Rao, Raj R; Kundu, Subhas C; McHugh, Mark A

    2015-06-01

    Silk fibroin (SF) is a natural protein, which is derived from the Bombyx mori silkworm. SF based porous materials are extensively investigated for biomedical applications, due to their biocompatibility and biodegradability. In this work, CO2 assisted acidification is used to synthesize SF hydrogels that are subsequently converted to SF aerogels. The aqueous silk fibroin concentration is used to tune the morphology and textural properties of the SF aerogels. As the aqueous fibroin concentration increases from 2 to 6?wt%, the surface area of the resultant SF aerogels increases from 260 to 308?m(2)?g(-1) and the compressive modulus of the SF aerogels increases from 19.5 to 174?kPa. To elucidate the effect of the freezing rate on the morphological and textural properties, SF cryogels are synthesized in this study. The surface area of the SF aerogels obtained from supercritical CO2 drying is approximately five times larger than the surface area of SF cryogels. SF aerogels exhibit distinct pore morphology compared to the SF cryogels. In vitro cell culture studies with human foreskin fibroblast cells demonstrate the cytocompatibility of the silk fibroin aerogel scaffolds and presence of cells within the aerogel scaffolds. The SF aerogels scaffolds created in this study with tailorable properties have potential for applications in tissue engineering. PMID:25953953

  12. Mechanisms and Control of Silk-based Electrospinning

    PubMed Central

    Zhang, Feng; Zuo, Baoqi; Fan, Zhihai; Xie, Zonggang; Lu, Qiang; Zhang, Xueguang; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) nanofibers, formed through electrospinning, have attractive utility in regenerative medicine due to the biocompatibility, mechanical properties and tailorable degradability. The mechanism of SF electrospun nanofiber formation was studied to gain new insight into the formation and control of nanofibers. SF electrospinning solutions with different nanostructures (nanospheres or nanofilaments) were prepared by controlling the drying process during the preparation of regenerated SF films. Compared to SF nanospheres in solution, SF nanofilaments had better spinnability with lower viscosity when the concentration of silk protein was below 10%, indicating a critical role for SF morphology, and in particular, nanostructures for the formation of electrospun fibers. More interesting, the diameter of electrospun fibers gradually increased from 50 nm to 300 nm as the increase in concentration of SF nanofilaments in the solution from 6% to 12%, implying size control by simply adjusting SF nanostructure and concentration. Aside from process parameters investigated in previous studies, such as SF concentration, viscosity and electrical potential, the present mechanism emphasizes significant influence of SF nanostructure on spinnability and diameter control of SF electrospun fibers, providing a controllable option for the preparation of silk-based electrospun scaffolds for biomaterials, drug delivery and tissue engineering needs. PMID:22300335

  13. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells

    PubMed Central

    Inthanon, Kewalin; Techaikool, Pimwalan; Khaniyao, Vorathep; Bernstein, Audrey M.; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications. PMID:26839562

  14. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    PubMed Central

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-01-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering. PMID:25475975

  15. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Mar-Buy, Nria; Madurga, Rodrigo; Arroyo-Hernndez, Mara; Solanas, Concepcin; Gan, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, Jos Luis; Prez-Rigueiro, Jos

    2014-12-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering.

  16. Surface modification of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization for small-diameter vascular prostheses.

    PubMed

    Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W

    2015-03-01

    There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification. PMID:25671295

  17. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    PubMed

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-01

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., ?-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of ?-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin. PMID:26364925

  18. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation.

    PubMed

    Mauney, Joshua R; Cannon, Glenn M; Lovett, Michael L; Gong, Edward M; Di Vizio, Dolores; Gomez, Pablo; Kaplan, David L; Adam, Rosalyn M; Estrada, Carlos R

    2011-01-01

    Currently, gastrointestinal segments are considered the gold standard for bladder reconstructive procedures. However, significant complications including chronic urinary tract infection, metabolic abnormalities, urinary stone formation, bowel dysfunction, and secondary malignancies are associated with this approach. Biomaterials derived from silk fibroin may represent a superior alternative due their robust mechanical properties, biodegradable features, and processing plasticity. In the present study, we evaluated the efficacy of a gel spun silk-based matrix for bladder augmentation in a murine model. Over the course of 70 d implantation period, H&E and Masson's trichrome (MTS) analysis revealed that silk matrices were capable of supporting both urothelial and smooth muscle regeneration at the defect site. Prominent uroplakin and contractile protein expression (?-actin, calponin, and SM22?) was evident by immunohistochemical analysis demonstrating maturation of the reconstituted bladder wall compartments. Gel spun silk matrices also elicited a minimal acute inflammatory reaction following 70 d of bladder integration, in contrast to parallel assessments of small intestinal submucosa (SIS) and poly-glycolic acid (PGA) matrices which routinely promoted evidence of fibrosis and chronic inflammatory responses. Voided stain on paper analysis revealed that silk augmented animals displayed similar voiding patterns in comparison to non surgical controls by 42 d of implantation. In addition, cystometric evaluations of augmented bladders at 70 d post-op demonstrated that silk scaffolds supported significant increases in bladder capacity and voided volume while maintaining similar degrees of compliance relative to the control group. These results provide evidence for the utility of gel spun silk-based matrices for functional bladder tissue engineering applications. PMID:20951426

  19. Evaluation of Gel Spun Silk-Based Biomaterials in a Murine Model of Bladder Augmentation

    PubMed Central

    Mauney, Joshua R.; Cannon, Glenn M.; Lovett, Michael L.; Gong, Edward M.; DiVizio, Dolores; Kaplan, David L.; Adam, Rosalyn M.; Estrada, Carlos R.

    2013-01-01

    Currently, gastrointestinal segments are considered the gold standard for bladder reconstructive procedures. However, significant complications including chronic urinary tract infection, metabolic abnormalities, urinary stone formation, bowel dysfunction, and secondary malignancies are associated with this approach. Biomaterials derived from silk fibroin may represent a superior alternative due their robust mechanical properties, biodegradable features, and processing plasticity. In the present study, we evaluated the efficacy of a gel spun silk-based matrix for bladder augmentation in a murine model. Over the course of 70 d implantation period, H&E and Massons trichrome (MTS) analysis revealed that silk matrices were capable of supporting both urothelial and smooth muscle regeneration at the defect site. Prominent uroplakin and contractile protein expression (?-actin, calponin, and SM22?) was evident by immunohistochemical analysis demonstrating maturation of the reconstituted bladder wall compartments. Gel spun silk matrices also elicited a minimal acute inflammatory reaction following 70 d of bladder integration, in contrast to parallel assessments of small intestinal submucosa (SIS) and polyglycolic acid (PGA) matrices which routinely promoted evidence of fibrosis and chronic inflammatory responses. Voided stain on paper analysis revealed that silk augmented animals displayed similar voiding patterns in comparison to non surgical controls by 42 d of implantation. In addition, cystometric evaluations of augmented bladders at 70 d post-op demonstrated that silk scaffolds supported significant increases in bladder capacity, voided volume, and flow rate while maintaining similar degrees of compliance relative to the control group. These results provide evidence for the utility of gel spun silk-based matrices for functional bladder tissue engineering applications. PMID:20951426

  20. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  1. Mechanism of Thermal Crystallization in Silk Fibroin

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Kaplan, David; Cebe, Peggy

    2007-03-01

    We investigated the formation of beta pleated-sheets in B. mori silk fibroin films cast from water solution. Differential scanning calorimetry (DSC), its temperature-modulated variant (TMDSC), and the time-resolved techniques of Fourier Transform infrared spectroscopy and X-ray scattering, were used to monitor the detailed structural changes of silk fibroin during heating and isothermal crystallization above the glass transition temperature, Tg. Results show that bound water molecules inside the film play a very important role for the transformation from non-crystalline fibroin to crystalline beta sheet containing fibroin. Silk fibroin forms a new tighter structure with loss of intermolecular bound water during heating, which promotes the formation of the beta-sheets crystals above Tg. In addition, quick heating of the silk fibroin causes a water-induced glass transition, which results in a temporary water-silk structure where the bound water acts as a plasticizer for this polymeric system. This study will lead to a deeper understanding of the formation of beta pleated-sheets during the crystallization process in silk fibroin, with implications for the crystallization of the naturally occurring silk.

  2. Spider Silks-Biomimetics Beyond Silk Fibers: Hydrogels, films & Adhesives from Aqueous Recombinant Spider Silk dopes: A Synchrotron X-Ray Nano-Structural Study

    NASA Astrophysics Data System (ADS)

    Sampath, Sujatha; Jones, Justin; Harris, Thomas; Lewis, Randolph

    2015-03-01

    With a combination of high strength and extensibility, spider silk's (SS) mechanical properties surpass those of any man made fiber. The superior properties are due to the primary protein composition and the complex hierarchical structural organization from nanoscale to macroscopic length scales. Considerable progress has been made to synthetically mimic the production of fibers based on SS proteins. We present synchrotron x-ray micro diffraction (SyXRD) results on new fibers and gels (hydrogels, lyogels) from recombinant SS protein water-soluble dopes. Novelty in these materials is two-fold: water based rather than widely used HFIP acid synthesis, makes them safe in medical applications (replacement for tendons & ligaments). Secondly, hydrogels morphology render them as excellent carriers for targeted drug delivery biomedical applications. SyXRD results reveal semi-crystalline structure with ordered beta-sheets and relatively high degree of axial orientation in the fibers, making them the closest yet to natural spider silks. SyXRD on the gels elucidate the structural transformations during the self-recovery process through mechanical removal and addition of water. Studies correlating the observed structural changes to mechanical properties are underway.

  3. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissuescaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiberhydrogel composites (SFsilk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiberhydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SFsilk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  4. Production, structure and in vitro degradation of electrospun honeybee silk nanofibers

    PubMed Central

    Wittmer, Corinne R.; Hu, Xiao; Gauthier, Pierre-Chanel; Weisman, Sarah; Kaplan, David L.; Sutherland, Tara D.

    2012-01-01

    Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in E. coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibres of around 200 nm diameter. Infrared spectroscopy found that the molecular structure of the nanofibres was predominantly coiled coil, essentially the same as native honeybee silk. Mats of the honeybee nanofibres were treated with methanol or by water annealing, which increased their -sheet content and rendered them water-insensitive. The insoluble mats were degraded by protease on a time scale of hours to days. The protease gradually released proteins from the solid state and these were subsequently rapidly degraded into small peptides without the accumulation of partial degradation products. Cell culture assays demonstrated that the mats allowed survival, attachment and proliferation of fibroblasts. These results indicate that honeybee silk proteins meet many prerequisites for use as a biomaterial. PMID:21689795

  5. Self-assembly of nucleic acids, silk and hybrid materials thereof

    NASA Astrophysics Data System (ADS)

    Humenik, Martin; Scheibel, Thomas

    2014-12-01

    Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here, we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.

  6. Processing and characterisation of a novel electropolymerized silk fibroin hydrogel membrane

    PubMed Central

    Wang, Hai-Yan; Zhang, Yu-Qing

    2014-01-01

    Silk fibroin can be made into various forms of biocompatible medical materials, including hydrogel due to its excellent properties. Here, we report a novel method for the preparation of electropolymerized silk fibroin hydrogel membrane (ESFHM), which is formed on a nanoporous film as a barrier using a homemade device at a higher DC voltage. Regenerated silk fibroin solution in Tris buffer (pH 6.557.55) was added into a reservoir with a negative charge, and the silk molecules migrated toward the positive charge at 80VDC, resulting in the formation of the ESFHM on the barrier film. Barrier film with a MWCO of 10?kDa is favourable to the formation of the ESFHM. Semi-transparent ESFHM with a swelling ratio of 1056.4% predominantly consisted of a mixture of ?-sheets and ?-helix crystalline structures. SEM studies revealed that the ESFHM consisted of a 3D mesh structure woven by a chain of silk fibroin nanoparticles with a size of approximately 30 nanometres, similar to a pearl necklace. In vitro studies indicated that the ESFHM was degradable and was sufficient for cell adhesion and growth. Thus, ESFHM is a promising candidate for loading bioactive protein and appropriate cells, as artificial skin or for use in transplantation. PMID:25154713

  7. Processing and characterisation of a novel electropolymerized silk fibroin hydrogel membrane.

    PubMed

    Wang, Hai-Yan; Zhang, Yu-Qing

    2014-01-01

    Silk fibroin can be made into various forms of biocompatible medical materials, including hydrogel due to its excellent properties. Here, we report a novel method for the preparation of electropolymerized silk fibroin hydrogel membrane (ESFHM), which is formed on a nanoporous film as a barrier using a homemade device at a higher DC voltage. Regenerated silk fibroin solution in Tris buffer (pH 6.55-7.55) was added into a reservoir with a negative charge, and the silk molecules migrated toward the positive charge at 80VDC, resulting in the formation of the ESFHM on the barrier film. Barrier film with a MWCO of 10?kDa is favourable to the formation of the ESFHM. Semi-transparent ESFHM with a swelling ratio of 1056.4% predominantly consisted of a mixture of ?-sheets and ?-helix crystalline structures. SEM studies revealed that the ESFHM consisted of a 3D mesh structure woven by a chain of silk fibroin nanoparticles with a size of approximately 30 nanometres, similar to a pearl necklace. In vitro studies indicated that the ESFHM was degradable and was sufficient for cell adhesion and growth. Thus, ESFHM is a promising candidate for loading bioactive protein and appropriate cells, as artificial skin or for use in transplantation. PMID:25154713

  8. Dynamic behaviour of silks: Nature's precision nanocomposites

    NASA Astrophysics Data System (ADS)

    Drodge, D. R.; Mortimer, B.; Siviour, C. R.; Holland, C.

    2012-08-01

    Silk is often cited as a material worth imitating, due to its high strength and toughness. In order to produce a synthetic analogue, or enhanced natural version, the microstructural basis of these properties must be understood. Current understanding is that silk deforms through the detachment of nano-scale crystallites, in the manner of a damaged composite. This picture forms the basis for constitutive models, but validation data is limited to low strain-rates. Here we present a programme of research in which high-rate behaviour is studied through ballistic impact experiments. These have been applied to the silk of the Bombyx mori moth, as harvested from cocoons, and to the major ampullate thread of the golden orb weaver spider Nephila edulis. Longitudinal wave-speeds, and air drag coefficients, have been calculated for selected cases. Differences between the response of various silks and a similar synthetic fibre, nylon, are discussed, and future plans are presented.

  9. Inducing ?-Sheets Formation in Synthetic Spider Silk Fibers by Aqueous Post-Spin Stretching

    PubMed Central

    Hinman, Michael B.; Holland, Gregory P.; Yarger, Jeffery L.; Lewis, Randolph V.

    2012-01-01

    As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce manmade fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of ?-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers. PMID:21574576

  10. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    PubMed Central

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000?K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings. PMID:23350037

  11. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.

  12. Injectable silk-polyethylene glycol hydrogels.

    PubMed

    Wang, Xiaoqin; Partlow, Benjamin; Liu, Jian; Zheng, Zhaozhu; Su, Bo; Wang, Yansong; Kaplan, David L

    2015-01-01

    Silk hydrogels for tissue repair are usually pre-formed via chemical or physical treatments from silk solutions. For many medical applications, it is desirable to utilize injectable silk hydrogels at high concentrations (>8%) to avoid surgical implantation and to achieve slow in vivo degradation of the gel. In the present study, injectable silk solutions that formed hydrogels in situ were generated by mixing silk with low-molecular-weight polyethylene glycol (PEG), especially PEG300 and 400 (molecular weight 300 and 400g mol(-1)). Gelation time was dependent on the concentration and molecular weight of PEG. When the concentration of PEG in the gel reached 40-45%, gelation time was less than 30min, as revealed by measurements of optical density and rheological studies, with kinetics of PEG400 faster than PEG300. Gelation was accompanied by structural changes in silk, leading to the conversion from random coil in solution to crystalline ?-sheets in the gels, based on circular dichroism, attenuated total reflection Fourier transform infrared spectroscopy and X-ray diffraction. The modulus (127.5kPa) and yield strength (11.5kPa) determined were comparable to those of sonication-induced hydrogels at the same concentrations of silk. The time-dependent injectability of 15% PEG-silk hydrogel through 27G needles showed a gradual increase of compression forces from ?10 to 50N within 60min. The growth of human mesenchymal stem cells on the PEG-silk hydrogels was hindered, likely due to the presence of PEG, which grew after a 5 day delay, presumably while the PEG solubilized away from the gel. When 5% PEG-silk hydrogel was subcutaneously injected in rats, significant degradation and tissue in-growth took place after 20 days, as revealed by ultrasound imaging and histological analysis. No significant inflammation around the gel was observed. The features of injectability, slow degradation and low initial cell attachment suggests that these PEG-silk hydrogels are of interest for many biomedical applications, such as anti-fouling and anti-adhesion. PMID:25449912

  13. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering

    PubMed Central

    Franck, Debra; Chung, Yeun Goo; Coburn, Jeannine; Kaplan, David L; Estrada, Carlos R

    2014-01-01

    Silk fibroin scaffolds were investigated for their ability to support attachment, proliferation, and differentiation of human gastrointestinal epithelial and smooth muscle cell lines in order to ascertain their potential for tissue engineering. A bi-layer silk fibroin matrix composed of a porous silk fibroin foam annealed to a homogeneous silk fibroin film was evaluated in parallel with small intestinal submucosa scaffolds. AlamarBlue analysis revealed that silk fibroin scaffolds supported significantly higher levels of small intestinal smooth muscle cell, colon smooth muscle cell, and esophageal smooth muscle cell attachment in comparison to small intestinal submucosa. Following 7?days of culture, relative numbers of each smooth muscle cell population maintained on both scaffold groups were significantly elevated over respective 1-day levelsindicative of cell proliferation. Real-time reverse transcription polymerase chain reaction and immunohistochemical analyses demonstrated that both silk fibroin and small intestinal submucosa scaffolds were permissive for contractile differentiation of small intestinal smooth muscle cell, colon smooth muscle cell, esophageal smooth muscle cell as determined by significant upregulation of ?-smooth muscle actin and SM22? messenger RNA and protein expression levels following transforming growth factor-?1 stimulation. AlamarBlue analysis demonstrated that both matrix groups supported similar degrees of attachment and proliferation of gastrointestinal epithelial cell lines including colonic T84 cells and esophageal epithelial cells. Following 14?days of culture on both matrices, spontaneous differentiation of T84 cells toward an enterocyte lineage was confirmed by expression of brush border enzymes, lactase, and maltase, as determined by real-time reverse transcription polymerase chain reaction and immunohistochemical analyses. In contrast to small intestinal submucosa scaffolds, silk fibroin scaffolds supported spontaneous differentiation of esophageal epithelial cells toward a suprabasal cell lineage as indicated by significant upregulation of cytokeratin 4 and cytokeratin 13 messenger RNA transcript levels. In addition, esophageal epithelial cells maintained on silk fibroin scaffolds also produced significantly higher involucrin messenger RNA transcript levels in comparison to small intestinal submucosa counterparts, indicating an increased propensity for superficial, squamous cell specification. Collectively, these data provide evidence for the potential of silk fibroin scaffolds for gastrointestinal tissue engineering applications. PMID:25396043

  14. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering.

    PubMed

    Franck, Debra; Chung, Yeun Goo; Coburn, Jeannine; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Silk fibroin scaffolds were investigated for their ability to support attachment, proliferation, and differentiation of human gastrointestinal epithelial and smooth muscle cell lines in order to ascertain their potential for tissue engineering. A bi-layer silk fibroin matrix composed of a porous silk fibroin foam annealed to a homogeneous silk fibroin film was evaluated in parallel with small intestinal submucosa scaffolds. AlamarBlue analysis revealed that silk fibroin scaffolds supported significantly higher levels of small intestinal smooth muscle cell, colon smooth muscle cell, and esophageal smooth muscle cell attachment in comparison to small intestinal submucosa. Following 7?days of culture, relative numbers of each smooth muscle cell population maintained on both scaffold groups were significantly elevated over respective 1-day levels-indicative of cell proliferation. Real-time reverse transcription polymerase chain reaction and immunohistochemical analyses demonstrated that both silk fibroin and small intestinal submucosa scaffolds were permissive for contractile differentiation of small intestinal smooth muscle cell, colon smooth muscle cell, esophageal smooth muscle cell as determined by significant upregulation of ?-smooth muscle actin and SM22? messenger RNA and protein expression levels following transforming growth factor-?1 stimulation. AlamarBlue analysis demonstrated that both matrix groups supported similar degrees of attachment and proliferation of gastrointestinal epithelial cell lines including colonic T84 cells and esophageal epithelial cells. Following 14?days of culture on both matrices, spontaneous differentiation of T84 cells toward an enterocyte lineage was confirmed by expression of brush border enzymes, lactase, and maltase, as determined by real-time reverse transcription polymerase chain reaction and immunohistochemical analyses. In contrast to small intestinal submucosa scaffolds, silk fibroin scaffolds supported spontaneous differentiation of esophageal epithelial cells toward a suprabasal cell lineage as indicated by significant upregulation of cytokeratin 4 and cytokeratin 13 messenger RNA transcript levels. In addition, esophageal epithelial cells maintained on silk fibroin scaffolds also produced significantly higher involucrin messenger RNA transcript levels in comparison to small intestinal submucosa counterparts, indicating an increased propensity for superficial, squamous cell specification. Collectively, these data provide evidence for the potential of silk fibroin scaffolds for gastrointestinal tissue engineering applications. PMID:25396043

  15. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies.

    PubMed

    Napavichayanun, Supamas; Yamdech, Rungnapha; Aramwit, Pornanong

    2016-03-01

    In our previous work, we have attempted to develop a novel bacterial nanocellulose wound dressing which composed of both polyhexamethylene biguanide (PHMB) as an antimicrobial agent and sericin as an accelerative wound healing component. The loading sequence and concentration of PHMB and sericin were optimized to provide the wound dressing with the most effective antimicrobial activity and enhanced collagen production. In this study, further in vitro, in vivo, and clinical studies of this novel wound dressing were performed to evaluate its safety, efficacy, and applicability. For the in vitro cytotoxic test with L929 mouse fibroblast cells, our novel dressing was not toxic to the cells and also promoted cell migration as good as the commercially available dressing, possibly due to the component of sericin released. When implanted subcutaneously in rats, the lower inflammation response was observed for the novel dressing implanted, comparing to the commercially available dressing. This might be that the antimicrobial PHMB component of the novel dressing played a role to reduce infection and inflammation reaction. The clinical trial patch test was performed on the normal skin of healthy volunteers to evaluate the irritation effect of the dressing. Our novel dressing did not irritate the skin of any volunteers, as characterized by the normal levels of erythema and melanin and the absence of edema, papule, vesicle, and bullae. Then, the novel dressing was applied for the treatment of full-thickness wounds in rats. The wounds treated with our novel dressing showed significantly lower percentage of wound size and higher extent of collagen formation mainly due to the activity of sericin. We concluded that our novel bacterial nanocellulose incorporating PHMB and sericin was a safe and efficient wound dressing material for further investigation in the wound healing efficacy in clinic. PMID:26796543

  16. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae).

    PubMed

    Hajer, Jaromr; Mal, Jan; Rehkov, Dana

    2013-01-01

    Scanning electron microscopy and atomic force microscopy were used to study the silk spinning apparatus and silks of Harpactea rubicunda spiders. Three types of silk secretions that are produced by three kinds of silk spinning glands (ampullate, piriform, and pseudaciniform) and released through three types of spigots, were confirmed for both adult and juvenile spiders. Silk secretions for the construction of spider webs for shelter or retreat are produced by the pseudaciniform silk glands. Silk secretions that are released from spigots in the course of web construction are not processed by the legs during the subsequent process of hardening. Pairs of nanofibril bundles seemed to be part of the basic microarchitecture of the web silk fibers as revealed by AFM. These fiber bundles frequently not only overlap one another, but occasionally also interweave. This structural variability may strengthen the spider web. High-resolution AFM scans of individual nanofibrils show a distinctly segmented nanostructure. Each globular segment is ?30-40 nm long along the longitudinal axis of the fiber, and resembles a nanosegment of artificial fibroin described by Perez-Rigueiro et al. (2007). PMID:23034869

  17. Silk Roads or Steppe Roads? The Silk Roads in World History.

    ERIC Educational Resources Information Center

    Christian, David

    2000-01-01

    Explores the prehistory of the Silk Roads, reexamines their structure and history in the classical era, and explores shifts in their geography in the last one thousand years. Explains that a revised understanding of the Silk Roads demonstrates how the Afro-Eurasian land mass has been linked by networks of exchange since the Bronze Age. (CMK)

  18. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    PubMed

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width Length, 1 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (?-smooth muscle actin and SM22?) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity. PMID:24632740

  19. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  20. The performance of silk scaffolds in a rat model of augmentation cystoplasty.

    PubMed

    Seth, Abhishek; Chung, Yeun Goo; Gil, Eun Seok; Tu, Duong; Franck, Debra; Di Vizio, Dolores; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-07-01

    The diverse processing plasticity of silk-based biomaterials offers a versatile platform for understanding the impact of structural and mechanical matrix properties on bladder regenerative processes. Three distinct groups of 3-D matrices were fabricated from aqueous solutions of Bombyx mori silk fibroin either by a gel spinning technique (GS1 and GS2 groups) or a solvent-casting/salt-leaching method in combination with silk film casting (FF group). SEM analyses revealed that GS1 matrices consisted of smooth, compact multi-laminates of parallel-oriented silk fibers while GS2 scaffolds were composed of porous (pore size range, 5-50 ?m) lamellar-like sheets buttressed by a dense outer layer. Bi-layer FF scaffolds were comprised of porous foams (pore size, ~400 ?m) fused on their external face with a homogenous, nonporous silk film. Silk groups and small intestinal submucosa (SIS) matrices were evaluated in a rat model of augmentation cystoplasty for 10 weeks of implantation and compared to cystotomy controls. Gross tissue evaluations revealed the presence of intra-luminal stones in all experimental groups. The incidence and size of urinary calculi was the highest in animals implanted with gel spun silk matrices and SIS with frequencies ?57% and stone diameters of 3-4 mm. In contrast, rats augmented with FF scaffolds displayed substantially lower rates (20%) and stone size (2 mm), similar to the levels observed in controls (13%, 2 mm). Histological (hematoxylin and eosin, Masson's trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (?-smooth muscle actin and SM22?) expression within defect sites supported by all matrix groups similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent uroplakin and p63 protein expression in all experimental groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by Fox3-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. In comparison to other biomaterial groups, cystometric analyses at 10 weeks post-op revealed that animals implanted with the FF matrix configuration displayed superior urodynamic characteristics including compliance, functional capacity, as well as spontaneous non voiding contractions consistent with control levels. Our data demonstrate that variations in scaffold processing techniques can influence the in vivo functional performance of silk matrices in bladder reconstructive procedures. PMID:23545287

  1. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of ? /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  2. Amphiphilic Spider Silk-Like Block Copolymers with Tunable Physical Properties and Morphology for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2013-03-01

    Silk-based materials are important candidates for biomedical applications because of their excellent biocompatibility and biodegradability. To generate silk amphiphilic biopolymers with potential use in guided tissue repair and drug delivery, a novel family of spider silk-like block copolymers was synthesized by recombinant DNA technology. Block copolymer thermal properties, structural conformations, protein-water interactions, and self-assembly morphologies were studied with respect to well controlled protein amino acid sequences. A theoretical model was used to predict the heat capacity of the protein and protein-water complex. Using thermal analysis, two glass transitions were observed: Tg1 is related to conformational changes caused by bound water removal, while Tg2 (>Tg1) is the glass transition of dry protein. Real-time infrared spectroscopy and X-ray diffraction confirmed that different secondary structural changes occur during the two Tg relaxations. Using scanning electron microscopy, fibrillar networks and hollow vesicles are observed, depending on protein block copolymer sequence. This study provides a deeper understanding of the relationship between protein physical properties and amino acid sequence, with implications for design of other protein-based materials. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  3. Influence factors analysis on the formation of silk I structure.

    PubMed

    Ming, Jinfa; Pan, Fukui; Zuo, Baoqi

    2015-04-01

    Regenerated silk fibroin aqueous solution was used to study the crystalline structure of Bombyx mori silk fibroin in vitro. By controlling environmental conditions and concentration of silk fibroin solution, it provided a means for the direct preparing silk I structure and understanding the details of silk fibroin molecules interactions in formation process. In this study, silk fibroin molecules were assembled to form random coil at low concentration of solution and then, as the concentration increases, were converted to silk I at 55% relative humidity (RH). At the same time, the structure of silk fibroin forming below 45 C was mostly in silk I. A partial ternary phase diagram of temperature-humidity-concentration was constructed based on the results. The results showed silk I structure could be controlled by adjusting the external environmental conditions. The enhanced control over silk I structure, as embodied in phase diagram, could potentially be utilized to understand the molecular chain conformation of silk I in further research work. PMID:25677178

  4. Microfabrication of a spider-silk analogue through the liquid rope coiling instability

    NASA Astrophysics Data System (ADS)

    Gosselin, Frederick P.; Therriault, Daniel; Levesque, Martin

    2012-02-01

    Spider capture silk outperforms most synthetic materials in terms of specific toughness. We developed a technique to fabricate tough microstructured fibers inspired by the molecular structure of the spider silk protein. To fabricate microfibers (with diameter 30?m) with various mechanical properties, we yield the control of their exact geometry to the liquid rope coiling instability. This instability causes a thread of honey to wiggle as it buckles when hitting a surface. Similarly, we flow a filament of viscous polymer solution towards a substrate moving perpendicularly at a slower velocity than the filament flows. The filament buckles repetitively giving rise to periodic meanders and stitch patterns. As the solvent evaporates, the filament solidifies into a fiber with a geometry bestowed by the instability. Microtraction tests performed on fibers show interesting links between the mechanical properties and the instability patterns. Some coiling patterns give rise to high toughness due to the sacrificial bonds created when the viscous filament loops over itself and fuse. The sacrificial bonds in the microstructured fiber play an analogous role to that of the hydrogen bonds present in the molecular structure of the silk protein which give its toughness to spider silk.

  5. Reversible Temperature-Switching of Hydrogel Stiffness of Coassembled, Silk-Collagen-Like Hydrogels.

    PubMed

    Rombouts, Wolf H; de Kort, Daan W; Pham, Thao T H; van Mierlo, Carlo P M; Werten, Marc W T; de Wolf, Frits A; van der Gucht, Jasper

    2015-08-10

    Recombinant protein polymers, which can combine different bioinspired self-assembly motifs in a well-defined block sequence, have large potential as building blocks for making complex, hierarchically structured materials. In this paper we demonstrate the stepwise formation of thermosensitive hydrogels by combination of two distinct, orthogonal self-assembly mechanisms. In the first step, fibers are coassembled from two recombinant protein polymers: (a) a symmetric silk-like block copolymer consisting of a central silk-like block flanked by two soluble random coil blocks and (b) an asymmetric silk-collagen-like block copolymer consisting of a central random-coil block flanked on one side by a silk-like block and on the other side a collagen-like block. In the second step, induced by cooling, the collagen-like blocks form triple helices and thereby cross-link the fibers, leading to hydrogels with a thermo-reversibly switchable stiffness. Our work demonstrates how complex self-assembled materials can be formed through careful control of the self-assembly pathway. PMID:26175077

  6. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    PubMed

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage. PMID:26784289

  7. A new class of animal collagen masquerading as an insect silk

    PubMed Central

    Sutherland, Tara D.; Peng, Yong Y.; Trueman, Holly E.; Weisman, Sarah; Okada, Shoko; Walker, Andrew A.; Sriskantha, Alagacone; White, Jacinta F.; Huson, Mickey G.; Werkmeister, Jerome A.; Glattauer, Veronica; Stoichevska, Violet; Mudie, Stephen T.; Haritos, Victoria S.; Ramshaw, John A. M.

    2013-01-01

    Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials. PMID:24091725

  8. Impact of silk biomaterial structure on proteolysis.

    PubMed

    Brown, Joseph; Lu, Chia-Li; Coburn, Jeannine; Kaplan, David L

    2015-01-01

    The goal of this study was to determine the impact of silk biomaterial structure (e.g. solution, hydrogel, film) on proteolytic susceptibility. In vitro enzymatic degradation of silk fibroin hydrogels and films was studied using a variety of proteases, including proteinase K, protease XIV, ?-chymotrypsin, collagenase, matrix metalloproteinase-1 (MMP-1) and MMP-2. Hydrogels were used to assess bulk degradation while films were used to assess surface degradation. Weight loss, secondary structure determined by Fourier transform infrared spectroscopy and degradation products analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to evaluate degradation over 5 days. Silk films were significantly degraded by proteinase K, while silk hydrogels were degraded more extensively by protease XIV and proteinase K. Collagenase preferentially degraded the ?-sheet content in hydrogels while protease XIV and ?-chymotrypsin degraded the amorphous structures. MMP-1 and MMP-2 degraded silk fibroin in solution, resulting in a decrease in peptide fragment sizes over time. The link between primary sequence mapping with protease susceptibility provides insight into the role of secondary structure in impacting proteolytic access by comparing solution vs. solid state proteolytic susceptibility. PMID:25240984

  9. Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process

    NASA Astrophysics Data System (ADS)

    Ayutsede, Jonathan Eyitouyo

    In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d < 100nm). SWNT-silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk-SWNT interactions. A new visualization system was developed to characterize the transport properties of the nanofibrous assemblies. The morphological, chemical, structural and mechanical properties of the nanofibers were determined by field emission environmental scanning microscopy, Fourier transform infrared and Raman spectroscopy, wide angle x-ray diffraction and microtensile tester respectively.

  10. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers

    PubMed Central

    Teul, Florence; Addison, Bennett; Cooper, Alyssa R.; Ayon, Joel; Henning, Robert W.; Benmore, Chris J.; Holland, Gregory P.; Yarger, Jeffery L.; Lewis, Randolph V.

    2012-01-01

    The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentaptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX1 GPGGX2)2 with X1/X2=A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX1 GPGGX2)2 with X1/X2 = Y/S or A/A, respectively. Post fiber processing involved similar drawing ratios (22.5) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. NMR indicated that the fraction of ?-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. XRD showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif redesign impacted protein self-assembly mechanisms and requirements for fiber formation. PMID:22012252

  11. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.

    PubMed

    Teul, Florence; Addison, Bennett; Cooper, Alyssa R; Ayon, Joel; Henning, Robert W; Benmore, Chris J; Holland, Gregory P; Yarger, Jeffery L; Lewis, Randolph V

    2012-06-01

    The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentapeptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = Y/S or A/A, respectively. Post-fiber processing involved similar drawing ratios (2-2.5) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. Nuclear magnetic resonance indicated that the fraction of ?-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. X-ray diffraction showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif re-design impacted protein self-assembly mechanisms and requirements for fiber formation. PMID:22012252

  12. Surface Immobilization of antibody on silk fibroin through conformational transition

    PubMed Central

    Lu, Qiang; Wang, Xiaoqin; Zhu, Hesun; Kaplan, David L.

    2011-01-01

    In recent studies silk fibroin has been explored as a new material platform for biosensors. Based on these developments a procedure for the immobilization of antibodies on silk fibroin substrates was developed as a route to functionalizing these biosensor systems. By controlling the conformational transition of the silk fibroin, a primary antibody was immobilized and enriched at the surface of silk fibroin substrates under mild reaction conditions to maintain antibody function. Compared to chemical crosslinking, the immobilization efficiency in the present approach was increased significantly. This method, achieving high loading of antibody while retaining function, improves the feasibility of silk fibroin as a platform material for biosensor applications. PMID:21382528

  13. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. PMID:23184771

  14. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications.

    PubMed

    Seib, F Philipp; Herklotz, Manuela; Burke, Kelly A; Maitz, Manfred F; Werner, Carsten; Kaplan, David L

    2014-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  15. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  16. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    NASA Astrophysics Data System (ADS)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  17. Implication of silk film RGD availability and surface roughness on cytoskeletal organization and proliferation of primary rat bone marrow cells.

    PubMed

    Mandal, Biman B; Das, Soumen; Choudhury, Koel; Kundu, Subhas C

    2010-07-01

    To design and fabricate next-generation tissue engineering materials, the understanding of cell responses to material surfaces is required. Surface topography presents powerful cues for cells and can strongly influence cell morphology, adhesion, and proliferation, but the mechanisms mediating this cell response remain unclear. In this report, we have investigated the effects of nanoroughness assemblies of silk fibroin protein membranes and RGD sequences fabricated from two different silk fibroin sources, that is, mulberry (Bombyx mori) and nonmulberry (Antheraea mylitta), on cytoskeletal organization, proliferation, and viability using primary rat bone marrow cells. To vary surface roughness, silk fibroin substrates were treated with graded ethanol (50%-100% v/v) to produce nanoarchitectures in the range of 1-12 nm height. The graded alcohol treatments have been found to produce nanoscale topographies of reproducible height in a much faster and cheaper way. The results showed no difference in cell proliferation within the same treatment groups for both silk types. However, a change in cell response in terms of good cytoskeleton organization, actin development, cell spreading, and strong binding to substratum using A. mylitta fibroin protein films having RGD sequences was observed. This finding provides the information that the nanoroughness affects cellular processes in a cell-specific manner and may be helpful for the development of smart silk-based biomaterials especially for directing cell differentiation and regenerative therapies. PMID:20214452

  18. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems.

    PubMed

    Werner, Vera; Meinel, Lorenz

    2015-11-01

    The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin (SF) to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. PMID:25801494

  19. Mechanical and Physical Properties of Recombinant Spider Silk Films Using Organic and Aqueous Solvents

    PubMed Central

    2015-01-01

    Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and then stretching them in an alcohol based stretch bath. This resulted in stresses as high as 206 MPa and elongations up to 35%, which is 4× higher than the as-poured controls. Films were analyzed using NMR, XRD, and Raman, which showed that the secondary structure after solubilization and film formation in as-poured films is mainly a helical conformation. After the post-pour stretch in a methanol/water bath, the MaSp proteins in both the HFIP and water-based films formed aligned β-sheets similar to those in spider silk fibers. PMID:25030809

  20. Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama.

    PubMed

    Gupta, Adarsh K; Mita, Kazuei; Arunkumar, Kallare P; Nagaraju, Javaregowda

    2015-01-01

    The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230?kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight ?-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel ?-sheets, ?-turns and partial ?-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter ?-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster. PMID:26235912

  1. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.

    PubMed

    Tucker, Chauncey L; Jones, Justin A; Bringhurst, Heidi N; Copeland, Cameron G; Addison, J Bennett; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L; Lewis, Randolph V

    2014-08-11

    Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and then stretching them in an alcohol based stretch bath. This resulted in stresses as high as 206 MPa and elongations up to 35%, which is 4 higher than the as-poured controls. Films were analyzed using NMR, XRD, and Raman, which showed that the secondary structure after solubilization and film formation in as-poured films is mainly a helical conformation. After the post-pour stretch in a methanol/water bath, the MaSp proteins in both the HFIP and water-based films formed aligned ?-sheets similar to those in spider silk fibers. PMID:25030809

  2. Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama

    PubMed Central

    Gupta K, Adarsh; Mita, Kazuei; Arunkumar, Kallare P.; Nagaraju, Javaregowda

    2015-01-01

    The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5′ and 3′ non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight β-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel β-sheets, β-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter β-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster. PMID:26235912

  3. Comprehensive characterization of well-defined silk fibroin surfaces: Toward multitechnique studies of surface modification effects.

    PubMed

    Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten

    2015-01-01

    The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications. PMID:25899685

  4. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders

    PubMed Central

    2014-01-01

    Background Spider silks are spectacular examples of phenotypic diversity arising from adaptive molecular evolution. An individual spider can produce an array of specialized silks, with the majority of constituent silk proteins encoded by members of the spidroin gene family. Spidroins are dominated by tandem repeats flanked by short, non-repetitive N- and C-terminal coding regions. The remarkable mechanical properties of spider silks have been largely attributed to the repeat sequences. However, the molecular evolutionary processes acting on spidroin terminal and repetitive regions remain unclear due to a paucity of complete gene sequences and sampling of genetic variation among individuals. To better understand spider silk evolution, we characterize a complete aciniform spidroin gene from an Argiope orb-weaving spider and survey aciniform gene fragments from congeneric individuals. Results We present the complete aciniform spidroin (AcSp1) gene from the silver garden spider Argiope argentata (Aar_AcSp1), and document multiple AcSp1 loci in individual genomes of A. argentata and the congeneric A. trifasciata and A. aurantia. We find that Aar_AcSp1 repeats have >98% pairwise nucleotide identity. By comparing AcSp1 repeat amino acid sequences between Argiope species and with other genera, we identify regions of conservation over vast amounts of evolutionary time. Through a PCR survey of individual A. argentata, A. trifasciata, and A. aurantia genomes, we ascertain that AcSp1 repeats show limited variation between species whereas terminal regions are more divergent. We also find that average dN/dS across codons in the N-terminal, repetitive, and C-terminal encoding regions indicate purifying selection that is strongest in the N-terminal region. Conclusions Using the complete A. argentata AcSp1 gene and spidroin genetic variation between individuals, this study clarifies some of the molecular evolutionary processes underlying the spectacular mechanical attributes of aciniform silk. It is likely that intragenic concerted evolution and functional constraints on A. argentata AcSp1 repeats result in extreme repeat homogeneity. The maintenance of multiple AcSp1 encoding loci in Argiope genomes supports the hypothesis that Argiope spiders require rapid and efficient protein production to support their prolific use of aciniform silk for prey-wrapping and web-decorating. In addition, multiple gene copies may represent the early stages of spidroin diversification. PMID:24552485

  5. Structure and morphology of regenerated silk nano-fibers produced by electrospinning

    NASA Astrophysics Data System (ADS)

    Zarkoob, Shahrzad

    The impressive physical and mechanical properties of natural silk fiberssp1 and the possibility of producing these proteins using biotechnology,sp2 have provided the impetus for recent efforts in both the biosynthesissp{3,4} and the spinning of these protein based biopolymers.sp{5,6,7} The question still remains: whether fibers spun from solutions with similar chemical makeup can produce fibers with similar structures and therefore with the possibility of improved properties. Since genetically engineered silk solutions were not readily available, the first objective of this project was to completely dissolve the Bombyx mori cocoon and the Nephila clavipes dragline silk while maintaining the molecular weight integrity of the polymer. The second objective was to develop a system for re-spinning from very small amount of the resulting silk solutions by the process of electrospinning. The third objective was, to produce regenerated silk fibers with diameters that are several orders of magnitude smaller than the original fibers, suitable for direct observation and analysis by transmission electron microscopy and electron diffraction. And finally, to compare these results to structural information obtained from natural (as spun by the organism) fibers to see if the regenerated solutions are able to form the same structure as the original fibers. Both types of silk fibers were successfully dissolved while maintaining the polymer integrity. Small quantities (25-50 mul) of these solutions were used to electrospin fibers with diameters ranging from 8nm-200nm. The fibers were observed by optical, scanning electron, and transmission electron microscopy. These nano fibers showed optical retardation, appeared to have a circular cross-section, and were dimensionally stable at temperatures above 280spC. Electron diffraction patterns of annealed electrospun fibers of B. mori and N. clavipes showed reflections, demonstrating orientational and semicrystalline order in the material comparable to natural silk. In addition, electron diffraction was also obtained form extended microtomed single dragline fibers of N. clavipes, and the d-spacings agreed well with thoes obtained from WAXD of dragline fiber bundles.

  6. Development of silk-based scaffolds for tissue engineering of bone from human adipose derived stem cells

    PubMed Central

    Correia, Cristina; Bhumiratana, Sarindr; Yan, Le-Ping; Oliveira, Ana L.; Gimble, Jeffrey M.; Rockwood, Danielle; Kaplan, David L.; Sousa, Rui A.; Reis, Rui L.; Vunjak-Novakovic, Gordana

    2012-01-01

    Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and demonstrated ability to support bone formation, in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASC), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol - HFIP), pore sizes (250–500μm vs. 500–1000μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes with decellularized trabecular bone (DCB) included as a “gold standard”. The scaffolds were seeded with hASC and cultured for 7 weeks in osteogenic media. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400–600μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2, and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation. PMID:22421311

  7. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  8. Silk fibroin-based nanoparticles for drug delivery.

    PubMed

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  9. Constructing Knowledge with Silk Road Visuals

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2008-01-01

    In this study a group of elementary teachers use illustrations, rather than written text, to introduce their students to the peoples and places of the ancient silk routes. The illustrations are from two picture books; "Marco Polo," written by Gian Paolo Cesaerani and illustrated by Piero Ventura (1977), and "We're Riding on a Caravan: An Adventure…

  10. The Ancient Art of Silk Painting

    ERIC Educational Resources Information Center

    Yonker, Kim

    2010-01-01

    In this article, the author describes a silk-painting project with a sea-creature theme for eighth-grade students. Other themes can be used such as geometric quilt designs, tropical rain forest, large flowers, Art Nouveau motifs, portraits and more. (Contains 2 resources.)

  11. Biocompatibility of helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials in a rabbit corneal model.

    PubMed

    Wang, Liqiang; Ma, Ruijue; Du, Gaiping; Guo, Huiling; Huang, Yifei

    2015-01-01

    Silk proteins represent a unique choice in the selection of biomaterials that can be used for corneal tissue engineering and regenerative medical applications. We implanted helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials into the corneal stroma of rabbits, and evaluated its biocompatibility. The corneal tissue was examined after routine hematoxylin-eosin staining, immunofluorescence for collagen I and III, and fibronectin, and scanning electron microscopy. The silk films maintained their integrity and transparency over the 180-day experimental period without causing immunogenic and neovascular responses or degradation of the rabbit corneal stroma. Collagen I increased, whereas Collagen III and fibronectin initially increased and then gradually decreased. The extracellular matrix deposited on the surface of the silk films, tightly adhered to the biomaterial. We have shown this kind of silk film graft has suitable biocompatibility with the corneal stroma and is an initial step for clinical trials to evaluate this material as a transplant biomaterial for keratoplasty tissue constructs. PMID:24825733

  12. The Influence of Elasticity and Surface Roughness on Myogenic and Osteogenic-Differentiation of Cells on Silk-Elastin Biomaterials

    PubMed Central

    Hu, Xiao; Park, Sang-Hyug; Gil, Eun Seok; Xia, Xiao-Xia; Weiss, Anthony S.; Kaplan, David L.

    2011-01-01

    The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells. PMID:21872326

  13. Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration.

    PubMed

    Sivak, Wesley N; White, James D; Bliley, Jacqueline M; Tien, Lee W; Liao, Han Tsung; Kaplan, David L; Marra, Kacey G

    2014-11-25

    Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk-trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line-derived neurotrophic factor (GDNF) loaded within a silk fibroin-based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk-trehalose films inserted into the conduit: (a) empty; (b) 1?g GDNF; (3) 2 U ChABC; and (4) 1?g GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6?weeks and 24?h, respectively. Six conduits of each type were implanted into 15?mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6?weeks. Tissues stained with Schwann cell S-100 antibody demonstrated an increased density of cells in both GDNF- and ChABC-treated groups compared to empty control conduits (p?protein when compared to controls (p?Silk fibroin-based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright 2014 John Wiley & Sons, Ltd. PMID:25424415

  14. Towards Silk Fiber Optics: Refractive Index Characterization, Fiber Spinning, and Spinneret Analysis

    NASA Astrophysics Data System (ADS)

    Spitzberg, Joshua David

    Of the many biologically derived materials, whose historical record of use by humans underscores an ex-vivo utility, silk is interesting for it's contemporary repurposing from textile to biocompatible substrate. And while even within this category silk is one of several materials studied for novel repurposing, it has the unique character of being evolutionarily developed specifically for fiber spinning in vivo. The work discussed here is inspired by taking what nature has given, to explore the in vitro spinning of silk towards biocompatible fiber optics applications. A common formulation of silk used in biomedical studies for re-forming it into the various structures begins with the silkworm cocoon, which is degummed and dissolved into an aqueous solution of its miscible protein, fibroin, and post-treated to fabricate solid structures. In the first aim, the optical refractive index (RI) of various post-treatment methods is discussed towards determining RI design techniques. The methods considered in this work for re-forming a solid fiber from the reconstituted silk fibroin (RSF) solution borrow from the industrial techniques of gel spinning, and dry-spinning. In the second aim, methods are applied to RSF and quality of the spun fibers discussed. A feature common to spinning techniques is passing the (silk) material through a spinneret of specific shape. In the third aim, fluid flow through a simplified native silkworm spinneret is modeled towards bio-inspired lessons in design. In chapter 1 the history, reconstitution, are discussed towards understanding the fabrication of several optical device examples. Chapter 2 then prefaces the experiments and measurements in fiber optics by reviewing electromagnetic theory of waveguide function, and loss factors, to be considered in actual device fabrication. Chapter 3 presents results and discussion for the first aim, understanding design principles for the refractive index of RSF. From this point, industrial fiber-spinning approaches are reviewed from a theoretical and methodological perspective in chapter 4. Thus, chapter 5 presents results for the second aim, efforts to apply these techniques using RSF. Chapter 6 discusses the third aim, understanding the design of the silkworm spinneret by an idealized model of natural and reconstituted silk fibroin flow. While the ultimate goal of a structurally and optically smooth and uniform fiber remains elusive, this work serves as a guide for future efforts.

  15. Quantitative physical and handling characteristics of novel antibacterial braided silk suture materials.

    PubMed

    Chen, Xiaojie; Hou, Dandan; Tang, Xiaoqi; Wang, Lu

    2015-10-01

    Surgical braided silk sutures have been widely used because these materials exhibit good handling characteristics, ease of use, and ideal knot security. However, surgical silk sutures likely cause surgical site infections because these sutures are composed of natural protein materials with a braided structure. As such, antibacterial silk sutures for clinical wound closure should be developed. Braided silk suture could be treated and modified with antibacterial agent, provided that excellent physical and handling characteristics of this material should maximize maintained. This study aimed to quantitatively investigate the effect of antibacterial treatment with different parameters on physical and handling characteristics of novel antibacterial braided silk sutures. Physical and handling characteristics, including appearance, knot-pull tensile strength, pullout friction resistance, tissue drag friction resistance, and bending stiffness, were evaluated. After physical and handling tests were conducted, images showed morphological characteristics were obtained and evaluated to investigate the relationship between antibacterial treatment and physical and handling properties. Results showed that suture diameter increased and reached the nearest thick size specification; knot-pull tensile strength decreased but remained higher than the standard value by at least 40.73%. Fracture asynchronism during knot-pull tensile strength test suggested that the fineness ratio of shell and core strands may enhance knot-pull tensile strength. Static and dynamic frictions of suture-to-suture friction behavior were slightly affected by antibacterial treatment, and changed to less than 16.07% and 32.77%, respectively. Suture-to-tissue friction and bending stiffness increased by approximately 50%; the bending stiffness of the proposed suture remained efficient compared with that of synthetic sutures. Therefore, good physical and handling characteristics can be maintained by selecting appropriate coating parameters. PMID:26143308

  16. The molecular structure of the silk fibers from Hymenoptera aculeata (bees, wasps, ants).

    PubMed

    Fraser, R D Bruce; Parry, David A D

    2015-12-01

    Silks from the Hymenoptera aculeata (bees, wasps, ants) contain ropes with four α-helical strands, rather than the more usual two strands found, for example, in α-keratin and myosin molecules. Extensive studies of the chemical structure of the silks have shown that each of the four chains in the molecule contains a central coiled-coil rod domain. However, little progress has been made in modeling the three-dimensional structure. X-ray diffraction data on honeybee silk (Apis mellifera), recorded by Rudall and coworkers, has been re-examined in detail and possible structures developed for the various types of filament seen in the silk glands, and for the packing arrangement in the spun fibers. The original X-ray data were re-collected by scanning figures in the original publications, de-screening and averaging perpendicular to the direction of interest, thereby reducing the graininess of the original images. Sufficient numbers of equatorial and meridional reflections were collected to define the axial projection of the base of the unit cell in fibers drawn from the contents of the silk glands, and to suggest that the axial period is different from that suggested by Rudall and coworkers. Models for two types of filament of increasing diameter are developed based on the node-internode packing scheme observed in protein crystals containing four-strand α-helical ropes. The central domains of the four component chains in the molecule are enclosed by N- and C-terminal domains with widely different lengths and compositions. The fibers thus have a composite filament-matrix texture, and possible locations for the matrix are discussed. PMID:26515761

  17. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen

    Spider silk is a remarkable natural block copolymer, which offers a unique combination of low density, excellent mechanical properties, and thermal stability over a wide range of temperature, along with biocompatibility and biodegrability. The dragline silk of Nephila clavipes, is one of the most well understood and the best characterized spider silk, in which alanine-rich hydrophobic blocks and glycine-rich hydrophilic blocks are linked together generating a functional block copolymer with potential uses in biomedical applications such as guided tissue repair and drug delivery. To provide further insight into the relationships among peptide amino acid sequence, block length, and physical properties, in this thesis, we studied synthetic proteins inspired by the genetic sequences found in spider dragline silks, and used these bioengineered spider silk block copolymers to study thermal, structural and morphological features. To obtain a fuller understanding of the thermal dynamic properties of these novel materials, we use a model to calculate the heat capacity of spider silk block copolymer in the solid or liquid state, below or above the glass transition temperature, respectively. We characterize the thermal phase transitions by temperature modulated differential scanning calorimetry (TMDSC) and thermogravimetric analysis (TGA). We also determined the crystallinity by TMDSC and compared the result with Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). To understand the protein-water interactions with respect to the protein amino acid sequence, we also modeled the specific reversing heat capacity of the protein-water system, Cp(T), based on the vibrational, rotational and translational motions of protein amino acid residues and water molecules. Advanced thermal analysis methods using TMDSC and TGA show two glass transitions were observed in all samples during heating. The low temperature glass transition, Tg(1), is related to both the bound water removal induced conformational change and the hydrophobicity of the protein sequences, while the high temperature glass transition, Tg( 2), above 130 C is the now dry protein glass transition. Real-time Fourier transform infrared spectroscopy (FTIR) confirmed that conformational change occurred during the two glass transition, with a random coils to beta turns transition during Tg(1) and alpha helices to beta turns transition during Tg( 2). Due to the hydrophobic and hydrophilic nature of the blocks, the spider silk block copolymers tend to self-assemble into various microstructures. To study the morphological features, the spider silk-like block copolymers were treated with hexafluoroisopropanol or methanol, or subjected to thermal treatment. Using scanning electron microscopies, micelles were observed in thermally treated films. Fibrillar networks and hollow vesicles were observed in methanol-cast samples, while no micro-structures were formed in HFIP-cast films, indicating that morphology and crystallinity can be tuned by thermal treatments. Results indicate when we increase the number of repeating unit of A-block in the protein, sample films crystallize more easily and are more thermally stable. Moreover, when samples crystallize, the secondary structure of A-block and B-block become different, thus it will be easier to form bilayer structures which could fold into vesicles or tube structures during drying.

  18. Structural hysteresis in dragline spider silks induced by supercontraction: An x-ray fiber micro-diffraction study

    PubMed Central

    Yarger, Jeffery. L.

    2014-01-01

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron x-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of ?-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle x-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks. PMID:25621168

  19. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study

    SciTech Connect

    Sampath, Sujatha; Yarger, Jeffery L.

    2014-11-27

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and r