Science.gov

Sample records for silty fine sand

  1. Liquefaction Potential Assessment Of Silty And Silty-Sand Deposits: A Case Study

    SciTech Connect

    Lo Presti, Diego C. F.; Squeglia, Nunziante

    2008-07-08

    The paper shows a case study concerning the liquefaction potential assessment of deposits which mainly consist of non plastic silts and sands (FC>35 %,I{sub p}<10%, CF negligible). The site under study has been characterized by means of in situ tests (CPTU, SPT and DPSH), boreholes and laboratory tests on undisturbed and remolded samples. More specifically, classification tests, cyclic undrained stress-controlled triaxial tests and resonant column tests have been performed. Liquefaction susceptibility has been evaluated by means of several procedures prescribed by codes or available in technical literature. The evaluation of liquefaction potential has been carried out by means of three different procedure based on in situ and laboratory tests.

  2. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.

    PubMed

    Braun, Anika; Klumpp, Erwin; Azzam, Rafig; Neukum, Christoph

    2015-12-01

    It is considered inevitable that the increasing production and application of engineered nanoparticles will lead to their release into the environment. However, the behavior of these materials under environmentally relevant conditions is still only poorly understood. In this study the transport and deposition behavior of engineered surfactant stabilized silver nanoparticles (AgNPs) in water saturated porous media was investigated in transport experiments with glass beads as reference porous medium and in two natural soils under various hydrodynamic and hydrochemical conditions. The transport and retention processes of AgNPs in the porous media were elucidated by inverse modeling and possible particle size changes occurring during the transport through the soil matrix were analyzed with flow field-flow fractionation (FlFFF). A high mobility of AgNPs was observed in loamy sand under low ionic strength (IS) conditions and at high flow rates. The transport was inhibited at low flow rates, at higher IS, in the presence of divalent cations and in a more complex, fine-grained silty loam. The slight decrease of the mean particle size of the AgNPs in almost all experiments indicates size selective filtration processes and enables the exclusion of homoaggregation processes. PMID:25527873

  3. Spatial differences in aeolian erosion of arid silty- sand soils due to surface features

    NASA Astrophysics Data System (ADS)

    Edri, Avi; Katra, Itzhak; Avraham, Dody

    2014-05-01

    The significance of soil erosion by wind is substantial by means of soil degradation and air pollution. There is still a gap in quantifying the aeolian soil erosion in response to changes in surface features. The aim of this study is to quantify the aeolian erosion of silty-sand soil in an arid region (Yamin Plateau, Negev, Israel) under different wind and surface conditions. The study was conducted in experimental plots of sparse vegetation (SV), rock fragment (RF), and mechanical crust (MC) under natural and disturbed soil surfaces. Aeolian simulations were executed through the use of a portable wind tunnel with different wind speeds. Variables measured during the simulations include wind profile and shear stress, horizontal sand flux (saltation), vertical flux of total aeolian sediments (TAS), and concentration of PM10 (particle less than 10 micrometers in diameter). The results show that during experiments at 6 and 11 m/s in natural soil surface, the cumulative PM10 concentration (mg/m3) in plot MC was 5 and 6.8 times higher than in plots RF and SV, respectively. Soil loss calculation for PM10 at these wind speed in natural surface shows that the soil at plot MC was the most available for erosion with a loss of 253 and 1530 mg/m2 (7 minutes), respectively. This is 2 and 6 times higher than in plots SV and RF, respectively. The impact of soil surface disturbance was more significant in plot MC under wind speed of 6 m/s and in plot RF under wind speed of 11 m/s. Soil loss calculation for sand (> 100 µm) at speed of 6 m/s in natural surface shows that the loss at plot MC was 2 and 5.8 times higher than in plots RF and SV, respectively. The results indicate on spatial differences in the aeolian erosion of silty - sand soil in response to changes in wind speed and surface characteristics.

  4. Compressive behavior of fine sand.

    SciTech Connect

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  5. CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS

    E-print Network

    CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS penetration tip resistance and liquefaction resistance of sandy soils are presented to facilitate use of the cone penetration test (CPT) in liquefaction studies. The proposed relationships are based on a database

  6. Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer

    SciTech Connect

    Cook, P.G.; Schiff, S.L.; Solomon, D.K.; Plummer, L.N.; Busenberg, E.

    1995-03-01

    Detailed depth profiles of chlorofluorocarbons CFC-11 (CFCl{sub 3}), CFC-12 (CF{sub 2}Cl{sub 2}) and CFC-113 (C{sub 2}F{sub 3}Cl{sub 3}) have been obtained from a well-characterized field site in central Ontario. Aquifer materials comprise predominantly silty sands, with a mean organic carbon content of 0.03%. Nearly one-dimensional flow exists at this site, and the vertical migration of a well-defined {sup 3}H peak has been tracked through time. Detailed vertical sampling has allowed CFC tracer velocities to be estimated to within 10%. Comparison with {sup 3}H profiles enables estimation of chlorofluorocarbon transport parameters. CFC-12 appears to be the most conservative of the CFCs measured. Sorption at this site is low (K{sub d} < 0.03), and degradation does not appear to be important. CFC-113 is retarded both with respect to CFC-12 and with respect to {sup 3}H (K{sub d} = 0.09-0.14). CFC-11 appears to be degraded both in the highly organic unsaturated zone and below 3.5 m depth in the aquifer, where dissolved oxygen concentrations decrease to below 0.5 mg L{sup {minus}1}. The half-life for CFC-11 degradation below 3.5 m depth is less than 2 years. While apparent CFC-12 ages match hydraulic ages to within 20% (up to 30 years), apparent CFC-11 and CFC-113 ages significantly overestimate hydraulic ages at our field site. 37 refs., 9 figs., 3 tabs.

  7. Behavior of Nonplastic Silty Soils under Cyclic Loading

    PubMed Central

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343

  8. Efficiency of Micro-fine Cement Grouting in Liquefiable Sand

    SciTech Connect

    Mirjalili, Mojtaba; Mirdamadi, Alireza; Ahmadi, Alireza

    2008-07-08

    In the presence of strong ground motion, liquefaction hazards are likely to occur in saturated cohesion-less soils. The risk of liquefaction and subsequent deformation can be reduced by various ground improvement methods including the cement grouting technique. The grouting method was proposed for non-disruptive mitigation of liquefaction risk at developed sites susceptible to liquefaction. In this research, a large-scale experiment was developed for assessment of micro-fine cement grouting effect on strength behavior and liquefaction potential of loose sand. Loose sand samples treated with micro-fine grout in multidirectional experimental model, were tested under cyclic and monotonic triaxial loading to investigate the influence of micro-fine grout on the deformation properties and pore pressure response. The behavior of pure sand was compared with the behavior of sand grouted with a micro-fine cement grout. The test results were shown that cement grouting with low concentrations significantly decreased the liquefaction potential of loose sand and related ground deformation.

  9. Imidacloprid Fate and Transport in Immokalee Fine Sand During the Control of the Asian Citrus Psyllid

    E-print Network

    Ma, Lena

    Imidacloprid Fate and Transport in Immokalee Fine Sand During the Control of the Asian Citrus and Literature Review ............................................................3 Introduction of Asian Citrus ..................................................4 ACP and Citrus Greening Interaction .................................................6 Impact

  10. Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates)

    NASA Astrophysics Data System (ADS)

    Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui

    This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.

  11. Performance comparison of sand and fine sawdust vermifilters in treating concentrated grey water for urban poor.

    PubMed

    Adugna, Amare T; Andrianisa, Harinaivo A; Konate, Yacouba; Ndiaye, Awa; Maiga, Amadou H

    2015-11-01

    A comparative investigation was conducted for 10 months with sand and fine sawdust vermifilters and a control unit to treat concentrated grey water generated from a poor urban household in Ouagadougou, Burkina Faso. Each of the filters was made up of cylindrical DN200-PVC pipes and filled with 10?cm of gravel at the bottom. On top of the gravel layer, filter 1 (fully sand, F1) was completed with 40?cm of sand and 10?cm of fine sawdust, filter 2 (partially sand, F2) with 20?cm of sand and 30?cm of fine sawdust, respectively, and filter 3 (fully sawdust, F3) and 4 (control, F4) with 50?cm of fine sawdust only. Two hundred Eudrilus eugeniae earthworms were inoculated in each of the vermifilters. The vermifiltration system was supplied with grey water four times per day at a hydraulic loading rate of 64?L/m(2)/day on a batch basis. The removal efficiencies of biological oxygen demand, total chemical oxygen demand, and dissolved chemical oxygen demand (dCOD) by the vermifilters were 25-30% higher than the control, but little differences were observed in terms of total suspended solids and coliform removal efficiencies. Though there was no significant difference in the performance of the three vermifilters (p?>?0.05), except for dCOD removal efficiency, the lifespan of F2 and F3 was longer than that of F1. Therefore, fine sawdust can substitute sand as a filter medium in vermifilters. PMID:25926275

  12. Filler effect of fine particle sand on the compressive strength of mortar

    NASA Astrophysics Data System (ADS)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-?m sieve can pass the strength requirement.

  13. Coal-sand attrition system and its importance in fine coal cleaning. Final report

    SciTech Connect

    Mehta, R.K.; Zhu, Qinsheng

    1993-08-01

    It is known that ultra-fine coals are prerequisite for the deep cleaning of most US coal seams if environmental pollution arising from the use of such coals is to be minimized. Therefore, the production of finely liberated coal particles in conjunction with reduced heavy metal contaminants at low costs is desirable, if not mandatory. The liberation of intimately disseminated impurities from the coal matrix therefore, demands that the material be ground to a high degree of fineness. Similarily, some technologies for coal utilization require superfine particles (i.e., sizes less than ten microns). This implies additional costs for coal preparation plants due to the high energy and media costs associated with fine grinding operations. Besides, there are problems such as severe product contaminations due to media wear and impairment of the quality of coal. Hence, proper choice of grinding media type is important from the viewpoints of cost reduction and product quality. The use of natural quartz sand as grinding media in the comminution of industrial minerals in stirred ball mills has been indicated. The advantages of natural sand compared to steel media include low specific energy inputs, elimination of heavy metal contaminants and low media costs. In this work, the effect of rotor speed, solids concentration and feed-size are studied on four coals in conjunction with silica sand and steel shot. The results obtained are used to evaluate the suitability of silica sands as an alternative grinding media. for coal. Coal-sand and coal-steel systems are compared in terms of specific energy consumption, product fineness, media/wear contaminationanalysis and calorific values, liberation spectrum and particle shape characteristics. In general cleaner flotation concentrate was obtained from coals when they were ground with sand media. The zeta potential of coals was found to be different and lower when they ground with sand.

  14. Absence of shape sorting of fine sand by the braided William-River, northern Saskatchewan

    SciTech Connect

    Kennedy, S.K.

    1985-01-01

    Sorting of sedimentary particles on the basis of shape is one of many mechanisms by which the characteristics of sediment samples may change along a transport path. The question of the importance of shape sorting of fine sand in fluvial systems is unresolved, due mainly to the difficulty of adequately measuring shape of small particles with irregular morphology, and eliminating other shape influencing processes primarily multiple sources. The study area and analytical techniques were chosen to eliminate these two problems. The William River, a braided river in northern Saskatchewan, is constructing a delta into Lake Athabasca. The 5 km supradeltaic portion of the stream receives no sediment other than from the single fluvial source. 400-500 quartz particles within the fine sand fraction (180-250 microns) of 15 stream samples were analyzed via Fourier techniques. Results indicate that braided river transport processes do not selectively transport fine sand particles on the basis of shape, either at gross scale (elongation) or smaller scale surface roughness. Littoral drift processes, in contrast, have been shown to select on the basis of both elongation and surface roughness. The differences in shape selectivity may be due to transport by traction versus suspension. Analysis should, however, be extended to other grain sizes.

  15. Compression and Creep of Venice Lagoon Sands

    E-print Network

    Sanzeni, Alex

    A laboratory test program was conducted to evaluate the one-dimensional (1D) compression and creep properties of intact sand (and silty-sand) samples from a deep borehole at the Malamocco Inlet to the Venice Lagoon. The ...

  16. Fine dust emissions in sandy and silty agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...

  17. Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings.

    PubMed

    Boudens, Ryan; Reid, Thomas; VanMensel, Danielle; Prakasan M R, Sabari; Ciborowski, Jan J H; Weisener, Christopher G

    2016-01-01

    Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS(-)) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri. PMID:26356184

  18. Measuring Static and Dynamic Properties of Frozen Silty Soils

    SciTech Connect

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  19. Nd-Sr isotope geochemistry of fine-grained sands in the basin-type deserts, West China: Implications for the source mechanism and atmospheric transport

    NASA Astrophysics Data System (ADS)

    Rao, Wenbo; Tan, Hongbing; Chen, Jun; Ji, Junfeng; Chen, Yang; Pan, Yaodong; Zhang, Wenbing

    2015-10-01

    The basin-type deserts of West China are among the greatest dust emission areas in the world. Mineral dust that is emitted from the deserts is transported and deposited in east-central China and even in far-east regions. This study investigates the Nd-Sr isotopic compositions of fine-grained surface sands (< 75 ?m) from two basin-type deserts of West China (the Taklimakan and Gurbantunggut deserts) to clarify the source areas and atmospheric transport of mineral dust. The Nd isotopes are useful for tracing the provenance and transport of sediments because they depend on the source rocks and are usually used with Sr isotopes which are affected by multiple factors such as chemical weathering, particle sorting and parent rock. The radiogenic isotopic compositions of the dune sands from the Taklimakan Desert range from ?Nd (0) = - 10.9 to - 15 and 87Sr/86Sr = 0.714 to 0.718, while those of the dune sands from the Gurbantunggut Desert range from ?Nd (0) = - 4.5 to - 6 and 87Sr/86Sr = 0.711 to 0.713. The isotopic compositions of the fine-grained surface sands are not spatially uniform within each desert and are controlled by the lithological characteristics of the tectonic units in which the deserts are located. The isotopic comparison of the dune sands with other sediments indicates that tectonic denudation and fluvial processes are the main mechanisms of fine particle production of the modern desert sands. In terms of isotope analyses and forward trajectory results, it is further found that the mineral dust is deposited not only in proximal areas, such as the Hexi Corridor, the Chinese Loess Plateau and the Tibet-Qinghai Plateau, but also in distal regions, such as Japan, the Pacific Ocean and Greenland once it is blown out of the Taklimakan Desert. However, the transport and sinks of mineral dust vary with the atmospheric currents.

  20. Benthic fluxes of oxygen and nutrients in sublittoral fine sands in a north-western Mediterranean coastal area

    NASA Astrophysics Data System (ADS)

    Sospedra, J.; Falco, S.; Morata, T.; Gadea, I.; Rodilla, M.

    2015-04-01

    Traditionally, benthic metabolism in sublittoral permeable sands have not been widely studied, although these sands can have a direct and transcendental impact in coastal ecosystems. This study aims to determine oxygen and nutrient fluxes at the sediment-water interface and the study of possible interactions among environmental variables and the benthic metabolism in well-sorted fine sands. Eight sampling campaigns were carried out over the annual cycle in the eastern coast of Spain (NW Mediterranean) at 9 m depth station with permeable bottoms. Water column and sediment samples were collected in order to determine physico-chemical and biological variables. Moreover, in situ incubations were performed to estimate the exchange of dissolved solutes in the sediment-water interface using dark and light benthic chambers. Biochemical compounds at the sediment surface ranged between 160 and 744 ?g g-1 for proteins, 296 and 702 ?g g-1 for carbohydrates, and between 327 and 1224 ?g C g-1 for biopolymeric carbon. Chloroplastic pigment equivalents in sediments were mainly composed by chlorophyll a (1.81-2.89 ?g g-1). These sedimentary organic descriptors indicated oligotrophic conditions according to the biochemical approach used. In this sense, the most abundant species in the macrobenthic community were sensitive to organic enrichment. In dark conditions, benthic fluxes behaved as a sink of oxygen and a source of nutrients. Oxygen fluxes (between -26,610 and -10,635 ?mol m-2 d-1) were related with labile organic fraction (r=-0.86, p<0.01 with biopolymeric carbon; r=-0.91, p<0.01 with chloroplastic pigment equivalents). Daily fluxes of dissolved oxygen, that were obtained by adding light and dark fluxes, were only positive in spring campaigns (6966 ?mol m-2 d-1) owing to the highest incident irradiance levels (r=0.98, p<0.01) that stimulate microphytobenthic primary production. Microphytobenthos played an important role on benthic metabolism and was the main primary producer in this coastal ecosystem. However, an average annual uptake of 31 mmol m-2 d-1 of oxygen and a release of DIN and Si(OH)4 (329 and 68 mmol m-2 d-1 respectively) were estimated in these bottoms, which means heterotrophic conditions.

  1. Reservoir characteristics of two minter oil sands based on continuous core, E-logs, and geochemical data: Bee Brake field, East-Central Louisiana

    SciTech Connect

    Echols, J.B.; Goddard, D.A.; Bouma, A. )

    1993-09-01

    The Bee Brake field area, located in township 4N/6E and 4N/7E in Concordia Parish, has been one of the more prolific oil-producing areas in east-central Louisiana. Production decline in various fields, however, has sparked interest in the economic feasibility of locating and producing the remaining bypassed oil in the lower Wilcox. For this purpose, the Angelina BBF No. 1 well was drilled, and a 500-ft conventional core and a complete suite of state-of-the-are wireline logs were recovered. Production tests were run on the Minter interval of interest. The 16-ft Minter interval (6742-6758 ft depth), bounded at its top and base by lignite seams, consists of an upper 4-ft oil sand (Bee Brake) and a lower 3-ft oil sand (Angelina). The oil sands are separated by approximately 5 ft of thinly laminated silty shale and 4 ft of very fine-grained silty sandstone. Detailed sedimentologic and petrographic descriptions of the Minter interval provide accurate facies determinations of this lower delta-plain sequence. Petrophysical evaluation, combining core plug and modern electric-log data show differences between reservoir quality of the Bee Brake and Angelina sands. This data will also be useful for correlating and interpolating old electric logs. Organic geochemistry of the oil, lignites, and shales provides insight as to the source of the Minter oils and the sourcing potential of the lignites.

  2. ISET Journal of Earthquake Technology, Paper No. 450, Vol. 41, No. 2-4, June-December 2004, pp. 249-260 CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY

    E-print Network

    Gupta, Vinay Kumar

    ISET Journal of Earthquake Technology, Paper No. 450, Vol. 41, No. 2-4, June-December 2004, pp. 249-560012 ABSTRACT Recent earthquake case histories have revealed the liquefaction of silty sands during earthquakes. A major challenge is the selection of the appropriate residual strength of liquefied materials

  3. Permeability of Silty Claystone and Turbidite Samples from IODP Expedition 348, Hole C0002P, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Song, C.; Underwood, M.

    2014-12-01

    One of the main objectives of IODP Expedition 348 was to characterize the variations of lithology and structure with depth in the interior of the Nankai Trough accretionary complex beneath the Kumano forearc basin (offshore SW Japan). Six cores were recovered from Hole C0002P between 2163 and 2218 mbsf. Four whole-round (WR) specimens from depths of 2174.98 to 2209.64 mbsf were tested for constant-flow permeability with a focus on thin interbeds of silty claystone and fine-grained turbidites. Samples are from lithostratigraphic Unit V (accreted trench or Shikoku Basin hemipelagic deposits). Coarser interbeds are important for assessing the prospects of flow through stratigraphic conduits. Our primary objective is to better understand how hydrogeologic properties of different lithologies respond to deformation within the accretionary prism. Equipment for permeability tests consists of a withdrawal-infuse syringe pump to simultaneously inject and extract pore fluid from the top and bottom of the specimen to generate hydraulic head difference. Specimens were trimmed for tests in both vertical direction (along-core) and horizontal direction (cross-core) with the diameter of 3.8 cm (1.5 in). The isotropic effective stress is set at 0.55 MPa. The WR specimens are heterogeneous. The major lithology is silty claystone to fine-grained silty claystone. Some intervals contain thin (~1.3 cm) oblique sandy layers and black organic bands. Bedding is steep to vertical (~70-80?). One goal is to determine how this lithologic variability affects the anisotropy of permeability. Environmental SEM was used to image the cores (in multiple directions) to evaluate the relation between sediment microstructure and anisotropy of permeability.

  4. Hydraulic Fracturing Sand

    USGS Multimedia Gallery

    Fine-grained silica sand is mixed with chemicals and water before being pumped into rock formations to prevent the newly created artificial fractures from closing after hydraulic fracturing is completed....

  5. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    PubMed Central

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10?mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951

  6. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    PubMed

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10?mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951

  7. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  8. Characterization of the 3-D Properties of the Fine-Grained Turbidite 8 Sand Reservoir, Green Canyon 18, Gulf of Mexico 

    E-print Network

    Plantevin, Matthieu Francois

    2004-09-30

    Understanding the internal organization of the Lower Pleistocene 8 Sand reservoir in the Green Canyon 18 field, Gulf of Mexico, helps to increase knowledge of the geology and the petrophysical properties, and hence contribute to production...

  9. Texture development in naturally compacted and experimentally deformed silty clay sediments from the Nankai Trench and Forearc, Japan

    NASA Astrophysics Data System (ADS)

    Schumann, Kai; Stipp, Michael; Leiss, Bernd; Behrmann, Jan H.

    2014-12-01

    The petrophysical properties of fine-grained marine sediments to a large extent depend on the microstructure and crystallographic preferred orientations (CPOs). In this contribution we show that Rietveld-based synchrotron texture analysis is a new and valuable tool to quantify textures of water-saturated fine-grained phyllosilicate-rich sediments, and assess the effects of compaction and tectonic deformation. We studied the CPO of compositionally almost homogeneous silty clay drillcore samples from the Nankai Accretionary Prism slope and the incoming Philippine Sea plate, offshore SW Japan. Basal planes of phyllosilicates show bedding-parallel alignment increasing with drillhole depth, thus reflecting progressive burial and compaction. In some samples calcite and albite display a CPO due to crystallographically controlled non-isometric grain shapes, or nannofossil tests. Consolidated-undrained experimental deformation of a suite of thirteen samples from the prism slope shows that the CPOs of phyllosilicate and calcite basal planes develop normal to the experimental shortening axis. There is at least a qualitative relation between CPO intensity and strain magnitude. Scanning electron micrographs show concurrent evolution of preferred orientations of micropores and detrital illite flakes normal to axial shortening. This indicates that the microfabrics are sensitive strain gauges, and contribute to anisotropic physical properties along with the CPO.

  10. SAND REPORT SAND2002xxxx

    E-print Network

    Newman, Alantha

    SAND REPORT SAND2002­xxxx Unlimited Release August 2002 Discrete Optimization Models for Protein://www.ntis.gov/ordering.htm DEPARTMENTOF ENERGY . . UNITED STATES OF AMERICA #12; SAND2002-xxxx Unlimited Release Printed August 2002

  11. CALIBRATION OF CAPACITANCE PROBE SENSORS IN A SALINE SILTY CLAY SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capacitance probe sensors are a popular electromagnetic method of measuring soil water content. However, there is concern about the influence of soil salinity on the sensor readings. In this study capacitance sensors are calibrated for a saline silty clay soil. The calibration procedure incorpora...

  12. Coal-sand attrition system and its` importance in fine coal cleaning. Eighth quarterly report, June 1, 1992--August 31, 1993

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1993-08-26

    The research efforts on the importance of a coal-sand attrition continued with work in four categories: Continuous grinding tests using steel media; fracture tests on coal samples compacted at different pressure; SEM-Image analysis of feed and ground product coal samples; zeta potential measurements of coal samples ground by different media, and flotation test of coal samples ground by different media. Results are described.

  13. Sand Storm 

    E-print Network

    Unknown

    2011-09-05

    An experimental study was conducted to verify experimentally whether sand consolidation by high-temperature alkaline treatment was possible in the heavy oil Bachaquero-01 reservoir. The experiments were conducted using sand samples from a core taken...

  14. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  15. Sand Storage

    USGS Multimedia Gallery

    A sand storage silo at Steamtown National Historic Site. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially when the ra...

  16. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  17. Bromide transport in a sandy and a silty soil - a comparative lysimeter study

    NASA Astrophysics Data System (ADS)

    Schober, L.; Iden, S. C.; Durner, W.

    2009-04-01

    The aim of this study was a comparison of bromide leaching through a silty and a sandy soil and the characterization of systematic differences in solute transport in these undisturbed soils of differing texture. The amount of seepage water and bromide concentrations in the water were measured in 5 lysimeters for each soil type for a period of 460 days. Additionally, meteorological data were measured next to the lysimeter station for this period. The water transport regime of the lysimeters was simulated by means of a numerical solution of the Richards equation using the software package HYDRUS 1D. The observed bromide transport was simulated by steady-state approximation, applying the simulation tool CXTFIT, which is implemented in the software package STANMOD, version 2.0. Analysis of the measured data showed that a correct reproduction of the water balance was possible, but required the adaptation of soil-dependent crop coefficients for the potential transpiration of Phacelia and Winter Rape. The mean bromide transport through the sandy soil could be approximately reproduced assuming a bromide uptake by plants. Observed double peaks of some of the individual breakthrough curves, however, indicated that the actual transport regime in the lysimeters was subject to local heterogeneity which cannot be covered by the effective one-dimensional transport model. Bromide transport through the silty soil showed an unexplained mass deficit of nearly 90 % of the applied bromide and the detection of a mean distinct bromide peak in seepage water after percolation of only 0.5 pore volumes. It was not possible to simulate this behaviour with an effective 1D equilibrium or nonequilibrium convection-dispersion model.

  18. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.

  19. Contrasting hydrological and mechanical properties of clayey and silty muds cored from the shallow Nankai Trough accretionary prism

    E-print Network

    Kanagawa, Kyuichi

    Nankai Trough accretionary prism Miki Takahashi a , Shuhei Azuma b,1 , Shin-ichi Uehara c , Kyuichi January 2013 Keywords: Clayey mud Silty mud Nankai Trough accretionary prism Permeability Failure strength Friction Two mud samples cored from the shallow (1000 mbsf) Nankai Trough accretionary prism at Site C0002

  20. Tar sands

    SciTech Connect

    Wennekers, J.H.N.

    1981-10-01

    The four largest oil sand deposits contain over 90% of the world's known heavy oil. The total heavy oil and bitumen in place, estimated at nearly 6 trillion barrels is almost entirely concentrated in western Canada, principally Alberta, and eastern Venezuela. The known tar sand resource in the United States consists of about 550 occurrences located in 22 states. The total oil in place in 39 of these occurrences is estimated to be between 23.7 billion and 32.7 billion barrels. At least 90% of this resource is located in Utah. Other significant deposits are in Texas, New Mexico, California, and Kentucky. Bituminous sand deposits and petroleum-impregnated rocks are found in Malagasy, Albania, Rumania, the USSR, and Trinidad. 4 figures, 2 tables. (DP)

  1. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  2. SAND REPORT SAND2002-0877

    E-print Network

    SAND REPORT SAND2002-0877 Unlimited Release Printed April 2002 A Scalable Systems Approach@ntis.fedworld.gov Online order: http://www.ntis.gov/ordering.htm #12;- 3 - SAND2002-0877 Unlimited Release Printed April

  3. SAND REPORT SAND2003-0799

    E-print Network

    Ho, Cliff

    SAND REPORT SAND2003-0799 Unlimited Release Printed March 2003 Field Demonstrations://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2003-0799 Unlimited Release Printed March 2003 Field Demonstrations

  4. Infiltration capacity and macroporosity of a silty-loamy soil under different tillage systems

    NASA Astrophysics Data System (ADS)

    Wahl, N. A.; Buczko, U.; Bens, O.; Hüttl, R. F.

    2003-04-01

    For soils under both agricultural and forest use, management and tillage practice have significant influence on different hydraulic properties. Under agricultural land use, the properties of the macropore system are, amongst others, a function of the applied management and tillage system (i.e. conventional vs. conservation tillage). Macropores are crucial to rapid infiltration of surface water and aeration of the soil. Low macroporosity will give rise to higher surface flow rates especially on sloping areas, thus enhancing the risk for higher erosion. Investigations were carried out near the town of Adenstedt (52^o00', 9^o56'), app. 50 km S of Hannover in Lower Saxony. The predominant soil in the study area is an eroded orthic Luvisol from glacial deposits with a predominant silty-loamy texture. The experimental site with two crop rotations has been run with two different tillage systems (e.g. conventional and conservative tillage) since 1990. In this study, the minimum radius of a macropore is set to r = 0.5 cm. Dye tracer experiments were performed with methylene blue that was sprayed on a confined irrigation plot. Staining patterns were recorded two hours later at defined depth increments and results of stained and unstained areas were manually digitized and processed with an appropriate GIS-software. Tension infiltrometer experiments were performed simultaneously with the dye tracer experiments using a tension infiltrometer (hood infiltrometer) at different hydraulic supply potentials and soils depths. Dye tracer experiments with methylene blue indicate a penetration depth of 120 cm on the reduced tilled plot as compared to the conventionally tilled plot (60 cm). Both tillage systems exhibit the highest density of macropores in the topsoil, ranging between 100 and 1.000 macropores per square meter. The conventionally tilled plot exhibits a higher number of macropores in the upper 20 cm than the reduced tilled plot while at greater soil depth, this holds true for the reduced tiled plot. Macroporosity derived from tension infiltrometer experiments yield results about one order of magnitude lower than those obtained by visual inventarization. The results indicate a greater continuity of vertically oriented macropores for soils with reduced tillage systems. Thus, in the context of a more effective prevention of flooding events in watersheds, tillage practices with reduced soil disturbance offer a means to decrease surface runoff by enhancing vertical drainage in agricultural areas with silty soils. However, the effect of this local-scale soil hydraulic property on the hydrological behavior on the scale of whole watersheds on the mesoscale (100--500 km^2) needs yet to be tested by simulations with physically based hydrological models.

  5. An experimental study on the wave-induced pore water pressure change and relative influencing factors in the silty seabed

    NASA Astrophysics Data System (ADS)

    Li, Anlong; Luo, Xiaoqiao; Lin, Lin; Ye, Qing; Le, Chunyu

    2014-12-01

    In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately.

  6. Benthic bacterial production and protozoan predation in a silty freshwater environment.

    PubMed

    Wieltschnig, C; Fischer, U R; Kirschner, A K T; Velimirov, B

    2003-07-01

    The interrelation of heterotrophic bacteria with bacterivorous protists has been widely studied in pelagic environments, but data on benthic habitats, especially in freshwater systems, are still scarce. We present a seasonal study focusing on bacterivory by heterotrophic nanoflagellates (HNF) and ciliates in the silty sediment of a temperate macrophyte-dominated oxbow lake. From January 2001 to February 2002 we monitored the standing stock of bacteria and protozoa, bacterial secondary production (BSP, (3)H-thymidine, and (14)C-leucine incorporation), and grazing rates of HNF and ciliates on bacteria (FLB uptake) in the oxic sediment of the investigated system. BSP ranged from 470 to 4050 micro g C L(-1) wet sediment h(-1). The bacterial compartment turned out to be highly dynamic, indicated by population doubling times (0.6-10.0 d), which were comparable to those in the water column of the investigated system. Yet, the control mechanisms acting upon the bacterial population led to a relative constancy of bacterial standing stock during a year. Ingestion rates of protozoan grazers were 0-20.0 bacteria HNF(-1) h(-1) and 0-97.6 bacteria ciliate(-1) h(-1). HNF and ciliates together cropped 0-14 (mean 4)% of BSP, indicating that they did not significantly contribute to benthic bacterial mortality during any period of the year. The low impact of protozoan grazing was due to the low numbers of HNF and ciliates in relation to bacteria (1.8-3.5 x 10(4) bacteria HNF(-1), 0.9-3.1 x 10(6) bacteria ciliate(-1)). Thus, grazing by HNF and ciliates could be ruled out as a parameter regulating bacterial standing stock or production in the sediment of the investigated system, but the factors responsible for the limitation of benthic protistan densities and the fate of benthic BSP remained unclear. PMID:12739079

  7. Leaching of Glyphosate and Aminomethylphosphonic Acid through Silty Clay Soil Columns under Outdoor Conditions.

    PubMed

    Napoli, Marco; Cecchi, Stefano; Zanchi, Camillo A; Orlandini, Simone

    2015-09-01

    Glyphosate [-(phosphono-methyl)-glycine] is the main herbicide used in the Chianti vineyards. Considering the pollution risk of the water table and that the vineyard tile drain may deliver this pollutant into nearby streams, the objective of the present study was to estimate the leaching losses of glyphosate under natural rainfall conditions in a silty clay soil in the Chianti area. The leaching of glyphosate and its metabolite (aminomethylphosphonic acid [AMPA]) through soils was studied in 1-m-deep soil columns under outdoor conditions over a 3-yr period. Glyphosate was detected in the leachates for up to 26 d after treatments at concentrations ranging between 0.5 and 13.5 ?g L. The final peak (0.28 ?g L) appeared in the leachates approximately 319 d after the first annual treatment. Aminomethylphosphonic acid first appeared (21.3 ?g L) in the soil leachate 6.8 d after the first annual treatment. Aminomethylphosphonic acid detection frequency and measured concentration in the leachates were more than that observed for the glyphosate. Aminomethylphosphonic acid was detected in 20% of the soil leachates at concentrations ranging from 1 to 24.9 ?g L. No extractable glyphosate was detected in the soil profile. However, the AMPA content in the lowest layer ranged from 13.4 to 21.1 mg kg, and on the surface layer, it ranged from 86.7 to 94 mg kg. Overall, these results indicate that both glyphosate and AMPA leaching through a 1-m soil column may be potential groundwater contaminants. PMID:26436283

  8. INFLUENCE OF CONSOLIDATION CHARACTERISTICS ON CONE PENETRATION RESISTANCE AND LIQUEFACTION RESISTANCE IN SILTY SOILS

    NASA Astrophysics Data System (ADS)

    Ecemis, N.; Thevanayagam, S.

    2009-12-01

    A unique correlation between liquefaction resistance and penetration resistance is not possible to justify without considering the effects of hydraulic conductivity, k, compressibility, mv, and coefficient of consolidation, ch on cone penetration resistance (Thevanayagam and Martin 2002). Therefore, CPT liquefaction screening chart revised to take into account the consolidation characteristics on penetration resistance. Recently, it has been observed that k and ch magnitudes vary between sand and sand-silt mixtures even evaluated at the same liquefaction resistance. The combined effects of penetration rate, v, cone diameter, d, and ch also influences the cone penetration resistance. Silt content affects the liquefaction resistance as well. Several numerical simulations performed by Thevanayagam and Ecemis in 2008 to explore the transition from undrained to drained conditions by varying the non-dimensional parameter T(=vd/ch) with a range of coefficient of consolidation for a single soil type, Ottawa sand-silt mix. Numerical simulation suggested the drained and undrained limits for T are respectively around 0.01 and 10. Tests on circular foundations reported by Finnie and Randolph (1994) suggested the limits of 0.01 and 30. Tests with a cylindrical T-bar penetrometer suggested narrower limits of 0.1 and 10 (House et al. 2001). Finally, the correlation between T, normalized cone resistance and cyclic resistance to liquefaction is proposed and compared with the current liquefaction screening method by CPT (Fig.1). Fig.1: Proposed & Current Liquefaction Screening Method

  9. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  10. Comparative Analysis of Cement and Lateralite on the Engineering Properties of Niger Delta Soils for Pavement Construction

    E-print Network

    Alayaki, F. M.; Al-Tabbaa, A.; Meshida, E. A.; Ayotamuno, M. J.

    2015-05-13

    This study investigated the effect of cement and lateralite in improving some engineering properties of Niger Delta soils, classified as clayey soil, silty/clayey sand, and fine sand. Cement had very good effect in reducing the plasticity...

  11. The extraction of bitumen from western tar sands

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  12. The extraction of bitumen from western tar sands. Annual report

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  13. SAND REPORT SAND2003-1428

    E-print Network

    SAND REPORT SAND2003-1428 Unlimited Release Printed May 2003 Cost Study for Large Wind Turbine://www.ntis.gov/ordering.htm #12;SAND2003-1428 Unlimited Release Printed May 2003 Cost Study for Large Wind Turbine Blades Wind

  14. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  15. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  16. A toxicity identification evaluation of silty marine harbor sediments to characterize persistent and non-persistent constituents.

    PubMed

    Stronkhorst, Joost; Schot, Marlies E; Dubbeldam, Marco C; Ho, Kay T

    2003-01-01

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity identification evaluation (TIE) phase I manipulations and tested for toxicity with four bioassays: the amphipod Corophium volutator (survival as an endpoint), the sea urchin Psammechinus miliaris (fertilization, embryo development) and the bacterium Vibrio fischeri (bioluminescence inhibition). The graduated pH manipulations identified the prominent toxicity of ammonia in the amphipod and sea urchin embryo tests, and also sulfide toxicity in the bacterium test. In two of the three samples tested with the amphipods, sea urchin embryos and bacteria, a small but significant reduction in interstitial water toxicity was achieved by removing persistent compounds through C(18) solid phase extraction. EDTA chelation resulted in a slight detoxification of the interstitial water for the amphipods and sea urchin embryos, but this was not related to any measured trace metals. Despite the presence of toxic levels of ammonia and sulfide in the harbor sediments, we established the adverse biological effects of persistent constituents by means of the TIE manipulations and in vivo interstitial water bioassays. PMID:12535970

  17. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, ?, and ?. The range of the value of M, ?, and ? is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  18. Wet Sand flows better than dry sand

    E-print Network

    Jorge E. Fiscina; Christian Wagner

    2007-11-19

    We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We find that the system starts to flow when a critical shear of the order of one particle diameter is exceeded. In contrast to common believe, we observe that the resistance against the flow of wet sand is much smaller than that of dry sand. For the dissipative flow we propose a non-equilibrium state equation for granular fluids.

  19. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing percentage is 50%. The best water cement ratio for mix proportion is 0.45. It was observed that the available amount of dune sand can be extracted to meet the demand for sand in construction industry. However, the extraction of dune sand from the areas close to the sea will cause several social, environmental and legal problems. Therefore sand mining from dunes must be commenced after making a detailed Environmental Impact Assessment.

  20. ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA

    E-print Network

    Hanks, Lawrence M.

    ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA R. W. Rust1, L. !\\1. Hanks collected from Sand !\\1ountain and Blow Sand Mountains, Nevada. Four species are considered new to science and none are considered endemic to ei ther dune area. Sand Mountain and Blow Sand Mountains were visited 19

  1. Exposed Tsunami Sand Layers

    USGS Multimedia Gallery

    An outcrop composed of six tsunami deposits on the inland side of the lowland backing Stardust Bay over 0.5 miles from the sea. Brown soils developed into the top of each sand sheet and black tephra (air fall volcanic ash) layers between two of the sand deposits aided correlation of the six sand she...

  2. Sand Simulation Abhinav Golas

    E-print Network

    Lin, Ming C.

    Sand Simulation Abhinav Golas COMP 768 - Physically Based Simulation Final Project Presentation May (Wikipedia) Size variation from 1m to icebergs Food grains, sand, coal etc. Powders ­ can be suspended 6, 2009 9 0I #12;Understanding the behavior Why can sand sustain shear stress? Friction between

  3. Sand for Traction

    USGS Multimedia Gallery

    Steam engines used high-grade silica sand for traction on the rails. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially...

  4. The gravel-sand transition: Sediment dynamics in a diffuse extension

    NASA Astrophysics Data System (ADS)

    Venditti, Jeremy G.; Domarad, Natalia; Church, Michael; Rennie, Colin D.

    2015-06-01

    As gravel-bedded rivers fine in the downstream direction, they characteristically exhibit an abrupt transition from gravel- to sand-bedded conditions. The prevailing theory for why abrupt gravel-sand transitions emerge is based on bed load sorting of a bimodal sediment. The abruptness is thought to be a consequence of sand overwhelming the gravel-sand mixture once it reaches a critical coverage on the bed. The role suspension plays in the development of gravel-sand transitions has not been fully appreciated. The Fraser River, British Columbia, is an archetypical abrupt gravel-sand transition with a "diffuse extension" composed of a sand bed with some patches of gravel. We examine flow, shear stress, and suspended sediment flux in the diffuse extension to better understand sediment dynamics where the sand bed emerges. Sand is carried in suspension upstream of the primary abrupt gravel-sand transition, but in the diffuse extension, sand is moved as both bed load and suspended load. We do not observe downstream gradients in shear stress or suspended sand flux through the diffuse extension that would suggest a gradual "rain out" of sand moving downstream, which raises the question, how is the sand bed formed? Sediment advection length scales indicate that with the exception of very fine sand that moves as wash load in the diffuse extension, fractions coarser than the median sand size cannot be carried in suspension for more than one channel width. This suggests that sand is deposited en masse at the beginning of the diffuse extension, forming a sediment slug at low flood flows that is smeared downstream at high flood flows to form the sand reach.

  5. Fine Arts.

    ERIC Educational Resources Information Center

    Danzer, Gerald A.; Newman, Mark

    1992-01-01

    Discusses the use of fine arts as sources to enrich the study of history. Suggests that such works will serve as barometers of change, examples of cross-cultural influences, and political messages. Includes suggestions of works and artists from different historic periods. (DK)

  6. The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C

    NASA Astrophysics Data System (ADS)

    Zeghichi, L.; Benghazi, Z.; Baali, L.

    The sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened self-compacting concrete (SCC). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which are influencing the workability of concrete. The amount of dune sand varies from (0% 50%, to 100%) by weight of fine aggregates. The effect of additions is also treated (blast furnace slag and lime stone) The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand.

  7. Process and apparatus for recovery of oil from tar sands

    SciTech Connect

    Brewer, J.C.

    1982-11-30

    A crude oil product is extracted from a tar sand by first crushing the tar sand as mined and then fine grinding the crushed material in a grinding mill in the presence of a cleansing liquid, such as an aqueous solution of a caustic. The resulting slurry is passed into suitable extractor-classifier equipment, such as that shown in U.S. Pat. No. 3,814,336, in which a body of cleansing liquid is maintained. Agitation of the slurry in such maintained body of cleansing liquid substantially completes removal of the bituminous matter from the sand, and the resulting crude oil and cleansing liquid phase is discharged separately from the sand solid phase. The liquid phase is treated for the removal of residual sand particles and for the separation of residual cleansing liquid from the crude oil. The cleansing liquid so recovered is recycled and the crude oil is passed to further processing or for use as such.

  8. Controls on the abruptness of gravel-sand transitions

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has lost the capacity to carry the gravel mixture, the river adopts the lower slope required to pass the sand load. Progressive downstream fining of a gravel-sand mixture is not a necessary condition for the emergence of a gravel-sand transition.

  9. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  10. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  11. Paleoenvironment and depositional environment of Miocene Olcese Sand, Bakersfield, California

    SciTech Connect

    Olson, H.C.

    1986-04-01

    The Olcese Sand near Bakersfield, California, contains evidence of a range of paleoenvironments including nonmarine, estuarine, and outer shelf depositional settings. Foraminifera from surface and subsurface samples place the Olcese in the Saucesian and Relizian of the California benthic stages. A pumice bed in the Olcese has been dated by fission track methods at 15.5 Ma. The Olcese Sand interfingers with the underlying Freeman Silt and the overlying Round Mountain Silt. In the type area, in Round Mountain oil field, the Olcese is 300-360 m thick. The Olcese is subdivided into three environmental facies. In the Knob Hill Quadrangle, the lower Olcese consists of (1) thinly bedded to blocky white tuffaceous silt and sand, or (2) planar cross-bedded fine to coarse-grained sand with pumice pebbles lining the bedding surfaces. Fossil mollusks and skate teeth indicate a shallow marine environment for the lower Olcese. Although the Olcese is predominantly a marine unit, the middle Olcese is nonmarine, with lenses of marine deposition. The middle Olcese is well exposed in the Knob Hill, Oil Center, and Rio Bravo Ranch Quadrangles, and is characterized by fine to coarse sand with occasional gravel lenses, strong cross-bedding, and a blue-gray color. The upper Olcese is a very fine to medium-grained, marine sand that fines upward into a sandy siltstone southward toward the Kern River. Foraminifera and mollusks from outcrops in the Rio Bravo Ranch Quadrangle indicate outer shelf to estuarine environments for the upper Olcese. The varying environments in the Olcese Sand reflect slight but frequent fluctuations in water depth and can be used to interpret the basin-margin history.

  12. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    article title:  Dust and Sand Sweep Over Northeast China     ... Imaging SpectroRadiometer (MISR) captured these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an indication of the probable dust source region are provided by these ...

  13. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  14. Recycled sand in lime-based mortars.

    PubMed

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. PMID:25266158

  15. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  16. Flow and sand transport over an immobile gravel bed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many dams in the USA and elsewhere have exceeded their design life and are being considered for remediation or removal, which will result in the reintroduction of fine sediments, often into coarse grained armored substrates, downstream of dams. The deposition of sand in the interstices of the grave...

  17. Pore geometry, avalanching, and subsurface flow: A sand infiltration model

    NASA Astrophysics Data System (ADS)

    Leonardson, R.; Hunt, J. R.; Dietrich, W. E.

    2009-12-01

    The deposition of sand into gravel riverbeds has been well-documented, along with its negative impacts on developing salmon eggs and riverbank extraction for water supplies. Dam releases may be used on regulated rivers to flush the bed of fine sediment, but it is not generally known how deep the sand deposit extends or how much sand is there. One-dimensional (plane-bed) experiments consistently show that the depth of infiltration is a function of the sand and gravel grain size distributions and that the saturation sand fraction is near 8-10%. However, precise empirical relationships developed in individual studies do poorly at predicting the results of other experiments. Furthermore, no infiltration model includes the effect of flow conditions in the water column, although flow conditions clearly impact the deposit characteristics. We propose a mechanistic model for the infiltration of fine sediment and compare its predictions to the results of two recent infiltration experiments. This model is based on geometric arguments about pore and particle shape and five mechanisms: particle settling, particle capture, subsurface avalanching, average subsurface flow, and subsurface pressure fluctuations. The model successfully predicts for both experiments the fraction of sand deposited and the shape of that deposit as a function of depth.

  18. A High Resolution Look at Black Sand Particles from Sand Dunes of Saudi Arabia Using Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Aburizaiza, O. S.; Siddique, A.; Hershey, D. L.; Guerrieri, D. A.; Qurashi, J.; Abbass, M.; Blake, D. R.; Khwaja, H. A.

    2013-12-01

    Particulate air pollution is a problem of health concern. The microscopic make-up of different varieties of sand particles found and collected at a sand dune site in Badr, Saudi Arabia has been determined. Primary emphasis is given to the use of multiple high resolution electron microscopy (viz., Scanning Electron Microscopy with Energy Dispersive X-ray spectrometry (SEM/EDS) and Laser Scanning Microscopy (LSM)) to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of ';coatings or contaminants' adsorbed or carried on by the black sand particles. White sand contains natural coarse particles associated with wind-blown releases from crustal surfaces, weathering of an igneous/metamorphic rock source, and volcanic activities. Silicates (alumino-silicates) and quartz (clear, milky, rose) dominate white sand and rest appears to contain calcite, olivine, feldspar, and magnetite. Black sand particles exhibit very different morphologies and microstructures (surface roughness) compared with white sand and volcanic ash. Morphological analyses have shown that the black sand contain ultrafine particles. Black sand is strongly magnetic, which indicates the mineral magnetite (strongly magnetic) or elemental iron. Iron, C, O, Ti, Si, V, and S particles dominate the black sand. Natural and anthropogenic sources have been implicated for the observed particles. Analysis revealed that the surface of white sand particles is mainly covered with the fine particles. It is known that emissions from combustion contain carbon soot and other contaminants that are easily absorbed by soil particles during a long-range transport.

  19. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  20. Monitoring pool-tail fines

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Potyondy, J. P.; Abt, S. R.; Swingle, K. W.

    2010-12-01

    Fine sediment < 2 and < 6 mm deposited in pool-tail areas of mountain streams is often measured to monitor changes in the supply of fines (e.g., by dam removal, bank erosion, or watershed effects including fires and road building) or to assess the status and trend of aquatic ecosystems. Grid counts, pebble counts, and volumetric bedmaterial samples are typically used to quantify pool-tail fines. Grid-count results exhibit a high degree of variability not only among streams and among operators, but also among crews performing a nearly identical procedure (Roper et al. 2010). Variability is even larger when diverse methods are employed, each of which quantifies fines in a different way: grid counts visually count surface fines on small patches within the pool-tail area, pebble counts pick up and tally surface particles along (riffle) transects, and volumetric samples sieve out fines from small-scale bulk samples; and even when delimited to pool-tail areas, individual methods focus on different sampling locales. Two main questions were analyzed: 1) Do pool-tail fines exhibit patterns of spatial variability and are some grid count schemes more likely to provide accurate results than others. 2) How and why does the percentage of fines vary among grid counts, pebble counts, and volumetric samples. In a field study, grids were placed at 7 locales in two rows across the wetted width of 10 pool tails in a 14-m wide 3rd order coarse gravel-bed mountain stream with <4% sand and <8% < 6 mm. Several pebble count transects were placed across each pool-tail area, and three volumetric samples were collected in each of three pool tails. Pebble and grid counts both indicated a fining trend towards one or both banks, sometimes interrupted by a secondary peak of fines within the central half of the wetted width. Among the five sampling schemes tested, grid counts covering the wetted width with 7 locales produced the highest accuracy and the least variability among the pools of the reach. Pebble counts between the two waterlines indicated 2-3 times more fines than grid counts, likely because grid counts did not extend exactly up to the waterline. However, when confined to the central 50% of the wetted width, grid counts indicated 1.2 and 1.6 times more fines < 2 and < 6 mm than pebble counts, likely because the plexiglass viewer used with grid counts improved the visibility of the bed. Volumetric armor layer samples (particles > 90 mm removed) indicated 1.4 and 1.2 times more fines < 2 and < 6 mm than grid counts at the same locales, while subarmor samples had 8-9 times more fines. In conclusion, methodological differences and the specific sampling locales selected by a method affect comparability of sampling results. Grid count accuracy and precision may be improved by extending both the width coverage and the sample size within a pool tail.

  1. Sand boils without earthquakes

    USGS Publications Warehouse

    Holzer, T.L.; Clark, M.M.

    1993-01-01

    Sedimentary deformation caused by liquefaction has become a popular means for inferring prehistoric strong earthquakes. This report describes a new mechanism for generating such features in the absence of earthquakes. Sand boils and a 180-m-long sand dike formed in Fremont Valley, California, when sediment-laden surface runoff was intercepted along the upslope part of a 500-m-long preexisting ground crack, flowed subhorizonally in the crack, and then flowed upward in the downslope part of the crack where it discharged as sand boils on the land surface. If the sand boils and their feeder dike were stratigraphically preserved, they could be misinterpreted as evidence for earthquake-induced liquefaction. -Authors

  2. Vent of Sand Volcano

    USGS Multimedia Gallery

    Vent of sand volcano produced by liquefaction is about 4 ft across in strawberry field near Watsonville. Strip spanning vent is conduit for drip irrigation system. Furrow spacing is about 1.2 m (4 ft) on center....

  3. Near-shore sand thickness and stratigraphy mapping with a submerged GPR antenna system; southeast Lake Michigan

    SciTech Connect

    Sauck, W.A.; Seng, D.L. )

    1994-04-01

    Twenty-one shore perpendicular profiles, spaced at nominal 5 km intervals, have been surveyed with a bottom-sled mounted Ground Penetrating Radar (GPR) antenna system between Benton Harbor, MI, and Gary, IN. Either a commercial 500 MHz or a custom 145 MHz antenna were used. The bottom sled also carried an upward looking SONAR transducer to give concurrent water depth, and was towed from the beach out to water depths of 6 meters or more, usually ending about 500 meters from shore. Bedding structures and details are clearly visible on the GPR sections within the sand bars and sand blankets. Bottom morphology and the nature of the sand bodies change markedly from the NE to the SW limits of the survey area. At the NE profiles there are multiple, pronounced (or high amplitude) offshore bars, with the substrate (glacial clay, shale, or silty sand) exposed or nearly exposed between bars. Internal structure is generally foreset or cross bedding in the bars. Sand was thin or missing immediately to the Sw of several other jetty structures in addition to the one at St. Joseph. In general the sand bars became much less pronounced to the SW, and internal structures were dominated by parallel bedding and subtle angular unconformities. Near St. Joseph, the exposed substrate is almost certainly being eroded, even to water depths as great as 6 meters. Thus, the equilibrium bottom profile continues to deepen shoreward, causing the continued threat of bluff erosion in spite of annual beach nourishment efforts at this site.

  4. Sidewinding snakes on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Dimenichi, Dante; Chrystal, Robert; Mendelson, Joseph; Goldman, Daniel; Hu, David; Georgia Tech and Zoo Atlanta Collaboration

    2012-11-01

    Desert snakes such as the rattlesnake Crotalus cerastes propel themselves over sand using sidewinding, a mode of locomotion relying upon helical traveling waves. While sidewinding on hard ground has been described, the mechanics of movement on more natural substrates such as granular media remain poorly understood. In this experimental study, we use 3-D high speed video to characterize the motion of a sidewinder rattlesnake as it moves on a granular bed. We study the movement both on natural desert sand and in an air-fluidized bed trackway which we use to challenge the animal on different compactions of granular media. Particular attention is paid to rationalizing the snake's thrust on this media using friction and normal forces on the piles of sand created by the snake's body. The authors thank the NSF (PHY-0848894), Georgia Tech, and the Elizabeth Smithgall Watts endowment for support. We would also like to thank Zoo Atlanta staff for their generous help with this project.

  5. Process of organic material extraction from bituminous sands or oil bearing sands

    SciTech Connect

    Stoian, A.; Panaitescu, N.; Tuliu, M.

    1987-10-27

    A cold water diluent process for recovering oil from bituminous or conventional oil sands thereafter referred to as oil sands is described including the steps of: (a) conditioning the optionally crushed oil sand, by diluent slurrying in a rotating drum; (b) introducing the slurry into the lower part of one or successively two helical, classifier type, separators, to be scrubbed in counter-current with diluent, fed into the upper part of the separator(s) by spraying; (c) withdrawing from the lower part of the first helical separator a rich oil-diluent product; (d) refining by a conventional method, this low viscosity oil-diluent product; (e) feeding the sand, withdrawn in the upper part of the second helical separator, into a separation column to settle; (f) introducing, into the column, diluent, under the diluent-water media interface and a mixture of slightly alkaline, not dispersing clay, recycle and fresh water, and process control additives; (g) withdrawing from the column: a diluent stream with little oil in the upper part; an aqueous impurified middling, in the opposite part of diluent and water inlets and between them; a sand settled in the bottom; (h) recycling the diluent with little oil to the first scrubbing stage; (i) treating the aqueous medium by conventional method to obtain: remanent oil and diluent, if any; clarified water to recycling; a fine waste; (j) disposing, or, if necessary, finally cleaning the sand by scrubbing in a helical, classifier type, separator, in counter-current with water and with process control additives.

  6. Extracting Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  7. The effect of natural sand grains and associated mineral changes on methane hydrate formation

    NASA Astrophysics Data System (ADS)

    Heeschen, K. U.; Schicks, J. M.

    2014-12-01

    The highest gas hydrate saturations and possible energy resource targets are bound to sandy sediments. However, investigations regarding the influence of natural sand particles on gas hydrate formation are rare and almost missing with regards to the particle size effect of different grain size ranges of sand on the gas hydrate kinetics. Comparative investigations commonly use arbitrary sized sands and clay minerals. In addition, sand grains are often represented using glass beads or pure quartz grains instead of natural samples where additional effects from mineral compositions and coatings might occur. However, understanding the kinetics of hydrate formation in sand forms yet another foundation for a successful scale-up model of the production of natural gas hydrate reservoirs, where reformation of hydrates may occur under non-equilibrium conditions. We investigated the particle size effect of sand on methane hydrate formation kinetics using five different grain size ranges of Ottawa sand, a rather pure quartz sand. Conditions of the static and small-volume experiments were far within the methane hydrate stability (7 MPa/1°C). Pressure and temperature recording as well as microscopic and Raman spectroscopic observations could verify methane hydrate formation and growth. For the chosen experimental setup there is a strong particle size effect on the kinetics of gas hydrate formation. A high concentration of the finest range (< 125?m) has led to an explicitly faster hydrate formation compared to coarser sand or a small fraction of fine particles diluted in coarse sand grains. This is in contrast to the decrease of thermodynamic driving forces in the presence of fine sized particles given equilibrium conditions. The promoting kinetic effect of the mineral surface properties might be related to the impact of the surface area as well as crystal structures, and/or electrical charge since small fractions of natural sands commonly encounter different mineral compositions compared to the coarser, quartz rich sand fraction. Therefore, additional investigations focus on the influence of the different minerals on the hydrate formation process.

  8. Building with Sand

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  9. White Sands Reservation

    E-print Network

    Laughlin, Robert B.

    Sands National Monument New Mexico Lincoln National Forest Mescalero Apache Reservation 54 82 54 54 70 54 70 85 Otero County Sierra County Luna County Dona Ana County SAN ANDRES NATIONAL WILDLIFE REFUGE Spaceport City Dona Ana Sunland Park Strauss Hatch Valmont Salem Boles Acres Grama La Union Garfield Arrey

  10. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45??m and 150??m sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45??m and 150??m sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45??m and 150??m sand slurries was calculated about 949??.cm(2) and 809??.cm(2), respectively. PMID:26561231

  11. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    NASA Astrophysics Data System (ADS)

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-11-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45??m and 150??m sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45??m and 150??m sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45??m and 150??m sand slurries was calculated about 949??.cm2 and 809??.cm2, respectively.

  12. Shear Band Formation in Plane Strain Experiments of Sand

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    2000-01-01

    A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

  13. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45??m and 150??m sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45??m and 150??m sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45??m and 150??m sand slurries was calculated about 949??.cm2 and 809??.cm2, respectively. PMID:26561231

  14. The extraction of bitumen from western oil sands: Volume 2. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  15. Assessment of the KE Basin Sand Filter Inventory In Support of Hazard Categorization

    SciTech Connect

    Ross, Steven B.; Young, Jonathan

    2005-09-28

    In 1978, the water cleaning system for the KE Basin was upgraded by adding a sand filter and ion exchange columns. Basin water containing finely divided solids is collected by three surface skimmers and pumped to the sand filter. Filtrate from the sand filter is further treated in the ion exchange modules. The suspended solids accumulate in the sand until the pressure drop across the filter reaches established operating limits, at which time the sand filter is backwashed. The backwash is collected in the NLOP, where the solids are allowed to settle as sludge. Figure 2-1 shows a basic piping and instrumentation diagram depicting the relationship among the basin skimmers, sand filter, and NLOP. During the course of deactivation and decommissioning (D&D) of the K-Basins, the sand filter and its media will need to be dispositioned. The isotopic distribution of the sludge in the sand filter has been estimated in KE Basin Sand Filter Monolith DQO (KBC-24705). This document estimates the sand filter contribution to the KE hazard categorization using the data from the DQO.

  16. Imaging of sand production in horizontal packs by x-ray computed tomography

    SciTech Connect

    Tremblay, B.; Sedgwick, G.; Forshner, K.

    1995-12-31

    Production rates for wells in the Cold Lake area of Alberta that are on {open_quotes}coldflow{close_quotes} production can be much higher than expected from estimates based on radial Darcy flow. Coldflow production here refers to a recovery process used in unconsolidated heavy oil reservoirs in which sand and oil are produced together under primary conditions. A laboratory experiment was designed to model sand production into a perforation in a vertical well drilled into the heavy oil formation. In this experiment, heavy oil (21,500 cP) flowed through a horizontal sand pack and into an orifice simulating a perforation. The flowing oil induced the co-production of sand from the pack when the pressure gradient at the orifice reached 33 Mpa/cm. The sand pack was scanned using X-ray computed tomography (CT). The CT images revealed that a high permeability circular channel (wormhole) had formed in the pack while sand was being produced. The wormhole followed the regions within the sand pack where the porosity was higher and consequently the compressive strength was lower. The porosity within the wormhole was much higher (55%) than the porosity within the undisturbed sand pack (32 %). No significant fines migration was observed before sand production occurred. The particle size distribution of the produced sand was the same as that remaining within the wormhole.

  17. The extraction of bitumen from western oil sands: Volume 1. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  18. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition, provenance and tectonic history of the sand dunes. Geochemical analysis indicated that most of sand dunes are quartz arenite type, except in the Red sea, basement related central Saudi Arabia and Najran areas, the sand dunes are sub-arkoses, sub-litharenite and litharenite. The concentration of major,trace and rare elements showed active continental margins as a tectonic setting of Red sea, basement related Najran and central Arabia sand dune. In contrast, passive continental margins for the other locations. The distribution of major, trace and rare earth elements showed similarity in chemical composition between basement related sand dunes in Red sea, Najran and central Arabia.

  19. Sand as a relevant fraction in geochemical studies in intertidal environments.

    PubMed

    Otero, X L; Huerta-Díaz, M A; De La Peña, S; Ferreira, T O

    2013-10-01

    Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine-coarse sand (2-0.100 mm), very fine sand (0.100-0.050 mm), silt (0.050-0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine-coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine-coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers. PMID:23525774

  20. The Relationship Between Frictional Resistance and Roughness for Sanded Surfaces

    NASA Astrophysics Data System (ADS)

    Schultz, Michael P.

    2001-11-01

    An experimental investigation has been carried out to document and relate the frictional drag and roughness texture of sanded paint surfaces. Hydrodynamic tests were carried out in a towing tank using a flat plate test fixture towed over a Reynolds number (Re_L) range of 2.8x10^6 - 5.5x10^6 based on the plate length and freestream velocity. Results indicate an increase in frictional resistance coefficient (C_F) of up to 7.3% for an unsanded, as-sprayed paint surface compared to a sanded, polished surface. Significant increases in CF were also noted on surfaces sanded with sandpaper as fine as 600-grit. The results show that, for the present surfaces, the centerline average height (Ra) is sufficient to explain a large majority of the variance in the roughness function (? U^+) in this Reynolds number range.

  1. Paleobiology of the Sand Beneath the Valders Diamicton at Valders, Wisconsin

    NASA Astrophysics Data System (ADS)

    Maher, Louis J.; Miller, Norton G.; Baker, Richard G.; Curry, B. Brandon; Mickelson, David M.

    1998-03-01

    Previously undescribed pollen, plant macrofossils, molluscs, and ostracodes were recovered from a 2.5-m-thick glaciolacustrine unit of silty sand and clay at Valders, Wisconsin. The interstadial sediment was deposited about 12,200 14C yr B.P. after retreat of the Green Bay lobe that deposited diamicton of the Horicon Formation, and before advance of the Lake Michigan lobe that deposited the red-brown diamicton of the Valders Member of the Kewaunee Formation. Fluctuations of abundance of Candona subtriangulata, Cytherissa lacustris,and three other species define four ostracode biozones in the lower 1.7 m, suggesting an open lake environment that oscillated in depth and proximity to glacial ice. Pollen is dominated by Piceaand Artemisia,but the low percentages of many other types of long-distance origin suggest that the terrestrial vegetation was open and far from the forest border. The upper part of the sediment, a massive sand deposited in either a shallow pond or a sluggish stream, contains a local concentration of plant macrofossils. The interpretation of a cold open environment is supported by the plant macrofossils of more than 20 species, dominated by those of open mineral soils ( Arenaria rubella, Cerastium alpinumtype, Silene acaulis, Sibbaldia procumbens, Dryas integrifolia, Vaccinium uliginosumvar. alpinum, Armeria maritima,etc.) that in North America occur largely in the tundra and open tundra-forest ecotone of northern Canada. Ice-wedge casts occur in the sand.

  2. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  3. Beach Sands Along the California Coast are Diffuse Sources of Fecal Bacteria to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Boehm, A. B.; Yamahara, K.; Layton, B.

    2007-05-01

    Fecal indicator bacteria (FIB) are nearly ubiquitous in California (CA) beach sands. Sands were collected from 55 beaches along the CA coast. Ninety-one percent of the beaches had detectable enterococci (ENT) while 62% had detectable E. coli (EC) in their sands. The presence of a putative bacterial source (such as a river), the degree of wave shelter, and surrounding land use explained a significant (p<0.05) fraction of the variation in both ENT and EC densities between beaches. Sand characteristics including moisture content, organic carbon, and percent fines, significantly (p<0.05) influenced only EC densities in beach sand. We assayed 34 of 163 sand samples for salmonellae, but did not detect this bacterial pathogen. The potential for FIB to be transported from the sand to sea was investigated at a single wave-sheltered beach with high densities of ENT in beach sand: Lovers Point, CA (LP). We collected samples of exposed and submerged sands as well as water over a 24 h period in order to compare the disappearance or appearance of ENT in sand and the water column. Exposed sands had significantly higher densities of ENT than submerged sands with the highest densities located near the high tide line. Water column ENT densities began low, increased sharply during the first flood tide and slowly decreased over the remainder of the study. During the first flood tide, the number of ENT that entered the water column was nearly equivalent to the number of ENT lost from exposed sands when they were submerged by seawater. The decrease in nearshore ENT concentrations after the initial influx can be explained by ENT die-off and dilution with clean ocean water. A source tracking study at LP indicated that ENT were likely of human origin because they were positive for the esp gene.

  4. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local cementation of sand grains within the discrete layers that explains the increase in velocity and decrease in porosity. The subsurface layering may influence the speed of dune migration and therefore have important consequences on desertification. The positive qualitative and quantitative correlation between the subsurface layering in the dune and the manifestation of the booming sound implies a close relation between environmental factors and the booming emission. In this thesis, the frequency of booming is correlated with the depth of the waveguide and the seismic velocities. The variability on location and season suggests that the waveguide theory successfully unravels the phenomenon of booming sand dunes.

  5. The use of fly ash-stabilized sand mixtures as capping materials for landfills

    SciTech Connect

    Taha, R.A.; Pradeep, M.R.

    1997-12-31

    An investigation was made to study the suitability of using coal fly ash-stabilized sand mixtures as capping materials for sanitary landfills. Sand mixtures stabilized with 15 and 20% Class C fly ash were investigated. Compaction, permeability, unconfined compressive strength, freeze-thaw, and wet-dry tests were conducted on both mixtures. Results indicate that fly ash-stabilized sand blends can be used as capping materials in areas where fine-grained soils are not available. Data indicate that the 20% fly ash-stabilized sand mixture will yield a better performance than sand mixtures stabilized with 15% fly ash. Increased strength, reduced permeability, and increased resistance to freeze-thaw and wet-dry cycles are some of the benefits obtained by using the high fly ash content.

  6. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed. PMID:19880153

  7. Differentiation of the water content of tar sands

    SciTech Connect

    Audeh, C.A.

    1988-08-01

    Three primary techniques have been used to accomplish separating the bitumen from the sand: (a) flotation, (b) solvent and solvent-assisted extraction and (c) direct coking. Of these hot water flotation followed by some solvent treatment became commercial in Canada in 1973. In this process the operating mechanism of separation is: (a) mixing the hot water with the tar sand to heat the bitumen so as to make it less viscous and more mobile; (b) separating the sand from the tar as a result of the decrease in viscosity and increase in mobility; (c) formation of globules from the separated tar which eventually form a froth and float to the top of the water. The overall operating mechanism of the solvent-assisted process is the same as that of the hot water process. However, viscosity reduction which brings about mobility increase is effected by the solvent. Also, for a tar sand with bitumen that is denser than water, the solvent also reduces the density of the separated bitumen and allows it to float. It has been suggested that the success of such recovery processes is contingent upon the presence of a thin film of water around the sand particles. Although the presence of this film of water is important, its existence has only been inferred and its quantity has not been determined. In this study the water content of a tar sand is differentiated by a procedure that removes extraneous water selectively and leaves the intrinsic water intact. Fines in the bitumen-free sand contain a significant amount of clay which contains a third type of water, water of hydration.

  8. Sand Dunes, Afghanistan

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image covers an area of 10.5 x 15 km in southern Afghanistan and was acquired on August 20, 2000. The band 3-2-1 composite shows part of an extensive field of barchan sand dunes south of Kandahar. The shape of the dunes indicates that the prevailing wind direction is from the west. The image is located at 30.7 degrees north latitude and 65.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  9. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  10. Sand Dunes in Hellas

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-537, 7 November 2003

    The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

  11. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  12. Gullies and Sand

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies running down a slope on the side of a mesa in a pit in the south polar region of Mars. The dark material in this scene is windblown sand. These landforms are located near 70.9oS, 357.3oW. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  13. Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach, playground and sandbox settings in Toronto, Ontario.

    PubMed

    Staley, Zachery R; Robinson, Clare; Edge, Thomas A

    2016-01-15

    While beach sands are increasingly being studied as a reservoir of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in other recreational sands (i.e., sandboxes and playgrounds). In this study, different culture-based FIB enumeration techniques were compared and microbial source tracking assays were conducted on recreational sand samples from beaches, playgrounds and sandboxes around Toronto, ON. FIB were detected in every sand sample (n=104) with concentrations not changing significantly over the five month sampling period. Concentrations of FIB and a gull-specific DNA marker were significantly higher in foreshore beach sands, and indicated these were a more significant reservoir of FIB contamination than sandbox or playground sands. Human- and dog-specific contamination markers were not detected. All culture-based FIB enumeration techniques were consistent in identifying the elevated FIB concentrations associated with foreshore beach sands. However, significant differences between differential agar media, IDEXX and Aquagenx Compartment Bag Test were observed, with DC media and Enterolert being the most sensitive methods to detect Escherichia coli and enterococci, respectively. To better understand the elevated occurrence of E. coli in foreshore sands, microcosm survival experiments were conducted at two different temperatures (15°C and 28°C) using non-sterile saturated foreshore beach sands collected from two urban freshwater beaches with different sand type (fine grain and sand-cobble). Microcosms were inoculated with a mixture of eight sand-derived E. coli strains and sampled over a 28-day period. E. coli levels were found to decline in all microcosms, although survival was significantly greater in the finer sand and at the cooler temperature (15°C). These results indicate that FIB can be widespread in any type of recreational sand and, while E. coli can survive for many weeks, it is most likely to accumulate in cooler fine-grain sand as occurs below the foreshore sand surface. PMID:26432162

  14. Sand resources, regional geology, and coastal processes for shoreline restoration: case study of Barataria shoreline, Louisiana

    USGS Publications Warehouse

    Kindinger, Jack L.; Flocks, James G.; Kulp, Mark; Penland, Shea; Britsch, Louis D.

    2002-01-01

    The Louisiana barrier shoreline of Barataria Basin, which lies within the western Mississippi River delta, has undergone significant retreat during the past 100 years. The most practical restoration method to rebuild these shorelines is sand nourishment. Seismic and sonar interpretations verified with geologic samples (vibracores and borings) indicate that there are nine sand targets within the Barataria study area that meet or exceed the minimum criteria for potential resource sites. However, the near surface lithology in the basin is typically silts and clays. Locating suitable sand resources for shoreline restoration is challenging. The sand units are associated with geologic depositional systems such as ebb-tidal deltas, distributary mouth bars, and channel fill (undifferentiated fluvial or tidal inlet channels). The nine potential sand targets consist primarily of fine sand and can be delineated into three surficial and six buried features. The surficial features contain approximately 10% of the total sand resources identified. At least 90% of the sand resources need overburden sediment removed prior to use; almost 570 million yd3 (438.5 mil m3) of overburden will need to be removed if the entire resource is mined. In this study, we identified 396 to 532 mil yd3 (305.8 to 410.8 mil m3) of potential sand deposits for shoreline restoration. Previous studies using less dense survey methods greatly over-estimated sand resources available in this area. Many fluvial channels reported previously as sand-filled are mud-filled. Contrary to these previous studies, few fluvial subsystems in this region have abundant sand resources.

  15. SandCanvas: A Multi-touch Art Medium Inspired by Sand Animation

    E-print Network

    Stephan, Frank

    SandCanvas: A Multi-touch Art Medium Inspired by Sand Animation Rubaiat Habib Kazi1 , Kien interacting with SandCanvas (left), and images created with SandCanvas (right). ABSTRACT Sand animation is a performance art technique in which an artist tells stories by creating animated images with sand. Inspired

  16. Fine particle pollution

    Atmospheric Science Data Center

    2013-01-10

    ...   Satellites Track Human Exposure to Fine Particle Pollution   St. Louis, Missouri Alaskan Wildfires ... provides a good test region for satellite observations of pollution. ( Full St. Louis article ) MISR ...

  17. Sand waves, bars, and wind-blown sands of the Rio Orinoco, Venezuela and Colombia

    USGS Publications Warehouse

    Nordin, Carl F.; Perez-Hernandez, David

    1989-01-01

    During March 1982, a reconnaissance study was carried out along a reach of the Rio Orinoco between Puerto Ayacucho and Ciudad Bolivar. This was the low-flow season. Samples of bed material and suspended sediments were collected, sonic records of the bed were obtained at several locations, and the exposed bars and sand waves were studied at four locations. Sounding records were obtained at two of these locations during June and November when flow covered the bars, and additional studies were made on the ground at some of these same sites during March 1983. The bed of the river is mostly sand with small quantities, about 5 percent by weight on average, of gravel. Suspended- sediment concentrations were low, ranging between 20 milligrams per liter above Rio Apure to almost 40 milligrams per liter below its confluence with the Rio Orinoco. The annual sediment load is estimated to be 240x10 6 megagrams per year. During the dry season, 35 percent or more of the bed is exposed in the form of large bars composed of many sand waves. Trade winds blow upriver and there is substantial upriver transport of river sediments by the wind. If the bars contain very coarse sands and fine gravel, deflation forms a lag deposit that armors the bar surface and prevents further erosion. Theoretical calculations show that the lower limit for the fraction of the bed that needs to be covered with nonmoving particles to prevent further erosion and the smallest size of the armor particles depend only on wind speed. Calculations of bed-material transport were made for a typical wide and narrow section of the river; the annual load, excluding the wash load, is about 30 x 10 6 megagrams per year. A new definition for wash load is proposed; it is material that can be suspended as soon as its motion is initiated. For the Rio Orinoco, this is material finer than 0.1 millimeters.

  18. Early Childhood: Discovery through Sand Play.

    ERIC Educational Resources Information Center

    McIntyre, Margaret

    1982-01-01

    Suggestions are given for using sand play to teach science related vocabulary and concepts to preschool and primary age children by using dry sand, wet sand, different sizes and shapes of spoons and containers, sieves, and funnels. (DC)

  19. Sand and Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Haberle, Robert M.

    1991-01-01

    Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.

  20. Science Learning in the Sand.

    ERIC Educational Resources Information Center

    Sexton, Ursula

    1997-01-01

    Presents activities that allow students to think about the Earth in a contextual manner and become familiar with constructive and destructive processes as they relate to sand - its origins, cyclical processes, and yielding of new products. Explores the bigger idea with a developmentally appropriate study of water, rocks, sand, physical phenomena,…

  1. Dewatering of fine coal

    SciTech Connect

    Hogg, R.

    1995-10-01

    The factors which control the dewatering of fine coal by gravity/centrifugal drainage and by gas displacement (vacuum/hyperbaric filtration) are evaluated. A generalized model is presented and used to describe dewatering kinetics and to establish dewatering limits. Applications to the design of dewatering systems for fine coal dewatering are discussed.

  2. Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and gravel aquifer

    USGS Publications Warehouse

    Anderson, L.D.; Kent, D.B.; Davis, J.A.

    1994-01-01

    Batch experiments were conducted with sand collected from a shallow sand and gravel aquifer to identify the principal chemical reactions influencing the reduction of Cr(VI), so that field-observed Cr(VI) reduction could be described. The reduction appeared to be heterogeneous and occurred primarily on Fe(II)-bearing minerals. At only 1 wt %, the fine fraction (<64 ??m diameter) of the sediments dominated the amount of aqueous Cr(VI) reduction because of its greater reactivity and surface area. Although reduction of Cr(VI) increased with decreasing pH, small variations in the abundance of fine fraction among the replicate samples obscured pH trends in the batch experiments. Consistent results could only be obtained by separating the fine material from the sand and running parallel experiments on each fraction. As pH decreased (6.4 to 4.5), Cr(VI) reduction increased from 30 to 50 nmol/m2 for the sand fraction (64-1000 ??m) and from 130 to 200 nmol/m2 for the fine fraction. The amount of Cr(VI) reduced in both the sand-sized and fine material increased from 35 to 80 and from 130 to 1000 nmol/m2, respectively, for a 10-fold increase in Cr(VI)initial. A consistent description of the rate data was achieved by assuming that intraparticle diffusion limited the observed rate of reduction.

  3. Hydrogeology of sand and gravel deposits near Nepaug Reservoir, New Hartford and Burlington, Connecticut

    USGS Publications Warehouse

    Stone, Janet Radway; Starn, J. Jeffrey; Morrison, Jonathan

    2001-01-01

    Sand and gravel deposits near the Nepaug Reservoir in New Hartford and Burlington, Connecticut, were studied to provide a basis for ongoing investigations that will evaluate water-quality conditions in the watershed and the effects of sand and gravel mining on the quality of water in the reservoir. In the Nepaug area, surficial glacial materials overlie crystalline bedrock that is predominantly schist and gneiss. Along the western side of Nepaug Reservoir, glacial stratified deposits were laid down as ice-marginal deltas in a series of small glacial lakes that formed sequentially as the ice margin retreated northeastward through the area. These deposits are as much as 250 feet thick and are subdivided into coarse-grained units (gravel, sand and gravel, and sand deposits) and fine-grained units (very fine sand, silt, and clay deposits). Approximately 954 million cubic feet of sand and gravel is contained in four delineated deposits in two areas near the reservoir. The sand and gravel deposits adjacent to the Nepaug Reservoir can affect the physical and chemical responses of the watershed. Removal of the sand and gravel would likely result in increased streamflow peaks associated with storms and decreased streamflow during low-flow periods. Streamflow during floods and droughts at Burlington Brook and Clear Brook, a tributary to the Nepaug Reservoir, were compared to determine how the volume of sand and gravel in a watershed affects ground-water storage and the way water is released from storage. Removal of unsaturated deposits also may affect chemical interactions between water and sediment and cause changes in the amount of dissolved constituents in the water.

  4. PM 2.5 Airborne Particulates Near Frac Sand Operations.

    PubMed

    Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin

    2015-11-01

    The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health. PMID:26638669

  5. Separability studies of construction and demolition waste recycled sand.

    PubMed

    Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C

    2013-03-01

    The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. PMID:22835506

  6. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by their proximity to the interacting object or force with the sand. To illustrate an example, as a rover wheel moves forward and approaches a particular sand region, that region will continue to subdivide until individual sand particles are represented. Conversely, if the rover wheel moves away, previously subdivided sand regions will recombine. Thus, individual sand particles are available when an interacting force is present but stored away if there is not. As such, this technique allows for many particles to be represented without the computational complexity. We have also further generalized these subdivision regions in our sand framework into any volumetric area suitable for use in the simulation. This allows for more compact subdivision regions and has fine-tuned our framework so that more emphasis can be placed on regions of actively participating sand. We feel that this increases the framework's usefulness across scientific applications and can provide for other research opportunities within the earth and planetary sciences. Through continued collaboration with our academic partners, we continue to build upon our sand simulation framework and look for other opportunities to utilize this research.

  7. Saltation of non-spherical sand particles.

    PubMed

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  8. Saltation of Non-Spherical Sand Particles

    PubMed Central

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  9. Sand, Syrup and Supervolcanoes

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    Supervolcanic eruptions are amongst the most awesome events in the history of the Earth. A supervolcano can erupt thousands of cubic kilometers of ash devastating entire countries and changing the climate for decades. During the eruption, the magma chamber partially empties and collapses. As the chamber collapses at depth, a massive subsidence pit develops at the surface, called a caldera, some calderas can be the size of the entire San Francisco Bay Area. Fortunately, a supervolcano of this size has not erupted since the development of modern man. Due to the infrequency and massive scale of these eruptions, volcanologists do not yet fully understand how calderas form and how the eruption is affected by the roof collapse and vice versa. Therefore, simple analogue experiments are amongst the best ways to understand these eruptions. We present two of these experiments that can be fun, cheap, and helpful to high school and university instructors to demonstrate caldera formation. The first experiment illustrates how magma chamber roofs collapse to produce different style calderas, the second experiment demonstrates how the magma in the chamber affects the collapse style and magma mixing during a supervolcanic eruption. The collapse of a magma chamber can be demonstrated in a simple sandbox containing a buried balloon filled with air connected to a tube that leads out of the sandbox. At this small scale the buried balloon is a good analogue for a magma chamber and sand has an appropriate strength to represent the earths crust. Faults propagate through the sand in a similar way to faults propagating through the crust on a larger scale. To form a caldera just let the air erupt out of the balloon. This experiment can be used to investigate what controls the shape and structure of calderas. Different shaped balloons, and different burial depths all produce sand calderas with different sizes and structures. Additionally, experiments can be done that erupt only part of the volume of the balloon. These sandbox experiments can be compared to natural calderas and help us understand their internal structure. The second experiment helps us understand how magma behaves during collapse. For this experiment we allowed dense cylindrical blocks to sink into syrup solutions filled with poppy seeds. We mix the syrup with warm water to reduce its viscosity. A series of sinking experiments can be done at different viscosities to investigate different regimes of fluid flow. A key parameter used to the character of the flow of magma is the Reynolds number, the ratio between inertial and viscous forces. The experiments show how the Reynolds number of the magma affects the speed and the style that the block sinks, and also how the magma behaves in the chamber. Fast subsidence in low viscosity fluid (high Reynolds numbers) produces seed vortices in the syrup, indicating mixing. This experiment helps us understand the interplay between eruption and collapse and why mixed magma frequently erupts from calderas. These two simple experiments not only demonstrate caldera formation, but also can be used to get quantative information about the processes governing caldera formation.

  10. Analyses of fine paste ceramics

    SciTech Connect

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  11. SANDIA REPORT SAND2014-20600

    E-print Network

    SANDIA REPORT SAND2014-20600 Unlimited Release Printed December 2014 Empirically Derived Strength; further dissemination unlimited. #12;SAND2014-20600 2 December 2014 Issued by Sandia National Laboratories: http://www.ntis.gov/search #12;December 2014 3 SAND2014-20600 SAND 2014-20600 Unlimited Release Printed

  12. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves an interaction between solar heating, thermal instability, atmospheric turbulence, wind strength, and surface threshold conditions. During the day, solar heating produces thermal instability, which enhances the convect...

  13. Laboratory compaction of cohesionless sands 

    E-print Network

    Delphia, John Girard

    1998-01-01

    A total of 62 cohesiveness sands were tested to rographics. investigate the importance of the water content, grain size distribution, grading of the soil, particle shape, grain crushing during testing and laboratory compaction test method...

  14. Nearshore oblique sand bars

    NASA Astrophysics Data System (ADS)

    Ribas, F.; FalquéS, A.; Montoto, A.

    2003-04-01

    The coupling between hydrodynamics and the evolving topography in the surf zone has been theoretically examined for oblique wave incidence. It is shown that positive feedback can lead to the initial growth of several types of rhythmic systems of sand bars. The bars can be down-current oriented or up-current oriented, which means that the offshore end of the bar is shifted down-current or up-current with respect to the shore attachment. In the limit of strong current compared to wave orbital motion, very oblique down-current oriented b ars are obtained with a spacing of several times the surf zone width. When wave orbital motions are dominant, systems of up-current oriented bars and crescentic/down-current oriented bars appear with spacings of the order of the surf zone width. The latter feature consists of alternating shoals and troughs at both sides of the break line with the inner shoals being bar-shaped and oblique to the coast. The growth (e-folding) time of the bars ranges from a few hours to a few days and it is favored by constant wave conditions. The range of model parameters leading to growth corresponds to intermediate beach states in between the fully dissipative and the fully reflective situations. Preliminary comparison with field observations shows qualitative agreement.

  15. Fine Grained Robotics

    E-print Network

    Flynn, Anita M.

    Fine grained robotics is the idea of solving problems utilizing multitudes of very simple machines in place of one large complex entity. Organized in the proper way, simple machines and simple behaviors can lead to emergent ...

  16. Modern Graywacke-Type Sands.

    PubMed

    Hollister, C D; Heezen, B C

    1964-12-18

    A preliminary study of more than 100 deep-sea cores from abyssal plains has revealed two examples of recent muddy sands of the graywacke type which, together with the microcrystalline matrix, form a bimodal-size distribution sands have a well-sorted framework of quartz, feldspar, and rock fragments which, together with the microcrystalline matrix, form a bimodal-size distribution that is also typical of ancient graywackes. The matrix is considered to be primary. PMID:17775982

  17. Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA

    E-print Network

    Zreda, Marek

    Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA- ing sand dunes based on the accumulation of cosmogenic chlorine-36 in sand grains. The concen- tration of chlorine-36 in a stable sand dune primarily depends on the length of time the dune has been exposed

  18. Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Kazuhisa; Sugawara, Daisuke; Ikema, Satoko; Miyagi, Toyohiko

    2012-12-01

    This paper reports on the sedimentary processes of sand and boulder deposition at Sabusawa Island, Japan as a result of the 2011 Tohoku-oki tsunami. Boulders were composed of tuffaceous rocks and sourced from an earthquake-triggered slope failure as well as concrete fragments of seawall. They were scattered over the ground surface and did not form boulder ridges, although there was some local imbrication. The boulders were deposited on top of a sand layer indicating that the latter, possibly deposited from bed load, covered the ground surface first. This sand layer probably reduced friction allowing boulders to be transported more easily than might be expected across a hard ground with a high bottom friction. Sand deposits showed landward thinning and fining features, while the boulders showed a landward coarsening (tuffaceous boulders) or a landward fining (concrete boulders), indicating that large clasts were not necessarily scattered randomly but rather might have a clast size gradient with distance inland. These features are explained by the local topographic setting that constrained the directions of incoming and returning tsunami flows. Some clasts at the inland extent of the boulder field were covered by an upward fining sand layer. This feature suggests that the boulders were deposited prior to the suspended sands, with the latter subsequently laid down before the water level dropped below the top of the boulders. Such modern investigations of the sedimentary features of various sizes of grains and clasts immediately after a tsunami provide invaluable data for the reconstruction of inundation processes.

  19. Nitrogen photoreduction on desert sands under sterile conditions

    PubMed Central

    Schrauzer, Gerhard N.; Strampach, Norman; Hui, Liu Nan; Palmer, Miles R.; Salehi, Jahanshah

    1983-01-01

    Sands from various geographic locations reduce N2 from the air to NH3 and traces of N2H4 on exposure to sunlight. This N2 photofixation occurs under sterile conditions on the surface of finely dispersed titanium minerals such as rutile, utilizing reducing equivalents generated through the photolysis of chemisorbed H2O. Abiological N2 photofixation is suggested to be part of the nitrogen cycle in arid and semiarid regions. It is estimated that about 10 × 105 tons of N2 is photoreduced on the total surface of the earth's deserts per year. PMID:16593330

  20. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  1. Windblown Sand in West Candor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 December 2003

    West Candor Chasma, a part of the vast Valles Marineris trough system, is known for its layered sedimentary rock outcrops. It is less known for dark fields of windblown sand, but that is what occurs in the north-central part of the chasm. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, obtained in December 2003, shows the interplay of dark, wind-blown sand with buttes and mesas of layered rock in west Candor Chasma. Dark streamers of sand point toward the east/southeast (right/lower right), indicating that dominant winds blow from the west. This picture is located near 5.2oS, 75.7oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  2. Characterization of sand lenses embedded in tills

    NASA Astrophysics Data System (ADS)

    Kessler, T. C.; Klint, K. E. S.; Nilsson, B.; Bjerg, P. L.

    2012-10-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been applied at the Kallerup field site in the Eastern part of Denmark. The site offers exposures in a number of till types that underwent different levels of glaciotectonic deformation. Sand lenses show high spatial variability and only weak uniformity in terms of extent and shape. Secondly, the genesis of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses in various glacial environments. Due to the complex and mutable appearance of sand lenses, geometric descriptions can reveal the deformation history and even give indications on the palaeo-glaciological conditions during the deposition of the surrounding tills. This information can support the understanding of till genesis and further inform till classifications. In this regard, structural heterogeneity such as sand lenses can supplement traditional directional element analysis to identify till types and may be used as a novel tool in till investigations.

  3. Dewatering of fine coal

    SciTech Connect

    Sastry, K.V.S. . Dept. of Materials Science and Mineral Engineering)

    1991-01-01

    Fine coal dewatering is one of the most pressing problem facing the coal cleaning industry. This project was undertaken with the objective of improving the dewatering process with surface chemical activation by primarily understanding the fundamental and process engineering aspects of vacuum filtration. Specific tasks for this project included -- development of an experimental apparatus and procedure to yield highly reproducible results and extensive data from each test, detailed experimental investigation of the dewatering characteristics of coal fines with and without the addition of flocculants and surfactants, and under different operating conditions, and finally identification and establishment of the physical limits of mechanical dewatering. Following are the significant conclusions from the study: Fineness and size distribution of the coal fines have the most significant influence on the coal dewatering process; usage of flocculants and surfactants is almost essential in reducing the cake moisture and in increasing the filter throughputs; based on the experimental data and the literature information, the existence of an asymptotic limit for filter cake moisture correlatable with a capillary number of the filter cake was identified. 66 refs., 23 figs., 7 tabs.

  4. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust. PMID:19065389

  5. Onsite Wastewater Treatment Systems: Sand Filters 

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  6. SANDIA REPORT SAND2014-207844

    E-print Network

    SANDIA REPORT SAND2014-207844 Unlimited Release November 2014 Photovoltaic Microinverter Testbed://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-207844 Unlimited Release November 2014 Photovoltaic Microinverter

  7. SANDIA REPORT SAND2002-0729

    E-print Network

    SANDIA REPORT SAND2002-0729 Unlimited Release Printed April 2002 Sandia SCADA Program High@ntis.fedworld.gov Online order: http://www.ntis.gov/ordering.htm #12;3 SAND2002-0729 Unlimited Release Printed April 2002

  8. SANDIA REPORT SAND820345 q UC60

    E-print Network

    SANDIA REPORT SAND82­0345 q UC­60 Unlimited Release Printed October 1982 Finite Element Analysis Microfiche copy: AO1 #12;SAND82-0345 FINITE ELEMENT ANALYSIS AND MODAL TESTING OF A ROTATING WIND TURBINE* T

  9. SAND2001-2375 Unlimited Releas

    E-print Network

    SAND2001-2375 Unlimited Releas Printed August 2001 ., . . . . , . NUIVIAOUse1 -Numerical Man ;andia.fedworld.eov Onlineorder: http://www.ntis.gov/ordering.htm #12;SAND2001-2375 Unlimited Release Printed August2001 Nu

  10. Andreas Sand Thomas Mailund Christian N. S.

    E-print Network

    Schierup, Mikkel Heide

    Andreas Sand Thomas Mailund Christian N. S. Pedersen Using the Power of Modern Processors in Bioinformatics ! ! Martin Simonsen1,2, Andreas Sand1,2, Thomas Mailund1 and Christian N.S. Pedersen1,2 ! ! 1

  11. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  12. Sand and Water Table Play

    ERIC Educational Resources Information Center

    Wallace, Ann H.; White, Mary J.; Stone, Ryan

    2010-01-01

    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  13. Registration of 'Centennial' Sand Bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Centennial’ sand bluestem (PI 670042, Andropogon hallii Hack.) is a synthetic variety selected for greater percentage seed germination and percentage seedling establishment under field conditions. Centennial was tested under the experimental designation of ‘AB-Medium Syn-2’. Two cycles of recurren...

  14. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves the interaction between the sun, wind, and earth. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the s...

  15. Introduction Sand sole, Psettichthys melanostictus,

    E-print Network

    , Microstomus Age, Growth, Life History, and Fisheries of the Sand Sole, Psettichthys melanostictus DONALD E estimates of age and growth for California populations and compare them with studies from other areas. We central California (the southern part of its commercial range), where the decline has not reversed

  16. About White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.

  17. Anatomy of a shoreface sand ridge revisited using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, M.M.; McBride, R.A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf ???5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  18. Anatomy of a shoreface sand ridge revisted using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, Marci M.; McBride, Randolph A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf not, vert, ~5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  19. Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia

    USGS Publications Warehouse

    McKee, Edwin Dinwiddie

    1989-01-01

    Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.

  20. Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    2000-01-01

    A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

  1. Treating tar sands formations with karsted zones

    DOEpatents

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  2. Animating Sand as a Fluid Yongning Zhu

    E-print Network

    Teschner, Matthias

    Animating Sand as a Fluid Yongning Zhu University of British Columbia Robert Bridson University of British Columbia Figure 1: The Stanford bunny is simulated as water and as sand. Abstract We present a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes

  3. SANDIA REPORT SAND99-2706

    E-print Network

    SANDIA REPORT SAND99-2706 Unlimited Release Printed October 1999 Space-Variant Post-Filtering for Wavefront urvature Correction in Polar-Formatted potlight-Mode SAR Imagery Neal E. Doren Prepared by Sand Royal Rd Springfield, VA 22161 NTIS price codes Printed copy: A12 Microfiche copy: A01 #12;SAND99

  4. Development of stresses in cohesionless poured sand

    E-print Network

    Claudin, Philippe

    Development of stresses in cohesionless poured sand By M. E. Cates1 , J. P. Wittmer1 , J a conical sandpile, created by pouring sand from a point source onto a rough rigid support, shows) is required for systems with two-dimensional symmetry, such as a wedge of sand; for a three

  5. SANDIA REPORT SAND931900 q UC261

    E-print Network

    SANDIA REPORT SAND93­1900 q UC­261 Unlimited Release Printed October 1993 User's Guide by SandIa National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Distribution UC-261 SAND93-1900 Unlimited Release Printed October 1993 User's Guide for the Frequency Domain

  6. SAND80-2669 Unlimited Release

    E-print Network

    SAND80-2669 Unlimited Release UC-60 ; Guy Cable Design and Damping for Vertical Axis Wind Turbines Thomas G. Carrie o) #12;Issued by Sand@ National ,Laboratories, operated for the United States Department of Energy by Sand,. Corporatmn. Printed in the United States of America Available from: National Technical

  7. SAND88-0633 Unlimited Release

    E-print Network

    SAND88-0633 Unlimited Release Printed February 1990 Initial Structural Response Measurements a copy of any digitized SAND Report, you are required to update the markings to current standards. #12 codes Printed copy: A02 Microfiche copy: A01 #12;Distribution Category UC-261 SAND88-0633 Unlimited

  8. Sand Dome on a Steam Engine

    USGS Multimedia Gallery

    Steam engines used high-grade silica sand for traction on the rails. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially...

  9. Sulfidization of Witwatersrand black sands: From enigma to myth

    SciTech Connect

    Reimer, T.O. ); Mossman, D.J. )

    1990-05-01

    Reassessment of the nature and distribution of iron-titanium oxide minerals vs. pyrite in several South African Archean arenaceous sequences and conglomerates shows that in rocks of the Swaziland, Pongola, and Witwatersrand Supergroups, (1) pyrite of allogenic and/or authigenic origin is the predominant heavy mineral; (2) iron-titanium oxides generally take the form of very fine grained, dispersed retile-leucoxene replacements after earlier black-sand minerals; (3) iron-titanium oxides constitute 1%-6% of the total heavy minerals; and (4) the phenomenon of sulfidization of iron-titanium oxide minerals is evident only on a very local scale. Exceptions to points 1 and 3 occur in conglomerates of the Dominion Group, which were derived from a largely pegmatitic terrain. The lack of macroscopically visible iron-titanium oxide minerals in the Witwatersrand conglomerates is a result of a combination of two factors. First, recycling of older sedimentary material was critical to the genesis of the conglomerates; older sedimentary material was critical to the genesis of the conglomerates; about 60% of the source area consisted of arenaceous sequences. Iron-titanium mineral grains from this source had been altered to rutile-leucoxene prior to erosion, and thus did not contribute fresh iron-titanium minerals to the conglomerates. Second, those minerals derived from the remaining 40% of the source area were altered and decomposed to rutile-leucoxene in the Witwatersrand conglomerates. Furthermore, much of the resulting finely dispersed material helped to form brannerite, an important titanium sink. There is no need to invoke widespread sulfidization of black sands to sands to account for the supposed lack of iron-titanium minerals and abundance of pyrite in the Witwatersrand conglomerates and ores.

  10. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.

    PubMed

    Noah, Mareike; Lappé, Michael; Schneider, Beate; Vieth-Hillebrand, Andrea; Wilkes, Heinz; Kallmeyer, Jens

    2014-11-15

    Recultivation of disturbed oil sand mining areas is an issue of increasing importance. Nevertheless only little is known about the fate of organic matter, cell abundances and microbial community structures during oil sand processing, tailings management and initial soil development on reclamation sites. Thus the focus of this work is on biogeochemical changes of mined oil sands through the entire process chain until its use as substratum for newly developing soils on reclamation sites. Therefore, oil sand, mature fine tailings (MFTs) from tailings ponds and drying cells and tailings sand covered with peat-mineral mix (PMM) as part of land reclamation were analyzed. The sample set was selected to address the question whether changes in the above-mentioned biogeochemical parameters can be related to oil sand processing or biological processes and how these changes influence microbial activities and soil development. GC-MS analyses of oil-derived biomarkers reveal that these compounds remain unaffected by oil sand processing and biological activity. In contrast, changes in polycyclic aromatic hydrocarbon (PAH) abundance and pattern can be observed along the process chain. Especially naphthalenes, phenanthrenes and chrysenes are altered or absent on reclamation sites. Furthermore, root-bearing horizons on reclamation sites exhibit cell abundances at least ten times higher (10(8) to 10(9) cells g(-1)) than in oil sand and MFT samples (10(7) cells g(-1)) and show a higher diversity in their microbial community structure. Nitrate in the pore water and roots derived from the PMM seem to be the most important stimulants for microbial growth. The combined data show that the observed compositional changes are mostly related to biological activity and the addition of exogenous organic components (PMM), whereas oil extraction, tailings dewatering and compaction do not have significant influences on the evaluated compounds. Microbial community composition remains relatively stable through the entire process chain. PMID:25201817

  11. The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1991-01-01

    Recent operations in the Persian Gulf have exposed military helicopter turbines to excessive amounts of ingested sand. Fine particles, less than 10 microns, are able to bypass the particle separators and enter the cooling and combustion systems. The initial sand chemistry varies by location, but is made up of a calcium aluminum silicate glass, SiO2 low quartz (Ca,Mg) CO3 dolomite, CaCO3 calcite, and occasionally CaCl rocksalt. The sand reacts in the hot combustion gases and deposits onto the turbine vanes as CaSO4, glass, and various crystalline silicates. Deposits up to 0.25 in. thick have been collected. Although cooling hole plugging is a considerable problem, excessive corrosion is not commonly observed due to the high melting point of GaSO4.

  12. Sand dunes as migrating strings.

    PubMed

    Guignier, L; Niiya, H; Nishimori, H; Lague, D; Valance, A

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes. PMID:23767529

  13. Sand dunes as migrating strings

    NASA Astrophysics Data System (ADS)

    Guignier, L.; Niiya, H.; Nishimori, H.; Lague, D.; Valance, A.

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes.

  14. The Holocene evolution of the beach and inland aeolian sand of the north-central Mediterranean coast of Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Bookman, Revital; Shteinberg, Gilad

    2015-04-01

    Israel's coastal geomorphology, situated within a Mediterranean climate zone, is characterized by parallel Pleistocene aeolianite ridges, coastal cliffs of aeolianite, and sandy beaches. Lobe-like fields of predominantly stable transverse and parabolic quartz sand dunes protrude 2-7 km inland from the current Mediterranean Sea coastline. However, their migration and accumulation history is still not well-defined. This study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport along the Caesarea-Hadera dunefield in the north-central coastal plain of Israel. In order to achieve these goals, a detailed field survey and sampling campaign was carried out along a west-east and southwest-northeast transect, loyal to the advancement orientations of the currently stable dunes and directions of dominant sand transporting winds. Beach sand, a foredune, a linear dune, and interdunes of parabolic and transverse dunes were sampled down to their aeolianite or red loam (locally named hamra) palaeosol substrate by drilling and analyzing exposed sections. The sampled sediments were sedimentologically analyzed and twenty-five were dated by optically stimulated luminescence (OSL). The results indicate that beach sand started to accumulate rapidly around 6 ka probably in response to global sea level stabilization. Until around 4 ka, thin sand sheets encroached 2-3 km inland. Sand ages in the range of 1.2-1.1 ka (8th-9th century CE -- Early Moslem period) were found throughout the study area, suggesting a major mobilization of sand, followed by stabilization around 0.6 ka and pedogenesis. By 1.2 ka, the sands had reached their current extent of 5-7 km inland, suggesting transport in a southwest-northeast orientation similar to the advancement orientation of the current transverse and parabolic dunes. The particle-size distributions of the fine to medium-sized aeolian sand showed minor variation linked to inland transport distance and age and did not significantly differ from the values of beach sand. The spatial distribution and temporal clustering of the 1.2-1.1 ka ages does not seem stochastic. However, this age range does not coincide with any local or regional climate change or anthropogenic anomaly that could explain the enhanced sand mobility. Assuming no late Holocene change in coastal sand supply and availability, sand transport may have been due to short term climate (multi-annual) episodes of increased windiness that may have followed short-term or cumulative removal of stabilizing dune vegetation by man, a hypothesis that requires further investigation.

  15. The Dark Surfaces of Mars: Mantles and Sand Sheets

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] (A) Sinus Sabaeus, dark mantle and bright drifts.

    [figure removed for brevity, see original site] (B) Sinus Sabaeus, dark mantle with cracks.

    [figure removed for brevity, see original site] (C) Ganges Chasma Sand Sheet.

    [figure removed for brevity, see original site] (D) Ganges Chasma 3-D Context.

    When seen through a telescope from Earth, Mars reveals a pattern of bright and dark regions. Early astronomers speculated that the dark regions were seas. Later astronomers suggested that the dark regions were vast tracts of vegetation. As recently as the early 1960s, it still seemed possible to a few astronomers that the dark regions had some kind of plant life because they seemed to darken each summer as if plants were growing in response to sunlight.

    Since the Mariner missions to Mars (1965-1972), purely geological explanations have been proposed to explain the dark regions and the changes we see in them. In particular, dust storms have been observed on Mars. Thus wind and dust storms are the suspected culprits that created the 19th Century illusion that something was growing and changing with each martian season. Just as there are 'hurricane seasons' and 'monsoon seasons' on Earth, there may be 'dust storm seasons' on Mars.

    The dark regions of Mars are now being seen in greater detail than ever before by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). As expected, none of these areas are covered by vegetation! But what has been a surprise is the great variety of dark surfaces seen. Before MGS, most had been thinking that these areas are sandy because all of the large martian sand dunes are dark, too. But in many cases, dark dunes and sand are not found in the MOC images--such areas instead are thickly blanketed by a cracked, crusty covering of what may be fine silt instead of sand. Other areas--in particular the floor of Ganges Chasma in the Valles Marineris region--show thick accumulations of windblown sand.

    The first two pictures presented here (A and B, above) show dark, blanketed or mantled surfaces in the Sinus Sabaeus region (310o-350o W longitude and 5o-12oS latitude) of Mars. This dark material in some places has bright dunes on top of it (top, left picture), and in other places appears to have narrow cracks running through it (top, right picture). If the dark material consisted of sand, it would show drifts and tails formed around and behind obstacles as are seen in the thick sand sheets of Ganges Chasma (C and D, above). Because wind transports sand close to the ground, it interacts with obstacles such as the bright mounds in Figure C (above) to make drifts and tails.

    The top left picture is MOC image AB1-11105 located in Sinus Sabaeus near 7.0oS, 343.4oW. The top right picture is also in Sinus Sabaeus and is MOC image M00-01078 near 10.0oS, 329.1oW. The bottom left pair of images show a thick sheet of dark sand in Ganges Chasma. The bottom right picture is a stereo anaglyph (use 3-d red/blue glasses) MOC wide angle view showing the locations of the two Ganges Chasma images. Ganges Chasma is around 7oS, 50oW. All pictures are illuminated from the left. The AB1 images were taken in January 1998, the M00 images are from April 1999.

  16. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments.

    PubMed

    Dong, Wenming; Wan, Jiamin

    2014-06-17

    Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ?96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ? 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ? 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed. PMID:24865372

  17. Fine needle aspiration cytology.

    PubMed Central

    Lever, J V; Trott, P A; Webb, A J

    1985-01-01

    Fine needle aspiration cytology is an inexpensive, atraumatic technique for the diagnosis of disease sites. This paper describes the technique and illustrates how it may be applied to the management of tumours throughout the body. The limitations of the method, the dangers of false positive reports, and the inevitability of false negative diagnoses are emphasised. In a clinical context the method has much to offer by saving patients from inappropriate operations and investigations and allowing surgeons to plan quickly and more rationally. It is an economically valuable technique and deserves greater recognition. Images PMID:2578481

  18. Morris. E. Fine symposium

    SciTech Connect

    Liaw, P.K. ); Marcus, H.L. ); Weertman, J.R. ); Santer, J.S. )

    1990-01-01

    Professor Morris E. Fine is a pioneer in teaching the unifying concepts underlying all classes of materials: metals, ceramics, polymers, and electronic materials. He is a founder and the guiding genius of the first materials science department in the world. His research career at Northwestern University has spanned a broad range of topics, from physical chemistry to mechanical behavior, and includes studies on metals and alloys, ceramics, and composite materials. A symposium to recognize the many outstanding contributions by Professor Fine to the development of materials science as a discipline was organized on behalf of the TMS-ASM Committees of Mechanical Metallurgy, Flow and Fracture, and Structural Materials. This symposium was held in Detroit, Michigan, on 8-11 October in conjunction with the 1990 TMS Fall Meeting and Materials Week. Academic, government, and industrial speakers from around the globe gathered to present the latest concepts and experimental results on topics ranging from advanced materials to fundamental principles governing materials behavior. The papers were divided into seven sessions: Physical Metallurgy, Ferrous Structural Materials, Metal Matrix Composites, Microstructural Evolution, Engineering Materials, Fatigue and Fracture, and Flow and Fracture in Non-Ferrous Materials.

  19. Modelling the effect of fine sediment on salmonid spawning habitat

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Sear, David; Collins, Adrian; Jones, Iwan; Naden, Pam

    2013-04-01

    Diffuse fine sediment delivery to rivers is recognised as a widespread problem in the UK. Furthermore, projections suggest that sediment pressures may increase in the future due to both climate change and land use changes. This fine sediment infiltrates into the bed and clogs up salmonid spawning gravels. Fine sediment has been found to reduce survival rates of salmonid eggs in both field and laboratory experiments, with the main hypotheses used to explain this being (a) fine sediment reduces gravel permeability and intra-gravel flow velocities; (b) intra-gravel O2 concentrations decrease due to reduced supply and increased consumption by organic sediments; and (c) clay particles block the exchange of O2 across the egg membrane. The SIDO (Sediment Intrusion and Dissolved Oxygen)-UK model is a physically based numerical model which stimulates the effect of fine sediment intrusion on the abiotic characteristics of the salmonid redd, along with the consequences for egg development and survival. The first 2 hypotheses above are represented, while the third is not yet included. Field observations from the River Ithon, Wales, have been used to calibrate the model using sediment accumulation data. The model was then used to assess the impact of varying sediment inputs upon the sediment intrusion rates, abiotic redd characteristics and fish egg survival rates. Results indicate that egg survival is highly sensitive to the discharge and the suspended sediment concentrations, particularly to changes in the supply rate of sand particles, rather than silt and clay. This can be explained by the increased likelihood of blocking of intra-gravel pores by larger sand particles, which reduce intra-gravel flow velocities and the supply of oxygen rich water. A doubling of the sand concentration results in a 51% increase in red infilling, which causes a 24% reduction in the average intra-gravel flow velocity. A corresponding 20% decrease of the average O2 concentration is evident which is a function of reduced supply of oxygen rich water and consumption by sediment within the redd. The results indicate that it is the former of these processes which is the most important, while the Sediment Oxygen Consumption (SOC), mainly associated with the silt and clay fractions, is considered to have a secondary effect on influencing the egg zone abiotic properties. These findings have implications for how we manage the sediment delivery problem.

  20. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  1. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high (~0.37 mmol/L), whereas in the MFTs nitrate concentrations are much lower (~0.04 mmol/L). In some MFT samples sulphate appears to be the most abundant electron acceptor (up to 94 mmol/L) but no hydrogen sulphide could be detected. High cell counts in root-bearing layers might be related to a supply with otherwise unavailable nutrients, especially phosphorus. Another plausible explanation is that the cells are brought in the sand with the peat-mineral mix, because it seems that the mix contains a significant amount of roots. Samples with low amounts or no roots showed lower cell abundances. Sand and MFTs also differ in the microbial community composition. Molecular analysis of bacterial isolates of samples with different oil content show that ?-Proteobacteria dominate the cultivable bacterial population in substrates with a high residual content of oil, whereas in the low oil content sand they play a minor role. The data of corresponding metagenomic analyses confirm these results. In MFTs ?-Proteobacteria make up about 80% of the total bacterial population. The surprisingly stable cell abundance indicates that microbial processes take place throughout the entire production process. Rising cell numbers in root-bearing horizons show that a plant cover fosters microbial abundance and diversity, helping to restore full ecosystem functionality.

  2. Production Mechanisms for the Sand on Titan and the Prospects for a Global Sand Sea

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; MacKenzie, Shannon

    2014-11-01

    With ~15% of its surface covered by sand seas, Titan turns out to be the Arrakis of the solar system. How the sand particles that make up the dunes are created, however, remains an outstanding question. Titan's haze particles are organic in composition as required by spectral analysis of dunes, however they have diameters of ~1um, and are 10,000,000 times too small by mass to directly represent the ~200-um sand particles. In addition to previous suggestions that sand could come from sintering of sand particles or by burial, lithification, and subsequent erosion (more like typical sands on Earth), we suggest two new mechanisms for production of sand in association with Titan's liquid reservoirs. Dissolution and reprecipitation as evaporite forms the gypsum dunes of White Sands, NM, USA on Earth, and could play a role on Titan as well. Alternatively, haze particles in the lakes and seas could aggregate into larger particles via flocculation, a mechanism seen to occur on Earth in Morocco. Each of these sand particle production ideas has associated predictions that can be tested by future observations. The lack of evident sand sources in VIMS data implies that Titan's sand seas may be old and their continuous interconnectedness across the Dark Equatorial Belt implies that all of the equatorial dunefields may represent a single compositionally uniform sand sea. We will present possibilities for sands from this sea to bridge the large gap across Xanadu, including barchan chains and fluvial transport.

  3. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune

    NASA Astrophysics Data System (ADS)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  4. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  5. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Peñuela, M. C.; Patiño, S.; Lloyd, J.

    2009-12-01

    It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots) should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm) by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol) at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha-1 yr-1, method 1 and 2, respectively) as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha-1 yr-1, method 2). Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha-1) as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha-1). The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different between forest types. Thus, a trade-off between above- and below-ground growth seems to exist with our results also suggesting that there are no differences in total net primary productivity between these two forests, but with higher below-ground production and lower above-ground production for the forest on the nutrient poor soil.

  6. Trends in Gypsiferous Aerosol Downwind of White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    White, W. H.; Trzepla, K.; Yatkin, S.; Gill, T. E.; Jin, L.

    2013-12-01

    White Sands is a known 'hotspot' of dust emissions in southwestern North America where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the northeast. The U.S. Forest Service operates an aerosol sampler at White Mountain in the lee of the Sacramento range as part of the IMPROVE network (Interagency Monitoring of PROtected Visual Environments). In recent years a spring pulse of sulfate aerosol has appeared at White Mountain, eclipsing the regional summer peak attributed to atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with clearly increased concentrations of calcium, strontium, and chloride. The increase in these species coincides with a drought following a period of above-average precipitation. White Sands and White Mountain thus provide an unusually well-defined natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiably distinct at a long-term observatory ~100 km downwind. This paper examines the routine PM2.5 (fine-particle, Dp < 2.5 um) composition data available from White Mountain and other regional IMPROVE sites (e.g. Bosque del Apache), supplemented by some elemental analysis of collocated PM10 samples. The ambient data are compared with chemical analyses of surface samples from White Sands, bulk dry dustfall and soil surface composition at White Mountain, satellite observations of dust plumes, and available meteorological records. Together, the observations document significant, episodic aeolian transport of gypsum and other salts across the Sacramento Mountains. Figure 1. Left: Monthly average concentrations of every-third-day 24h samples. Top right: MODIS image, 2/28/2012, http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=77294). Bottom right: Correlation (r) matrix for 2011 daily elemental data from White Mountain (n = 105).

  7. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  8. Acoustic velocity and attenuation of unconsolidated sands: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Liu, Zhuping

    I have developed a sonic frequency apparatus (1--10 kHz) that utilizes resonance to measure the acoustic velocities and attenuation of both extensional and torsional waves in unconsolidated materials (e.g., sands, clays and sediments) under hydrostatic confinement. The basic equations and methodology for correcting these effects are given and applied to a dry Monterey sand to determine the shear and Young's moduli and attenuation over an effective pressure range of 0--9 MPa. Comparison of my measured data with theoretical granular contact models gives insight into the seismic wave propagation in unconsolidated sands. The effects of water saturation and pressure on the velocity and attenuation of seismic waves in unconsolidated sands are investigated using the newly-designed apparatus and methodology in the laboratory. Two kinds of pore fluid distribution are achieved with water injection and de-gassing methods, and an X-ray CT scanner is used to obtain the images of pore fluid distribution. There is not significant difference in velocities for the different pore fluid distributions. Measured velocities are in favorable agreement with theoretical predictions based on Gassmann's equations. At all effective pressures, V P of the fully-water-saturated sand is larger than that of the dry sand, implying that water in pore space stiffens the rock, causing an increase in the rock's bulk modulus. For the partially-saturated sand, the attenuation of compressional wave is larger than that of torsional wave, and both of them increase with water saturation. The effects of pore fluid saturation and distribution on seismic velocities are further studied based on numerical simulations of seismic wave propagation in fluid-saturated porous media. The calculated results indicate that numerical modeling based on Biot theory gives the same compressional velocity VP as Gassmann's equations if the pore fluids are mixed in such a fine scale that the induced pore pressure increments can equilibrate with each other. (Abstract shortened by UMI.)

  9. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  10. Minerals yearbook, 1988: Industrial sand and gravel

    SciTech Connect

    Bolen, W.P.

    1988-01-01

    Production of industrial sand and gravel in 1988 increased to 28.5 million short tons, about a 2% increase over that of 1987, but remained 15% below the record-high production level of 1979. The production increase was due in part to the addition of new operations in California and Tennessee. Imports of industrial sand and gravel decreased about 59% in quantity, but the associated value increased 79%. Exports of industrial sand and gravel increased about 40% in quantity with a slight increase in average value per ton. Domestic apparent consumption of industrial sand and gravel in 1988 was 27.5 million tons.

  11. Fine-scale Textures

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 19 May 2003

    This image shows fine-scale textures around a crater southwest of Athabasca Vallis. These fine scale ridges are most likely the remnants of older flood eroded layered rocks and not longitudinal grooves carved out of the landscape by flooding. These features are ridges and not grooves. Also note the layers visible on the southeast side of the island.

    Image information: VIS instrument. Latitude 9.6, Longitude 155.9 East (204.1). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Continuous fine ash depressurization system

    DOEpatents

    Liu, Guohai (Birmingham, AL); Peng, Wan Wang (Birmingham, AL); Vimalchand, Pannalal (Birmingham, AL)

    2011-11-29

    A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

  13. Investigating Sand on the Coast of Oregon and Washington.

    ERIC Educational Resources Information Center

    Komar, Paul D.

    2002-01-01

    Describes factors affecting sand composition and distribution along coastlines. Uses variations in sand types along the Oregon coast to illustrate the influences of sand grain density, wave action, and headlands on sand movements. Describes the seasonal movement of sand across beaches. (DLH)

  14. Geoarchaeological Investigations in the Upper Neosho River basin, Eastern Kansas

    E-print Network

    Gottsfield, Andrew Stefan

    2008-11-19

    Flowlines - USGS Step Two: Define and map basin landforms Soil Series Geomorphic Surface Parent Material Family or higher taxonomic class Ivan floodplains (T-0) calcareous, silty alluvium Fine-silty, mixed, mesic Cumulic Hapludolls Lanton floodplains (T-0...) alluvium Fine-silty, mixed, thermic Cumulic Haplaquolls Verdigris floodplains (T-0) silty alluvium Fine-silty, mixed, active, thermic Cumulic Hapludolls Chase low terraces (T-1) silty and clayey alluvium Fine, smectitic, mesic Aquertic Argiudolls Leanna low...

  15. Geomorphic controls on fine sediment reinfiltration into salmonid spawning gravels and the implications for spawning habitat rehabilitation

    NASA Astrophysics Data System (ADS)

    Franssen, Jan; Lapointe, Michel; Magnan, Pierre

    2014-04-01

    Anthropogenic activities often increase the flux of fine sediment to fluvial environments. In gravel-bed streams the extent to which augmented fines loading causes the degradation of vital interstitial habitats is determined by factors controlling fines infiltration into channel substratum. Previous research suggests that substrate pore constriction size, intensity of upwelling interstitial flow, and the quantity of fines transported across the bed surface (i.e., exposure dose) are three important factors controlling substrate fines content. Few field studies have investigated the interactive effects of these physical factors. We constructed 17 experimental redds in brook trout spawning microhabitats in a boreal forest stream in Quebec, Canada, to investigate the role of pore constriction size, hyporheic flow, and exposure dose on substrate fines content. To simulate the effect of spawning in coarsening the substrates, redds were partially cleaned of coarse sand and of all fine sediment (< 0.5 mm). Results show that coarse sands and fine gravel (0.5-4 mm; filter class) acted as a filter of percolating fine sediment (< 0.5 mm). We found that this filtering effect (i.e., lower fines density at egg pocket depth) occurred at sites where the proportion of the filter class in the substratum above egg pocket depth exceeded a threshold value of 18%, as indicated by a statistically significant step-function response between fines gradient with depth and the filter class content in the uppermost layers of the bed. Results also indicated that fines content at depth was unrelated to fines exposure. Estimated upward seepage rates were well below the threshold velocity that would inhibit the percolation of medium-grained sand (i.e., 0.5 mm) into the bed. These results suggest that within these gravel-bed spawning substrates the abundance of filter classes was the primary determinant of fines content at depth. This study highlights the importance of considering filter class content in the implementation of spawning habitat rehabilitation schemes and when assessing the susceptibility of incubation microhabitats to augmented fine sediment loading to streams.

  16. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltrati...

  17. Fecal indicators in sand, sand contact, and risk of enteric illness among beach-goers

    EPA Science Inventory

    BACKGROUND: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. METHODS: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days...

  18. A high-efficiency, low-cost aeolian sand trap

    NASA Astrophysics Data System (ADS)

    Sherman, D. J.; Swann, C.; Barron, J. D.

    2014-06-01

    We present a design for an aeolian sand trap that is based on the streamer trap concept used in sediment transport studies. The trap is inexpensive, has excellent trapping efficiency, is durable, and easy to use. It is fabricated from stainless steel that is cut and bent to form a frame to support a fine nylon mesh. Typical trap openings are 100 mm wide and 25, 50, or 100 mm high. Traps are 250 mm long, and are stackable to measure vertical characteristics of saltation. The nylon mesh has 64 ?m openings that comprise 47% of the area of the material. Aerodynamic efficiency was tested in a wind tunnel, and sediment trapping efficiency evaluated in field deployments. Both evaluations support the use of this trap for short-term measurements.

  19. Impact of ozonation on particle aggregation in mature fine tailings.

    PubMed

    Liang, Jiaming; Tumpa, Fahmida; Pérez Estrada, Leonidas; Gamal El-Din, Mohamed; Liu, Yang

    2014-12-15

    The extraction of bitumen from the oil sands in Canada generates tonnes of mature fine tailings (MFT), consisting of a mineral matrix of sand, clay, and water, which without treatment requires thousands of years to fully consolidate. We assessed the performance of a novel ozonation method designed to enhance the settling of MFT and explored the mechanisms involved. The solid content of MFT obtained from oil sands tailings was adjusted to 1, 3, 5 wt % with water before applying 15, 30, and 60 min of ozonation. MFT settled after a short (15 min) ozonation treatment, resulting in a sample with clear released water on the top and condensed sludge at the bottom. The water chemistry characteristics, particles' surface charge and chemical bonding were measured. Ozonation led to the increased organic acids concentrations in MFT suspension through converting of organic matter from high to low molecular weight, and detaching organic coating on MFT particles. The pH and the concentrations of ions in the MFT suspension were changed significantly, an association of metal ions with MFT particles was promoted, and the surface charges of MFT particles were neutralized. Consequently, the MFT suspension was destabilized and MFT particle precipitation was observed. PMID:25214072

  20. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. PMID:26490430

  1. Fracture behavior of cemented sand

    NASA Astrophysics Data System (ADS)

    Alqasabi, Ahmad Othman

    While fracture mechanics for cementitious materials and composites in the past three decades have developed mainly in concrete applications, it has not yet gained its rightful place in the geotechnical field. There are many examples in the geotechnical literature, especially those related to brittle and stiff soils, where traditional approaches of analysis have proven to be inadequate. While geotechnical problems are inherently complex in nature, using the finite element method (FEM) with fracture mechanics (FM) have been shown to provide powerful analytical tool that could be used to investigate and solve many problems in geomechanics and geotechnical engineering. This thesis addresses the application of FM concepts and theories in analysis of cemented soils. In addition to theoretical aspects, experiments were conducted to evaluate the application of FM to cemented soils. Three point bending beam tests with crack mouth opening displacements (CMOD) conducted on cemented sand samples showed that fracture parameters, such as CMOD, indeed could play an important role in investigation of such soils. Using this unambiguous material parameter, field engineers might have a reliable measure that could prove to be useful in stability assessment of earth structures and soil structure system. By studying size effect on cemented sand, strong relationship was established between critical CMOD and failure, which might be a very useful index and analysis tool in geotechnical engineering practice.

  2. Arsenic Removal Using AgedArsenic Removal Using Aged Rapid Sand Filter MediaRapid Sand Filter Media

    E-print Network

    Arsenic Removal Using AgedArsenic Removal Using Aged Rapid Sand Filter MediaRapid Sand Filter Media' rapid sand filterAssess coating characteristics of `aged' rapid sand filter media.media. Quantity filter.sand filter. Evaluate interferences associated with the adsorptionEvaluate interferences

  3. Ottawa Sand for Mechanics of Granular Materials (MGM) Experiment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    What appear to be boulders fresh from a tumble down a mountain are really grains of Ottawa sand, a standard material used in civil engineering tests and also used in the Mechanics of Granular Materials (MGM) experiment. The craggy surface shows how sand grans have faces that can cause friction as they roll and slide against each other, or even causing sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM uses the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. These images are from an Electron Spectroscopy for Chemical Analysis (ESCA) study conducted by Dr. Binayak Panda of IITRI for Marshall Space Flight Center (MSFC). (Credit: NASA/MSFC)

  4. Trace metals in heavy crude oils and tar sand bitumens

    SciTech Connect

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  5. Photoacoustic infrared spectroscopy of Syncrude post-extraction oil sand.

    PubMed

    Michaelian, Kirk H; Hall, Robert H; Kenny, Kimberly I

    2006-06-01

    Rapid- and step-scan photoacoustic (PA) infrared spectra of three fractions of a Syncrude post-extraction oil sand were analyzed in detail in this work. The rapid-scan spectra showed that the samples were comprised primarily of kaolinite, quartz, silica, siderite, and residual hydrocarbons, and that the proportions of these constituents were different for each fraction. Depth profiling of the three post-extraction oil sands was accomplished using both rapid- and step-scan PA infrared spectroscopy. The results confirmed that kaolinite is more abundant in the near-surface region, whereas quartz and hydrocarbons are concentrated at greater depths. The modulation frequency dependence of the PA intensities for all three fractions was consistent with a model in which the samples are thermally thick; in other words, the thermal diffusion length (roughly equal to the sampling depth) was less than the particle sizes of all three samples. The results of this study are consistent with published reports on the PA infrared spectra of fine tailings generated during bitumen extraction and the spectroscopic and thermophysical characterization of clay soils and an appropriate model clay. PMID:16388979

  6. A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply

    NASA Astrophysics Data System (ADS)

    Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.

    2014-12-01

    A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.

  7. CHARACTERIZATION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Size distribution data processing and fitting
    Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  8. Numerical and analytical modeling of sanding onset prediction 

    E-print Network

    Yi, Xianjie

    2004-09-30

    To provide technical support for sand control decision-making, it is necessary to predict the production condition at which sand production occurs. Sanding onset prediction involves simulating the stress state on the surface of an oil/gas producing...

  9. 13. SANDSORTING BUILDING, THIRD FLOOR, VIBRATING SCREENS FOR SAND SORTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAND-SORTING BUILDING, THIRD FLOOR, VIBRATING SCREENS FOR SAND SORTING, LOOKING SOUTHWEST - Mill "C" Complex, Sand-Sorting Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  10. Introduction to Exploring Sand and Water

    ERIC Educational Resources Information Center

    Early Childhood Today, 2006

    2006-01-01

    What happens when children pour water through a funnel? They begin to understand science and math concepts such as flow, force, gravity, and volume. What happens when children mold sand to create a tunnel? They develop skills in areas such as problem solving and predicting. They also gain knowledge about absorption and the properties of sand and…

  11. Dinural patterns of blowing sand and dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex interaction between the sun, the atmosphere, and the sand surface. During the day, solar heating produces thermal instability, which enhances convective mixing of high momentum winds from the upper levels of the atmosphere to the surface la...

  12. RADIUM REMOVAL USING SORPTION TO FILTER SAND

    EPA Science Inventory

    The study evaluated the use of a novel sand filtration process that exploits the natural capacity of filter sand to sorb radium through the use of a periodic dilute acid rinse to maintain its sorptive capacity. Batch studies were conducted to determine distribution coefficients s...

  13. DRINKING WATER TREATMENT USING SLOW SAND FILTRATION

    EPA Science Inventory

    Recent re-interest in slow sand filtration was brought about by the needs for small communities to install treatment technologies that are effective, less costly, and easier to operate and maintain than the more sophisticated rapid sand filters. These simpler technologies for sma...

  14. Animating Sand as a Fluid Yongning Zhu

    E-print Network

    Fournier, John J.F.

    Animating Sand as a Fluid by Yongning Zhu B.Sc., Peking University, 2003 A THESIS SUBMITTED;Abstract My thesis presents a physics-based simulation method for animating sand. To allow for efficiently boundary friction was used. . . . . . . . . . 19 3.1 PIC and FLIP Method. (a) Algorithm starts

  15. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  16. SANDIA REPORT SAND2013-1185

    E-print Network

    SANDIA REPORT SAND2013-1185 Unlimited Release Printed February 2013 Preliminary Photovoltaic Arc://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2013-1185 Unlimited Release Printed February 2013 Preliminary Photovoltaic

  17. SANDIA REPORT SAND2014-2914

    E-print Network

    SANDIA REPORT SAND2014-2914 Unlimited Release Printed April 2014 Using XFRACASTM as a PVROM://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-2914 Unlimited Release Printed April 2014 Using XFRACASTM as a PVROM

  18. SANDIA REPORT SAND2010-7052

    E-print Network

    SANDIA REPORT SAND2010-7052 Unlimited Release Printed December 2010 Analysis of SNL/MSU/DOE Fatigue://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;SAND2010-7052 Unlimited Release Printed December 2010 Analysis of SNL

  19. SANDIA REPORT SAND2014-3242

    E-print Network

    SANDIA REPORT SAND2014-3242 Unlimited Release April 2014 Sun-Relative Pointing for Dual-Axis Solar://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-3242 Unlimited Release April 2014 Sun-Relative Pointing for Dual

  20. SANDIA REPORT SAND2013-2789

    E-print Network

    Tesfatsion, Leigh

    SANDIA REPORT SAND2013-2789 Printed April 2013 New Wholesale Power Market Design Using Linked://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online DEPA RTMENT OF EN ERGY · · UNITED STATES OF AM ERICA 2 #12;SAND2013-2789 Unlimited

  1. Sand Tray Group Counseling with Adolescents

    ERIC Educational Resources Information Center

    Draper, Kay; Ritter, Kelli B.; Willingham, Elizabeth U.

    2003-01-01

    Sand tray group counseling with adolescents is an activity-based intervention designed to help participants address specific intrapersonal concerns, learn important skills of socialization, and develop a caring community. The main focus of the group is building small worlds with miniature figures in individual trays of sand and having an…

  2. SANDIA REPORT SAND2004-4596

    E-print Network

    Ho, Cliff

    SANDIA REPORT SAND2004-4596 Unlimited Release Printed September 2004 Sensors for Environmental@ntis.fedworld.gov Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 2 #12;SAND2004-4596 Unlimited

  3. Explorations with the Sand and Water Table.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Presents sand and water activities for young children as examples of sensory explorations, science activities, and comforting play. Includes information on health and safety precautions, adaptations for children with physical disabilities, the use of other materials, and sand and water toys made from one-liter plastic bottles. (KB)

  4. SANDIA REPORT SAND2015-0179

    E-print Network

    SANDIA REPORT SAND2015-0179 Unlimited Release January 2015 A Performance Model for Photovoltaic://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2015-0179 Unlimited Release January 2015 A Performance Model for Photovoltaic

  5. SANDIA REPORT SAND2008-1782

    E-print Network

    SANDIA REPORT SAND2008-1782 Unlimited Release Printed March 2008 Computational Design and Analysis@ntis.fedworld.gov Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2008-1782 Unlimited

  6. SANDIA REPORT SAND2007-2327

    E-print Network

    SANDIA REPORT SAND2007-2327 Unlimited Release Printed April 2007 Collective Systems: Physical://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online DEPA RTMENT OF EN ERGY · · UNITED STATES OF AM ERICA 2 #12;SAND2007-2327 Unlimited

  7. SAND REPORT Material Characterization of Glass,

    E-print Network

    SAND REPORT Material Characterization of Glass, Carbon, and Hybrid-Fiber SCRIMP Panels Akira e #12;SAND2002-3538 Unlimited Release Printed December 2002 Material Characterizationof Glass was to generate the material database for carbon and glass composite panels created by the SCRIMP process

  8. Liquefaction in Subsurface Layer of Sand

    USGS Multimedia Gallery

    Ground shaking triggered liquefaction in a subsurface layer of sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and silt, which moved from right to left toward the Pajaro River. This mode of ground failure, termed "lateral spreading,

  9. SANDIA REPORT SAND2014-16800

    E-print Network

    SANDIA REPORT SAND2014-16800 Unlimited Release Printed August 2014 A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Matthew Fowler, Diana Bull://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-16800 Unlimited Release Printed August 2014 A Comparison of Platform

  10. Burrowing inhibition by fine textured beach fill: Implications for recovery of beach ecosystems

    NASA Astrophysics Data System (ADS)

    Viola, Sloane M.; Hubbard, David M.; Dugan, Jenifer E.; Schooler, Nicholas K.

    2014-10-01

    Beach nourishment is often considered the most environmentally sound method of maintaining eroding shorelines. However, the ecological consequences are poorly understood. Fill activities cause intense disturbance and high mortality and have the potential to alter the diversity, abundance, and distribution of intertidal macroinvertebrates for months to years. Ecological recovery following fill activities depends on successful recolonization and recruitment of the entire sandy intertidal community. The use of incompatible sediments as fill material can strongly affect ecosystem recovery. We hypothesized that burrowing inhibition of intertidal animals by incompatible fine fill sediments contributes to ecological impacts and limits recovery in beach ecosystems. We experimentally investigated the influence of intertidal zone and burrowing mode on responses of beach invertebrates to altered sediment texture (28-38% fines), and ultimately the potential for colonization and recovery of beaches disturbed by beach filling. Using experimental trials in fill material and natural beach sand, we found that the mismatched fine fill sediments significantly inhibited burrowing of characteristic species from all intertidal zones, including sand crabs, clams, polychaetes, isopods, and talitrid amphipods. Burrowing performance of all five species we tested was consistently reduced in the fill material and burrowing was completely inhibited for several species. The threshold for burrowing inhibition by fine sediment content in middle and lower beach macroinvertebrates varied by species, with highest sensitivity for the polychaete (4% fines, below the USA regulatory limit of 10% fines), followed by sand crabs and clams (20% fines). These results suggest broader investigation of thresholds for burrowing inhibition in fine fill material is needed for beach animals. Burrowing inhibition caused by mismatched fill sediments exposes beach macroinvertebrates to stresses, which could depress recruitment and survival at all intertidal zones. Our results suggest use of incompatible fine fill sediments from dredging projects creates unsuitable intertidal habitat that excludes burrowing macroinvertebrates and could delay beach ecosystem recovery. Through effects on beach invertebrates that are prey for shorebirds and fish, the ecological impacts of filling with mismatched fine sediments could influence higher trophic levels and extend beyond the beach itself.

  11. Imaging of sand production in a horizontal sand pack by X-ray computed tomography

    SciTech Connect

    Tremblay, B.; Sedgwick, G.; Forshner, K.

    1996-06-01

    A laboratory experiment was performed to better understand how sand production can increase heavy oil recovery. A horizontal sand pack with an orifice at one end modeled the production of oil and sand into a perforation in a vertical well. The sand pack was scanned using X-ray computed tomography (CT). The CT images revealed that a high-porosity channel (wormhole) formed in the pack while sand was produced. The wormhole followed regions within the pack where the porosity was higher, and, consequently, the unconfined compressive strength of the sand was lower. This experiment suggests that wormholes will form within the weaker sands of a formation. The development of these high-permeability channels increases the drainage of the reservoir, which leads to higher oil recovery.

  12. Formational Mechanisms and Morphology of Windblown Coarse-Grained Sand Ripples at White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    Glade, R.; Jerolmack, D. J.; Pelletier, J. D.

    2014-12-01

    Coarse-grained ripples, also known as "megaripples," are large sand ripples found in both aeolian and aquatic environments on Earth, and are common on Mars. The formation and morphology of coarse-grained ripples are not as well understood as more common splash ripples. Current understanding suggests that formative wind speeds are above the saltation threshold for the fine grains, but below this threshold for coarse grains found on the crests, such that they creep. Based on this idea, we hypothesize that wind speeds above this coarse-grain saltation threshold will destroy the ripples. We further hypothesize that these ripples do not have an equilibrium size; rather, their size is related to the persistence of formative winds in a given direction. To test this model, we studied windblown coarse-grained ripples in White Sands, New Mexico. Terrestrial LiDAR was used to obtain high resolution ripple morphology and migration over a three month period. Wind velocity profiles and concurrent saltating grain size data were collected during a wind storm to directly relate modes of transport to particle size and wind stress. These local data were used to calibrate wind records from a nearby meteorological station to estimate local fluid stress using a long-term record. LiDAR data indicate that these ripples were destroyed and reoriented between March and June 2013, while the wind record shows that the coarse-grain saltation threshold was indeed exceeded during this time. Morphological analysis indicates that the lee slope of these ripples is set by saltation impact - similar to splash ripples - but that height, wavelength and stoss slope are not related to instantaneous transport conditions. The historical wind record also shows that the range of wind directions decreases rapidly with increasing speed, restricting strong winds to a narrow range of direction. From these results we explore the idea that coarse-grained ripples are typically larger and less frequently destroyed than splash ripples because the stronger winds required to create them are drawn from a more consistent direction. The ability to constrain wind conditions required to form and destroy coarse-grained ripples gives insight into formational conditions both in preserved paleo-ripples on Earth, and also on Mars where these bedforms are ubiquitous.

  13. Compositional Variations of Rocknest Sand, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Goetz, Walter; Madsen, Morten B.; Edgett, Kenneth S.; Clark, Benton C.; Meslin, Pierre-Yves; Blaney, Diana L.; Bridges, Nathan; Fisk, Martin; Hviid, Stubbe F.; Kocurek, Gary; Lasue, Jeremie; Maurice, Sylvestre; Newsom, Horton; Renno, Nilton; Rubin, David M.; Sullivan, Robert; Wiens, Roger C.; MSL Science Team

    2013-04-01

    The Curiosity rover spent over 40 sols at an aeolian deposit (termed Rocknest sand shadow deposit) that is several meters long (oriented north-south), 15-20 cm high (at crest) and about 50 cm wide. Material was scooped up from the subsurface to a depth of about 40 mm at five different locations on the deposit. Part of the sampled material was delivered to the analytical laboratories CheMin (x-ray diffraction) and SAM (pyrolysis, evolved gas analysis, gas chromatography, mass spectrometry, tunable laser spectroscopy) in the rover body. Scoop troughs and walls were imaged extensively by cameras onboard the rover (Mastcam, Mars Hand Lens Imager (MAHLI), Remote Microscopic Imager (RMI)) and probed by Laser Induced Breakdown Spectroscopy (LIBS) as provided by the ChemCam instrument. Images show that the top surface of the deposit is armored by a layer 1-3 grains thick of mm-sized, subrounded, dust-mantled grains. The bulk of the deposit is composed of particles smaller than 150 microns (fine and very fine sand and likely silt and dust). Furthermore, there are bright bands in the subsurface, a narrow one and a broad one at depths 2-4 mm and 20-30 mm, respectively. The images also provide evidence for crust formation and cementation as the scoop trough floors are littered by platy angular fragments and cemented clods. Many of the clods contain numerous sub-mm sized bright (sulfate rich?) inclusions. Chemical profiles (as provided by ChemCam data) do not clearly support the type of subsurface layering inferred from the images. However, chemical abundances (Li, Na, K, Mn, Fe, Ca, Mg, and Si) significantly deviating from average values are found at two different depths (respectively 15 and 25 mm). It is unclear when (and over which time scale) the Rocknest sand deposit in Gale Crater formed. In any case, mm-sized particles cannot be moved efficiently in the current aeolian regime. If the deposit has been immobile for an extended period of time, it is conceivable that Martian obliquity cycles (up to the near geologic past) caused ice deposition and partial melting of subsurface water ice which in turn may have sustained slow alteration of the uppermost part of the deposit (Arvidson et al., J. Geophys. Res., 115, E00F03, 2010); this hypothesis is consistent with the observed crust formation as well as the chemical variations in the near subsurface.

  14. BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO SEPARATIONS SCREENS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  15. Shock response of dry sand.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Chhabildas, Lalit C..; Vogler, Tracy John; Brown, Justin L.

    2007-08-01

    The dynamic compaction of sand was investigated experimentally and computationally to stresses of 1.8 GPa. Experiments have been performed in the powder's partial compaction regime at impact velocities of approximately 0.25, 0.5, and 0.75 km/s. The experiments utilized multiple velocity interferometry probes on the rear surface of a stepped target for an accurate measurement of shock velocity, and an impedance matching technique was used to deduce the shock Hugoniot state. Wave profiles were further examined for estimates of reshock states. Experimental results were used to fit parameters to the P-Lambda model for porous materials. For simple 1-D simulations, the P-Lambda model seems to capture some of the physics behind the compaction process very well, typically predicting the Hugoniot state to within 3%.

  16. Hematite Outlier and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 December 2003

    This image shows a crater just south of the edge of the famous hematite-bearing surface, which is visible in the context image as a smooth area to the north. The crater has two features of immediate note. The first is a layered mound in the north part of the crater floor. This mound contains hematite, and it is an outlying remnant of the greater deposits to the north that have otherwise completely disappeared in this crater. The second feature is a dune field in the center of the crater floor, with dark dunes indicating winds from the northwest. The dunes grade into a dark sand sheet with no coherent structure, indicating that the sand layer thins out to the south and east.

    Image information: VIS instrument. Latitude -4.4, Longitude 357.3 East (2.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. FINE PORE (FINE BUBBLE) AERATION OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    The paper summarizes the current information on fine pore aeration systems. Types of media, types of diffusers, piping and layout, characteristics of diffusers, clear and process water performance, operation and maintenance, diffuser fouling and economic analyses are reviewed. Th...

  18. 'RAT' Leaves a Fine Mess

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the light signatures, or spectra, of two sides of the rock dubbed 'Bounce,' located at Meridiani Planum, Mars. The spectra were taken by the miniature thermal emission spectrometer on the Mars Exploration Rover Opportunity. The left side of this rock is covered by fine dust created when the rover drilled into the rock with its rock abrasion tool. These 'fines' produce a layer of pyroxene dust that can be detected here in the top spectrum. The right side of the rock has fewer fines and was used to investigate the composition of this basaltic rock.

  19. Uprated fine guidance sensor study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.

  20. Synergistic use of RADARSAT-2 Ultra Fine and Fine Quad-Pol data to map oilsands infrastructure land: Object-based approach

    NASA Astrophysics Data System (ADS)

    Jiao, Xianfeng; Zhang, Ying; Guindon, Bert

    2015-06-01

    The landscape of Alberta's oilsands regions is undergoing extensive change due to the creation of infrastructure associated with the exploration for and extraction of this resource. Since most oil sands mining activities take place in remote forests or wetlands, one of the challenges is to collect up-to date and reliable information about the current state of land. Compared to optical sensors, SAR sensors have the advantage of being able to routinely collect imagery for timely monitoring by regulatory agencies. This paper explores the capability of high resolution RADARSAT-2 Ultra Fine and Fine Quad-Pol imagery for mapping oilsands infrastructure land using an object-based classification approach. Texture measurements extracted from Ultra Fine data are used to support an Ultra Fine based classification. Moreover, a radar vegetation index (RVI) calculated from PolSAR data is introduced for improved classification performance. The RVI is helpful in reducing confusion between infrastructure land and low vegetation covered surfaces. When Ultra Fine and PolSAR data are used in combination, the kappa value of well pads and processing facilities detection reached 0.87. In this study, we also found that core hole sites can be identified from early spring Ultra Fine data. With single-date image, kappa value of core hole sites ranged from 0.61 to 0.69.

  1. 36 CFR 910.35 - Fine arts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 3 2012-07-01 2012-07-01 false Fine arts. 910.35 Section 910.35 Parks, Forests, and...Applicable to the Development Area § 910.35 Fine arts. Fine arts, including sculpture, paintings, decorative...

  2. 36 CFR 910.35 - Fine arts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 3 2014-07-01 2014-07-01 false Fine arts. 910.35 Section 910.35 Parks, Forests, and...Applicable to the Development Area § 910.35 Fine arts. Fine arts, including sculpture, paintings, decorative...

  3. 36 CFR 910.35 - Fine arts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Property 3 2013-07-01 2012-07-01 true Fine arts. 910.35 Section 910.35 Parks, Forests, and...Applicable to the Development Area § 910.35 Fine arts. Fine arts, including sculpture, paintings, decorative...

  4. Adsorption of dyes on Sahara desert sand.

    PubMed

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures. PMID:19515485

  5. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers

    PubMed Central

    Heaney, Christopher D.; Sams, Elizabeth; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Wing, Steve; Marshall, Stephen; Love, David C.; Serre, Marc; Noble, Rachel; Wade, Timothy J.

    2011-01-01

    Background Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods In 2007, visitors at two recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results We analyzed 144 wet sand samples and completed 4,999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among non-swimmers with sand exposure. Conclusions We observed a positive relationship between sand contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand. PMID:22157306

  6. Invasive plants on disturbed Korean sand dunes

    NASA Astrophysics Data System (ADS)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic soils, and conservation of surrounding sand dune areas.

  7. Fine root dynamics for forests on contrasting soils in the colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Lloyd, J.; Peñuela, M. C.; Patiño, S.

    2009-03-01

    It has been hypothesized that in a gradient of increase of soil resources carbon allocated to belowground production (fine roots) decreases. To evaluate this hypothesis, we measured the mass and production of fine roots (<2 mm) by two methods: 1) ingrowth cores and, 2) sequential soil coring, during 2.2 years in two lowland forests with different soils in the colombian Amazon. Differences of soil resources were determined by the type and physical and chemical properties of soil: a forest on loamy soil (Ultisol) at the Amacayacu National Natural Park and, the other on white sands (Spodosol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that mass and production of fine roots was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. White-sand forest allocated more carbon to fine roots than the clayey forest; the production in white-sand forest was twice (2.98 and 3.33 Mg C ha-1 year-1, method 1 and 2, respectively) as much as in clayey forest (1.51 and 1.36-1.03 Mg C ha-1 year-1, method 1 and 2, respectively); similarly, the average of fine root mass was higher in the white-sand forest (10.94 Mg C ha-1) than in the forest on clay soils (3.04-3.64 Mg C ha-1). The mass of fine roots also showed a temporal variation related to rainfall, such that production of fine roots decreased substantially in the dry period of the year 2005. Our results suggest that soil resources play an important role in patterns of carbon allocation in these forests; carbon allocated to above-and belowground organs is different between forest types, in such a way that a trade-off above/belowground seems to exist; as a result, it is probable that there are not differences in total net primary productivity between these two forests: does belowground offset lower aboveground production in poorer soils?

  8. Electrostatics in wind-blown sand.

    PubMed

    Kok, Jasper F; Renno, Nilton O

    2008-01-11

    Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric mineral dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the concentration of saltating particles and cause them to travel closer to the surface, in agreement with measurements. Our results thus indicate that sand electrification plays an important role in saltation. PMID:18232774

  9. Hierarchical analysis of genetic structure in the habitat-specialist Eastern Sand Darter (Ammocrypta pellucida)

    PubMed Central

    Ginson, Robert; Walter, Ryan P; Mandrak, Nicholas E; Beneteau, Courtney L; Heath, Daniel D

    2015-01-01

    Quantifying spatial genetic structure can reveal the relative influences of contemporary and historic factors underlying localized and regional patterns of genetic diversity and gene flow – important considerations for the development of effective conservation efforts. Using 10 polymorphic microsatellite loci, we characterize genetic variation among populations across the range of the Eastern Sand Darter (Ammocrypta pellucida), a small riverine percid that is highly dependent on sandy substrate microhabitats. We tested for fine scale, regional, and historic patterns of genetic structure. As expected, significant differentiation was detected among rivers within drainages and among drainages. At finer scales, an unexpected lack of within-river genetic structure among fragmented sandy microhabitats suggests that stratified dispersal resulting from unstable sand bar habitat degradation (natural and anthropogenic) may preclude substantial genetic differentiation within rivers. Among-drainage genetic structure indicates that postglacial (14 kya) drainage connectivity continues to influence contemporary genetic structure among Eastern Sand Darter populations in southern Ontario. These results provide an unexpected contrast to other benthic riverine fish in the Great Lakes drainage and suggest that habitat-specific fishes, such as the Eastern Sand Darter, can evolve dispersal strategies that overcome fragmented and temporally unstable habitats. PMID:25691991

  10. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sobotkova, Martina; Sacha, Jan; Vontobel, Peter; Hovind, Jan

    2015-02-01

    Saturated flow in soil with the occurrence of preferential flow often exhibits temporal changes of saturated hydraulic conductivity even during the time scale of a single infiltration event. These effects, observed in a number of experiments done mainly on heterogeneous soils, are often attributed to the changing distribution of water and air in the sample. We have measured the variation of the flow rates during the steady state stage of the constant head ponded infiltration experiment conducted on a packed sample composed of three different grades of sand. The experiment was monitored by quantitative neutron imaging, which provided information about the spatial distribution of water in the sample. Measurements were taken during (i) the initial stages of infiltration by neutron radiography and (ii) during the steady state flow by neutron tomography. A gradual decrease of the hydraulic conductivity has been observed during the first 4 h of the infiltration event. A series of neutron tomography images taken during the quasi-steady state stage showed the trapping of air bubbles in coarser sand. Furthermore, the water content in the coarse sand decreased even more while the water content in the embedded fine sand blocks gradually increased. The experimental results support the hypothesis that the effect of the gradual hydraulic conductivity decrease is caused by entrapped air redistribution and the build up of bubbles in preferential pathways. The trapped air thus restricts the preferential flow pathways and causes lower hydraulic conductivity.

  11. Sustainable agriculture and nitrogen reduction: an open field experiment using natural zeolitites in silty-clay reclaimed soil at Codigoro (Po River Delta, Ferrara, Italy)

    NASA Astrophysics Data System (ADS)

    Faccini, Barbara; Di Giuseppe, Dario; Mastrocicco, Micòl; Coltorti, Massimo; Colombani, Nicolò; Ferretti, Giacomo

    2014-05-01

    Following the guidelines of Nitrate and Water Framework Directives (91/676/CEE, 200/60/CE) an innovative integrated zeolitite cycle is being tested on a reclaimed clayey-silt soil in the Po Delta area (Ferrara Province, Italy), in the framework of the EU-funded ZeoLIFE project (LIFE+10 ENV/IT/000321). Natural zeolitites are pyroclastic rocks containing more than 50% of zeolites, a kind of hydrous minerals with peculiar physical and chemical properties, like high and selective cation exchange capacity (CEC), molecular adsorption and reversible dehydration. Zeolitites can trap NH4+ from solutions and release it gradually to the plant roots once they have been mixed in agricultural soils, allowing both fertilization and irrigation reduction and improvement of the yield. The fertilization reduction can result in a decrease of the nitrate content in groundwater and surface waters, ultimately leading to a mitigation of nutrient excess in the environment. Similarly, reduction of irrigation water means a minor exploitation of the water resource. The selected material used in the project is a chabazite zeolitite coming from a quarry near Sorano in Central Italy (Bolsena volcanic district). The open-field experimentation foresees two year of cultivation. A surface of about 6 ha has been divided into six parcels: three control parcels are cultivated and irrigated in traditional way; two parcels have been added with coarse-grained (ø = 3- 6 mm) natural zeolitite at different zeolitite/soil ratios (5 kg/m2 and 15 kg/m2) and one has been mixed with fine-grained (ø < 3 mm) NH4+-charged zeolitite at 10 kg/m2. Zeolitite/soil ratios have been determined upon a series of greenhouse tests, and the ammonium enriched material is obtained by cation exchange with swine manure in a specifically conceived prototype. The environmental quality of soil and water in each parcel is monitored by periodic soil, groundwater and porewater analyses. Soil EC, temperature and volumetric water content are continuously measured with probes at different depth (5-30-50-100-150 cm). The quality of surface water is checked by analyzing the outflow from the drains of the sub-irrigation system installed in the field. An automated meteorological station has been also installed in order to quantify rainfalls and sun irradiation for water balance calculation. During the first year, a no-food variety of sorghum has been cultivated. In the parcels treated with natural zeolitite and in that bearing NH4+-charged zeolitite, the fertilization has been reduced by 30% and 50% with respect to the controls. Notwithstanding these reductions, the yield increased by 5% and 15% in the parcel added with natural zeolitite and in that treated with NH4+-charged zeolitite, respectively. As confirmed by previously performed laboratory leaching tests, NH4+ in porewater and surface water was comparable in all parcels (

  12. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  13. 1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR (LOWER RIGHT) THAT EXTENDS TO THE SAND-SORTING BUILDING, AND REMAINS OF ORIGINAL (1917) WASHING, DRAINING & DRYING BUILDING (LEFT), VIEW LOOKING WEST FROM TOP OF SAND-SORTING BUILDING - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  14. Generation of sand bars under surface waves

    E-print Network

    Hancock, Matthew James, 1975-

    2005-01-01

    (cont.) Experiments were performed in a large wave flume to validate the theory and to study additional aspects of sand bar evolution. The wave envelope and bar profile were recorded for low and high beach reflection, ...

  15. The analysis of electrification in windblown sand

    NASA Astrophysics Data System (ADS)

    Bo, Tian-Li; Zhang, Huan; Hu, Wen-Wen; Zheng, Xiao-Jing

    2013-12-01

    Based on asymmetric contact, we present a contact electrification model of high-energy trapped holes which considered the plastic deformation of the contact process in a single normal collision to predict the contact electrification and the charge-to-mass ratio of sand particles. Furthermore, the contact electrification was measured using a charge collection method. Our results show that the charged species trapped in high-energy states of sand particles are positive holes, the predicted results agree well with our experiments qualitatively and quantitatively, the impacting velocity and the particle size are two important factors affecting the magnitude of the charge-to-mass ratio of sand particles, and the number of collisions also affects the charge-to-mass ratio of sand particles.

  16. Nigeria to step up tar sands activity

    SciTech Connect

    Not Available

    1987-03-01

    The Nigerian government has directed its Ministry of Mines, Power and Steel to assume responsibility for the exploration and exploitation of tar sands deposits in Bendel, Ondo and Oyo States. The directive resulted from a survey report by the University of Ife's geological consultancy unit on bituminous sand deposits in the area. The statement said the government was satisfied that there were large commercial quantities of the sands in the three states. The survey had reported that Nigeria could recover between 31 and 40 billion barrels of heavy crude from the tar sand deposits. Exploration for hydrocarbons is currently going on in Anambra and Lake Chad basins as well as the Benue Trough. Apart from the Nigerian National Petroleum Corporation, Shell Petroleum and Gulf Oil have begun exploration activities in the Ondo area. Meanwhile, Nigeria has had to import heavy crude from Venezuela, for processing at the Kaduna refinery.

  17. FTIR analysis of bentonite in moulding sands

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, C.; Holtzer, M.; Bobrowski, A.

    2008-05-01

    Bentonite is used in a wide range of applications. One of them is the foundry industry. The aim of this study was to investigate modification of moulding sands by dust which is generated during foundry process. Recycling of this dust is very important from ecological point of view. The samples of moulding sands were examined by Fourier Transform Infrared spectroscopy (FTIR). Analysis of the bands due to the Si-O stretching vibrations allows to reveal the changes of active bentonite and silica sand, i.e. the main components of the moulding sands. FTIR results are compared with technological properties of the materials studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods have been used as the complementary measurement.

  18. Electrostatic force on saltating sand

    NASA Astrophysics Data System (ADS)

    Schmidt, D. S.; Schmidt, R. A.; Dent, J. D.

    1998-04-01

    In blizzards and sandstorms, wind transport of particles is associated with separation of electrostatic charge. Moving particles develop charge of sign opposite the electrostatic charge on stationary surface particles. This electrification produces forces in addition to the gravitational and fluid friction forces that determine trajectories for particles being transported in saltation. Evaluating electrostatic forces requires the electric field strength very near the saltation surface and charge-to-mass ratios for the moving particles. In a low-level blowing sand event we measured an average charge-to-mass ratio of +60 ?C kg-1 on the saltating particles at 5-cm height and a maximum electric field of +166 kV m-1 at 1.7-cm height, in wind gusts near 12 m s-1 at 1.5-m height. The electrostatic force estimated from these measurements was equal in magnitude to the gravitational force on the saltating particles. Including electrostatic forces in the equations of motion for saltating particles may help explain discrepancies between measurements and models of saltation transport.

  19. Calculation of Microwave Attenuation Effect Due to Charged Sand Particles

    NASA Astrophysics Data System (ADS)

    Dong, Q. F.; Xu, J. D.; Li, Y. L.; Zhang, H.; Wang, M. J.

    2011-01-01

    Based on the forward scattering amplitude function for charged sand particles under the Rayleigh approximation and the effective permittivity method, a calculation model for microwave attenuation due to charged sand particles is given in terms of equal sized distribution and lognormal size distribution, and the attenuation is calculated and analyzed. The results show that the attenuation with charged sand is greater than the case of no charge, and the more concentrative the surface charges on sand particles are, the greater are the influences on microwave attenuation. When the frequency is not too high, natural sand and vehicular sand have little effect on microwave attenuation, whereas the attenuation of explosive sand need be considered.

  20. SANDIA REPORT SAND2008-1688

    E-print Network

    SANDIA REPORT SAND2008-1688 Unlimited Release Printed April 2008 CFD Analysis of Rotating Two-Bladed Flatback Wind Turbine Rotor David D. Chao and C.P. "Case" van Dam Prepared by Sandia National Laboratories://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 2 #12;SAND2008-1688 Unlimited Release Printed April 2008 CFD Analysis of Rotating Two

  1. Treating tar sands formations with dolomite

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  2. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    The Athabasca region of northern Alberta, Canada, is home to deposits of oil sands containing vast amounts (~ 173 billion barrels) of heavily biodegraded petroleum. Oil sands are recovered by surface mining or by in situ steam injection. The extraction of bitumen from oil sands by caustic hot water processing results in large volumes of fluid tailings, which are stored in on-site settling basins. There the tailings undergo a compaction and dewatering process, producing a slowly densifying suspension. The released water is recycled for extraction. The fine tailings will be reclaimed as either dry or wet landscapes. [1] To produce 1 barrel of crude oil, 2 tons of oil sand and 2 - 3 tons of water (including recycled water) are required. [2] Open pit mining and the extraction of the bitumen from the oil sands create large and intense disturbances of different landscapes. The area currently disturbed by mining operations covers about 530 km2 and the area of tailing ponds surpasses 130 km2. An issue of increasing importance is the land remediation and reclamation of oil sand areas in Canada and the reconstruction of these disturbed landscapes back to working ecosystems similar to those existing prior to mining operations. An important issue in this context is the identification of oil sand-derived organic compounds in the tailings, their environmental behaviour and the resulting chances and limitations with respect to land reclamation. Furthermore the biodegradation processes that occur in the tailings and that could lead to a decrease in hazardous organic compounds are important challenges, which need to be investigated. This presentation will give a detailed overview of our compositional and quantitative characterisation of the organic matter in oil sand, unprocessed and processed mature fine tailings samples as well as in tailings sands used as part of land reclamation. The analytical characterisation is based on the extraction of the soluble organic matter, its subsequent separation into asphaltenes, aliphatic hydrocarbons, aromatic hydrocarbons, neutral nitrogen, sulphur, oxygen (NSO) compounds and carboxylic acids. The asphaltene fractions are analysed using pyrolysis-GC, all other fractions are analysed by GC-MS. Additionally Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) is used to study the chemical composition of the samples on the molecular level using different ionisation methods.

  3. Optical Dating of Tsunami-Laid Sands

    NASA Astrophysics Data System (ADS)

    Huntley, David J.; Clague, John J.

    1996-09-01

    The ages of some tsunami deposits can be determined by optical dating, a key requirement being that the deposits are derived from sediment that was reworked and exposed to daylight by tidal currents, waves, wind, or bioturbation during the last years before the tsunami. Measurements have been made using 1.4 eV (infrared) excitation of K-feldspar grains separated from samples of prehistoric tsunami sand sheets and modern analogs of tsunami source sediments at four sites in Washington state and British Columbia. Source sands gave equivalent doses indicative of recent exposure to daylight. Tsunami sand at Cultus Bay, Washington, yielded an optical age of 1285 ± 95 yr (calendric years before A.D. 1995, ±1?). At 2?, this age overlaps the range of from 1030 to 1100 yr determined through a combination of high-precision radiocarbon dating and stratigraphic correlation. Tsunami sands at three sites near Tofino and Port Alberni on Vancouver Island, British Columbia, have optical ages of 260 ± 20, 325 ± 25, and 335 ± 45 yr. Historical records and radiocarbon dating show that the sand at each of the three sites is between 150 and 400 yr old. These optical ages support the hypothesis that the Vancouver Island sands were deposited by a tsunami generated by a large earthquake on the Cascadia subduction zone about 300 yr ago.

  4. Recolonization of macrofauna in unpolluted sands placed in a polluted yachting harbour: A field approach using experimental trays

    NASA Astrophysics Data System (ADS)

    Guerra-García, J. M.; García-Gómez, J. C.

    2009-01-01

    A field experiment using trays was conducted at Ceuta's yachting harbour, North Africa, to study the effect in recolonization of placing trays with unpolluted defaunate sediments (fine and gross sands with low contents of organic matter) inside an enclosed yachting harbour characterized by high percentages of silt and clay and high concentrations of organic matter. Sediment recolonization in the trays was mainly undertaken by the species living naturally at the yachting harbour, which recolonized both uncontaminated gross and fine sand trays (such as the crustaceans Corophium runcicorne, Corophium sextonae and Nebalia bipes, the mollusc Parvicardium exiguum and the polychaete Pseudomalacoceros tridentata). However, other species like the polychaetes Cirriformia tentaculata and Platynereis dumerilii, although also abundant in the yachting harbour, were unable to colonize the trays through transport of larvae and/or adults in the water column. The recolonization was very quick, and after the first month, the values of abundance, species richness, diversity and evenness were similar in the experimental trays and in the reference area (yachting harbour). Although the multivariate analysis showed that the species composition differed between the trays and the reference area, there were no significant differences in recolonization of gross and fine sands, indicating that other factors different from the granulometry are modulating the recolonization patterns.

  5. Layers, Landslides, and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 27 October 2003

    This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.

    Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Sedimentology of Upper Cretaceous Coffee sands in north-central Mississippi

    SciTech Connect

    Webb, E.J.

    1984-09-01

    The Upper Cretaceous Coffee Group within the Desha basin of Mississippi is composed of two major lithologies, a light to dark marlstone and a series of white, fine to medium-grained siltstones and sandstones. The two source areas for the sands are the Sharkey platform to the south and the southern Appalachians. The presence of hydrocarbons has been described at the outcrop and in subsurface cuttings and cores. Depositional environments in the shallow shelf consist of lagoons, barrier island bars, offshore bars, and surge channel deposits. Southwest regional dip of approximately 40 ft/mi (8 m/km) is reflected on all Upper Cretaceous horizons.

  7. Origin and evolution of the Candlelight Reef-Sand Clay system, St. Croix.

    USGS Publications Warehouse

    Gerhard, L.C.

    1981-01-01

    Candlelight reef is the buttressing western terminus of the northeastern St. Croix reef system, caused by a combination of paleotopography and longshore drift which created a stable pile of detrital material at this position. Reef colonization proceeded eastward along the former slope break on the limestone terrace; turbid gyres along the eastern margin of the former Southgate drainage prevented further westward colonization. The presence of detrital cobbles in Sand Cay and Candlelight reef is explained by this model. An unconformity between underlying fine-grained quartzose rocks and overlying carbonates, need represent only an eustatic sea level rise rather than any fundamental tectonic event.-from Author

  8. Fine sediment impacts on Salmonid spawning success: Relative effects of pore blockage and oxygen demand

    NASA Astrophysics Data System (ADS)

    Pattison, I.; Sear, D.; Collins, A.; Jones, I.; Naden, P.

    2013-12-01

    Salmonids act as geomorphic agents constructing a spawning habitat (redd) with fine sediment being washed out of the bed, increasing porosity around the incubating eggs. However, during the incubation period fine sediment infiltrates back into the river bed and degrades the habitat quality. Fine sediment has been found to reduce survival rates of salmonid eggs in both field and laboratory experiments, with the main hypotheses used to explain this being (a) fine sediment reduces gravel permeability and intra-gravel flow velocities; (b) intra-gravel O2 concentrations decrease due to reduced supply and increased consumption by organic sediments; and (c) clay particles block the exchange of O2 across the egg membrane. The SIDO (Sediment Intrusion and Dissolved Oxygen)-UK model is a physically based numerical model which stimulates the effect of fine sediment intrusion on the abiotic characteristics of the salmonid redd, along with the consequences for egg development and survival. This has been used to assess the sensitivity of salmonid egg survival to changes in the quantity and composition of fine sediment, including particle size and sediment oxygen demand. Results indicate that egg survival is highly sensitive to the discharge and the suspended sediment concentrations, particularly to changes in the supply rate of sand particles, rather than silt and clay. This can be explained by the increased likelihood of blocking of intra-gravel pores by larger sand particles, which reduce intra-gravel flow velocities and the supply of oxygen rich water. Furthermore, this effect of sediment mass has been found to be more important than the sediment oxygen consumption process. These findings have implications for how we manage the sediment delivery problem, especially as future projections indicate increased sediment delivery under climate and land management change.

  9. Bright sand/dark dust: The identification of active sand surfaces on the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Blount, H. G., II; Greeley, R.; Christensen, P. R.; Arvidson, R.

    1987-01-01

    Field studies and analysis of LANDSAT Thematic Mapper data in the Gran Desierto, Mexico may shed light on a technique to distinguish active from inactive (relict) sand surfaces. Active sand bodies in the study area are consistently brighter (by an average of 20%) at visual and near infrared wavelengths and darker at thermal infrared wavelengths than compositionally similar inactive sands. The reasons for the albedo difference between active and inactive sands are reviewed and the mixing model of Johnson et al. is examined for tracing the provenance of sands based on albedo and spectral variations. Portions of the wavelengths covered by the Mars Orbiter correspond to the Thematic Mapper data. The identification of active sands on Earth, with a priori knowledge of bulk composition and grain size distribution, may allow the remote mapping of active sand surfaces on Mars. In conjuction with thermal infrared remote sensing for composition, it may also provide a method for the remote determination of grain size distributions within sand/silt mixtures.

  10. South America and a Few Grains of Sand. Part 1: Beach Sands.

    ERIC Educational Resources Information Center

    Potter, Paul Edwin

    1986-01-01

    Continental geology and tectonics are explored through this study of modern beach sands of South America. This report assesses how well petrographic studies of sandstones can recreate continental geography. Data on the petrography of 218 modern South American beach sands are presented and analyzed. The five major mineral associations of light…

  11. Oil sands processes-affected water treatment Research field: Oil sands processes-affected water treatment

    E-print Network

    Milgram, Paul

    , COD, FTIR, pH, conductivity etc. and tensile/compression machine. Nature of job: Experiments on flowOil sands processes-affected water treatment Research field: Oil sands processes-affected water channel, Visualization of flow patterns, Water quality tests: Chemical oxygen demand and FTIR, CFD

  12. An analytical solution to river profile concavity and downstream fining

    NASA Astrophysics Data System (ADS)

    Blom, A.; Chavarrias, V.

    2014-12-01

    We present an analytical solution to the steady state upward-concave bed profile, as well as downstream fining, for a river dominated by gravel and sand. The model is based on (i) the conservation equation of streamwise momentum of the flow, (ii) the conservation equation of the mass of each grain size fraction in the surface layer of the bed (the Hirano equation) yet including sediment abrasion, and (iii) the conservation equation of total sediment mass (the Exner equation). The model includes downstream fining induced by abrasion as well as by grainsize-selective transport of gravel and sand. In order to arrive at an analytical solution, the model is deliberately kept simple through assumptions such as a constant width and no tributaries. The model is then reduced to the case of steady state conditions, which means that all time derivatives in the equations are set to zero. We find a solution to the steady state streamwise profile of both the bed slope and the volume fraction of gravel in the surface layer of the bed. Like existing empirical predictors, the analytical solution is of an exponential type. The main variables that affect the solution are the total load at the upstream boundary, the gravel fraction in this upstream load, the abrasion coefficient, the grain sizes of the sediment, and the water discharge at the upstream boundary. The below image shows an example of how the gravel fraction in the upstream load affects the solution to the longitudinal profiles of, respectively, bed slope (S), the gravel fraction at the bed surface (Fg), and the mean grain size of the sediment at the bed surface (Dgs). We can see how an increase in the gravel fraction in the upstream load results in a larger overall slope and an increase in profile concavity. It also induces an increase of the gravel fraction at the bed surface.

  13. Quantum Fine-Grained Entropy

    E-print Network

    Dong-Sheng Wang

    2012-05-06

    Regarding the strange properties of quantum entropy and entanglement, e.g., the negative quantum conditional entropy, we revisited the foundations of quantum entropy, namely, von Neumann entropy, and raised the new method of quantum fine-grained entropy. With the applications in entanglement theory, quantum information processing, and quantum thermodynamics, we demonstrated the capability of quantum fine-grained entropy to resolve some notable confusions and problems, including the measure of entanglement and quantumness, the additivity conjecture of entanglement of formation etc, and the definition of temperature for single quantum system.

  14. The lithostratigraphy of a marine kame delta-outwash fan complex at Pease AFB, Newington, NH

    SciTech Connect

    Dineen, R.J.; Manning, S.; McGeehan, K. )

    1993-03-01

    The overburden stratigraphy at Pease AFB is based on over 1,200 wells, borings, piezometers, and test pits, and includes five lithologic units: Fill, Upper Sand (US), Marine Clay and Silt (MCS), Lower Sand (LS), and Till (GT). The US is a yellow brown, poorly sorted sand to silty sand and is massive to laminated, and locally has hummocky bedding. The MCS (the Presumpscot Formation) is a dark gray, massive to laminated sandy to silty clay, and is locally interbedded with silty sand. The MCS contains a trace of organic matter, primarily as fine particles of peat. The LS is a gray to brown, poorly sorted, silty sand to gravelly sand that is massive to planar bedded and locally grades down into GT and/or upward into MCS. The GT consists of a massive to crudely bedded dark gray to dark brown, very poorly sorted, sandy silt to gravelly, silty sand. The US, MCS, LS and upper part of the GT were deposited in a marine environment at or near the ice margin. Pease AFB is built on two large fans of gravelly sand (LS plus US) that are bordered to the east by NW-SE till ridges (drumlins ). The northern-most fan is flat-topped with a surface elevation of 30 m ASL. The southern fan is more hummocky, with a surface elevation of 18.5 m ASL. Both fans coarsen towards the NW, and are interbedded with MCS towards the SE. The apices of the fans overlie deeply-scoured troughs in the rock surface. The fans are interpreted to be kame deltas or submarine outwash fans that are deposited along the retreating Wisconsinan ice margin by concentrated meltwater flow. Later, the US may have been deposited by marine shoreface erosion of the emergent fans as the ice front retreated and sea level fell.

  15. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    SciTech Connect

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  16. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    USGS Publications Warehouse

    Boswell, R.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-01-01

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 #1 ("Tigershark") well shows a total gas hydrate occurrence 13??m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8??km2 and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  17. Palynofacies of lignites and associated sediments in the upper paleocene Tuscahoma sand of southwestern Alabama and eastern Mississippi

    SciTech Connect

    Carroll, R.E. )

    1993-09-01

    The Tuscahoma Sand of the Wilcox Group is composed of fine-grained sand, laminated sandy clay, marl and lignite. The Tuscahoma forms a poorly exposed belt from southeastern Alabama and extends northwestward into western Alabama and eastern Mississippi. The sand is assigned to the late Paleocene planktonic foraminiferal Morozovella velascoensis interval zone. Lignites in the Tuscahoma Sand occur as parasequence deposits in the highstand systems tract of a type 2 depositional sequence near the top of the formation. Organic debris associated with these highstand-systems-tract deposits is dominated by land-derived plant tissues. Marine influence is evidenced by the rare occurrence of dinoflagellate cysts, microforminiferal test linings, and the presence of gray, amorphous organic matter. Three palynofacies are recognized within highstand-systems-tract deposits in the upper Tuscahoma Sand based on the occurrence of organic debris. These palynofacies represent freshwater swamp, brackish marsh and marginal- to shallow-water marine depositional environments. Lignites in the Tuscahoma Sand are dominated by an angiosperm pollen assemblage. Gymnosperm pollen is rare, and marine forms are absent. This assemblage reflects deposition under fresh-water swamp conditions. Carbonaceous clay samples vary in the composition of organic debris. However, many are characterized by the occurrence of herbaceous angiosperm pollen. Arborescent angiosperm pollen is common, as are fern spores. Bisaccate conifer pollen is common and dinoflagellate cysts are rare. Fungal elements are abundant and woody tissue commonly is more degraded than in lignite samples. This assemblage represents deposition in coastal, brackish marsh environments. Organic debris in laminated clays, silts, and sands typically have angiosperm and gymnosperm pollen, dinoflagellate cysts, degraded terrestrial plant material, and amorphous organic matter, and represent shallow-marine and marginal-marine deposits.

  18. Crest line minimal model for sand dune

    NASA Astrophysics Data System (ADS)

    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri

    2013-04-01

    In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodible bed under unidirectional wind. The model is simply based on two physical ingredients, namely, the sand capture process at the slip face and the cross-wind sand transport. The efficiency of the sand capture process is taken to be dependent of the dune height and lateral diffusion is considered on both the windward and lee sides of the dune. In addition, the dune cross section is assumed to be scale invariant and is approximated by a triangular shape. In this framework, the dune dynamics is reduced to the motion of a string representing the dune crest line and is expressed as a set of two coupled nonlinear differential equations. This simple model reveals its ability to reproduce basic features of barchan and transverse dunes. Analytical predictions are drawn concerning dune equilibrium shape, stability and long-term dynamics. We derive, in particular, analytical solutions for barchan dunes, yielding explicit relationships between their shape and the lateral sand diffusion; and analytical predictions for the migration speed and equilibrium sand flux. A stability analysis of a rectilinear transverse dune allows us to predict analytically the wavelength emerging from fluctuations of the dune crest. We also determine the characteristic time needed for the rectilinear dune to fragment into a multitude of barchan dunes. These outcomes show that extremely simple ingredients can generate complex patterns for migrating dunes. From several dune field data, we are able to determine values of the model parameters and in particular the intensity of the lateral sand diffusion on upwind and downwind sides of the dune, bringing a new light on sediment transport processes.

  19. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  20. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  1. Fine Arts. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Robin, Bernard, Ed.

    This document contains two papers on fine arts from the SITE (Society for Information Technology & Teacher Education) 2002 conference. "Expanding the Boundaries of the Music Education of the Elementary Teacher Classroom with Information Technology" (Cheryl Jackson) reports on how information technology is used in a music methods course for…

  2. Fine Particle Scrubbing: A Proceedings

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1974

    1974-01-01

    These articles deal with the proceedings of a 1974 symposium on the use of wet scrubbers for the control of fine particle air pollutants. Various wet scrubbers, their engineering, performance, efficiency, and future are discussed. Tables, formulas, and models are included. (TK)

  3. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Ashley D. Williamson

    2001-04-01

    This is the second quarterly progress report of the ''Southern Fine Particulate Monitoring Project'', funded by the U.S. Department of Energy's National Energy Technology Laboratory under DOE Cooperative Agreement No. DE-FC26-00NT40770 to Southern Research Institute (SRI). In this two year project SRI will conduct detailed studies of ambient fine particulate matter in the Birmingham, AL metropolitan area. Project objectives include: Augment existing measurements of primary and secondary aerosols at an established urban southeastern monitoring site; Make a detailed database of near-continuous measurements of the time variation of fine particulate mass, composition, and key properties (including particle size distribution); Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM{sub 2.5}; and Validate and compare key measurement methods used in this study for applicability within other PM{sub 2.5} research by DOE-FE, EPA, NARSTO, and others.

  4. Fine Arts in the Curriculum.

    ERIC Educational Resources Information Center

    Tuttle, Frederick B., Jr., Ed.

    In this anthology the issues related to the fine arts (music, theater, visual arts) in the elementary secondary curriculum are examined. The fifteen articles, ranging in length from one to seven pages, are followed by a biographical page briefly identifying the contributors. The articles are: "What's It All About?" (Frederick B. Tuttle, Jr.);…

  5. Erosion of sand from a gravel bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cleaning of fine sediment out of gravel stream beds has become an important method to restore impacted stream habitats. Introducing the increased flows needed to entrain fine sediments without eroding the coarser fractions of the bed and potentially destroying its usefulness as a habitat requires c...

  6. Planet-wide sand motion on mars

    USGS Publications Warehouse

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  7. The sand-glass gas detector (SGG)

    NASA Astrophysics Data System (ADS)

    Majewski, P.; Brom, J.-M.; ?wiok, M.; Dominik, W.; Królikowski, J.; Labbé, J.-C.; Lounis, A.; Veenhof, R.

    2002-02-01

    A novel position-sensitive micro-pattern gas detector called Sand-Glass is introduced. It has been manufactured using printed circuit board technique and its structure is based on two thin kapton foils joined together. The foils are copper-clad on both sides with the strip electrodes structure engraved on either side, and with a very dense perforation in the form of a conically shaped hole pattern etched through both foils, which forms the Sand-Glass shape. The two foils are in electrical contact; the outer faces form cathodes, and the inner layer becomes an anode. Due to the electric field symmetry, electrons from avalanches are collected on the central electrode of the Sand-Glass holes. This geometry may allow 2D readout in the single gas amplification structure. Preliminary results of the SGG detector prototype tests are reported.

  8. Sliding friction on wet and dry sand.

    PubMed

    Fall, A; Weber, B; Pakpour, M; Lenoir, N; Shahidzadeh, N; Fiscina, J; Wagner, C; Bonn, D

    2014-05-01

    We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient. PMID:24836256

  9. Mine Drainage and Oil Sand Water.

    PubMed

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive. PMID:26420092

  10. Sliding Friction on Wet and Dry Sand

    NASA Astrophysics Data System (ADS)

    Fall, A.; Weber, B.; Pakpour, M.; Lenoir, N.; Shahidzadeh, N.; Fiscina, J.; Wagner, C.; Bonn, D.

    2014-05-01

    We show experimentally that the sliding friction on sand is greatly reduced by the addition of some—but not too much—water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient.

  11. Slopewash, surface runoff and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Larsen, M.C.; Torres-Sanchez, A. J.; Concepcion, I.M.

    1999-01-01

    Rainfall, slopewash (the erosion of soil particles), surface runoff and fine-litter transport at humid-tropical steepland sites in the Luquillo Experimental Forest, Puerto Rico (18??20' N, 65??45' W) were measured from 1991 to 1995. Hillslopes underlain by (1) Cretaceous tuffaceous sandstone and siltstone in subtropical rain (tabonuco) forest with vegetation recovering from Hurricane Hugo (1989), and (2) Tertiary quartz diorite in subtropical lower montane wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24??to 43??) was only 0.2 to 0.5 per cent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m-2 a-1) than in silty clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m-2 a-1. Annual slopewash of 100 to 349 g m-2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m-2 a-1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m-2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2.5 g m-2 on the two landslide scars.

  12. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.

    PubMed

    Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T

    2014-01-01

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100?km scale) of ?(s)=0.01±0.0015?N?m(-2). PMID:25268931

  13. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Avouac, J.-P.; Newman, C. E.; Richardson, M. I.; Lucas, A.; Leprince, S.; Bridges, N. T.

    2014-09-01

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100?km scale) of ?s=0.01±0.0015?N?m-2.

  14. Determination of the Fine Structure Constant Using Helium Fine Structure

    SciTech Connect

    Smiciklas, Marc; Shiner, David

    2010-09-17

    We measure 31 908 131.25(30) kHz for the 2{sup 3}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order m{alpha}{sup 7} (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a {sup 3}He 2{sup 3}S hyperfine measurement. We can obtain an independent value for the fine structure constant {alpha} with a 5 ppb experimental uncertainty. However, dominant m{alpha}{sup 8} terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in {alpha}.

  15. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  16. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  17. Electrical properties of eolian sand and silt

    NASA Astrophysics Data System (ADS)

    Kanagy, S. P.; Mann, C. John

    1994-08-01

    A review of observed and theoretically expected electrical properties of eolian sand, silt and dust reveals that little attention has been directed by geologists and geophysicists toward sand and silt even though much research on dust has demonstrated the importance of electrical charging. Potential mechanisms for non-uniform charging and/or polarization of sand and silt particles include (1) polarization by Earth's atmospheric electric field, (2) triboelectrification, (3) contact electrification, (4) cleavage/fractoelectrification, (5) radiation (X-rays, gamma rays, UV and visible) and charged particle bombardment electrification, (6) pyroelectrification and (7) piezoelectrification. Electrical charges may have significant effects upon sand and silt behavior during transport, deposition and, subsequently, at rest. These effects include greater mobility during particle repulsion, aggregation and greater stability after particle deposition. Charged particles in Earth's electromagnetic field also may add or subtract from the effect of Earth's gravitational field, depending on net sign of charge. Electric charge retention among grains at rest may be much greater than intuitive inference suggests and may be a major factor in explaining larger angles of repose in ancient sediments compared to present sediments. Although light and acoustical emissions during sand and silt transport have long been recognized and at times inferred to be due to electric discharging of grains, no scientific models or explanations have been proposed which adequately explain these phenomena. Charges on individual grains are expected to range from 10 -1 to 10 2 pC, but never have been measured under field conditions. During a sand storm, field strength arising from the cumulative effect of grain charges can be expected to range from 10-30 kV/m. Many additional data need to be accumulated and more detailed research performed before an adequate electrical model for sand behavior during transport and deposition, as well as at rest, can be formulated. All major empirical observations, including relative contributions by various charging mechanisms and associated light and acoustical emissions, should be predicted accurately by an acceptable model for electrical charging of eolian sand and silt.

  18. Lessons learned from comparisons of mesotidal sand- and mudflats

    NASA Astrophysics Data System (ADS)

    Nittrouer, Charles A.; Raubenheimer, Britt; Wheatcroft, Robert A.

    2013-06-01

    Tidal flats with limited vegetation provide valuable opportunities to investigate the linkages of hydrodynamics and sediment dynamics. A mudflat in southern Willapa Bay and a sandflat in Skagit Bay (both Washington state, USA) are characterized by processes with many similarities, but some differences. In particular, one imports mud and the other exports mud. Classic intertidal mechanisms (e.g., flood/ebb asymmetry, settling/scour lags) cause net landward transport onto the southern Willapa tidal flat, and the details of the interlinked processes are complex. Meandering channels with dendritic planform are the circulatory system for this site, and are entrenched in cohesive clayey silt. Tidal range and wind/wave conditions are similar in the two areas, but the direct discharges of fluvial freshwater and sediment are much greater for Skagit Bay. When coupled with the other processes operating there, mud export from the Skagit tidal flat is the net result. Braided channels dominate the Skagit site, and migrate freely through non-cohesive fine sand. An integrated summary is presented here for a multi-investigator study of these two areas, and the detailed results are described by the papers that follow.

  19. Mineral resource of the month: industrial sand and gravel

    USGS Publications Warehouse

    Dolley, Thomas P.

    2007-01-01

    With many diverse uses, industrial sand and gravel, also known as silica sand, is one of the most important nonmetallic minerals in the world. Industrial sand and gravel is a mining industry term used for sands that have a very high percentage of silicon dioxide, or greater than 95 percent quartz. Deposits of industrial sand and gravel can be found virtually everywhere on Earth, but are less widespread than deposits of common construction sand and gravel. Industrial sand and gravel is distinctive in grain size, hardness, inertness and resistance to high temperature and chemical action. Beverage containers, fiberglass insulation, fiber-optic cables and light bulbs are just some of today’s many products produced from industrial sand and gravel.

  20. 3. GENERAL VIEW OF COMPLEX LOOKING SOUTH, SAND DRAINING & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF COMPLEX LOOKING SOUTH, SAND DRAINING & DRYING BUILDING (right) AND SAND-SORTING BUILDING (left) - Mill "C" Complex, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  1. 1. GENERAL VIEW OF COMPLEX FROM SANDPIT LOOKING NORTHEAST, SAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF COMPLEX FROM SANDPIT LOOKING NORTHEAST, SAND DRAINING & DRYING BUILDING (left) AND SAND-SORTING BUILDING (right) - Mill "C" Complex, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  2. 2. GENERAL VIEW OF COMPLEX FROM SANDPIT LOOKING NORTHEAST, SAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF COMPLEX FROM SANDPIT LOOKING NORTHEAST, SAND DRAINING & DRYING BUILDING (left) AND SAND-SORTING BUILDING (right) - Mill "C" Complex, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  3. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  4. Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka

    USGS Publications Warehouse

    Morton, R.A.; Goff, J.R.; Nichol, S.L.

    2008-01-01

    Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.

  5. Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers

    SciTech Connect

    Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

    1997-12-01

    An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

  6. Neutrino masses from fine tuning

    NASA Astrophysics Data System (ADS)

    Grossmann, B. N.; Murdock, Z.; Nandi, S.

    2010-10-01

    We present a new approach for generating tiny neutrino masses. The Dirac neutrino mass matrix gets contributions from two new Higgs doublets with their vevs at the electroweak (EW) scale. Neutrino masses are tiny not because of tiny Yukawa couplings, or very heavy ( ?10 GeV) right-handed neutrinos. They are tiny because of a cancellation in the Dirac neutrino mass matrix (fine tuning). After fine tuning to make the Dirac neutrino mass matrix at the 10 GeV scale, light neutrino masses are obtained in the correct scale via the see-saw mechanism with the right-handed neutrino at the EW scale. The proposal links neutrino physics to collider physics. The Higgs search strategy is completely altered. For a wide range of Higgs masses, the Standard Model Higgs decays dominantly to ?N mode giving rise to the final state ?bar?bbarb, or ?bar???. This can be tested at the LHC, and possibly at the Tevatron.

  7. Oil sands naphthenic acids: a review of properties, measurement, and treatment.

    PubMed

    Brown, Lisa D; Ulrich, Ania C

    2015-05-01

    The Alberta oil sands contain one of the world's largest reserves of oil - over 169 billion barrels of bitumen are economically recoverable with current extraction technologies. Surface mining and subsequent hot water extraction of bitumen from the ore generates about nine cubic meters of raw tailings per cubic meter of oil. Oil sands facilities are required to operate under a policy of zero water discharge, resulting in ponds containing more than one billion cubic meters of tailings, a mixture of sand, fines and process-affected water. Process-affected water contains numerous organic compounds, including naphthenic acids (NAs), which have been identified as the primary source of acute toxicity of process-affected water. Developments in analytical techniques, aerobic biodegradability, and treatment via chemical oxidation (ozone) of NAs are reviewed. The field continues to be challenged by the lack of a cost-effective, accurate analytical technique for NAs or an understanding of all the organic constituents in process-affected water that may be contributing to observed toxicity and thus requiring treatment. PMID:25753852

  8. Sublethal effects of aged oil sands-affected water on white sucker (Catostomus commersonii).

    PubMed

    Arens, Collin J; Hogan, Natacha S; Kavanagh, Richard J; Mercer, Angella G; Kraak, Glen J Van Der; van den Heuvel, Michael R

    2015-03-01

    To investigate impacts of proposed oil sands aquatic reclamation techniques on benthic fish, white sucker (Catostomus commersonii Lacépède, 1803) were stocked in 2 experimental ponds-Demonstration Pond, containing aged fine tailings capped with fresh water, consistent with proposed end-pit lake designs, and South Bison Pond, containing aged unextracted oil sands material-to examine the effects of unmodified hydrocarbons. White sucker were stocked from a nearby reservoir at both sites in May 2010 and sampled 4 mo later to measure indicators of energy storage and utilization. Comparisons were then made with the source population and 2 reference lakes in the region. After exposure to aged tailings, white sucker had smaller testes and ovaries and reduced growth compared with the source population. Fish introduced to aged unextracted oil sands material showed an increase in growth over the same period. Limited available energy, endocrine disruption, and chronic stress likely contributed to the effects observed, corresponding to elevated concentrations of naphthenic acids, aromatic compounds in bile, and increased CYP1A activity. Because of the chemical and biological complexity of these systems, direct cause-effect relationships could not be identified; however, effects were associated with naphthenic acids, polycyclic aromatic hydrocarbons, ammonia, and high pH. Impacts on growth have not been previously observed in pelagic fishes examined in these systems, and may be related to differences in sediment interaction. PMID:25545538

  9. Eolian sand deposition during th Medieval Climatic Anomaly in Playa San Bartolo, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Ortega, B.; Schaaf, P. E.; Murray, A.; Caballero, M.; Lozano Garcia, S.; Ramirez, A.

    2012-12-01

    Records of past climatic changes in desert environments are scarce due to the poor preservation of biological proxies. To overcome this lack we consider the paleoenvironmental significance and age of a lunette dune in the eastern rim of the Playa San Bartolo (PSB) in Sonoran Desert (Mexico). Rock magnetism, mineralogical, and geochemical analysis (major, trace and REE) allow assessment of sediment provenance and changes in the composition of the PSB dune over time. Thermoluminiscence and optical stimulated luminescence (TL and OSL) provide the chronology of lunette dune development. Dune sediments are composed by intercalated layers of sand beds and sandy silt strata. Variability in composition of dune sediments is attributed to changes in sediment sources. Mineralogical, geochemical and magnetic data show clear differences between the sand and the sandy silt of the PSB dune deposits, which suggest different sediment sources. Sand sized deposits, characterized by coarse magnetite grains, are mainly eroded from granitoids from nearby outcrops. Sandy silt deposits, rich in fine grained magnetite and evaporative minerals, resulted after the erosion of volcanic rocks and their soils from sierras at the NE of PSB during heavy rainfall episodes, the flooding of PSB and later deflation and accumulation in the dune of both detritic and authigenic components. The upper 6 m of dune accumulation occurred largely during AD 500 to 1200, a period that correlates with the Medieval climatic anomaly (AD 300 to 1300). These findings suggest that main dune accretion occurred during regionally extended drought conditions, disrupted by sporadic heavy rainfall.

  10. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  11. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Ashley D. Williamson

    2001-07-01

    This is the third quarterly progress report of the ''Southern Fine Particulate Monitoring Project'', funded by the U.S. Department of Energy's National Energy Technology Laboratory under DOE Cooperative Agreement No. DE-FC26-00NT40770 to Southern Research Institute (SRI). In this two year project SRI will conduct detailed studies of ambient fine particulate matter in the Birmingham, AL metropolitan area. Project objectives include: Augment existing measurements of primary and secondary aerosols at an established urban southeastern monitoring site; Make a detailed database of near-continuous measurements of the time variation of fine particulate mass, composition, and key properties (including particle size distribution); Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM{sub 2.5}; and Validate and compare key measurement methods used in this study for applicability within other PM{sub 2.5} research by DOE-FE, EPA, NARSTO, and others. During the third project quarter, the new SRI air monitoring shelter and additional instruments were installed at the site. Details include: Installation of Radiance Research M903 Nephelometer; Installation of SRI air monitoring shelter at North Birmingham Site; Relocation of instruments from SEARCH shelter to SRI shelter; Installation of Rupprecht & Patashnick 8400 Sulfate Monitor; Assembly and initial laboratory testing for particulate sulfate monitor of Harvard design; Efficiency testing of particle sizing instrument package at SRI lab; Preparation for the Eastern Supersite July measurement intensive program; and Continued monitoring with TEOM and particle sizing instruments.

  12. 22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL AND TEST LAB FOR UNIT NO. 2 GREY IRON DISAMATIC. SAND CASTING TECHNICIAN, ROY BATES, TESTS THE WEIGHT OF THE SAND, DRYS IT, AND WEIGHT IT AGAINST STANDARDS TO CALCULATE THE CORRECT MOISTURE NEEDED FOR DIFFERENT MOLDS. THE SAND MIX VARY WITH THE SIZE AND COMPOSITION OF THE CASTING. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. Fine gradings of o(4,C)

    NASA Astrophysics Data System (ADS)

    Patera, Ji?í; Pelantová, Edita; Svobodová, Milena

    2004-06-01

    A grading of a Lie algebra is called fine if it cannot be further refined. Fine gradings provide basic information about the structure of the algebra. There are six fine gradings of the semisimple Lie algebra of type A1×A1 over the complex number field. An explicit description of all the fine gradings of A1×A1 is given in terms of the four-dimensional representation o(4,C) of the algebra.

  14. Choice of fineness of pulverized coal

    SciTech Connect

    E.N. Tolchinskii; A.Yu. Lavrent'ev

    2002-11-15

    Various methods for choosing the fineness of power plant coal dust are reviewed and analytical expressions for determining the fineness are presented. It is shown that the use of the yield of combustibles as a parameter is not always suitable for evaluating the fineness of pulverized coal. The suggested expression for computing the fineness bears composite parameters that allow for the heat value of the volatiles and for the internal surface of the fuel particles.

  15. 16th President Timothy D. Sands

    E-print Network

    16th President Timothy D. Sands INSTALLATION CEREMONY of the October 17, 2014 Two o'clock Burruss of Electrical and Computer Engineering. Before being named provost, he served as the Mary Jo and Robert L. Kirk for environmentally friendly and cost-effective solid- state lighting, direct conversion of heat to electrical power

  16. Building Whales in Sand and Mind.

    ERIC Educational Resources Information Center

    Warner, Carolyn

    1980-01-01

    Describes two-week summer workshops on evolution, adaptation, and behavior of whales, conducted for children by Cold Spring Harbor Whaling Museum (New York), and culminating in creation of life-size sand sculptures of whales. Provides selected list of periodicals, teaching materials, identification guides, records, and societies devoted to whales…

  17. TOXOPLASMOSIS IN SAND FOX (VULPUS RUEPPELLII)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatal toxoplasmosis was diagnosed in a sand fox (Vulpes rueppelli) from United Arab Emirates. Toxoplasma gondii-like tachyzoites were found associated with necrosis in intestine, spleen, liver, pancreas, lungs, mesenteric lymph nodes, and the heart. Ttachyzoites reacted positively with T. gondii-spe...

  18. WASTEWATER STABILIZATION LAGOON, INTERMITTENT SAND FILTER SYSTEMS

    EPA Science Inventory

    The performance of three prototype lagoon-intermittent sand filtration systems were evaluated for three 30 consecutive day periods during different seasons throughout a sixteen month period. Twenty-four different parameters were monitored on 24-hour composite samples. Design crit...

  19. EXPRESSING SUPPLY LIMITATION IN SAND SALTATION

    EPA Science Inventory

    Saltation-driven sandblasting is the most effective producer of windblown dust. Modeling of wind-blown dust emissions requires an efficient parameterization of sand flux in the saltating mode. According to the theory of P. R. Owen the horizontal mass flux of saltating uniform p...

  20. Sand sagebrush rangeland utilization by cattle producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1939, when the USDA purchased the Southern Plains Experimental Range (SPER), scientists of the USDA-Agricultural Research Service have been researching the appropriate uses of native mixed-grass prairie with an over story of sand sagebrush (Artemisia filifolia Torr.). This range type inhabits...

  1. SANDIA REPORT SAND2009-1100

    E-print Network

    as applied to wind turbine structures. The existing design methods and research regarding seismic riskSANDIA REPORT SAND2009-1100 Unlimited Release Printed March 2009 Assessment of Wind Turbine Seismic Release Printed March 2009 Assessment of Wind Turbine Seismic Risk: Existing Literature and Simple Study

  2. SAND HILL ROAD BLAKE WILBUR DRIVE

    E-print Network

    Kay, Mark A.

    280 101 SAND HILL ROAD WELCH ROAD LUCAS CENTER PANAMAST BLAKE WILBUR DRIVE STANFORD MEDICAL CENTER STRUCTURE 1DIRECTIONAL SIGNS LEAD GUESTS ON A SHORT WALK TO THE LI KA SHING CENTER CAMPUSDRIVE ARRILLAGA ALUMNI CENTER BING CONCERT HALL LASUENST GALVEZ ST SERRAST QUARRY ROAD HOSPITAL OBSERVATIONDECK (PS-4

  3. Considering Fine Art and Picture Books

    ERIC Educational Resources Information Center

    Serafini, Frank

    2015-01-01

    There has been a close association between picturebook illustrations and works of fine art since the picturebook was first conceived, and many ways these associations among works of fine art and picturebook illustrations and design play out. To make sense of all the various ways picturebook illustrations are associated with works of fine art,…

  4. Report of the Library Fines Committee.

    ERIC Educational Resources Information Center

    Navarre, Carolyn; And Others

    The Library Fines Committee at Wayne State University reviewed the existing system of loan periods and fines schedules in which high demand materials are loaned out for shorter periods of time with higher fines rates. The committee found the system to be ineffective because although a large amount of overdue materials money is collected, books are…

  5. BMM SEPARATION SCREEN PERMITS SAND TO PASS TO BELT CONVEYORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMM SEPARATION SCREEN PERMITS SAND TO PASS TO BELT CONVEYORS BELOW THAT TRANSPORT THE SAND BACK TO STORAGE AND RECONDITIONING BINS WHILE CASTINGS ARE TRANSPORTED ON ADDITIONAL VIBRATING CONVEYORS TO DEGATING AREAS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  6. Plant Availability of Metals in Waste Foundry Sands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foundries in the United States generate several million tons of waste sand each year. These sands are no longer suitable for metalcasting processes, and about 90% are discarded in landfills. However, the majority of these waste foundry sands (WFSs) qualify as non-hazardous industrial waste and the...

  7. ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS

    E-print Network

    Flury, Markus

    oxides have been used as well, mainly in form of iron-oxide-coated silica sand. Clay minerals, however of reactive chemicals in the subsurface. Most commonly, silica sand is used as the model porous medium. IronALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ

  8. Pseudomonas sabulinigri sp. nov., isolated from black beach sand

    E-print Network

    Bae, Jin-Woo

    Pseudomonas sabulinigri sp. nov., isolated from black beach sand Kyoung-Ho Kim,1 Seong Woon Roh,1 , was isolated from black sand collected from Soesoggak, Jeju Island, Korea. Cells grew at 4­37 6C, at pH 5 beach sand, a bacterium was isolated and subjected to taxonomic characterization. On the basis

  9. TECHNICAL NOTE Centrifuge cone penetration tests in sand

    E-print Network

    Bolton, Malcolm

    TECHNICAL NOTE Centrifuge cone penetration tests in sand M. D. BOLTON,Ã M. W. GUI,Ã J. GARNIER,{ J; laboratory tests; piles; sands. INTRODUCTION Centrifuges have been widely adopted in modelling geotechnical on both the random and the consistent variations which have been observed with CPTs in sand when identical

  10. Channel bed evolution and sediment transport under declining sand inputs

    E-print Network

    Montgomery, David R.

    Channel bed evolution and sediment transport under declining sand inputs Karen B. Gran,1,2 David R structure development and sediment transport as sand inputs decline. On the Pasig-Potrero River, we investigated channel recovery following emplacement of sand-rich pyroclastic deposits in the 1991 eruption

  11. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  12. Well completion process for formations with unconsolidated sands

    DOEpatents

    Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  13. Design and management of conventional fluidized-sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluidized sand biofilters (FSBs) are relatively compact, efficient, and cost-competitive biofilters, especially in recirculating systems that require maintaining consistently low levels of ammonia and nitrite. Filter sand is low cost (often $70-200/m3 of sand delivered) and has a high specific surf...

  14. Erosion Potential of Various Golf Course Bunker Sands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sand bunkers are principal golf course features adding aesthetic beauty and challenge for golfers. Bunkers often require substantial resources for proper maintenance particularly where sand is installed on severe slopes in humid climates subject to occasional heavy rainfall. Numerous sands are comme...

  15. Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leishmaniasis is an insect-borne disease caused by several protozoan species in the genus Leishmania, which are vectored by sand fly species in the genera Phlebotomus or Lutzomyia, depending on the sand fly species geographic range. Sand fly bites and leishmaniasis significantly impacted U.S. milita...

  16. Sedimentological, Geochemical and Magnetic Properties of Colima Beach Sands, Mexico - Influence of Climate and Coastal Processes

    NASA Astrophysics Data System (ADS)

    Sanchez-Guillen, L.; Carranza-Edwards, A.; Perez-Cruz, L. L.; Fucugauchi, J. U.

    2011-12-01

    Studies of sediments on beaches contribute to understanding of sedimentological processes and source, transport and dynamics of sandy coastlines. Results of a geological and geophysical study of sandy beaches on the coast of Colima, Mexico employing sedimentological, geochemical and magnetic methods are presented and used to investigate on climate and coastal processes. Colima is part of the active subduction margin in southern Mexico. We studied thirteen different beaches distributed along the coast. The coastal transect investigated crosses three river drainage basins of the Cihuatlan, Armeria and Coahuayana rivers. Along the coastline there are abundant medium to fine sands moderately sorted to well-sorted. Towards the southeast, sediments are fine-grained, darker colors and better classified compared with sediments at the northwest sector. Towards the southeast there is greater abundance of heavy minerals of volcanic origin with high-rank, higher values of natural remnant magnetization and high magnetic susceptibilities associated with the abundance of iron and titanium oxides. The magnetic hysteresis loops are characterized by saturation in low fields, suggesting titanomagnetites and magnetite as major minerals. In the plot of hysteresis ratio parameters, samples plot in the pseudo-single domain field, suggesting mixtures of single and multiple domain states. Silica is the main constituent and shows a trend to decrease towards the southeast. Results show that sediments are primarly derived from the volcanic and plutonic rocks in the margin. There is an attenuation of one order of magnitude in magnetic susceptibility in magnetic concentrates. It is inferred that there is more wave action on sands of beaches at the southeastern sector generated primarily by waves, wind and tides in volcanic rocks that outcrop in the region. Backshore area in Santiago Bay is identified as an area of protected beach off the coast where the processes of weathering of the sands seem to be limited by this natural barrier. Effects along the Pacific Ocean coast of ENSO events and ITCZ migration on precipitation and erosion are discussed.

  17. Pretreatment of turkey fat-containing wastewater in coarse sand and gravel/coarse sand bioreactors.

    PubMed

    Gaur, Rashmi Singh; Cai, Ling; Tuovinen, Olli H; Mancl, Karen M

    2010-02-01

    Fat, oil and grease in wastewater can be difficult to treat because of their slow decomposition. Traditional pretreatment facilities to remove fat, oil and grease from wastewater are increasingly costly. The hypothesis in this study was that pretreatment of animal fat-containing wastewater in sand and sand/gravel filters facilitates the conversion of slowly degradable organic matter measured as the difference between chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD(5)) for subsequent biological treatment. The pretreatment was evaluated using simulated turkey-processing wastewater and coarse sand and sand/gravel filters at a constant hydraulic loading rate of 132L/m(2)/day. Two types of fixed media reactors were employed: (i) one set with a varying depth of coarse sand, and (ii) the second was similar but with an additional pea gravel cap. The results indicated that the relative removal of COD was slightly improved in the sand bioreactors with a pea gravel cap irrespective of the depth of coarse sand, but partial conversion to BOD(5) was not consistently demonstrated. Pea gravel may act as a sieve to entrap organic matter including fat globules from the wastewater. Multiple dosing at the same daily loading rate slightly improved the treatment efficiency of the sand bioreactors. The ratios of influent-COD/effluent-COD were always greater than 1.0 following a change in the dosing frequency after a rest period, suggesting that organic matter, specifically fat globules in this case, was retained by the column matrix. PMID:19793650

  18. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Bata, Timothy; Parnell, John; Samaila, Nuhu K.; Abubakar, M. B.; Maigari, A. S.

    2015-11-01

    Paleogeographic studies have shown that Earth was covered with more water during the Cretaceous than it is today, as the global sea level was significantly higher. The Cretaceous witnessed one of the greatest marine transgressions in Earth's history, represented by widespread deposition of sands directly on underlying basement. These sand bodies hold much of the world's heavy oil. Here, we present for the first time, geochemical evidence of a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Bima oil sand is similar to other Cretaceous oil sands, predominantly occurring at shallow depths on basin flanks and generally lacking a seal cover, making the oil susceptible to biodegradation. The bulk properties and distribution of molecular features in oils from the Bima oil sand suggest that they are biodegraded. Sterane maturity parameters and the trisnorhopane thermal indicator for the oils suggest thermal maturities consistent with oils generated as conventional light oils, which later degraded into heavy oils. These oils also show no evidence of 25-norhopane, strongly suggesting that biodegradation occurred at shallow depths, consistent with the shallow depth of occurrence of the Bima Formation at the study locality. Low diasterane/sterane ratios and C29H/C30H ratios greater than 1 suggest a carbonate source rock for the studied oil. The Sterane distribution further suggests that the oils were sourced from marine carbonate rocks. The C32 homohopane isomerization ratios for the Bima oil sand are 0.59-0.60, implying that the source rock has surpassed the main oil generation phase, consistent with burial depths of the Fika and Gongila Formations, which are both possible petroleum source rocks in the basin.

  19. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  20. Inorganic nitrogen transformations within permeable carbonate sands

    NASA Astrophysics Data System (ADS)

    Erler, Dirk V.; Santos, Isaac R.; Eyre, Bradley D.

    2014-04-01

    A combination of in-situ push pull tests and a flow through reactor trial were used to quantify the inorganic nitrogen sinks in the permeable carbonate sands of a tropical coral cay (Heron Island - Great Barrier Reef). Addition of dissolved inorganic nitrogen (DIN in the form of nitrate - NO3-, and ammonium - NH4+) directly into sediment porewater resulted in uptake of up to 97% and 60% of added DIN respectively. The initial push pull experiment qualitatively showed that dissimilatory nitrate reduction to ammonia (DNRA), denitrification and nitrification were all active in the sediments. A flow through reactor experiment provided a more detailed approach to quantify these processes and showed that both denitrification and DNRA occurred within the sands at rates of 7.3 and 5.5 ?mol N cm-3 d-1, respectively. Unexpectedly the addition of labile organic material (fresh coral spawn) to the permeable sands did not result in the release of DIN from the reactors, on the contrary it resulted in the increased uptake of both NO3- and NH4+. This was most likely because of the stimulated N uptake associated with the addition of high C:N coral spawn material. The bulk of NH4+ produced via DNRA was found to be adsorbed to sediments within the reactor and was not released with the outlet water. A mass balance over the entire experimental period showed that more inorganic N was retained within the sediments than lost as gaseous products. Our results point to permeable carbonate sands acting as reservoirs of N under the influence of advective flow, even during sudden enrichment periods such as those following coral mass spawning. This implies that permeable carbonate sands may help to buffer coral reefs during periods of extreme oligotrophy.

  1. DC WRRC Report No. 178 AN EXPERIMENTAL STUDY OF THE OPTIMAL THICKNESS OF A SAND

    E-print Network

    District of Columbia, University of the

    DC WRRC Report No. 178 AN EXPERIMENTAL STUDY OF THE OPTIMAL THICKNESS OF A SAND LAYER IN A SAND OF THE OPTIMAL THICKNESS OF A SAND LAYER IN A SAND FILTER WATER QUALITY STRUCTURE Submitted by: Farshad Amini THICKNESS OF A SAND LAYER IN A SAND FILTER WATER QUALITY STRUCTURE July 1994 D.C. Water Resources Research

  2. THE SIMULATION OF WIND-BLOWN SAND MOVEMENT AND PROBABILITY DENSITY FUNCTION OF LIFT-OFF VELOCITIES OF SAND GRAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately describing the probability density function (PDF) of lift-off or initial velocities of wind-blown sand ejecting from a sand bed is fundamental to understanding the mechanisms of wind-blown sand movement. Our objective was to investigate the efficacy of developing the PDF of lift-off veloc...

  3. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  4. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO?3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  5. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT (1:1).

  6. The physics of wind-blown sand and dust

    E-print Network

    Jasper F. Kok; Eric J. R. Parteli; Timothy I. Michaels; Diana Bou Karam

    2012-09-20

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  7. Dynamics of deposited fly-ash and fine grained magnetite in sandy material of different porosity (column experiments)

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana

    2010-05-01

    Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10?m) and fine grained Fe3O4 (grain size < 20 ?m). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand material. In medium and fine sand the contaminants moved only to the depths of several cm due to the pore-space blocking and water flow decrease. Fine-grained magnetite shows different behavior. Position of peaks value is more or less stable and maximum depth of penetration is only a few cm in all cases. Higher grain size value is probably reason for higher stability of magnetite. Moreover, magnetic interaction between grains increase "effective" grain size value and restricts transport in material with given porosity. This research is supported by the Grant Agency ASCR under grant IAA300120701

  8. Event sand layers suggesting the possibility of tsunami deposits identified in the upper Holocene sequence nearby the Kuwana fault, central Japan

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Sugai, T.; Matsuzaki, H.

    2012-12-01

    The Kuwana fault is located on coastal area situated on inner part of the Ise Bay, central Japan, which opens to the Nankai Trough. This reverse fault displaces a late Pleistocene terrace surface with 1 to 2 mm/yr of average vertical slip rate, and a topset of delta at several meters, respectively. And, this fault is estimated to have generated two historical earthquakes (the AD 745 Tempyo and the AD 1586 Tensho earthquakes). We identified two event sand layers from upper Holocene sequence on the upthrown side of the Kuwana fault. Upper Holocene deposits in this study area show prograding delta sequence; prodelta mud, delta front sandy silt to sand, and flood plain sand/mud, respectively, from lower to upper. Two sand layers intervene in delta front sandy silt layer, respectively. Lower sand layer (S1) shows upward-coarsening succession, whereas upper sand layer (S2) upward-fining succession. These sand layers contain sharp contact, rip-up crust, and shell fragment, indicating strong stream flow. Radiocarbon ages show that these strong stream flow events occurred between 3000 and 1600 years ago. Decreasing of salinity is estimated from decreasing trend of electrical conductivity (EC) across S1. Based on the possibility that decreasing of salinity can be occurred by shallowing of water depth caused by coseismic uplift, and that S1 can be correlated with previously known faulting event on the Kuwana fault, S1 is considered to be tsunami deposits caused by faulting on the Kuwana fault. On the other hand, S2, which cannot be correlated with previously known faulting events on the Kuwana fault, may be tsunami deposits by ocean-trench earthquake or storm deposits. In the presentation, we will discuss more detail correlation of these sand deposits not only in the upthrown side of the Kuwana fault, but also downthrown side of the fault.

  9. Paleoenvironmental reconstruction of the radial sand ridge field in the South Yellow Sea (east China) since 45 ka using the sediment magnetic properties and granulometry

    NASA Astrophysics Data System (ADS)

    Wang, Longsheng; Hu, Shouyun; Yu, Ge; Ma, Mingming; Liao, Mengna

    2015-11-01

    Sediments of radial sand ridge field are commonly represented by a set of flood plain, paleosol, and tidal sand ridge facies. In this paper, measurements of magnetic properties and particle size were obtained from Core Y2 from the radial sand ridge field in the South Yellow Sea. The results show that each facies has specific magnetic minerals and particle size distributions. In the flood plain, sand and coarse silt are the main grain sizes, and magnetite and subordinate hematite comprise the magnetic minerals. The clay and fine silt are the main grain-size distributions of paleosol, the magnetic minerals are dominated by hematite, and the soft-magnetic mineral content is very low. In the tidal sand ridge facies, sand is the predominant grain-size distribution, and magnetite dominates the bulk magnetic properties, with small amounts of hematite. The strong relationships between ? and the > 63-?m fraction suggest that magnetite is enriched in the coarse sand fraction. Based on the combined mineral-magnetic, particle size and loss-on-ignition data, the low ? value of paleosol mainly resulted from the decrease in the magnetic mineral inputs and post-depositional dissolution of the magnetic minerals. The results show that the magnetic minerals were controlled by changes in the climate and hydrodynamic environment. This study not only provides a basis for a radial sand ridge field paleoenvironmental reconstruction by integrating detailed logs of magnetic properties and grain-size parameters, but it also provides constraints for exploring the land-sea interactions recorded in the sediment cores as a part of the earth system, and thus demonstrates the effectiveness of this approach.

  10. Analysis of Wind-blown Sand Movement over Transverse Dunes

    PubMed Central

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  11. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.

    PubMed

    Rodgers, M; Walsh, G; Healy, M G

    2011-01-01

    The objective of this study was to apply hydraulic and chemical oxygen demand (COD) loading rates at the upper limits of the design criteria for buried sand filters to test the sand filter depth design criteria. Over a 274-day study duration, synthetic effluent with a strength of domestic wastewater was intermittently dosed onto two sand filters of 0.2 m diameter, with depths of 0.3 and 0.4 m. Hydraulic and organic carbon loading rates of 105 L m(-2) d(-1) and 40 g COD m(-2) d(-1), respectively, were applied to the filters. The filters did not clog and had good effluent removal capabilities for 274 and 190 days, respectively. However, the 0.3 m-deep filter did experience a reduced performance towards the end of the study period. In the 0.3 and 0.4 m-deep filters, the effluent COD and SS concentrations were less than 86 and 31 mg L(-1), respectively, and nitrification was nearly complete in both these columns. Ortho-phosphorus (PO(4)-P) removal in fine sand and laterite 'upflow' filters, receiving effluent from the 0.3 m-deep filter, was 10% and 44%, respectively. PMID:21104498

  12. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; Carsten, J. L.; Cooper, B.; Deen, R. G.; Dromart, G.; Eigenbrode, J. L.; Grotzinger, J. P.; Gupta, S.; Hamilton, V. E.; Hardgrove, C. J.; Harker, D. E.; Herkenhoff, K. E.; Herrera, P. N.; Hurowitz, J. A.; Jandura, L.; Ming, D. W.

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  13. Depositional models of sandy debrites and turbidites of Palaeogene reservoir sands in deep-lacustrine environments, South China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Chen, G.

    2013-12-01

    Two depositional models are proposed for deep-lacustrine petroleum reservior sands (Palaeogene) in the Fushan Sag, Beibuwan Basin, South China. This facies trend is used as a template for predicting the distribution of reservoir facies of the Fushan oilfield. Based on examination of 150m of conventional cores from 13 drilled wells, four depositional facies have been interpreted: (1) fine-grained massive sandstone with floating mudstone clasts and planar clast fabric (sandy debrite); (2) fine-grained sandstone and siltstone showing contorted bedding, sand injection, and ptygmatic folding (sandy slump), (3) fine-grained sandstone with thin layers of normal grading and flute casts (turbidite), and (4) mudstone with faint laminae (suspension fallout). Combined with multiple seismic attributes, two depositional models are characterized by (1) sublacustrine fan: thick turbidite units occur at the bottom of the western sag beneath a series of normal faults slope. (2) Thinner deposition of sandy debrites mainly distribute at the bottom of eastern sag far from sandy slump at the lake margin slope, which interpreted to be controlled by "two-step" flexure slope break. The transfer zone located in the centre area is confirmed to be the primary origin for such differential depositions. In our study area, sandy debrites constitute the producing petroleum reservoirs, but turbidites are non reservoirs. This dramatic understanding will well account for "eastern much more than western" distribution of proven petroleum reserves and be applicable to predicting reservoir distribution.

  14. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  15. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  16. SANDIA REPORT SAND2007-0201

    E-print Network

    SANDIA REPORT SAND2007-0201 Unlimited Release Printed September 2007 Design of 9-Meter Carbon-Fiberglass://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 2 #12;Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100 Final prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National

  17. Solvent extraction of Southern US tar sands

    SciTech Connect

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  18. Sand transport, erosion and granular electrification

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.

    2012-06-01

    The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate and impacting directly upon human health. Research in aeolian transport involves the inter-related fields of fluid dynamics, granular materials and electrification/electrostatics which are in themselves diverse and complex. This review only touches upon this intricacy, but aims to overview the latest work which is expanding our current understanding and outline the areas of advancement needed in the future. Presentation is made of current models for wind driven detachment/entrainment and the transport rates of sand and dust, including the effects of contact induced grain electrification. This ubiquitous phenomenon can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work has implications for the evolution of all terrestrial-like planetary surfaces. Studies in non-terrestrial environments force researchers to be less empirical, ultimately leading to a deeper understanding of these processes.

  19. Aspects of tar sands development in Nigeria

    SciTech Connect

    Adewusi, V.A. )

    1992-07-01

    Development of Nigerian massive reserves of crude bitumen and associated heavy oil is imminent in view of the impacts that the huge importation of these materials and their products have on the nation's economy, coupled with the depleting reserves of Nigeria and highlights the appropriate production technology options and their environmental implications. The utilization potentials of these resources are also enumerated, as well as the government's role in achieving accelerated, long-term tar sands development in the country.

  20. Fusion of arkosic sand by intrusive andesite

    USGS Publications Warehouse

    Bailey, Roy A.

    1954-01-01

    An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.

  1. SANDIA REPORT SAND2014-0239

    E-print Network

    -8401 Facsimile: (865) 576-5728 E-Mail: reports@adonis.osti.gov Online ordering: http@ntis.fedworld.gov Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-0239 Unlimited to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value

  2. Guide to preparing SAND reports. Revised

    SciTech Connect

    Locke, T.K.

    1996-04-01

    This guide contains basic information needed to produce a SAND report. Its guidelines reflect DOE regulation and Sandia policy. The guide includes basic writing instructions in an annotated sample report; guidance for organization, format, and layout of reports produced by line organizations; and information about conference papers, journal articles, and brochures. The appendixes contain sections on Sandia`s preferred usage, equations, references, copyrights and permissions, and publishing terms.

  3. New production techniques for alberta oil sands.

    PubMed

    Carrigy, M A

    1986-12-19

    Low world oil prices represent a serious threat to expanded commercial development of the Canadian oil sands in the near term, as they do to all of the higher cost alternatives to crude oil such as oil shales and coal liquefaction. Nonetheless, research and field testing of new technology for production of oil from oil sands are being pursued by industry and government in Alberta. New production technology is being developed in Canada to produce synthetic oil from the vast resources of bitumen trapped in the oil sands and bituminous carbonates of northern Alberta. This technology includes improved methods of mining, extraction, and upgrading of bitumen from near-surface deposits as well as new drilling and production techniques for thermal production of bitumen from the more deeply buried reservoirs. Of particular interest are the cluster drilling methods designed to reduce surface disturbance and the techniques for horizontal drilling of wells from underground tunnels to increase the contact of injection fluids with the reservoir. PMID:17816505

  4. SEPARATION OF ALGAL CELLS FROM WASTEWATER LAGOON EFFLUENTS. VOLUME II: EFFECT OF SAND SIZE ON THE PERFORMANCE OF INTERMITTENT SAND FILTERS

    EPA Science Inventory

    Varying effective sand sizes, hydraulic loading rates, and application rates resulted in profound effects on effluent quality of single stage intermittent sand filtration for secondary wastewater lagoon effluents. The finer effective sand size produced an effluent that satisfied ...

  5. Policy Analysis of the Canadian Oil Sands Experience

    SciTech Connect

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  6. Thermal conductivity of Apollo 15 lunar fines

    NASA Technical Reports Server (NTRS)

    Cremers, C. J.; Hsia, H. S.

    1974-01-01

    The moon is covered to a depth of several meters with fine material. Heat transfer calculations depend, therefore, for the most part on the properties of the fines. The results are presented of thermal conductivity measurements on fines samples returned by the Apollo 15 mission from the Hadley-Apennine region of the moon. Data are presented as a function of both density and temperature with typical lunar values being used for these parameters.

  7. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E., Jr.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  8. Biogenic and anthropogenic organic components of Saharan sands.

    PubMed

    Balducci, Catia; Ladji, Riad; Muto, Valeria; Romagnoli, Paola; Yassaa, Nourredine; Cecinato, Angelo

    2014-07-01

    Till now, the Sahara desert sands have scarcely characterized for their organic contents, despite they are known to heavily affect Europe and America when transported by winds. In this study, the composition of sands collected in ten oasis lying in two regions of the Algerian Sahara during 2011 was investigated with regards to organic fraction. Attention was paid to anthropogenic and biogenic sources of organics associated to sands, through the characterization of n-alkanes, n-alkanoic and n-alkanedioic acids, n-alkanols, sterols, PAHs and caffeine. The organic fraction load on sands associable to natural sources was higher in the Region of Biskra than in that of Ouargla. The biogenic contribution to the total amount of organics in sands exceeded that of the anthropogenic sources. The composition of sands from Hassi Messaoud, compared to that observed there in 2006, showed that the anthropic impact over the region was not changed. PMID:24875880

  9. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    NASA Astrophysics Data System (ADS)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released ~ 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream ~ 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  10. Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand.

    PubMed

    Lewis, Jeffrey; Sjöström, Jan; Skyllberg, Ulf; Hägglund, Lars

    2010-01-01

    This study quantified the heavy metal contamination caused by firing 500 high-velocity 7.62-mm jacketed Swedish military rounds. Contamination of solid and aqueous phases was studied, with Pb and Sb being the two contaminants of primary interest. The distribution of the Pb and Sb were measured in terms of depth of penetration in sand and grain size distribution of the bullet particles. The Pb- and Sb-contaminated sand was then used as a source material in two bench-scale unsaturated lysimeters to measure the transport of Pb and Sb through two coarse-grained sands, which were taken from the berms on two Swedish military small arms ranges. The lysimeters were subjected to an infiltration cycle that reproduced spring snowmelt, which is the most significant infiltration event of the year in northern climates. The levels of mobile Pb and Sb were monitored in the effluent from the lysimeters. Extended X-ray absorption fine-structure spectroscopy analysis was performed on the contaminated sands to determine Pb speciation before and after leaching. Ninety-three percent of the mass of bullets was found in the top 30 cm of sand. Lead oxide was the predominant species of Pb before and after leaching. Transport of Pb was small, with aqueous concentrations remaining stable at <2 microg L(-1). Antimony was far more mobile, with solute breakthrough occurring between 5 and 14 d and concentrations rising to over 125 microg L(-1) within 1 month. PMID:20400582

  11. Relationships between sand and water quality at recreational beaches.

    PubMed

    Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan

    2011-12-15

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p < 0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. PMID:22071324

  12. Final report on Thermally Modified Sand demonstration project

    SciTech Connect

    Not Available

    1994-09-23

    The use of salt and salt/sand mixtures on icy roadway surfaces has dramatically increased during the past 30 years. Despite extensive documentation on salt related damage to the roadway improvements, vehicles and the environment, road maintenance departments have continued to rely on this practice. Road maintenance departments in northern climate areas have long recognized the safety benefits for public mobility on icy roadways from the use of sand. As an abrasive material, the sand improves the surface traction that results in more drivable and less hazardous road conditions during the winter months. Stockpiles of pure sand stored during the winter months oftentimes freeze into large unworkable, monolithic piles. To maintain a free-flowing condition, it has been found to be necessary to add salt to the sand. The addition of salt in amounts ranging from 5 to 10 percent to that of sand, is usually sufficient to provide relatively free-flowing abrasive material that could be stored in stockpiles and applied to icy road surfaces with conventional sand spreading trucks. Another alternative for winter storage of pure sand to maintain a free-flowing condition is in humidity-controlled, heated buildings. As would be expected, this method has high capital and operating costs. and not cost effective for general highway maintenance use. The invention demonstrated herein is a method of thermally modifying pure sand that will remain in a free-flowing state throughout the winter season without the need for the salt additive. The thermally modified sand provides an abrasive material that when applied to icy roads does not cause environmental and corrosive damage as done by the application of sand with salt. By employing a very simple process of freezing screened sand particles by forced air convection under subfreezing conditions, the invention creates a product that has significant value in terms of economic and environmental benefits.

  13. Tensile properties of sand-reinforced low density polyethylene

    SciTech Connect

    Kandeil, A.Y.; Zahran, R.R.

    1995-10-01

    Sand-reinforced low density polyethylene samples were prepared using injection molding. The effect of some processing and structural parameters on the tensile properties of the prepared samples was investigated. The processing parameters were the melt and the die temperatures. The investigated structural parameters were sand content and sand particle size. The studied tensile properties were modulus of elasticity, tensile strength, ductility and toughness. The obtained results are thoroughly analyzed and interpreted as structure-property relationships.

  14. White Sands, New Mexico as seen from STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    White Sands National Monument (Park) is easily recognized in the center of this near-vertical color photograph. White Sands is the world's largest gypsum dune field. It represents an alabaster sea that covers nearly 300 square miles. At the southwest corner of the White Sands is dry lake, Lucero. In terms of cultural features the city of Alamogordo and Holloman Air Force Base can be seen with great clarity on this photograph.

  15. Lower Miocene (Upper Ottnangian) sands in the Lower Austrian Molasse Basin

    NASA Astrophysics Data System (ADS)

    Palzer, Markus; Knierzinger, Wolfgang; Wagreich, Michael; Gier, Susanne; Meszar, Maria Elisabeth; Soliman, Ali

    2015-04-01

    In the Early Miocene (late Ottnangian), a global sea level drop and the continuous rise of the Alps lead to the regression of the Parathethys sea, and to the sedimentation of the Upper Freshwater Molasse. In the Lower Austrian Molasse Basin, this event is represented by yellowish-brownish to greyish white mica-rich and carbonate-free sands and silts with clayish interlayers, formerly called Oncophora Beds (OB), which crop out between St. Pölten and Tulln. A new lithostratigraphy combines these sediments, now called Traisen-Formation (TF) together with the Dietersdorf Formation within the Pixendorf Group. Drill cores from OMV-wells predominantly from the NE show hundreds of meters thick sequences of pelites with intersections of sands interpreted as representing the OB. Contrary to the mainly brackish TF, a turbiditic marine deeper-water environment is inferred. An OMV-funded project investigates the relationship between these sediments, their stratigraphical and chronological range, provenance, facies and internal stratigraphy. First results from outcrops and several wells in the NE confirm large differences in grain size, structures and carbonate content. XRD-results indicate quartz, feldspar, muscovite, chlorite, calcite and dolomite as the main minerals within the sands and pelites. Pyrite is frequent. Halite and kaolinite occur. Whole rock chemistry, carbonate content measurements and biostratigraphic investigations of samples from the Wildendürnbach K4 well indicate, that these turbiditic OB can be divided into two sections: A lower fossil-free, carbonate poor and probably brackish (indicated by B/Al* and TOC/S) section with only few turbiditic very fine sands, and an upper microfossil bearing, marine section with carbonate contents up to 30% and more and coarser turbiditic sands. Therefore we use the working terms Lower and Upper Wildendürnbach Member (LWM, UWM). The lower part is enriched in (redox sensitive) heavy minerals such as Ce, Co, Cr, Cu, Gd, Ni, Pb, Sc, Zn and REE. It shows much lower constant Sr (about 140 ppm) values and B/Al* ratios (about 80) than the upper part (150 - 250 ppm; >120). The TOC/S ratio is much higher (17-23) in the LWM than in the UWM (>5). These two members can be correlated quite well by SP-logs over several wells. Therefore it can be concluded, that the lower part represents a period of salinity and carbonate crisis which may correspond to an (more or less) isolated deep basin probably poor in oxygen. At the beginning of the upper interval, a connection with the open sea was reestablished.

  16. Mars Rover Curiosity Traverses of Sand Ripples

    NASA Astrophysics Data System (ADS)

    Stein, N.; Arvidson, R. E.; Zhou, F.; Heverly, M.; Maimone, M.; Hartman, F.; Bellutta, P.; Iagnemma, K.; Senatore, C.

    2014-12-01

    Martian sand ripples present a challenge for rover mobility, with drives over ripples often characterized by high wheel sinkage and slippage that can lead to incipient embedding. Since landing in Gale Crater, Curiosity has traversed multiple sand ripples, including the transverse aeolian ridge (TAR) straddling Dingo Gap on sols 533 and 535. On sol 672, Curiosity crossed backward over a series of sand ripples before ending its drive after high motor currents initiated visual odometry (VO) processing, which detected 77% slip, well in excess of the imposed 60% slip limit. At the end of the drive, the right front wheel was deeply embedded at the base of a ripple flank with >20 cm sinkage and the rear wheels were near a ripple crest. As Curiosity continues its approach to Mount Sharp it will have to cross multiple ripples, and thus it is important to understand Curiosity's performance on sol 672 and over similar ripples. To this end the sol 672 drive was simulated in ARTEMIS (Adams-Based Rover Terramechanics Interaction Simulator), a software tool consisting of realistic rover mechanical models, a wheel-terrain interaction module for deformable and non-deformable surfaces, and realistic terrain models. ARTEMIS results, Dumont Dunes tests performed in the Mojave Desert using the Scarecrow test rover, and single wheel tests performed at MIT indicate that the high slip encountered on sol 672 likely occurred due to a combination of rover attack angle, ripple geometry, and soil properties. When ripple wavelength approaches vehicle length, the rover can reach orientations in which the leading wheels carry minimal normal loads and the trailing wheels sink deeply, resulting in high slippage and insufficient thrust to propel the rover over ripples. Even on relatively benign (i.e. low tilt) terrains, local morphology can impose high sinkage, thus impeding rover motion. Work is underway to quantify Curiosity's drive performance over various ripple geometries to retrieve soil properties and to generate better driving practices across ripples.

  17. Production and global transport of Titan's sand particles

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  18. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    SciTech Connect

    Mathews, S., LLNL

    1998-02-25

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchases by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in ac concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved.

  19. Numerical modeling of wind-blown sand on Mars.

    PubMed

    Huang, HaoJie; Bo, TianLi; Zheng, XiaoJing

    2014-09-01

    Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the "fluid threshold", respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the "overshoot" phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively. PMID:25236498

  20. Bioclogging and Biocementation in Construction of Water Pond in Sand

    NASA Astrophysics Data System (ADS)

    Chu, J.; Ivanov, V.; Stabnikov, V.; Li, B.

    2012-12-01

    Conventionally, compacted bentonite, geosynthetic clay liner or plastic liners are used to seal ponds, channels, and reservoirs in sand. Recently, a new approach to form a low permeability layer of several centimetres thick through the microbially induced calcium carbonate precipitation (MICP) process has been developed (Chu et al., 2012). This method has been adopted to build a laboratory scale water pond model in sand. Calcium solution for bioclogging and biocementation was supplied initially by spaying to form a layer of the clogged sand by precipitation in the pores and then by slow percolation from solution above sand surface, which formed a crust of calcite. This combination of bioclogging and biocementation formed a sand layer of 1 - 3 cm depth with low permeability. The permeability of sand after this treatment was reduced from the order of 10^-4 m/s to 10^-7 m/s when an average 2.1 kg of Ca per m^2 of sand surface was precipitated. The bending strengths of the walls and the base of the model pond were in the range of 90 to 256 kPa. The unconfined compressive strengths obtained from samples from the walls and the base were in the range of 215 to 932 kPa. The graded sand and uniform supply of calcium solution were used for the model pond construction but it was significant spatial three-dimensional heterogeneity of sand bioclogging and biocementation.

  1. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent and the agitation need not decay completely. In the regime of collisional suspension, the particles near the surface of the bed are assumed to be in a state of constant agitation. We indicate the conditions at the bed corresponding to the limits of saltation and collisional suspension and outline experiments, simulations, and modeling that have been undertaken to bridge these limits.

  2. Alberta. [Development of oil sand deposits

    SciTech Connect

    Jackson, D. Jr.

    1981-11-01

    Alberta not only lays claim to the world's largest single tar sand deposit but is also a leader in the production of oil or bitumen from this abundant resource. Two companies now have the combined capacity to produce 188,000 bpd of syncrude. Suncor Inc., nearing completion of a $185 million expansion project, has increased its capacity from 45,000 to 58,000 bpd. Syncrude Canada Ltd., after an expenditure of more than $2 billion, began producing oil in September 1978 and is well on its way to a permitted production rate of 130,000 bpd.

  3. Heating tar sands formations while controlling pressure

    DOEpatents

    Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  4. Heating tar sands formations to visbreaking temperatures

    DOEpatents

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  5. Fine-grained sediment lofting from turbidity currents generated during melt water events

    NASA Astrophysics Data System (ADS)

    Hesse, R.

    2003-04-01

    Turbidity currents generated from bed load carrying fresh-water discharges into the sea contain a fluid that is less dense than ambient seawater. From experiments it is known that such currents will eventually lift up from their substrate either in part or as a whole when their density is decreased below that of seawater through the settling of suspended sediment from the top or deposition from the bottom of the flows. In the Labrador Sea, sand and gravel carrying turbidity currents generated by melt-water discharges from the Hudson Strait ice outlet of the Pleistocene Laurentide ice sheet supplied a huge abyssal plain with sediment. It is postulated that during flow on the slope, rise and the proximal part of the sand plain these currents lost much of their fines by means of suspended sediment lofting from their top layers. This led to the formation of a conspicuous depositional facies of stacked graded mud layers which contain ice-rafted debris (IRD). Fine-grained sediment lofting and deposition of graded layers from the resulting interflows is a suitable process for this peculiar facies allowing incorporation of IRD because it is slow enough in contrast to low-density turbidity currents. The IRD-spiked graded mud facies is only found in Heinrich layers within 300 km radius from the Hudson Strait ice terminus. Through the link with the lofted mud facies the sand-carrying turbidity currents that formed the abyssal plain must also be restricted to Heinrich events supporting the notion that these ice-rafting events are times of maximum melt-water generation. Melt-water discharge from ice outlets during Heinrich events therefore took place not only in the form of turbid surface plumes and large hyperpycnal flows but also as interflows at intermediate depths, whereas iceberg melting was probably a minor source of melt water in the cold Labrador Sea.

  6. TRANSPORT OF MACROMOLECULES AND HUMATE COLLOIDS THROUGH A SAND AND A CLAY AMENDED SAND LABORATORY COLUMN

    EPA Science Inventory

    Laboratory experiments were conducted to determine if macromolecules or humate colloids would transport through sand columns and if they would exhibit any variations in their relative velocity based upon their molecular volumes and the pore size distribution of the column packing...

  7. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and sunflower hulls for the biomass material to be carbonized. The ability to remove mercury from a bituminous coal's derived flue gas was low. Removals of only 15% were attained while injecting 6 lb/Macf of activated carbon upstream of an electrostatic precipitator. Poisoning of sites on the activated carbon by SO{sub 2} and SO{sub 3} contributed to the poor mercury capture performance.

  8. 33 CFR 153.205 - Fines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fines. 153.205 Section 153.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION CONTROL OF POLLUTION BY OIL AND HAZARDOUS SUBSTANCES, DISCHARGE REMOVAL Notice of the Discharge of Oil or a Hazardous Substance § 153.205 Fines....

  9. FINE P M EMISSIONS CHARACTERIZATION--BIOMASS

    EPA Science Inventory

    FINE PM EMISSIONS CHARACTERIZATION -- BIOMASS The APPCD fine particle research team was funded (FY 2000) to perform emission characterization and source chemical profile analysis of major particle source emissions in the U.S. The focus of this task is to analyze these data on ai...

  10. RELATIONS BETWEEN MICRONAIRE, FINENESS AND MATURITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diagnostic models of the specific relationships between: (a) fineness/perimeter and the product of maturity x perimetner, (b) micronaire and fineness/perimeter, and (c) micronaire and the product of maturity x perimeter were tested on experimental data from U.S. cottons. The diagnostic models provi...

  11. Biased experimental fineness and maturity results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Part I of this series, models were developed and computer simulations were performed to understand the variability in coefficients of determination (R2) between fineness and maturity, micronaire and fineness, and micronaire and maturity of cotton. Part II concentrated on derivation and testing of...

  12. Modeling Biased Fineness and Maturity Results.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Part I of this series, the classical models study included simulations to explain the variability in coefficients of determination (R2) between fineness and maturity, micronaire and fineness, and micronaire and maturity of cotton. Part II emphasized the derivation and testing of three diagnostic ...

  13. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  14. College of Fine Arts School of Music

    E-print Network

    Branoff, Theodore J.

    College of Fine Arts School of Music Illinois State University Normal, Illinois Notice of Faculty population of 125,000. The University enrolls approximately 21,000 students. The School of Music, one of three schools within the College of Fine Arts, has an enrollment of 400 music majors: 330 undergraduate

  15. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.

    PubMed

    Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P

    2013-09-27

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations. PMID:24072928

  16. The effects of oil sands wastewater on fish resulting from exposure to sub-lethal concentrations

    SciTech Connect

    Birkholz, D.A.; Goudey, J.S.; Balch, G.C.; Nelson, L.R.; Gulley, J.; MacKinnon, M.

    1995-12-31

    Rainbow trout, Oncorhynchus mykiss, were exposed to sub-lethal concentrations of oil sands wastewater in flow through laboratory experiments as well as to artificial ponds containing sub-lethal concentrations of tailings pond water and fine tails in order to study the viability of the wet landscape remediation option. Large (200--300 g) fish were used for all the exposures in this preliminary study and the following data were collected: blood cell counts, sex hormone concentrations, sexual maturation, stress protein concentrations, PAH-metabolites in bile, condition factors, liver somatic indices, mixed function oxygenase induction, PAHs in muscle, external condition and the condition of internal organs. The data obtained from this study revealed no adverse effects upon fish during extended field exposures. Given similar exposure conditions in the release waters of a wet landscape reclamation, the data suggest that there may be no adverse effects upon fish, however, longer term studies, other indicator organisms and additional chronic tests should be conducted.

  17. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Morris, Richard V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; Madsen, M. B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A. H.; McLennan, S. M.; Yen, A. S.; Grotzinger, J.; Vaniman, D. T.; Chipera, S. J.; Achilles, C. N.; Rampe, E. B.; Sumner, D.; Meslin, P. -Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L. A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-Gonzalez, R.; Yingst, R. A.; Kah, L. C.; Bridges, N.; Lewis, K. W.; Bristow, T. F.; Farmer, J. D.; Crisp, J. A.; Stolper, E. M.; DesMarais, D. J.; Sarrazin, P.

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand <150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.

  18. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Morris, R. V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; Madsen, M. B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A. H.; McLennan, S. M.; Yen, A. S.; Grotzinger, J.; Vaniman, D. T.; Chipera, S. J.; Achilles, C. N.; Rampe, E. B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L. A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R. A.; Kah, L. C.; Bridges, N.; Lewis, K. W.; Bristow, T. F.; Farmer, J. D.; Crisp, J. A.; Stolper, E. M.; Des Marais, D. J.; Sarrazin, P.; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Blanco Avalos, Juan Jose; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Brinckerhoff, William; Brinza, David; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; Dietrich, William; Dingler, Robert; Donny, Christophe; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Geffroy, Claude; Genzer, Maria; Godber, Austin; Goesmann, Fred; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian

    2013-09-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  19. Experimental Study of Sand Production and Mud Erosion Phenomena for Sand Mud Alternate Layer

    NASA Astrophysics Data System (ADS)

    Oyama, H.; Sato, T.

    2014-12-01

    Methane hydrates are crystalline, ice-like compounds under specific thermodynamic conditions. The existence of methane hydrates is confirmed in the Nankai Trough, an offshore area of Japan. Japan's Methane Hydrate Research and Development Program (MH21) has been under way at this area. In the early 2013, the world's first intentional gas production attempt from marine gas hydrate deposits was tried and accomplished in the Daini Atumi Knoll area of the Eastern Nankai Trough. For gas production, depressurization method has been considered as a promising gas production technique from methane hydrate reservoirs. However, considering of continuous gas production over a long period, there is still something to clarify. The methane hydrate crystals are very small and existed in the intergranular pores of sandy layer of turbidite sediments. When the intergranular methane hydrates will be dissociated, it is considered that dissociated gas and water flow will cause sand production and mud erosion phenomena of turbidite sediments. The production of framework sands into a well is one of the problems plaguing the gas because of its adverse effects on well productivity and equipment. If the eroded mud is accumulated in the pore space of sand, skin is generated and permeability becomes lower. In addition, mud erosion has a negative effect for the well stability. This research presents an experimental study to understand sand production and mud erosion phenomena for sand mud alternate layer. The aims of this study are to understand these phenomena and clarify driving forces. In our experiments, we used an artificial sedimentary core and performed experiments under various conditions. As the results, the driving forces of these phenomena are not dissociation gas flow but water flow through pore.

  20. Faecal indicator bacteria enumeration in beach sand: A comparison study of extraction methods in medium to coarse sands

    USGS Publications Warehouse

    Boehm, A.B.; Griffith, J.; McGee, C.; Edge, T.A.; Solo-Gabriele, H. M.; Whitman, R.; Cao, Y.; Getrich, M.; Jay, J.A.; Ferguson, D.; Goodwin, K.D.; Lee, C.M.; Madison, M.; Weisberg, S.B.

    2009-01-01

    Aims: The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique. Methods and Results: Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts. Conclusions: The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types. Significance and Impact of the Study: Method standardization will improve the understanding of how sands affect surface water quality. ?? 2009 The Society for Applied Microbiology.

  1. Phenotype-environment matching in sand fleas.

    PubMed

    Stevens, Martin; Broderick, Annette C; Godley, Brendan J; Lown, Alice E; Troscianko, Jolyon; Weber, Nicola; Weber, Sam B

    2015-08-01

    Camouflage is perhaps the most widespread anti-predator strategy in nature, found in numerous animal groups. A long-standing prediction is that individuals should have camouflage tuned to the visual backgrounds where they live. However, while several studies have demonstrated phenotype-environment associations, few have directly shown that this confers an improvement in camouflage, particularly with respect to predator vision. Here, we show that an intertidal crustacean, the sand flea (Hippa testudinaria), has coloration tuned to the different substrates on which it occurs when viewed by potential avian predators. Individual sand fleas from a small, oceanic island (Ascension) matched the colour and luminance of their own beaches more closely than neighbouring beaches to a model of avian vision. Based on past work, this phenotype-environment matching is likely to be driven through ontogenetic changes rather than genetic adaptation. Our work provides some of the first direct evidence that animal coloration is tuned to provide camouflage to prospective predators against a range of visual backgrounds, in a population of animals occurring over a small geographical range. PMID:26268993

  2. Periodic Trajectories in Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Valance, A.; Jenkins, J. T.

    2014-12-01

    Saltation is the primary mode of aeolian sand transport and refers to the hoping motion of grains over the bed [1]. We develop a simple model for steady, uniform transport in aeolian saltation over a horizontal bed that is based on the computation of periodic particle trajectories in a turbulent shearing flow [2]. The wind and the particles interact through drag, and the particles collide with the bed. We consider collisions with a rigid, bumpy bed, from which the particles rebound, and an erodible particle bed, for which a collision involves both rebound and particle ejection. The difference in the nature of the collisions results in qualitative differences in the nature of the solutions for the periodic trajectories and, in particular, to differences in the dependence of the particle flow rate on the strength of the turbulent shearing. We also discuss the pertinence of this model to describe bedload transport in water. References:[1] R. A. Bagnold, « The physics of blown sand and desert dunes » , Methuen, New York (1941).[2] J.T Jenkins and A. Valance. Periodic trajectories in Aeolian saltation transport. Physics of Fluids, 2014, 26, pp. 073301

  3. Development and validation of model for sand

    NASA Astrophysics Data System (ADS)

    Church, P.; Ingamells, V.; Wood, A.; Gould, P.; Perry, J.; Jardine, A.; Tyas, A.

    2015-09-01

    There is a growing requirement within QinetiQ to develop models for assessments when there is very little experimental data. A theoretical approach to developing equations of state for geological materials has been developed using Quantitative Structure Property Modelling based on the Porter-Gould model approach. This has been applied to well-controlled sand with different moisture contents and particle shapes. The Porter-Gould model describes an elastic response and gives good agreement at high impact pressures with experiment indicating that the response under these conditions is dominated by the molecular response. However at lower pressures the compaction behaviour is dominated by a micro-mechanical response which drives the need for additional theoretical tools and experiments to separate the volumetric and shear compaction behaviour. The constitutive response is fitted to existing triaxial cell data and Quasi-Static (QS) compaction data. This data is then used to construct a model in the hydrocode. The model shows great promise in predicting plate impact, Hopkinson bar, fragment penetration and residual velocity of fragments through a finite thickness of sand.

  4. Avalanches of Singing Sand in the Laboratory

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  5. TESTING OF TMR SAND MANTIS FINAL REPORT

    SciTech Connect

    Krementz, D; William Daugherty, W

    2007-06-12

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conducted to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.

  6. Phenotype–environment matching in sand fleas

    PubMed Central

    Stevens, Martin; Broderick, Annette C.; Godley, Brendan J.; Lown, Alice E.; Troscianko, Jolyon; Weber, Nicola; Weber, Sam B.

    2015-01-01

    Camouflage is perhaps the most widespread anti-predator strategy in nature, found in numerous animal groups. A long-standing prediction is that individuals should have camouflage tuned to the visual backgrounds where they live. However, while several studies have demonstrated phenotype–environment associations, few have directly shown that this confers an improvement in camouflage, particularly with respect to predator vision. Here, we show that an intertidal crustacean, the sand flea (Hippa testudinaria), has coloration tuned to the different substrates on which it occurs when viewed by potential avian predators. Individual sand fleas from a small, oceanic island (Ascension) matched the colour and luminance of their own beaches more closely than neighbouring beaches to a model of avian vision. Based on past work, this phenotype–environment matching is likely to be driven through ontogenetic changes rather than genetic adaptation. Our work provides some of the first direct evidence that animal coloration is tuned to provide camouflage to prospective predators against a range of visual backgrounds, in a population of animals occurring over a small geographical range. PMID:26268993

  7. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  8. Yield stress transition in gas fluidized sand.

    NASA Astrophysics Data System (ADS)

    Stoker, David; Poker, Jennifer; Savrin, Tamara; Rutgers, Maarten

    2000-11-01

    Gas fluidized powders can take on three distinct states. I: Solid like for low gas flow rates. II: At intermediate flow rates, the bed expands and drastically reduces its yield stress, i.e. quicksand which cannot support the weight of solid objects. III: At high flow rates rising gas bubbles churn the sand grains violently. We have measured that the transition from regime I to II does not occur simultaneously for the entire column, but rather as a well defined front which sweeps through the column as a function of gas flow rate. Earlier measurements sensed this front by measuring the depth to which a brass sphere would sink in the liquid phase. We have supplemented this with careful measurements of the vertical gas pressure gradient throughout the column. The pressure profile shows a distinct change in the gradient at a height which correlates well with results from the sinking sphere measurement. From the pressure gradient we calculate the local gas permeability of the sand, which is related to the grain density, which can be measured with an accuracy of better than 1 part in 100. We thank the NSF-REU program for partial support of this research.

  9. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.

    PubMed

    Boutsivongsakd, Monique; Farwell, Andrea J; Chen, Hao; Dixon, D George

    2015-01-01

    Previous studies reported (15)N enrichment of biota in reclamation wetlands that contain oil sands processed material (e.g., processed water and tailings); however, there is little information on the factors controlling (15)N enrichment in these systems. In this microcosm study, the aim was to examine stable C and N isotopes and growth (chlorophyll a [chl a] and dry weight) of algae as a function of exposure to different sources and concentrations of water-soluble fractions (WSF) derived from tailings. Two sources of tailings including mature fine tailings (MFT) and consolidated tailings (CT) and peat-mineral overburden were utilized to generate separate WSF that differed in water quality. In general, there was (15)N enrichment of filamentous algae along the increasing gradient of WSF/nutrient concentrations in both CT and peat microcosms, and among the different sources, algae were more (15)N enriched in CT WSF than in peat WSF. Growth of filamentous algae was inhibited at higher WSF concentrations, possibly due to reduced light availability at elevated levels of fine clay particles in MFT microcosms and colored dissolved organic carbon (DOC) in peat microcosms. Filamentous algae displayed lower biomass and (15)N depletion in 100% peat WSF. This study indicated that both the quality (source) and quantity of WSF affected algal growth and directly and/or indirectly influenced ?(15)N of algae. The distinct (15)N enrichment of primary producers derived from tailings suggest that stable N isotopes might be useful to trace exposure to oil sands processed material in biota that utilize these resources in reclaimed systems constructed with tailings or natural systems that receive tailings dyke seepage. PMID:25506635

  10. 24 CFR 3285.202 - Soil classifications and bearing capacity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Sandy gravel and gravel; very than dense and/orcemented sands;coursegravel/cobbles;preloaded silts,clays and...2000 40+ More than 550. 3 GC, SC, ML, CL Sand; silty sand; clayey sand; siltygravel; medium dense course...

  11. Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada.

    PubMed

    Bari, Md; Kindzierski, Warren B

    2015-01-01

    An investigation of ambient air quality was undertaken at three communities within the Athabasca Oil Sands Region (AOSR) of Alberta, Canada (Fort McKay, Fort McMurray, and Fort Chipewyan). Daily and seasonal patterns and 15-year trends were investigated for several criteria air pollutants over the period of 1998 to 2012. A parametric trend detection method using percentiles from frequency distributions of 1h concentrations for a pollutant during each year was used. Variables representing 50th, 65th, 80th, 90th, 95th and 98th percentile concentrations each year were identified from frequency distributions and used for trend analysis. Small increasing concentration trends were observed for nitrogen dioxide (<1ppb/year) at Fort McKay and Fort McMurray over the period consistent with increasing emissions of oxides of nitrogen (ca. 1000tons/year) from industrial developments. Emissions from all oil sands facilities appear to be contributing to the trend at Fort McKay, whereas both emissions from within the community (vehicles and commercial) and oil sands facility emissions appear to be contributing to the trend at Fort McMurray. Sulfur dioxide (SO2) emissions from industrial developments in the AOSR were unchanged during the period (101,000±7000tons/year; mean±standard deviation) and no meaningful trends were judged to be occurring at all community stations. No meaningful trends occurred for ozone and fine particulate matter (PM2.5) at all community stations and carbon monoxide at one station in Fort McMurray. Air quality in Fort Chipewyan was much better and quite separate in terms of absence of factors influencing criteria air pollutant concentrations at the other community stations. PMID:25454237

  12. Evaluation of Instability Phenomena in Sands: Plane Strain Versus Triaxial Conditions

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.

    2001-01-01

    Extensive research was carried out in the 1950s on theories of plasticity to extend the concepts developed for metals to materials that failed according to the Mohr-Coulomb criterion. The new ideas made it possible to merge the two distinct concepts (strength and deformation techniques) into one that relies on better understanding of plasticity and resulted in a rapid growth in the field of constitutive modeling of soil behavior. At the same time advanced experimental apparatuses and laboratory procedures were developed to calibrate the models. However, most laboratory experiments on granular materials are performed under Conventional Triaxial Conditions (CTC) for the purposes of evaluating constitutive behavior and stability properties, whereas most geotechnical field problems are closer to the Plane Strain (PS) condition. The triaxial tests performed in most laboratories comprise a simplification over in situ states and allow easier and robust experimentation. Most landslide problems, failure of soils beneath shallow and deep foundations, and failure of retaining structures, are cases that can generally be considered as plane strain. Strength and deformation characteristics of granular materials loaded in plane strain may be considerably different from those observed in CTC. Most studies on sands were limited to evaluating the constitutive behavior and in some cases extended to briefly describing the associated instability phenomena. This paper presents the results of a series of PS and CTC experiments performed on fine uniform silica sand known as F-75 Ottawa sand. Advanced analysis techniques were used to study the instability phenomena, which yielded very accurate measurements of shear bands occurrences and patterns. Destructive thin-sectioning technique along with monitoring the specimen surface deformation was used in the PS experiments and Computed Tomography (CT) was used to investigate the progress of primary and secondary shear bands in specimens subjected to CTC. Comparison between the two cases will be presented and discussed.

  13. Power generation and oil sands process-affected water treatment in microbial fuel cells.

    PubMed

    Choi, Jeongdong; Liu, Yang

    2014-10-01

    Oil sands process-affected water (OSPW), a product of bitumen isolation in the oil sands industry, is a source of pollution if not properly treated. In present study, OSPW treatment and voltage generation were examined in a single chamber air-cathode microbial fuel cell (MFC) under the effect of inoculated carbon source and temperature. OSPW treatment with an anaerobic sludge-inoculated MFC (AS-MFC) generated 0.55 ± 0.025 V, whereas an MFC inoculated with mature-fine tailings (MFT-MFC) generated 0.41 ± 0.01 V. An additional carbon source (acetate) significantly improved generated voltage. The voltage detected increased to 20-23% in MFCs when the condition was switched from ambient to mesophilic. The mesophilic condition increased OSPW treatment efficiency in terms of lowering the chemical oxygen demand and acid-extractable organics. Pyrosequencing analysis of microbial consortia revealed that Proteobacteria were the most abundant in MFCs and microbial communities in the AS-MFC were more diverse than those in the MFT-MFC. PMID:25103035

  14. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (?-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  15. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio. PMID:25244869

  16. Geohydrology of the High Energy Laser System Test Facility site, White Sands Missile Range, Tularosa Basin, south-central New Mexico

    USGS Publications Warehouse

    Basabilvazo, G.T.; Nickerson, E.L.; Myers, R.G.

    1994-01-01

    The Yesum-HoHoman and Gypsum land (hummocky) soils at the High Energy Laser System Test Facility (HELSTF) represent wind deposits from recently desiccated lacustrine deposits and deposits from the ancestral Lake Otero. The upper 15-20 feet of the subsurface consists of varved gypsiferous clay and silt. Below these surfidai deposits the lithology consists of interbedded clay units, silty-clay units, and fine- to medium-grained quartz arenite units in continuous and discontinuous horizons. Clay horizons can cause perched water above the water table. Analyses of selected clay samples indicate that clay units are composed chiefly of kaolinire and mixed-layer illite/ smectite. The main aquifer is representative of a leaky-confined aquifer. Estimated aquifer properties are: transmissivity (T) = 780 feet squared per day, storage coefficient (S) = 3.1 x 10-3, and hydraulic conductivity (K) = 6.0 feet per day. Ground water flows south and southwest; the estimated hydraulic gradient is 5.3 feet per mile. Analyses of water samples indicate that ground water at the HELSTF site is brackish to slightly saline at the top of the main aquifer. Dissolved-solids concentration near the top of the main aquifer ranges from 5,940 to 11,800 milligrams per liter. Predominant ions are sodium and sulfate. At 815 feet below land surface, the largest dissolved-solids concentration measured is 111,000 milligrams per liter, which indicates increasing salinity with depth. Predominant ions are sodium and chloride.

  17. Euscorpius --Occasional Publications in Scorpiology. 2004, No. 17 Sand scorpion home burrow navigation in the laboratory

    E-print Network

    Gaffin, Doug

    Euscorpius -- Occasional Publications in Scorpiology. 2004, No. 17 Sand scorpion home burrow strategy. Sand scorpions (Paruroctonus utahensis, Vaejovidae) typically leave their home burrows at night and subsequently return, suggesting navigational capabilities. Sand scorpions present an ideal system

  18. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...false Disposal plan for embedded gravel, sand or stone. 644.505 Section 644...Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  19. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Applicability; description of the construction sand and gravel subcategory. 436.30 Section...PROCESSING POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The...

  20. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Applicability; description of the industrial sand subcategory. 436.40 Section 436...PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of...

  1. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Applicability; description of the industrial sand subcategory. 436.40 Section 436...PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of...

  2. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Applicability; description of the industrial sand subcategory. 436.40 Section 436...PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of...

  3. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...true Disposal plan for embedded gravel, sand or stone. 644.505 Section 644...Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  4. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...true Disposal plan for embedded gravel, sand or stone. 644.505 Section 644...Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  5. 76 FR 68503 - Ungulate Management Plan/Environmental Impact Statement, Great Sand Dunes National Park and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...Environmental Impact Statement, Great Sand Dunes National Park and Preserve, CO AGENCY...for the Ungulate Management Plan, Great Sand Dunes National Park and Preserve...for the Ungulate Management Plan, Great Sand Dunes National Park and Preserve,...

  6. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Applicability; description of the construction sand and gravel subcategory. 436.30 Section...PROCESSING POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The...

  7. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Applicability; description of the industrial sand subcategory. 436.40 Section 436...PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of...

  8. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Applicability; description of the construction sand and gravel subcategory. 436.30 Section...PROCESSING POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The...

  9. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Applicability; description of the industrial sand subcategory. 436.40 Section 436...PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of...

  10. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Applicability; description of the construction sand and gravel subcategory. 436.30 Section...PROCESSING POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The...

  11. 43 CFR 3141.2 - Prelease exploration within Special Tar Sand Areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...false Prelease exploration within Special Tar Sand Areas. 3141.2 Section 3141.2 Public...MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.2 Prelease exploration...

  12. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...true Disposal plan for embedded gravel, sand or stone. 644.505 Section 644...Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  13. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Disposal plan for embedded gravel, sand or stone. 644.505 Section 644...Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  14. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Applicability; description of the construction sand and gravel subcategory. 436.30 Section...PROCESSING POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The...

  15. 43 CFR 3141.2 - Prelease exploration within Special Tar Sand Areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...false Prelease exploration within Special Tar Sand Areas. 3141.2 Section 3141.2 Public...MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.2 Prelease exploration...

  16. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...Madison Wetland Management District, and Sand Lake Wetland Management District, SD...EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts...Madison Wetland Management District, Sand Lake Wetland Management District...

  17. 43 CFR 3141.2 - Prelease exploration within Special Tar Sand Areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...false Prelease exploration within Special Tar Sand Areas. 3141.2 Section 3141.2 Public...MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.2 Prelease exploration...

  18. 43 CFR 3141.2 - Prelease exploration within Special Tar Sand Areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...false Prelease exploration within Special Tar Sand Areas. 3141.2 Section 3141.2 Public...MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.2 Prelease exploration...

  19. A herringbone bedform pattern of possible Taylor-Görtler type flow origin seen in sonographs

    USGS Publications Warehouse

    Toimil, Lawrence J.; Reimnitz, Erk

    1979-01-01

    Side-scan sonar records collected in a shallow arctic lagoon (2–2.5 m depth) reveal a herringbone pattern of current-aligned linear reflectors with branching diagonals. The major longitudinal reflectors have no detectable relief (<20 cm), are spaced 5–10 m apart, and may represent current-aligned helical cell boundaries preserved in the silty fine sand of the lagoon floor. The pattern suggests a three-dimensional flow regime of the Taylor-Görtler type.

  20. Fine Guidance Sensing for Coronagraphic Observatories

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  1. Paste mechanics for fine extrusion

    NASA Astrophysics Data System (ADS)

    Hurysz, Kevin Michael

    Lightweight metallic honeycomb structures having low density and high strength are potentially useful materials in a wide variety of applications. These materials can be employed as replacements for bearing and support structures, for impact and sound absorption, for thermal management, and in multifunctional capacities where the benefits of both metallic character and low density are required. Extrusion of these architectures represents a novel and economical alternative to conventional honeycomb fabrication. Extrusion is a material forming process that allows the shaping of cohesive plastic body into a linear form having constant cross section. The plastic body is a paste; well mixed material composed of solids, liquids, and processing aids. Control of paste rheology and optimization of flow and die variables are necessary to the extrusion of articles having complex geometry. By extruding paste compositions of raw material powders, mixed in the appropriate proportion to produce alloy materials upon reduction, lightweight ceramic honeycomb can be formed. The green ceramic honeycomb is then reduced to alloy in a controlled atmosphere heat treatment. In this investigation, high quality, green extruded honeycomb structures were fabricated. The model equations used to describe high viscosity suspension behavior were applied to paste formulations to predict properties. To accomplish the goals of this research, it was necessary to consider: (1) Raw material characterization, ensuring consistency between batches and allowing prediction of paste behavior; (2) Mechanics of the fluid phase and the paste, using capillary rheometry to determine paste properties; (3) Characteristics of the fluid phase and the paste, including methods to estimate and experimentally determine maximum solids content and the hydrodynamic constant; (4) Model development, applying the equations that describe high viscosity suspensions to pastes, allowing prediction of extrusion variables over a wide compositional range; (5) Shear zone behavior, and the influence and limitations the shear layer places on fine extrusion.

  2. 31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY FORCES CONDITIONED MOLDING SAND, AT HIGH VELOCITY, INTO MOLDS TOO BIG TO BE MADE ON ONE OF THE CONVEYOR SYSTEMS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  4. Mechanisms of compaction of quartz sand at diagenetic conditions

    E-print Network

    Chester, Frederick M.

    Mechanisms of compaction of quartz sand at diagenetic conditions J.S. Chester à , S.C. Lenz 1 , F solution during experimental compaction of quartz sand at diagenetic conditions was determined through; sandstones; deformation; sedimentary basin 1. Introduction Observations of quartz-rich sandstone reser- voirs

  5. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  6. Household scale slow sand filtration in the Dominican Republic

    E-print Network

    Donison, Kori S. (Kori Shay), 1981-

    2004-01-01

    Slow sand filtration is a method of water treatment that has been used for hundreds of years. In the past two decades, there has been resurgence in interest in slow sand filtration, particularly as a low-cost, household-scale ...

  7. Heat-treatment of metal parts facilitated by sand embedment

    NASA Technical Reports Server (NTRS)

    Briscoe, C. C.; Kelley, R. C.

    1966-01-01

    Embedding metal parts of complex shape in sand contained in a steel box prevents strains and warping during heat treatment. The sand not only provides a simple, inexpensive support for the parts but also ensures more uniform distribution of heat to the parts.

  8. Beach Sand Analysis for Indicators of Microbial Contamination

    EPA Science Inventory

    Traditional beach monitoring has focused on water quality, with little attention paid to health risks associated with beach sand. Recent research has reported that fecal indicator bacteria, as well as human pathogens can be found in beach sand and may constitute a risk to human h...

  9. Thermal reclaimer apparatus for a thermal sand reclamation system

    SciTech Connect

    Deve, V.

    1984-02-07

    A thermal reclaimer apparatus is disclosed for thermally removing from the used foundry sand the organic matter that is present therein. The subject thermal reclaimer apparatus includes chamber means in which the used foundry sand is heated to a predetermined temperature for a preestablished period in order to accomplish the burning away of the organic matter that the used foundry sand contains. The chamber means includes inlet means provided at one end thereof and outlet means provided at the other end thereof. Feed means are cooperatively associated with the pipe means and thereby with the inlet means for feeding the used foundry sand through the inlet means into the chamber means. The subject thermal reclaimer apparatus further includes rotating means operative for effecting the rotation of the chamber means as the used foundry sand is being heated therein. The chamber means has cooperatively associated therewith burner means located at the same end thereof as the outlet means. The burner means is operative to effect the heating of the used foundry sand to the desired temperature within the chamber means. Tumbling means are provided inside the chamber means to ensure that the used foundry sand is constantly turned over, i.e., tumbled, and that the lumps therein are broken up as the chamber means rotates. Lastly, the used foundry sand from which the organic matter has been removed leaves the chamber means through the outlet means.

  10. Sand Tray and Group Therapy: Helping Parents Cope

    ERIC Educational Resources Information Center

    James, Linda; Martin, Don

    2002-01-01

    Sand tray with group therapy can be an effective treatment approach for parents coping with adolescent substance abuse and/or dependency. Excerpts of parent sand trays are presented to demonstrate pretreatment tasks that decrease denial, reduce reactive anger, stop enabling behaviors, and build support systems. Parent-child relational issues,…

  11. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING NORTHWEST. PIPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING NORTHWEST. PIPING IN FOREGROUND IS NOT RELATED TO THE MACHINE. THE NORTHEAST CORNER OF SETTLING RESERVOIR NO. 3 IS SEEN AT THE LOWER LEFT. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  12. 7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO LEFT OF CANAL ORIGINALLY PLANNED AS A STORAGE LAKE. VIEW LOOKING DUE WEST OF HINDS COMPLEX IN BACKGROUND OF SAND FILTERS. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  13. Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sand fly, Phlebotomus papatasi (Scopoli) is a major vector of Leishamnia major, the principle causative agent of human cutaneous leishmaniasis in the Middle East, southern Europe, northern Africa, and Southern Asia. Sand fly bites and leishmaniasis significantly impacted U.S. military operations...

  14. A finite element analysis of pneumatic-tire/sand interactions

    E-print Network

    Grujicic, Mica

    A finite element analysis of pneumatic-tire/sand interactions during off-road vehicle travel M to investigate the interactions between a stereotypical pneumatic tire and sand during off-road vehicle travel. Different components of the pneumatic tire were modeled using elastic, hyper- and visco-elastic material

  15. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING WEST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING WEST. THE NONHISTORIC CHEMICAL BUILDING IS SEEN IN THE BACKGROUND. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  16. Biogenic crust dynamics on sand dunes Shai Kinast,1

    E-print Network

    Ashkenazy, Yossi "Yosef"

    addressed the question of sand-dune stability in relation to climate change and anthropogenic disturbances erosion. Since most sandy soils are located in dry- lands where the vegetation is patchy and generally and agricultural fields [11, 12]. Sand dunes are also stabilized by biogenic soil crusts. These crusts comprise

  17. Sand impactions in a Saskatchewan beef cow-calf herd

    PubMed Central

    Erickson, Nathan; Hendrick, Steven

    2011-01-01

    Forty beef cows were reported to show signs of abdominal pain and discomfort over a period of 1 wk. Two of the affected animals died and on postmortem examination were found to be impacted with sand in their abomasum and small intestines. Sand-laden barley silage was found to be the cause of these impactions. PMID:21461212

  18. 12. INTERIOR VIEW WITH JAMES WILLIAMS REACHING FOR THE SAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW WITH JAMES WILLIAMS REACHING FOR THE SAND RELEASE LEVER WHICH WILL OPEN THE OVERHEAD STORAGE BIN AND PERMIT A SET AMOUNT OF SAND TO BE DEPOSITED INTO THE FLASK PRIOR TO COMPRESSION BY THE MOLDING MACHINE INSIDE GREY IRON UNIT NO. 1. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  19. The Unified Gravel-Sand (TUGS) Model: Simulating the Transport of Gravel-Sand Mixtures in Rivers

    NASA Astrophysics Data System (ADS)

    Cui, Y.

    2006-12-01

    TUGS Model was developed by employing the surface-based bedload equation of Wilcock and Crowe (2003) and linking grain size distributions in the bedload, surface layer, and subsurface sediment deposit with the gravel transfer function of Hoey and Ferguson (1994) and Toro-Escobar et al. (1996), and a hypothetical sand transfer function. The unmodified model was applied to simulate the sedimentation process in Marmot Reservoir, Sandy River, Oregon and produced similar stratified sediment deposit as observed through coring exercises. The model was also examined with three runs of large-scale flume experiments conducted at St. Anthony Falls Laboratory (SAFL) by Seal et al. (1995). With a very minor modification to Wilcock and Crowe (2003) equation, the model excellently reproduced the longitudinal profiles, gravel grain size distributions and sand fractions in the deposits for all the three SAFL runs. Following its examination, TUGS model was applied to simulate the sediment transport dynamics in the Sandy River, Oregon under a few hypothetical scenarios, focusing on the dynamics of sand fractions in gravel-bedded channel deposits. Results of the exploratory runs on the Sandy River indicate that (a) surface and subsurface sand fractions generally increase in the downstream direction, similar to observed in the field; (b) sand fraction in the deposit is positively correlated with sand supply as expected; (c) extremely high sand supply under similar gravel supply and hydrologic conditions can transform the river into predominantly sand-bedded; (d) increased discharge under the same sand and gravel supply conditions results in decreased sand fraction in the deposit as expected; and (e) there can be significant increase in surface and subsurface sand fractions in the backwater zones near the mouth of the river as expected.

  20. The effects of psammophilous plants on sand dune dynamics

    E-print Network

    Bel, Golan

    2013-01-01

    Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth u...

  1. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

    1989-01-01

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  2. Mapping sand and gravel pits in the Patuxent River watershed

    NASA Technical Reports Server (NTRS)

    Schmidt, T. J.; Witt, R. G.

    1981-01-01

    LANDSAT data from July 1973 and June 1978 for the Patuxent River Watershed of Maryland were processed in an effort to devise an economical method of monitoring the reclamation of sand and gravel pits. ASTEP-II and IDIMS software were utilized to derive signatures for sand and gravel pits and other land use/land cover types. Both unsupervised and supervised classifications of the two data sets were produced. Resultant statistics and color output products were compared in order to determine the extent of reclamation and expansion of sand and gravel pits over the five-year time span and to check the locations of more recent sand and gravel pits. Preliminary results indicate that, for a selected northern sub-acre, signatures derived for sand and gravel pits were nearly 90 percent accurate.

  3. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, J.D.; Harak, A.E.

    1988-05-04

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  4. Dissipation in quasistatically sheared wet and dry sand under confinement

    NASA Astrophysics Data System (ADS)

    Fiscina, J. E.; Pakpour, M.; Fall, A.; Vandewalle, N.; Wagner, C.; Bonn, D.

    2012-08-01

    We investigated the stress-strain behavior of sand with and without small amounts of liquid under steady and oscillatory shear. Since dry sand has a lower shear modulus, one would expect it to deform more easily. Using a new technique to quasistatically push the sand through a tube with an enforced parabolic (Poiseuille-like) profile, we minimize the effect of avalanches and shear localization. We observe that the resistance against deformation of the wet (partially saturated) sand is much smaller than that of the dry sand, and that the latter dissipates more energy under flow. This is also observed in large-amplitude oscillatory shear measurements using a rotational rheometer, showing that the effect is robust and holds for different types of flow.

  5. Properties of Desert Sand and CMAS Glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  6. SANDS - Sediment Analysis Network for Decision Support

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Hawkins, L.; He, M.; Ebersole, S.

    2010-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The SANDS project is also investigating the effects of sediment immersed oil from the Deepwater Horizon disaster in April 2010 which has the potential to resurface as a result of tropical storm activity. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The Sediment Analysis Network for Decision Support has generated a number of decision support products derived from MODIS, Landsat and SeaWiFS instruments that potentially support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, these decision support products address the impacts of tropical storms and hurricanes on sediment disturbance, suspension, transport, and deposition in the north central Gulf of Mexico. The products will be managed and accessed through the SANDS Portal, an on-line data repository with a user interface customized to provide data and information for specific storm based events. By making multi-spectral satellite products available for multiple common storm events, SANDS will provide end users the opportunity to better analyze, detect, and identify compositions and patterns of suspended sediment and sediment deposits.

  7. Tectonics and sedimentology along the Monkey River and Big Creek, southern Belize, Central America: Modern analog of select Morrow sands

    SciTech Connect

    Gries, J.C.; Full, W.E. )

    1991-08-01

    Big Creek is presently a relatively short river draining the flat coastal plain at the southern edge of the North American plate, south-central Belize. The recent sediments in this river consists of very fine-grained silts and clays derived from the local coastal plain. Offshore from the mouth of the Big Creek are shallow sand bars, channels, and eroding islands consisting of well-sorted, coarse sand comprised dominantly of feldspathic minerals. The location and geometry of these sands suggest that Big Creek was the fluvial source for this material. The sedimentology implication is that the nearshore and offshore parts of Big Creek represent a relatively large drowned deltaic complex, a modern analog of some lower Morrow depositional systems. Coarse feldspathic material found in the Cockscomb basin in the Maya Mountains is transported by the Swasey branch of the Monkey River toward the Big Creek drainage to the coast. However, the Swasey branch is abruptly diverted southward to intersect the present-day Monkey River. Drainage analysis suggests that structural features subsidiary to the Chixoy-Polochic fault zone bounding the North American plate may have diverted flow southward, beheading Big Creek. Field observations have not found any major relief changes which would have drainage analysis support tectonic diversion of the head waters of Big Creek into present-day Monkey River. Similar processes are hypothesized to have occurred during Morrow deposition.

  8. FINE PARTICLE EMISSIONS INFORMATION SYSTEM: SUMMARY REPORT (SUMMER 1976)

    EPA Science Inventory

    The report summarizes the initial loading of data into the Fine Particle Emissions Information System (FPEIS), a computerized database on primary fine particle emissions to the atmosphere from stationary sources, designed to assist engineers and scientists engaged in fine particl...

  9. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health

    PubMed Central

    Whitman, Richard; Harwood, Valerie J.; Edge, Thomas A.; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J.; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M.

    2014-01-01

    SUMMARY Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area. PMID:25383070

  10. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health.

    PubMed

    Whitman, Richard; Harwood, Valerie J; Edge, Thomas A; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M

    2014-09-01

    Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area. PMID:25383070

  11. Acoustic sand detector for fluid flowstreams

    DOEpatents

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  12. Direct Production of Silicones From Sand

    SciTech Connect

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  13. 'Sharks Teeth' -- Sand Dunes in Proctor Crater

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  14. Mechanism of sand slide - cold lahar induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Yamada, Masumi; Dok, Atitkagna

    2014-05-01

    Along with the increasing frequencies of extreme rainfall events in almost every where on the earth, shallow slide - debris flow, i.e. cold lahars running long distance often occurs and claims downslope residents lives. In the midnight of 15 October 2013, Typhoon Wilpha attacked the Izu-Oshima, a active volcanic Island and the extreme rainfall of more than 800 mm / 24 hours was recorded. This downpour of more than 80 mm/hr lasted 4 hours at its peak and caused a number of cold lahars. The initial stage of those lahars was shallow slides of surface black volcanic ash deposits, containing mostly fine sands. The thickness was only 50 cm - 1 m. In the reconnaissance investigation, author found that the sliding surface was the boundary of two separate volcanic ash layers between the black and yellow colored and apparently showing contrast of permeability and hardness. Permeability contrast may have contributed to generation of excess pore pressure on the border and trigger the slide. Then, the unconsolidated, unpacked mass was easily fluidized and transformed into mud flows, that which volcanologists call cold lahars. Seismometers installed for monitoring the active volcano's activities, succeeded to detect many tremors events. Many are spikes but 5 larger and longer events were extracted. They lasted 2 -3 minutes and if we assume that this tremors reflects the runout movement, then we can calculate the mean velocity of the lahars. Estimated velocity was 45 - 60 km/h, which is much higher than the average speed 30 - 40 km/h of debris flows observed in Japan. Flume tests of volcanic ash flows by the Forestry and Forest Products Research Institute showed the wet volcanic ash can run at higher speed than other materials. The two tremor records were compare d with the local residents witnessed and confirmed by newspaper reported that the reach of the lahar was observed at the exact time when tremor ends. We took the black volcanic ash and conducted ring shear tests to reveal the mechanism of rapid motion. In the undrained or partially drained tests under pore water pressure test, monotonic loading of shear stress, and constant shear speed conditions, we found that immediately after failure takes place, a big excess pore pressure was generated and accelerating motions had stated in all cases. The reduced shear resistance thereafter was maintained because of the lasting high pore pressure. Even in the partially-drained test, we found once the pore pressure reached almost same with the normal stress and then gradually decreased due to dissipation. Those tests apparently shows that the high mobility and high acceleration of the motion are expected and this could be the key mechanism of the fluidization of initial shallow slides into sand flows, i.e., cold lahars. In the past ring shear test series on volcanic materials from fluidized landslides at El Picaccho of El Salvador, Mt Aso of Kumamto Prefecture, and Nagari Tandikat near Padang, Indonesia, show very similar trends. In all those cases, we expected serious grain crushing during shear, contributed to the generation of excess pore pressure, because those material are deposited recently (in geological time) and suffered no big overburden pressure which means no consolidation and no serious grain crushing ever before. So those volcanic materials are generally susceptible to crushing and expect high mobility when slides are initiated under fully saturated condition.

  15. The Geodiversity in Drift Sand Landscapes of The Netherlands

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2 metres high. They are common near villages. They originated through sand blown from fallow agricultural fields and local overgrazing. They vary in age from prehistoric to modern time and are now mostly planted with forests. Third are the linear drift sand areas with one to three metre high ridges that align old roads and originated through dust whirled up by horses and carriages over many centuries. They also occurs within drift sands of the first system. In the re-stabilization of reactivated drift sands, differences in geodiversity on a still more detailed scale are important (Ancker, Jungerius et al. 2013). Even a small change in slope can cause primary dunes to develop and stop wind erosion. Gradually the geodiversity aspects are recognized as relevant for the management of active and fossil drift sands, and also is becoming a management issue in itself. An important future research issue is the completion of the Drift Sand Atlas, a project that describes the geodiversity aspects of all drift sand areas of The Netherlands. This project has been retarded by lack of means. Knowledge of the geodiversity also is important for correct sampling of C14 and luminescence data. Other future research includes the processes that caused the formation of 'randwallen' (rim walls), rates of water and wind erosion and soil formation and links between flora, fauna and Natura 2000 species. References

  16. Fine needle aspiration of the thyroid

    MedlinePLUS

    Thyroid nodule fine needle aspirate biopsy; Biopsy - thyroid - skinny-needle; Skinny-needle thyroid biopsy ... cleaned. A thin needle is inserted into the thyroid, and a sample of thyroid cells and fluid ...

  17. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  18. TECHNOLOGY ASSESSMENT OF FINE BUBBLE AERATORS

    EPA Science Inventory

    This technology assessment addresses design and evaluation of fine bubble aeration equipment. It discusses the associated gas transfer theory used as the basis for measuring water and wastewater oxygenation efficiency. Mixing requirements are also discussed. While bubble aeration...

  19. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Al Faruque, Mohammad Abdullah

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC INSTRUMENTAL PERFORMANCE Degree Requirements (2014-2015) Music 131 (Post-Tonal Theory) ______ 4 units Music 160, or 161 (Large Ensemble of 12 units of Music 160, 161. ______ ______ ______ ______ ______ ______ Music 176 (Chamber Ensembles

  20. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Loudon, Catherine

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC MUSICOLOGY Degree Requirements (2015-2016) Music 200 (Bibliography and Resesarch) ______ 4 units Music 201 (Topics in Analysis) ______ 4 units Music 203 (Music Thesis): ______ 4 units Music 235 (Critical Studies in Music) ______ 4

  1. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Loudon, Catherine

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC VOCAL ARTS Degree Requirements (2015-2016) Music 131 (Post-Tonal Theory) ______ 4 units Music 164 (Opera Workshop) ______ ______ 4 units Music 200 (Bibliography) ______ 4 units Music 201 (Analysis) ______ 4 units Music 211 (Vocal

  2. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Loudon, Catherine

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC INSTRUMENTAL PERFORMANCE Degree Requirements (2015-2016) Music 131 (Post-Tonal Theory) ______ 4 units Music 160, or 161 (Large Ensemble of 12 units of Music 160, 161. ______ ______ ______ ______ ______ ______ Music 176 (Chamber Ensembles

  3. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Loudon, Catherine

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC GUITAR/LUTE PERFORMANCE Degree Requirements (2015-2016) Music 131 (Post-Tonal Theory) ______ 4 units Music 176 (Chamber Ensembles) ______ ______ ______ 6 units Music 189 (Accompanying for Plucked Strings) ______ ______ ______ 6 units Music 200

  4. Name: _______________________________ MASTER OF FINE ARTS: MUSIC

    E-print Network

    Loudon, Catherine

    Name: _______________________________ MASTER OF FINE ARTS: MUSIC PIANO PERFORMANCE Degree Requirements (2015-2016) Music 131 (Post-Tonal Theory) ______ 4 units Music 176 (Chamber Ensembles) ______ ______ ______ 6 units Music 200 (Bibliography) ______ 4 units Music 201 (Analysis) ______ 4 units Music 211

  5. Immobilization of Rocky Flats Graphite Fines Residue

    SciTech Connect

    Rudisill, T.S.

    1999-04-06

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

  6. Name: ___________________________ MASTER OF FINE ARTS: DANCE

    E-print Network

    Al Faruque, Mohammad Abdullah

    Name: ___________________________ MASTER OF FINE ARTS: DANCE Degree Requirements (2014-2015) Six courses chosen from any graduate (#200+) or upper-division (#100+) dance technique course: _______ _______ _______ _______ _______ _______ 12 units Dance 201: Kinesiology _______ 4 units Dance 222: Musical Resources _______ 4 units Dance

  7. High-resolution shallow-seismic experiments in sand. Part 2: Velocities in shallow unconsolidated sand

    SciTech Connect

    Bachrach, R.; Dvorkin, J.; Nur, A.

    1998-07-01

    The authors conducted a shallow high-resolution seismic reflection and refraction experiment on a sandy beach. The depth of investigation was about 2 m. They interpret the data using the Hertz-Mindlin contact theory combined with Gassmann`s equation. These were used to obtain the vertical velocity profile. Then the profile was computed from seismic data using the turning-rays approximation. The normal moveout (NMO) velocity at the depth of 2 m matches the velocity profile. As a result, they developed a method to invert measured velocity from first arrivals, i.e., velocity versus distance into velocity versus depth using only one adjustable parameter. This parameter contains all the information about the internal structure and elasticity of the sand. The lowest velocity observed was about 40 m/s. It is noteworthy that the theoretical lower bound for velocity in dry sand with air is as low as 13 m/s. The authors find that modeling sand as a quartz sphere pack does not quantitatively agree with the measured data. However, the theoretical functional form proves to be useful for the inversion.

  8. Assessment of fish health effects resulting from exposure to oil sands wastewater

    SciTech Connect

    Balch, G.C.; Goudey, J.S.; Birkholtz, D.; Van Meer, T.; MacKinnon, M.

    1995-12-31

    The objective of this study was to determine if oil sands wastewater had an effect on the general health and condition of hatchery raised rainbow trout (200 to 400 g). Effects were assessed based on a battery of physiological and biochemical indices and the physical condition of the fish. The trout were exposed to tailings water in the field and in a flow through system under laboratory conditions. The field tests were conducted in 1992 and 1993 in experimental ponds at Syncrude which contained fine tails covered with surface water, fine tails covered with tailings water, and a surface water control pond. The laboratory treatments included Mildred Lake tailings water, dyke drainage water, fractionated tailings pond water (acid fraction containing naphthenic acids), sodium naphthenate, recycle water from Suncor`s tailings pond, and a laboratory control. All body condition factors and blood parameters were normal in the field and laboratory exposed fish and there were no apparent differences between the fish exposed to the tailings water and controls.

  9. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, H.E.; Carey, W.P.

    1989-01-01

    An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. -from Authors

  10. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  11. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the quartz, higher content of feldspar and unstable heavy mineral assemblage dominated by augite and hypersthene suggest both a fast transport from Andean sources with fine sediment bypass over foreland areas.

  12. Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities

    PubMed Central

    Yergeau, Etienne; Lawrence, John R.; Sanschagrin, Sylvie; Waiser, Marley J.; Korber, Darren R.

    2012-01-01

    The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples. PMID:22923391

  13. Natural radioactivity levels for selected kinds of Egyptian sand.

    PubMed

    El-Bahi, Samia M; El-Dine, Nadia W; Ahmed, Fawzia; Sroor, Amany; Abdl Salaam, Mahitab M A

    2005-06-01

    The monitoring and evaluation of natural radioactivity content of sixty-five different samples of sand used in building materials, black sand and its components, and therapy sand collected from different locations in Egypt have been investigated. The specific radioactivity concentration of 238U, 232Th series, and 40K were measured by gamma-ray spectrometer using a shielded HPGe. The obtained results of 238U and 232Th series as well as 40K are discussed. The absorbed dose rate of gamma radiation ranged from 15.1 to 64.1, 9.3 to 109, 751, and 32.9 to 63.4 nGy h(-1) for sand used in building materials, black sand with its components, and therapy sand samples, respectively. The representative external hazard index (H ex) for the corresponding values are also estimated and tabulated. The present results are compared with other data previously obtained from different sand areas in both Egyptian and foreign locations. PMID:16191767

  14. What factors control the composition of andesitic sand?

    SciTech Connect

    Smith, G.A.; Lotosky, J.E.

    1995-01-02

    The modal composition of andesitic sand and sandstone is not only a function of source-area climate and transport processes typically considered for nonvolcanic sediment but is also strongly controlled by volcanic fragmentation and pyroclastic-transport processes. Most volcaniclastic sediment deposited penecontemporaneously with active volcanism is not epiclastic, and therefore its composition is not dependent on climate. Crystal-rich andesite sand cannot simply be regarded as the product of weathering in a humid climate. In fact, there is no relationship between precipitation and the ratio of crystals to rock fragments. Fluvial-transport abrasion demonstrably generates crystal-rich sand only in the case of porphyritic glassy rock fragments that are not durable during transport; holocrystalline pyroclastic fragments apparently do not disintegrate during transport to yield crystal-rich sand. Many sand-size primary volcanic deposits are crystal-rich as a result of eruptive processes that physical fractionate particles of different sizes and densities. Reworking of these deposits results in crystal-rich sand that is not a product of weathering or transport abrasion. The abundance of unaltered green hornblende is one measure of the importance of pyroclastic material in a volcanic sand because this mineral is not found in lava flows. Interpretation of volcaniclastic sandstone requires consideration of volcanic processes not typically considered by sedimentologists.

  15. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions. PMID:26465676

  16. Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Drummond, J. D.; Martin, R. L.; McPhillips, L. E.; Packman, A. I.; Jerolmack, D. J.; Stonedahl, S. H.; Aubeneau, A. F.; Sawyer, A. H.; Larsen, L. G.; Tobias, C. R.

    2012-12-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 ?m latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.

  17. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    USGS Publications Warehouse

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 ?m latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.

  18. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    PubMed

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. PMID:23962760

  19. The mobilization of toxic trace elements due to pyrite oxidation at the mega-nourishment The Sand Motor, the Netherlands

    NASA Astrophysics Data System (ADS)

    Pit, I.; Doodeman, L.; Van Heteren, S.; van Bruggen, M.; Griffioen, J.

    2014-12-01

    Pilot project "The Sand Motor" is a 21.5 million m3 nourishment of sandy sediment situated along the coast of the Netherlands close to The Hague (figure 1). It was constructed in 2011 and initially spans the shore over a 2.4 km stretch and extends up to 1 km offshore creating a hook-shaped peninsula. Due to wind, waves and currents the Sand Motor will gradually change in shape and eventually be fully incorporated into the dunes and beach. This concept is expected to be more environmentally friendly compared to traditional beach and shoreface nourishments. The aim of this project is to understand how oxidation changed the geochemistry of the sediment applied and to address possible toxic element mobilization. The sediment was taken 10 km out of shore from the sea floor, which was at a depth of 20 m. Grab samples of the upper 25 cm seabed analyzed for geochemical mapping of Southern North Sea sediments, show locally high contents of sulfur, iron and trace elements like arsenic indicating presence of pyrite with impurities. Sediment was removed to a maximum depth of 6 m below sea floor, reaching different geological layers including bog iron ore layers. Different degrees of pyrite oxidation are expected with depth at the Sand Motor. First, minimum oxidation when sediment was deposited from the ship directly by opening the bottom floor, which is now present under water at the deepest part of the nourishment. Second, limited oxidation when sediment was applied from the ship under high pressure through the air, and settled below sea level. Last, maximum oxidation when the same method was used but the sediment remains located in a surface layer having a maximum height of 4 m above sea level. At the Sand Motor, samples were taken of surface water, pore water and sediment from the surface to a depth of 10 m, the bottom of the nourishment. Analyses show that pyrite oxidation has occurred above sea level and mobilization of arsenic is present up to a maximum concentration of 92 ug/L in shallow pore waters. Fine grained material will be transported towards the dune area with the development of the Sand Motor. As a result, heavy particles including shells and bog iron ore fragments get enriched at the surface. The bog iron ore fragments contain high arsenic contents of 391 ppm. The risk of human exposure asks attention as the Sand Motor is also a recreational area.

  20. Improved Probe for Evaluating Compaction of Mold Sand

    NASA Technical Reports Server (NTRS)

    Overfelt, Ruel A.; Bakhtiyarov, Sayavur I.

    2008-01-01

    A nominally stationary tubular probe denoted a telescopic probe has been developed as an improved alternative to a prior movable probe used to evaluate the local degree of compaction of mold sand. The probe is inserted vertically to a desired depth in a sand-filled molding flask and the back pressure at the given rate of flow of air is recorded as a measure of the degree of partial impermeability and, hence, of the degree of compaction of sand in the vicinity of the probe tip.