Science.gov

Sample records for silver islands grown

  1. Effect of underlayer on coalescence of silver islands grown byfiltered cathodic arc deposition

    SciTech Connect

    Byon, Eungsun; Anders, Andre

    2003-03-01

    For low-emissivity application on window glass, coalescenceof thin film silver islands is crucial for high transmittance in thevisible andhigh reflectance in the infrared. It is well known that theenergy of ions arriving at the substrate (kinetics) as wells as the typeof underlayer (thermodynamics) affect the nucleation and growth mode.Little is known about coalescence of silver islands synthesized byenergetic condensation, e.g., by filtered cathodic vacuum arc deposition.In this work, the effect of the underlayer on nucleation and growth ofsilver films deposited by filtered cathodic vacuum arc was investigatedby transmission electron microscopy (TEM) and atomic force microscopy(AFM). The results are compared with data obtained on magnetron sputteredfilms. It was found that uncoated and titanium-oxide-coated glass requiremore silver to achieve the same low value of sheet resistance than silveron zinc-oxide-coated glass. This can be associated with the energy ofinteraction between surface and silver atoms. Silver films made bycathodic arc deposition show an earlier onset of island coalescence andformation of short links. It was found that silver islands in energeticdeposition exhibit a reduced aspect ratio compared to evaporation andsputtering. A nominal 0.1 nm niobium underlayer increases the nucleationdensity and promotes coalescence of silver islands, however, a 0.2 nmlayer did not show these features, indicating the need for furtherstudies.

  2. Thermal stability of PLD grown silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2016-05-01

    Present work discusses the stability of silver nanoparticles at different annealing temperatures. Air muffle furnace annealing is performed to study the thermal stability of pulsed laser deposited silver nanoparticles. Silver reacts with atmospheric oxygen to form silver oxide at annealing temperatures below 473K and thermal decomposition of silver oxide takes place at temperatures above 473K. Oxide formation results in core shrinkage of silver, which in turn affects the surface plasmon resonance of silver nanoparticles. With increase in annealing temperature, the surface plasmon effect of nanoparticles starts to fade. SEM, XRD and UV-vis spectroscopy have been performed to analysis various structural and optical properties.

  3. Silver content of wild-grown mushrooms from northern Poland.

    PubMed

    Falandysz, J; Bona, H; Danisiewicz, D

    1994-09-01

    Wild-grown and mostly edible species of higher mushrooms collected in 1989-1992 from the districts of Gdańsk, Elblag and Piła (northern part of Poland) have been investigated with regard to their silver content. In total, 527 samples including 25 mushroom species of six families (Agaricaceae, Boletaceae, Cantharellaceae, Hygrophoraceae, Coprinaceae and Russulaceae) were examined. Among the fungi examined only Agaricus campestris and A. augustus were heavy bioaccumulating species and showed the highest concentrations of 35 mg Ag/kg dry weight (1.1-150) and 2.0-6.9 mg/kg, respectively. Silver concentrations exceeding 1.0 mg/kg dry weight were noted in Boletus aestivalis, Lepista nuda, L. personata, and in some specimens of B. edulis, Leccinum scrabum, L. vulpinum, Cantharellus cibarius and Coprinus comatus. PMID:7975911

  4. Patterned submicrometer-thick optical polarizing films using stretched silver island multilayers

    NASA Astrophysics Data System (ADS)

    Baba, Kazutaka; Sato, Yoshinori; Yoshitake, Tsutomu; Miyagi, Mitsunobu

    2000-04-01

    We demonstrate a patterned submicrometer-thick optical polarizing film in which non-polarizing areas are formed where the light transmits insensitively to polarization. The polarizing film is fabricated by stretching a silver island multilayer consisting of thin glass layers and silver island layers composed of silver nanoclusters of high density. By stretching the silver island multilayer at a temperature higher than the glass annealing point, the silver islands are elongated along the stretching direction and the large optical anisotropy is induced in the silver island multilayer. In this optical polarizing film, the non- polarizing areas can be easily formed by laser irradiation with high power density as the optical anisotorpy is reduce das the elongated silver islands become spherical ones from the thermal deformation in the irradiated area. We have successfully patterned the optical polarizing films fabricated for the wavelength of 800 nm by laser writing with a 1 W-class carbon dioxide laser. In order to confirm that the optical anisotropy is reduced in the laser written are, the optical characteristics of that area have been measured. In most commercially available optical polarizers including a polarization beam splitter and various polarizing prisms, it is difficult to form the transparent non-polarizing areas. Therefore, the demonstrated patterned optical polarizing films are useful for switchable spatial modulators and filters.

  5. Reduction of Cu2O Islands Grown on a Cu(100) Surface through Vacuum Annealing

    NASA Astrophysics Data System (ADS)

    Zhou, Guangwen; Yang, Judith C.

    2004-11-01

    The reduction of Cu2O islands grown on Cu(100) surfaces through vacuum annealing was visualized by an in situ ultrahigh vacuum transmission electron microscope. The shrinkage of the island followed a linear decay behavior. The complete reduction of the oxide islands leads to the formation of nanoindentations on the Cu surfaces. A simple phenomenological kinetic model based on the dissociation along the island perimeter suitably describes the reduction behavior of the surface oxide islands.

  6. 75 FR 20514 - Cranberries Grown in the States of Massachusetts, Rhode Island, Connecticut, New Jersey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... on February 5, 2010 (75 FR 5898). Copies of the rule were mailed or sent facsimile to all Committee... Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in the States of Massachusetts, Rhode Island... handling of cranberries grown in the States of Massachusetts, Rhode Island, Connecticut, New...

  7. 76 FR 16322 - Cranberries Grown in the States of Massachusetts, Rhode Island, Connecticut, New Jersey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in the States of Massachusetts, Rhode Island... of cranberries in the States of Massachusetts, Rhode Island, Connecticut, New Jersey, Wisconsin... favor continuance of the marketing order regulating the handling of cranberries grown in the...

  8. Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle.

    PubMed

    Liaw, Jiunn-Woei; Wu, Hsin-Yu; Huang, Chu-Chuan; Kuo, Mao-Kuen

    2016-12-01

    The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI. Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect. PMID:26779917

  9. Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Wu, Hsin-Yu; Huang, Chu-Chuan; Kuo, Mao-Kuen

    2016-01-01

    The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI. Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect.

  10. Gallium Arsenide Layers Grown by Molecular Beam Epitaxy on Single Crystalline Germanium Islands on Insulator

    NASA Astrophysics Data System (ADS)

    Takai, Mikio; Tanigawa, Takaho; Minamisono, Tadanori; Gamo, Kenji; Namba, Susumu

    1984-05-01

    Gallium arsenide (GaAs) layers have successfully been grown by molecular beam epitaxy on single crystalline germanium (Ge) islands, recrystallized by zone melting with SiO2 capping layers, on thermally-oxidized Si-wafers. The GaAs layers, grown on the single crystalline Ge islands, show smooth surfaces without any grain-boundaries, while those, grown on the Ge islands with grain-boundaries and on the SiO2, have grain-boundaries. The GaAs layers on the single crystalline Ge islands emit photoluminescence, the intensity of which is almost comparable to that of GaAs layers on bulk Ge crystals.

  11. Correction: The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets.

    PubMed

    Volk, Alexander; Thaler, Philipp; Knez, Daniel; Hauser, Andreas W; Steurer, Johannes; Grogger, Werner; Hofer, Ferdinand; Ernst, Wolfgang E

    2016-01-28

    Correction for 'The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets' by Alexander Volk et al., Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/c5cp06248a. PMID:26728840

  12. 75 FR 5900 - Cranberries Grown in the States of Massachusetts, Rhode Island, Connecticut, New Jersey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in the States of Massachusetts, Rhode Island... procedures for independent growers on the Cranberry Marketing Committee (Committee). The order regulates the handling of cranberries produced in the States of Massachusetts, Rhode Island, Connecticut, New...

  13. 75 FR 5898 - Cranberries Grown in the States of Massachusetts, Rhode Island, Connecticut, New Jersey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in the States of... dates prescribed under the marketing order that regulates the handling of cranberries grown in the..., Washington, and Long Island in the State of New York. The order is administered locally by the...

  14. 77 FR 52595 - Cranberries Grown in States of Massachusetts, Rhode Island, Connecticut, New Jersey, Wisconsin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... due in order to provide handlers with additional time to submit their report (75 FR 5898). Under that... Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in States of Massachusetts, Rhode Island... prescribed under the marketing order that regulates the handling of cranberries grown in the States...

  15. Silver nanoparticles grown in organic solvent PGMEA by pulsed laser ablation and their nonlinear optical properties.

    PubMed

    Shi, Hongfei; Wang, Can; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen

    2012-10-01

    Well dispersed silver nanoparticles (AgNPs) with narrow size distribution have been grown in organic solvent propylene glycol monomethyl ether acetate (PGMEA) by pulsed laser ablation techniques. The presence of AgNPs in PGMEA solvent gives rise to an enhancement of the absorption and nonlinear optical properties due to the surface plasmon resonance induced by AgNPs. The shape and density of the AgNPs have been estimated by fitting the absorption spectra with a given model, and the results also show that an additional laser irradiation treatment can improve the monodispersity of the AgNPs and their nonlinear optical properties. The synthesis of AgNPs in PGMEA will facilitate adding AgNPs into organic functional materials especially for photoresist to modify their optical properties. PMID:23421153

  16. 75 FR 18394 - Cranberries Grown in the States of Massachusetts, Rhode Island, Connecticut, New Jersey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... action was published in the Federal Register on February 5, 2010 (75 FR 5900). Copies of the rule were... Agricultural Marketing Service 7 CFR Part 929 Cranberries Grown in the States of Massachusetts, Rhode Island... growers on the Cranberry Marketing Committee (Committee). The order regulates the handling of...

  17. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur. PMID:23425688

  18. Thermal instabilities and Rayleigh breakup of ultrathin silver nanowires grown in helium nanodroplets.

    PubMed

    Volk, Alexander; Knez, Daniel; Thaler, Philipp; Hauser, Andreas W; Grogger, Werner; Hofer, Ferdinand; Ernst, Wolfgang E

    2015-10-14

    Ag nanowires with diameters below 6 nm are grown within vortex containing superfluid helium nanodroplets and deposited onto a heatable substrate at cryogenic temperatures. The experimental setup allows an unbiased investigation of the inherent stability of pristine silver nanowires, which is virtually impossible with other methods due to chemical processes or templates involved in standard production routes. We demonstrate by experiment and by adaption of a theoretical model that initially continuous wires disintegrate into chains of spheres. This phenomenon is well described by a Rayleigh-like breakup mechanism when the substrate is heated to room temperature. Our findings clarify the recent discussions on the cause of the observed segmented patterns, where a breakup during deposition [Gomez et al., Phys. Rev. Lett., 2012, 108, 155302] or mechanisms intrinsic to the helium droplet mediated growth process [Spence et al., Phys. Chem. Chem. Phys., 2014, 16, 6903] have been proposed. The experimental setup confirms the validity of previous suggestions derived from bulk superfluid helium experiments [Gordon et al., Phys. Chem. Chem. Phys., 2014, 16, 25229] for the helium droplet system, and further allows a much more accurate determination of the breakup temperature. PMID:26367114

  19. X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001)

    SciTech Connect

    Malachias, A.; Schuelli, T. U.; Cancado, L. G.; Stoffel, M.; Schmidt, O. G.; Metzger, T. H.; Magalhaes-Paniago, R.

    2005-10-15

    X-ray diffuse scattering in the vicinity of basis-forbidden Bragg reflections were measured for samples with uncapped self-assembled Ge islands epitaxially grown on Si(001). Our results provide evidence of atomically ordered SiGe domains in both islands and wetting layer. The modeling of x-ray profiles reveals the presence of antiphase boundaries separating the ordered domains in a limited region of the islands. X-ray order parameter results were independently supported by Raman measurements.

  20. Paleomagnetism of Silver Island, Keweenaw Peninsula, Michigan: Additional Support (?) for the Primary Curvature of the MCR

    NASA Astrophysics Data System (ADS)

    Diehl, J. F.; Durant, A. J.; Schepke, C.

    2009-05-01

    Silver Island lies between Eagle Harbor and Copper Harbor on the NW coastline of the Keweenaw Peninsula, Michigan. The island consists of a series of basaltic lava flows which dip to the north-northwest (356°) at an angle of approximately 38°. These flows constitute part of the Lake Shore Traps (LST), a series of interbedded lava flows within the Copper Harbor Conglomerate (CHC). The LST represent the youngest eruptive material associated with the 1.1 Ga Mid-Continent Rift (MCR). The most recent paleomagnetic study (now 15 years old) on the Lakeshore Traps (LST) defined three distinct directional clusters. Each cluster of directions corresponded to a different stratigraphic package of the LST within the CHC and all have extremely low between-site dispersion (s ˜ 4°) suggesting rather rapid emplacement of the LST packages. Consequently, each cluster has its own unique direction of magnetization. Since the lower two LST packages crop out along the coast line of the Peninsula with different structural trends, an opportunity was presented to test the conclusions of Hnat et al. (2006) that the curvature of the MCR was primary. To that end nine lava flows were sampled on Silver Island and their mean direction compared to the equivalent mean from lava flows sampled by Diehl and Haig (1994) from the tip of the Keweenaw Peninsula (upper lava flows of the Middle LST) which have an entirely different structural trend. Characteristic directions of magnetization of the Silver Island lava flows were isolated either using alternating field, thermal or a combination of both. The mean direction of magnetization for the nine sites is: D = 277.7°, I = 46.9°, α95 = 3.0°, k = 292.5. The mean direction recalculated from the Diehl and Haig study is: D = 277.8°, I = 40.6°, α95 = 2.9°, k = 315.7. Although the declinations of the two means are identical, interestingly the two means are statistically distinct at the 95% confidence level. Fold tests were inconclusive. Nevertheless

  1. Native defects in ultra-high vacuum grown graphene islands on Cu(1 1 1).

    PubMed

    Hollen, S M; Tjung, S J; Mattioli, K R; Gambrel, G A; Santagata, N M; Johnston-Halperin, E; Gupta, J A

    2016-01-27

    We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum decomposition of ethylene on Cu(1 1 1). We characterize these defects through a survey of their apparent heights, atomic-resolution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands. PMID:26704193

  2. Native defects in ultra-high vacuum grown graphene islands on Cu(1 1 1)

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Tjung, S. J.; Mattioli, K. R.; Gambrel, G. A.; Santagata, N. M.; Johnston-Halperin, E.; Gupta, J. A.

    2016-01-01

    We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum decomposition of ethylene on Cu(1 1 1). We characterize these defects through a survey of their apparent heights, atomic-resolution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands.

  3. The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets.

    PubMed

    Volk, Alexander; Thaler, Philipp; Knez, Daniel; Hauser, Andreas W; Steurer, Johannes; Grogger, Werner; Hofer, Ferdinand; Ernst, Wolfgang E

    2016-01-21

    Silver and gold nanowires are grown within superfluid helium nanodroplets and investigated by high resolution electron microscopy after surface deposition. The wire morphologies depend on the rate of metal atom doping in the pickup sequence. While high doping rates result in a polycrystalline face-centered cubic nanowire structure, at lower doping rates the initial fivefold-symmetry seems to be preserved. An explanation for this observation is given by computer simulations, which allow the derivation of timescales for the nanowire growth process inside helium nanodroplets. PMID:26603482

  4. Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films.

    PubMed

    Yang, Huixia; Qi, Xiaoqiong; Zhang, Banghong; Wang, Hui; Xie, Liang

    2016-07-10

    Optical properties of a fluorescence molecule can be drastically changed by surface plasmons excited in neighboring metallic nanostructures. Here we investigated the fluorescence enhancement behavior of fluorescein isothiocyanate (FITC) labeled polystyrene nanoparticles coupled to silver island films (SIFs) via a 15 nm polymethyl methacrylate separation layer theoretically and experimentally. Up to 24-fold fluorescence enhancement was experimentally achieved when the annealing time of the 25 nm Ag films was 50 min, which is in good agreement with the theoretical simulation result based on the finite-difference time-domain method. Furthermore, significant fluorescence spectral distortion on SIFs was also observed compared with samples on glass slides, which is sufficiently related to the scattering properties of SIFs and the lifetimes of FITC. PMID:27409315

  5. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films.

    PubMed

    Maćkowski, Sebastian; Czechowski, Nikodem; Ashraf, Khuram U; Szalkowski, Marcin; Lokstein, Heiko; Cogdell, Richard J; Kowalska, Dorota

    2016-08-01

    We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems. PMID:27406896

  6. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules.

    PubMed

    Szalkowski, Marcin; Ashraf, Khuram U; Lokstein, Heiko; Mackowski, Sebastian; Cogdell, Richard J; Kowalska, Dorota

    2016-01-01

    A silver island film (SIF) substrate was used to demonstrate that Metal-Enhanced Fluorescence (MEF) is a powerful tool to enable detection of emission from (bio)molecules at very low concentrations. The experiments were carried out with the Fenna-Matthews-Olson (FMO) pigment-protein complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. FMO was diluted to a level, at which no emission was detectable on a glass substrate. In contrast, the fluorescence of FMO was readily observed on the SIF substrate, even though the emission wavelength of FMO is displaced by over 300 nm from the maximum of the plasmon resonance of the SIF layer. Estimated enhancements of the fluorescence intensity of FMO on SIF are about 40-fold. The enhancement factor correlates with the improvement of the signal-to-noise ratio for FMO emission on SIF substrates. PMID:26168991

  7. Immobilization of Enzymes to Silver Island Films for Enhanced Enzymatic Activity

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    Hypothesis The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. Experiments Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550 to 10000 Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. Findings No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP. PMID:24267340

  8. Tilt boundary induced heteroepitaxy in chemically grown dendritic silver nanostructures on germanium and their optical properties.

    PubMed

    Ghosh, Tanmay; Das, Pabitra; Chini, Tapas Kumar; Ghosh, Tapas; Satpati, Biswarup

    2014-08-21

    Dendritic silver nanostructures were prepared by a simple dip-and-rinse galvanic displacement reaction directly on germanium surfaces. The formation and evolution of these dendrites were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The present results clearly show a new type of heteroepitaxy, where the large lattice mismatch between silver and germanium is accommodated at the interface by the formation of low-energy asymmetric tilt boundaries. The overgrown samples reduce the strain by introducing crystal defects. Additionally, by employing cathodoluminescence (CL) spectroscopy and imaging with a field emission gun scanning electron microscope (FEG-SEM), we provide information on the surface plasmon assisted photon emission of a stack of Ag hexagonal nanostructures. Surface enhanced Raman scattering (SERS) studies show the suitability of such Ag nanodendritic structures as SERS active substrates. PMID:25000224

  9. Silver

    Integrated Risk Information System (IRIS)

    Silver ; CASRN 7440 - 22 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. Growth mechanism and structure characterizations of GaSb islands grown on Si (1 0 0) substrates by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Lv, You; Liu, Ren-Jun; Wang, Lian-Kai; Li, Guo-Xing; Zhang, Yuan-Tao; Dong, Xin; Zhang, Bao-Lin

    2015-07-01

    In this paper, the growth mechanism and the morphologies of GaSb islands grown on Si (1 0 0) by low-pressure metal-organic chemical vapor deposition have been studied. It was observed the GaSb growth mode transited from SK to VW mode with time, while the islands migrated in VW mode on the surface. As growth time prolonging, the islands were coarsening consistent with the considerations of Ostwald ripening substituting for migration. And it was the similar coalescence process in the various interruption time. The formation of giant islands reduced the surface energy with the island-induced strain fields which drive the islands distribution evenly.

  11. Localized Si enrichment in coherent self-assembled Ge islands grown by molecular beam epitaxy on (001)Si single crystal

    SciTech Connect

    Valvo, M.; Bongiorno, C.; Giannazzo, F.; Terrasi, A.

    2013-01-21

    Transmission electron microscopy (TEM), atomic force microscopy, and Rutherford backscattering spectrometry (RBS) have been used to investigate the morphology, structure, and composition of self-assembled Ge islands grown on Si (001) substrates by molecular beam epitaxy (MBE) at different temperatures. Increasing the temperature from 550 Degree-Sign C to 700 Degree-Sign C causes progressive size and shape uniformity, accompanied by enhanced Si-Ge intermixing within the islands and their wetting layer. Elemental maps obtained by energy filtered-TEM (EF-TEM) clearly show pronounced Si concentration not only in correspondence of island base perimeters, but also along their curved surface boundaries. This phenomenon is strengthened by an increase of the growth temperature, being practically negligible at 550 Degree-Sign C, while very remarkable already at 650 Degree-Sign C. The resulting island shape is affected, since this localized Si enrichment not only provides strain relief near their highly stressed base perimeters but it also influences the cluster surface energy by effective alloying, so as to form Si-enriched SiGe interfaces. Further increase to 700 Degree-Sign C causes a shape transition where more homogenous Si-Ge concentration profiles are observed. The crucial role played by local 'flattened' alloyed clusters, similar to truncated pyramids with larger bases and enhanced Si enrichment at coherently stressed interfaces, has been further clarified by EF-TEM analysis of a multi-layered Ge/Si structure containing stacked Ge islands grown at 650 Degree-Sign C. Sharp accumulation of Si has been here observed not only in proximity of the uncapped island surface in the topmost layer but also at the buried Ge/Si interfaces and even in the core of such capped Ge islands.

  12. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    SciTech Connect

    Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  13. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    NASA Astrophysics Data System (ADS)

    Vanacore, G. M.; Nicotra, G.; Zani, M.; Bollani, M.; Bonera, E.; Montalenti, F.; Capellini, G.; Isella, G.; Osmond, J.; Picco, A.; Boioli, F.; Tagliaferri, A.

    2015-03-01

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  14. Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns.

    PubMed

    Niu, Gang; Capellini, Giovanni; Lupina, Grzegorz; Niermann, Tore; Salvalaglio, Marco; Marzegalli, Anna; Schubert, Markus Andreas; Zaumseil, Peter; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Montalenti, Francesco; Xie, Ya-Hong; Schroeder, Thomas

    2016-01-27

    Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotip-patterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features ∼50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The ∼850 °C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of ∼45 mA W(-1) and an Ion/Ioff ratio of ∼10(3). PMID:26709534

  15. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia

    PubMed Central

    Dolejska, Monika; Masarikova, Martina; Dobiasova, Hana; Jamborova, Ivana; Karpiskova, Renata; Havlicek, Martin; Carlile, Nicholas; Priddel, David; Cizek, Alois; Literak, Ivan

    2016-01-01

    Objectives The objective of this study was to investigate the silver gull as an indicator of environmental contamination by salmonellae and carbapenemase-producing Enterobacteriaceae (CPE) in south-east Australia. Methods A total of 504 cloacal samples were collected from gull chicks at three nesting colonies in New South Wales, Australia [White Bay (n = 144), Five Islands (n = 200) and Montague Island (n = 160)] and were examined for salmonellae and CPE. Isolates were tested for carbapenemase genes and susceptibility to 14 antibiotics. Clonality was determined by PFGE and MLST. Genetic context and conjugative transfer of the carbapenemase gene were determined. Results A total of 120 CPE of 10 species, mainly Escherichia coli (n = 85), carrying the gene blaIMP-4, blaIMP-38 or blaIMP-26 were obtained from 80 (40%) gulls from Five Islands. Thirty percent of birds from this colony were colonized by salmonellae. Most isolates contained the gene within a class 1 integron showing a blaIMP-4-qacG-aacA4-catB3 array. The blaIMP gene was carried by conjugative plasmids of variable sizes (80–400 kb) and diverse replicons, including HI2-N (n = 30), HI2 (11), A/C (17), A/C-Y (2), L/M (5), I1 (1) and non-typeable (6). Despite the overall high genetic variability, common clones and plasmid types were shared by different birds and bacterial isolates, respectively. Conclusions Our data demonstrate a large-scale transmission of carbapenemase-producing bacteria into wildlife, likely as a result of the feeding habits of the birds at a local waste depot. The isolates from gulls showed significant similarities with clinical isolates from Australia, suggesting the human origin of the isolates. The sources of CPE for gulls on Five Islands should be explored and proper measures applied to stop the transmission into the environment. PMID:26472769

  16. Direct band gap optical emission from Ge islands grown on relaxed Si{sub 0.5}Ge{sub 0.5}/Si (100) substrate

    SciTech Connect

    Aluguri, R.; Manna, S.; Ray, S. K.

    2014-01-07

    Strained Ge islands have been grown on fully relaxed Si{sub 0.5}Ge{sub 0.5} substrate by pulsed laser ablation technique. The formation of strained Ge islands has been found for film with higher thickness following Stranski–Krastanov growth mechanism. The variation of strain with changing Ge layer thickness has been analyzed using Raman spectroscopy and high-resolution X-ray diffraction techniques. X-ray photoelectron spectra have shown the absence of any Si-Ge intermixing and oxidation of Ge films. A strong no-phonon photoluminescence emission from Ge islands has been observed, showing the superior optical characteristics of the islands grown on relaxed substrate.

  17. A geological and geophysical study of the gold-silver vein system of Unga Island, Southwestern Alaska

    USGS Publications Warehouse

    Riehle, James R., (Edited By)

    1999-01-01

    Overview of the CD-ROM Contents: The topic of this CD-ROM is the geologic framework of gold-silver vein deposits on Unga Island, in the Shumagin Islands, southwestern Alaska. The core of the publication is a new geologic map at a scale of 1:63,360 and aeromagnetic and electromagnetic survey data acquired by industry over the area of mineralization. Both the geologic map as well as a preliminary interpretation of the geophysical data--which are included by permission of the owner--are aimed towards deciphering the relations among volcanism, tectonism, and mineralization. Data and discussions are organized in seven chapters, titles of which are outlined in the table of contents. The chapters consist of viewable text and figure images; postscript versions of the frontispiece figures and all chapter figures are included on the CD-ROM as well. The geologic map is a large viewable figure (Plate 1) that accompanies chapter 2. The map was constructed in ARC and its component coverages are provided in the folder 'Geology' for users who may wish to modify the geologic data or add their own data.

  18. Somatic mutation frequencies in the stamen hairs of Tradescantia grown in soil samples from the Bikini Island.

    PubMed

    Ichikawa, S; Ishii, C

    1991-02-01

    Somatic pink mutation frequencies in the stamen hairs of Tradescantia BNL 02 clone grown for 76 days in two soil samples taken from the Bikini Island (where a hydrogen bomb explosion test had been conducted in 1954) were investigated. A significantly high mutation frequency (2.58 +/- 0.17 pink mutant events per 10(3) hairs or 1.34 +/- 0.09 pink mutant events per 10(4) hair-cell divisions) was observed for the plant grown in one of the two Bikini soil samples, as compared to the control plants (1.70 +/- 0.14 or 0.88 +/- 0.07, respectively) grown in the field soil of Saitama University. The soil sample which caused the significant increase in mutation frequency contained 6,880 +/- 330 mBq/g 137Cs, 62.5 +/- 4.4 mBq/g 60Co, and some other nuclides; a 150 microR/hr exposure rate being measured on the surface of the soil sample. The effective cumulative external exposures measured for the inflorescences of the plant grown in this soil sample averaged at most 60.8 mR, being too small to explain the significant elevation in mutation frequency observed. On the other hand, internal exposure due to uptake of radioactive nuclides was estimated to be 125 mrad (1.25 mGy) as an accumulated effective dose, mainly based on a gamma-spectrometrical analysis. However, it seemed highly likely that this value of internal exposure was a considerable underestimate, and the internal exposure was considered to be more significant than the external exposure. PMID:2064800

  19. Size, shape, and ordering of SiGe/Si(001) islands grown by means of liquid phase epitaxy under far-nonequilibrium growth conditions

    SciTech Connect

    Hanke, M.; Boeck, T.; Gerlitzke, A.-K.; Syrowatka, F.; Heyroth, F.; Koehler, R.

    2005-04-04

    Applying scanning electron microscopy, we have studied the evolution of shape and lateral positional correlation of Si{sub 1-x}Ge{sub x}/Si(001) Stranski-Krastanov islands grown by means of liquid phase epitaxy (LPE). However, in contrast to conventional near-equilibrium LPE, a distinctly higher cooling rate of 10 K/min ensures extremly nonequilibrium growth conditions. The facet inclination of subsequent island stages decreases from nearly vertical sidewalls toward {l_brace}111{r_brace}- and {l_brace}101{r_brace}-type facets. Energy dispersive x-ray microanalysis yields a size-independent germanium content of 8.9% within islands between 760 and 1700 nm base width which is--by more than a factor of 2--smaller than islands of the same concentration grown in a near-equilibrium LPE process. Square-like formations of subsequently smaller islands around a large central island indicate only next to island interactions during the lateral self-assembling.

  20. Quality assessment of Japanese knotweed (Fallopia japonica) grown on Prince Edward Island as a source of resveratrol.

    PubMed

    Chen, Huaguo; Tuck, Tina; Ji, Xiuhong; Zhou, Xin; Kelly, Glen; Cuerrier, Alain; Zhang, Junzeng

    2013-07-01

    Japanese knotweed (Fallopia japonica , also known as Polygonum cuspidatum) is a common invasive plant species on Prince Edward Island (PEI), Canada, whereas it has been used in Chinese medicine and more recently as a raw material for extracting resveratrol. This paper reports on the quantification of resveratrol, polydatin, emodin, and physcion in roots, stems, and leaves of Japanese knotweed samples from PEI and British Columbia (BC), Canada, and nine provinces of China, by ultraperformance liquid chromatography (UPLC). The results showed that the root contains a much higher level of resveratrol than the stem and leaf, and it is accumulated in its highest level in October. PEI-grown knotweed contains similar levels of resveratrol and polydatin compared to Chinese samples collected in the month of October, but the contents of the other anthraquinones (emodin and physcion) are different. As such, Japanese knotweed grown in PEI could be a commercially viable source of raw material for resveratrol production; however, caution has to be taken in harvesting the right plant species. PMID:23742076

  1. Microstructure analysis of epitaxially grown self-assembled Ge islands on nanometer-scale patterned SiO2/Si substrates by high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yoon, Tae-Sik; Kim, Hyun-Mi; Kim, Ki-Bum; Ryu, Du Yeol; Russell, Thomas P.; Zhao, Zuoming; Liu, Jian; Xie, Ya-Hong

    2007-11-01

    The microstructure of epitaxially grown self-assembled Ge islands on patterned SiO2/Si substrates was analyzed using high resolution transmission electron microscopy. The Ge islands were grown by molecular beam epitaxy on hexagonally ordered Si hole arrays with ˜25 nm diameter and ˜40 nm center-to-center distance, which are covered by 30 nm thick SiO2 mask layer patterned using self-assembled diblock copolymers. The Ge islands nucleate preferentially at the edge of overetched Si surface, and subsequently grow selectively on Si surface as opposed to SiO2 surface with increasing coverage. The lattice planes of some Ge islands are tilted from those of Si substrates. This is believed to be the reason for the observed misalignment of moiré fringes. The diameter of the Ge islands is identical to that of Si holes for large Ge coverage due to the selective growth behavior. These islands are found to have dislocations at the interface with the Si substrate. These results highlight the important microstructural issues and growth behavior of quantum dots on patterned substrates.

  2. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu{sub 2}O heterojunction

    SciTech Connect

    Kaur, Gurpreet Yadav, K. L.; Mitra, Anirban

    2015-08-03

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu{sub 2}O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu{sub 2}O.

  3. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Yadav, K. L.; Mitra, Anirban

    2015-08-01

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu2O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu2O.

  4. Composition of volatile in micropropagated and field grown aromatic plants from Tuscany Islands.

    PubMed

    Pistelli, Laura; Noccioli, Cecilia; D'Angiolillo, Francesca; Pistelli, Luisa

    2013-01-01

    Aromatic plant species present in the natural Park of Tuscany Archipelago are used as flavoring agents and spices, as dietary supplements and in cosmetics and aromatherapy. The plants are usually collected from wild stands, inducing a depletion of the natural habitat. Therefore, micropropagation of these aromatic plants can play a role in the protection of the natural ecosystem, can guarantee a massive sustainable production and can provide standardized plant materials for diverse economical purposes. The aim of this study is to compare the volatile organic compounds produced by the wild plants with those from in vitro plantlets using headspace solid phase micro-extraction (HS-SPME) followed by capillary gas-chromatography coupled to mass spectrometry (GC-MS). Typical plants of this natural area selected for this work were Calamintha nepeta L., Crithmum maritimum L., Lavandula angustifolia L., Myrtus communis L., Rosmarinus officinalis L., Salvia officinalis L. and Satureja hortensis L. Different explants were used: microcuttings with vegetative apical parts, axillary buds and internodes. Sterilization percentage, multiplication rate and shoot length, as well as root formation were measured. The volatile aromatic profiles produced from in vitro plantlets were compared with those of the wild plants, in particular for C. maritimum, R. officinalis, S. officinalis and S. hortensis. This study indicated that the micropropagation technique can represent a valid alternative to produce massive and sterile plant material characterised by the same aromatic flavour as in the wild grown plants. PMID:23441303

  5. Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering.

    PubMed

    Yin, Zhen; Geng, Youfu; Xie, Qingli; Hong, Xueming; Tan, Xiaoling; Chen, Yuzhi; Wang, Lele; Wang, Wenjia; Li, Xuejin

    2016-07-10

    Surface-enhanced Raman scattering (SERS) probes are made by facile photochemical deposition of silver nanoparticles on a femtosecond (fs) laser ablated, D-shaped fiber. The structure and surface morphology of the probe are investigated by scanning electron microscopy. High-quality SERS signals are detected using Rhodamine 6G molecules via an in situ sensing mode. Experimental results show that the SERS signals increase with the increase of the length of fs laser ablated, D-shaped zone. Our D-shaped fiber SERS probe shows a feasible method for a large active area, high performance, and real-time and remote measurement of SERS signals in biochemical analysis. PMID:27409318

  6. Atmospheric pressure plasma enhanced spatial ALD of silver

    SciTech Connect

    Bruele, Fieke J. van den Smets, Mireille; Illiberi, Andrea; Poodt, Paul; Buskens, Pascal; Roozeboom, Fred

    2015-01-15

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity as revealed by resistivity values as low as 18 μΩ cm and C- and F-levels below detection limits of energy dispersive x-ray analysis. The growth of the silver films starts through the nucleation of islands that subsequently coalesce. The authors show that the surface island morphology is dependent on surface diffusion, which can be controlled by temperature within the deposition temperature range of 100–120 °C.

  7. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  8. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  9. Nanoindentation studies on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Saha, Dhriti Ranjan; Mandal, Amrita; Mitra, Sreemanta; Mada, Mykanth Reddy; Boughton, Philip; Bandyopadhyay, Sri; Chakravorty, Dipankar

    2013-06-01

    Nanodimensional metallic silver was grown by electrodeposion technique in a semi solid polymer matrix of polyacrylamide. The whole structure looks like dendronic. The average particle diameter of the as grown metallic silver is 13 nm. Nanoindentation study of these nanoparticles shows modulus and hardness value as 103.93 GPa and 3.12 GPa respectively.

  10. Plasmon-Enhanced Enzymatic Reactions 2:Optimization of Enzyme Activity by Surface Modification of Silver Island Films with Biotin-Poly (Ethylene-glycol)-Amine.

    PubMed

    Abel, Biebele; Aslan, Kadir

    2012-01-01

    Surface modification of silver island films (SIFs) was carried out with Biotin-Poly (Ethylene-glycol)-Amine (BEA), which acts as a cross-linker between the silver surface and horse radish peroxidase (HRP) enzyme for optimum plasmon-enhanced enzymatic activity. SIFs-deposited blank glass slides and SIFs-deposited 3-Aminopropyltriethoxysilane(APTES)-coated glass slides were used as our plasmonic surfaces.In this regard, three different extent of loading of SIFs were also prepared (low, medium and high) on APTES-coated glass slides. Streptavidin-linked HRP enzyme was attached to SIFs-deposited blank glass slides and SIFs-deposited APTES-coated glass slides through the well-known biotin-streptavidin interactions. The characterization of these surfaces was done using optical absorption spectroscopy. The loading of SIFs on glass slides was observed to have significant effect on the efficiency of plasmon-enhanced enzymatic activity, where an enhancement of 200% in the enzymatic activity was observed when compared to our previously used strategies for enzyme immobilization in our preceding work[1]. In addition, SIFs-deposited on APTES-coated glass slides were found to be re-usable for plasmon-enhanced enzymatic reactions unlike SIFs deposited on to blank glass slides. PMID:22485194

  11. Photocatalytic Properties of Silver Core/Titania Shell Nano-Wires Grown on a Glass Substrate Using a Glycothermal Process Assisted by a Photochemical Reaction.

    PubMed

    Song, Duck-Hyun; Hirato, Tetsuji

    2015-07-01

    A silver core/titania shell nano-wire film was successfully prepared on a glass substrate via a glycothermal process that was assisted by a photochemical reaction using tetra-n-butyl titanate as the titanium source and silver nitrate as the silver source in an autoclave with ethylene glycol as a solvent. The morphology, diameter, length, and density of the core/shell nano-wires that were synthesized could be varied by changing the silver/titanium molar ratio of the starting materials. The samples produced were characterized by X-ray diffraction and scanning electron microscopy. The photocatalytic activity of the silver core/titania shell nano-wire film was investigated by measuring the photodegradation rate of rhodamine B in aqueous solution. PMID:26373082

  12. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, grown under continuous culture conditions: influence of thiosulphate.

    PubMed

    Hiriart-Baer, Véronique P; Fortin, Claude; Lee, Dae-Young; Campbell, Peter G C

    2006-06-15

    In a test of the biotic ligand model (BLM), the uptake and toxicity of silver, in the absence or presence of the inorganic ligand, thiosulphate, were assessed for two freshwater green algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, using turbidostat continuous cultures. In the initial experiments, run in the absence of thiosulphate, the influent Ag concentration was varied from 0 to 75 nM in steps; for each influent concentration, silver uptake was calculated and the algal growth rate was determined. Silver uptake rates at low Ag concentrations were similar for both algae (e.g., 14-19 nmolm(-2)h(-1), for influent Ag(+) concentrations of approximately 9 nM) but at higher exposures uptake by P. sub-capitata exceeded that of C. reinhardtii. Despite this higher uptake rate, in the absence of thiosulphate P. sub-capitata was not more sensitive to free silver; 50% growth inhibition was reached at influent free Ag(+) concentrations of 15+/-7 and 22+/-13 nM for C. reinhardtii and P. sub-capitata, respectively. In the second series of experiments, the free Ag(+) concentration was held constant ( approximately 9 nM in the influent; 2-3 nM in the effluent) while the concentration of the silver thiosulphate complex, AgS(2)O(3)(-), was increased from 9 to 90 nM in steps. Under such conditions, the BLM would predict that silver uptake and toxicity should remain constant. On the contrary, both silver uptake and silver toxicity increased, indicating that the anionic silver thiosulphate complex enters the algal cells via a membrane-bound sulphate transporter and contributes to uptake and toxicity. However, for both algae there were indications that silver assimilated in this manner was somewhat less toxic to the algal cell than silver that entered via cation transport only. Physiological indicators of stress revealed possible different intracellular targets for these two freshwater algae, proteins and enzymes for C. reinhardtii and the photosynthetic

  13. Atomic structure and composition distribution in wetting layers and islands of germanium grown on silicon (001) substrates.

    PubMed

    Brehm, Moritz; Groiss, Heiko; Bauer, Günther; Gerthsen, Dagmar; Clarke, Roy; Paltiel, Yossi; Yacoby, Yizhak

    2015-12-01

    We present a comprehensive structural investigation of the Ge wetting layer (WL) and island growth on Si(001) substrates by a combination of AFM, high resolution transmission electron microscopy and the energy-differential coherent Bragg rod analysis (COBRA) x-ray method. By considering the influence of the initial Si surface morphology on the deposited Ge, these techniques provide quantitative information on the Ge content and its distribution, in particular within the WL which plays a crucial role in the formation of epitaxial nanostructures. In the WL, the Ge content was found to be above 80% for our growth conditions. Furthermore, from the digital analysis of high-resolution transmission electron microscope images, quantitative information on the strain relaxation is obtained, which complements the COBRA analysis of the Ge distribution and content in these nanostructures. PMID:26553384

  14. Atomic structure and composition distribution in wetting layers and islands of germanium grown on silicon (001) substrates

    NASA Astrophysics Data System (ADS)

    Brehm, Moritz; Groiss, Heiko; Bauer, Günther; Gerthsen, Dagmar; Clarke, Roy; Paltiel, Yossi; Yacoby, Yizhak

    2015-12-01

    We present a comprehensive structural investigation of the Ge wetting layer (WL) and island growth on Si(001) substrates by a combination of AFM, high resolution transmission electron microscopy and the energy-differential coherent Bragg rod analysis (COBRA) x-ray method. By considering the influence of the initial Si surface morphology on the deposited Ge, these techniques provide quantitative information on the Ge content and its distribution, in particular within the WL which plays a crucial role in the formation of epitaxial nanostructures. In the WL, the Ge content was found to be above 80% for our growth conditions. Furthermore, from the digital analysis of high-resolution transmission electron microscope images, quantitative information on the strain relaxation is obtained, which complements the COBRA analysis of the Ge distribution and content in these nanostructures.

  15. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE PAGESBeta

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; Keiffer, Patrick; Sears, Jasmine; Khitrova, Galina

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  16. Photo-induced valence change of the sulfur atom in an L-cysteine thin film grown on a silver metal substrate in a saliva-emulated aqueous solution

    SciTech Connect

    Tsujibayashi, Toru; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2015-04-27

    A thin film of L-cysteine (HSCH{sub 2}CH(NH{sub 2})COOH) is grown on a silver substrate in saliva-emulated aqueous solution. X-ray photoemission spectroscopic measurements have revealed that the sulfur atom shows valence change under IR laser irradiation at 825 nm. The valence change maintains for about a minute at room temperature and more than an hour between 110 and 250 K after stopping the laser irradiation. It is not observed at all at temperatures lower than 110 K. This temperature-dependent behavior indicates that the photo-excited electronic change should be accompanied by a conformational change in the L-cysteine molecule. It is strongly suggested that the reversible valence change of the sulfur atom is applicable to a memory used around room temperature.

  17. Use of Atomic Layer Deposition to Improve the Stability of Silver Substrates for In-Situ, High Temperature SERS Measurements

    SciTech Connect

    John, Joshy; Mahurin, Shannon Mark; Dai, Sheng; Sepaniak, Michael

    2010-01-01

    A method to stabilize silver surface-enhanced Raman spectroscopy (SERS) substrates for in-situ, high temperature applications is demonstrated. Silver island films grown by thermal evaporation were coated with a thin layer (from 2.5nm to 5nm) of alumina by atomic layer deposition (ALD), which protects and stabilizes the SERS-active substrate without eliminating the Raman enhancement. The temporal stability of the alumina-coated silver island films was examined by measurement of the Raman intensity of rhodamine 6G molecules deposited onto bare and alumina-coated silver substrates over the course of thirty-four days. The coated substrates showed almost no change in SERS enhancement while the uncoated substrates exhibited a significant decrease in Raman intensity. To demonstrate the feasibility of the alumina-coated silver substrate as a probe of adsorbates and reactions at elevated temperatures, an in-situ SERS measurement of calcium nitrate tetrahydrate on bare and alumina-coated silver was performed at temperatures ranging from 25 C to 400 C. ALD deposition of an ultrathin alumina layer significantly improved the thermal stability of the SERS substrate thus enabling in-situ detection of the dehydration of the calcium nitrate tetrahydrate at elevated temperature. Despite some loss of Raman signal, the coated substrate exhibited greater thermal stability compared to the uncoated substrate. These experiments show that ALD can be used to synthesize stable SERS substrates capable of measuring adsorbates and processes at high temperature.

  18. Silver Sulfadiazine

    MedlinePlus

    Silver sulfadiazine, a sulfa drug, is used to prevent and treat infections of second- and third-degree ... Silver sulfadiazine comes in a cream. Silver sulfadiazine usually is applied once or twice a day. Follow ...

  19. Influence of site, season, silvering stage, and length on the parasites of the European eel Anguilla anguilla in two Mediterranean coastal lagoons of the island of Corsica, France using indicator species method.

    PubMed

    Filippi, Jean-José; Quilichini, Yann; Foata, Joséphine; Marchand, Bernard

    2013-08-01

    The parasites of 425 European eels, Anguilla anguilla, were studied between 2009 and 2012 in two Mediterranean coastal lagoons of the island of Corsica, France. An indicator value (IndVal) method was used for analysis, which combines measures of fidelity and specificity. Because of its resilience to detect changes in abundance, IndVal is an effective ecological bioindicator. The IndVal method demonstrated that site, season, silvering stage, and length could influence the occurrence of parasite species in European eel. A randomization test identified ten parasite species as having a significant indicator value for site (lagoons differed principally in salinity: oligohaline to polyhaline for the Biguglia lagoon and polyhaline to euhaline for the Urbino lagoon; the digeneans Bucephalus anguillae and Lecithochirium musculus, the cestodes Bothriocephalus claviceps, Proteocephalus macrocephalus, and larvae of Myzophyllobothrium sp., the nematodes Anguillicoloides crassus, and encysted larvae of Contracaecum sp., the acanthocephalan Acanthocephaloides incrassatus, the monogenean Pseudodactyogyrus anguillae, and the copepod Ergasilus gibbus); one parasite species for the spring season (the acanthocephalan A. incrassatus); six parasite species for silvering stage (yellow, pre-silver, silver; the trematodes B. anguillae and Deropristis inflata, encysted larvae of the nematode Contracaecum sp., the acanthocephalan A. incrassatus, the monogenean P. anguillae, and the copepod E. gibbus); and three parasite species for some of the five length classes (the cestode P. macrocephalus, encysted larvae of the nematode Contracaecum sp., and the monogenean P. anguillae). Data for species composition and infection levels should help to improve the management of parasitism in the populations of European eels. PMID:23739809

  20. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity

    PubMed Central

    2014-01-01

    Background Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. Results The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. Conclusions The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit

  1. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  2. High-resolution transmission electron microscopy study on the growth modes of GaSb islands grown on a semi-insulating GaAs (001) substrate

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Lee, J. Y.; Noh, Y. G.; Kim, M. D.; Oh, J. E.

    2007-06-01

    The initial growth behaviors of GaSb on a GaAs substrate were studied using a high-resolution electron microscope (HRTEM). Four types of GaSb islands were observed by HRTEM. HRTEM micrographs showed that strain relaxation mechanisms were different in the four types of islands. Although 90° misfit dislocations relieve misfit strain in the islands, additional mechanisms are required to relax the remaining strain. The existence of elastic deformation near the surface related to dislocations and intermediate layers between GaSb and GaAs were demonstrated in island growths. Finally, the generation of planar defects to relieve strain was observed in a specific GaSb growth.

  3. Monitoring the kinetic evolution of self-assembled SiGe islands grown by Ge surface thermal diffusion from a local source.

    PubMed

    Vanacore, G M; Zani, M; Bollani, M; Bonera, E; Nicotra, G; Osmond, J; Capellini, Giovanni; Isella, G; Tagliaferri, A

    2014-04-01

    In this paper we experimentally study the growth of self-assembled SiGe islands formed on Si(001) by exploiting the thermally activated surface diffusion of Ge atoms from a local Ge source stripe in the temperature range 600-700 °C. This new growth strategy allows us to vary continuously the Ge coverage from 8 to 0 monolayers as the distance from the source increases, and thus enables the investigation of the island growth over a wide range of dynamical regimes at the same time, providing a unique birds eye view of the factors governing the growth process and the dominant mechanism for the mass collection by a critical nucleus. Our results give experimental evidence that the nucleation process evolves within a diffusion limited regime. At a given annealing temperature, we find that the nucleation density depends only on the kinetics of the Ge surface diffusion resulting in a universal scaling distribution depending only on the Ge coverage. An analytical model is able to reproduce quantitatively the trend of the island density. Following the nucleation, the growth process appears to be driven mainly by short-range interactions between an island and the atoms diffusing within its vicinities. The islands volume distribution is, in fact, well described in the whole range of parameters by the Mulheran's capture zone model. The complex growth mechanism leads to a strong intermixing of Si and Ge within the island volume. Our growth strategy allows us to directly investigate the correlation between the Si incorporation and the Ge coverage in the same experimental conditions: higher intermixing is found for lower Ge coverage. This confirms that, besides the Ge gathering from the surface, also the Si incorporation from the substrate is driven by the diffusion kinetics, thus imposing a strict constraint on the initial Ge coverage, its diffusion properties and the final island volume. PMID:24594569

  4. Smoothing of ultrathin silver films by transition metal seeding

    NASA Astrophysics Data System (ADS)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  5. Out-diffused silver island films for surface-enhanced Raman scattering protected with TiO2 films using atomic layer deposition

    PubMed Central

    2014-01-01

    We fabricated self-assembled silver nanoisland films using a recently developed technique based on out-diffusion of silver from an ion-exchanged glass substrate in reducing atmosphere. We demonstrate that the position of the surface plasmon resonance of the films depends on the conditions of the film growth. The resonance can be gradually shifted up to 100 nm towards longer wavelengths by using atomic layer deposition of titania, from 3 to 100 nm in thickness, upon the film. Examination of the nanoisland films in surface-enhanced Raman spectrometry showed that, in spite of a drop of the surface-enhanced Raman spectroscopy (SERS) signal after the titania spacer deposition, the Raman signal can be observed with spacers up to 7 nm in thickness. Denser nanoisland films show slower decay of the SERS signal with the increase in spacer thickness. PACS 78.67.Sc (nanoaggregates; nanocomposites); 81.16.Dn (self-assembly); 74.25.nd (Raman and optical spectroscopy) PMID:25170333

  6. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  7. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  8. The prevalence of vitamin A deficiency in 1994 on an atoll of the Marshall Islands and its relationship to locally grown food.

    PubMed

    Dickson, J; Hunt, D D

    2001-03-01

    In an area of the world not previously studied for the presence of nutritional deficiencies, this study conducted in 1994, examined the prevalence of Vitamin A deficiency on a representative atoll of the Marshall Islands. All children ages three through ten living on Mili atoll were surveyed. The study was conducted house-to-house with all 38 subjects on the atoll voluntarily enrolling in the study. Vitamin A status was assessed by conjunctival impression cytology with transfer ([CT), clinical ophthalmic signs, and nutritional survey in all children ages three through ten living on Mili atoll, Republic of the Marshall Islands. Forty-seven percent had xerophthannia (5% with XN, 39% with XN + XIA, and 3% with XN + XIB). More than three-quarters (78%) were ICT abnormal, indicating 31% of the population had mild sub-clinical vitamin A deficiency. Eighty-six percent of the children had not received the U.S. recommended daily allowance of vitamin A in the previous week. Oiven the World Health Organization's published guidelines that anything greater than a 1% prevalence, Vitamin A deficiency on Mili atoll may be classified as a significant public health problem. PMID:12017837

  9. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.

    PubMed

    Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

    2014-10-28

    Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics. PMID:25285984

  10. Bioaccumulation and toxicity of silver compounds: A review

    SciTech Connect

    Ratte, H.T.

    1999-01-01

    A review of the literature revealed that bioaccumulation of silver in soil is rather low, even if the soil is amended with silver-containing sewage sludge. Plants grown on tailings of silver mines were found to have silver primarily in the root systems. In marine and freshwater systems, the highest reported bioconcentration factors (BCFs) were observed in algae, probably because of adsorption of the dissolved silver to the cell surface. In herbivorous organisms, the BCF was lower by about two orders of magnitude. Low amounts of silver were assimilated from food with no substantial biomagnification. In carnivores (e.g., fish), the BCF was also lower by one order of magnitude with no indication of biomagnification. Toxicity of silver occurs mainly in the aqueous phase and depends on the concentration of active, free Ag{sup +} ions. Accordingly, many processes and water characteristics reduce silver toxicity by stopping the formation of free Ag{sup +}, binding Ag{sup +}, or preventing binding of Ag{sup +} to the reactive surfaces of organisms. The solubility of a silver compound, and the presence of complexing agents dissolved organic carbon, and competing ions are important. In soil, sewage sludge, and sediment, in which silver sulfide predominates, the toxicity of silver, even at high total concentrations, is very low. The highly soluble silver thiosulfate complex has low toxicity, which can be attributed to the silver complexed by thiosulfate. Silver nitrate is one of the most toxic silver compounds. The toxic potential of silver chloride complexes in seawater is and will be an important issue for investigation. Aquatic chronic tests, long-term tests, and tests including sensitive life stages show lower toxicity thresholds. The organisms viewed as most sensitive to silver are small aquatic invertebrates, particularly embryonic and larval stages.

  11. Silver cyanide

    Integrated Risk Information System (IRIS)

    Silver cyanide ; CASRN 506 - 64 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    SciTech Connect

    A Meyer; I Flege; S Senanayake; B Kaemena; R Rettew; F Alamgir; J Falta

    2011-12-31

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  13. Formation of fractal islands on nonlattice substrates

    NASA Astrophysics Data System (ADS)

    Luo, Meng-Bo; Ye, Gao-Xiang; Xia, A.-Gen; Jin, Jin-Sheng; Yang, Bo; Xu, Jian-Min

    1999-01-01

    A Monte Carlo study on the formation of fractal islands on nonlattice substrates is presented. The islands, including disc aggregates and single discs, perform two-dimensional diffusion along four directions with different diffusion step lengths and rigid rotation about their centers of mass on a nonlattice square with periodic boundary conditions. It is found that the fractal dimension of the ramified islands is almost independent of the diffusion step length, rigid rotation angle, and disc size. However, the fractal dimension increases linearly with the surface coverage. Our simulation results are in good agreement with the previous experimental findings of the aggregation of the silver atomic islands on silicone oil surfaces.

  14. Smoothing of ultrathin silver films by transition metalseeding

    SciTech Connect

    Anders, Andre; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim,Sunnie H.N.

    2006-02-10

    The nucleation and coalescence of silver islands on coated glass was investigated by in-situ measurements of the sheet resistance. Sub-monolayer amounts of transition metals (Nb, Ti, Ni, Cr, Zr, Ta, and Mo) were deposited prior to the deposition of silver. It was found that some, but not all, of the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing effect of the transition metal at sub-monolayer thickness can be explained by a thermodynamic model of surface energies.

  15. A possible oriented attachment growth mechanism for silver nanowire formation

    SciTech Connect

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companion molecular dynamics performed with the embedded atom method are in agreement with our experimental data.

  16. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE PAGESBeta

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less

  17. Silver nanowires

    NASA Astrophysics Data System (ADS)

    Graff, A.; Wagner, D.; Ditlbacher, H.; Kreibig, U.

    2005-07-01

    Free silver nanowires were produced in aqueous electrolyte by a novel chemical reaction. Their diameters are about 27 nm, the lengths range up to more than 70 μm, yielding extreme length to thickness-ratios up to 2500. Their structure was identified by TEM analysis (SAED) and HRTEM to consist of a lattice aligned bundle of five monocrystalline rods of triangular cross-section forming an almost regular pentagonal cross-section. It is demonstrated that, for application purposes, single free nanowires can be mounted between contact areas. This manipulation is enabled by observing the nanowires in real time at atmosphere by Zsigmondy-Siedentopf farfield darkfield microscopy. Experimental results are presented concerning electrical dc conductivity and optical plasmon polariton excitation, the latter obtained from a single free wire without substrate and a single wire deposited on quartz glass. We also report about a present research cooperation with the Graz group of Aussenegg and Krenn which is devoted to investigate plasmon propagation in our Ag nanowires and to prove application possibilities as information guide fibers in analogy to optical fibers which may be integrated into micro- and nanoelectronic circuits.

  18. Fluorescence Properties of Labeled Proteins Near Silver Colloid Surfaces

    PubMed Central

    Maliwal, Badri P.; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt; Lakowicz, Joseph R.

    2009-01-01

    The fluorescence properties of a monolayer of labeled avidin molecules were studied near silver island films. We first adsorbed a monolayer of biotinylated-BSA as a base that was used to capture labeled avidin molecules. For labeled avidin on silver island films, we observed an increase of the fluorescence intensity of between 18 and 80 with one-photon excitation and up to several hundredfold or larger with two-photon excitation. The probes were moderately more photostable in the presence of silver islands. There was also a dramatic decrease in the lifetimes with the amplitude-weighted values decreasing from 7- to 35-fold. The data suggest that these spectral changes are due to both increased rates of excitation near the metallic particles and increases in the rates of radiative decay. Because these silver island surfaces are very heterogeneous, we are hopeful that larger increases in intensity and photostability can be obtained for probes situated at an optimal distance from the ideal island surfaces. PMID:14648768

  19. Colloidal Silver Products

    MedlinePlus

    ... can be dangerous to your health. What the Science Says About the Safety and Side Effects of ... homemade and commercial colloidal silver products. What the Science Says About the Effectiveness of Colloidal Silver Scientific ...

  20. The Silver Halides

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  1. STM imaging of electrically floating islands

    NASA Astrophysics Data System (ADS)

    Realpe, H.; Shamir, N.; Mintz, M. H.; Manassen, Y.

    2006-07-01

    Appearances and disappearances of Gd islands grown on top of a W(1 1 0) substrate were observed in time scales of hours after exposing the surface to a few Langmuirs of hydrogen. The phenomenon is presented and explained in terms of (temporary) creation of electrically floating islands, due to electrical decoupling of the island and substrate by the hydrogen that diffuses into the island/substrate interface. The disappearance of such an island is explained by forming a double barrier junction consisting of two tunneling barriers in series, causing, by charging, the potential of the island to become equal to that of the tip. The island then becomes "invisible" and the tip follows the corrugation of the surface under the substrate. The reappearance follows hydrogen mobility that retains the electrical conductivity of the island-substrate interface.

  2. Optimization of silver-dielectric-silver nanoshell for sensing applications

    SciTech Connect

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell.

  3. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  4. Genetics Home Reference: Silver syndrome

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions Silver syndrome Silver syndrome Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Silver syndrome belongs to a group of genetic disorders ...

  5. ZnO nanostructures growth with silver catalyst—Effect of annealing

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Jacob, C.

    2009-03-01

    Zinc oxide (ZnO) nanostructures have been grown on both the as-deposited silver thin-film templates over silicon substrates and annealed silver thin-film templates on silicon substrates. ZnO was grown by evaporation of metallic zinc over the silver templates followed by thermal annealing in air. Sword-like ZnO nanostructures grew densely throughout the surface of the annealed silver template sample. A small number of ZnO swords embedded in a porous surface were found for the as-deposited silver template sample. It is observed that the annealing treatment of the Ag thin-film is the key factor in controlling the formation of ZnO nanostructures. XRD study shows that the nanostructures have very good crystallinity and have the hexagonal wurtzite ZnO structure. The room-temperature photoluminescence spectrum indicates that the nanostructures grown on annealed Ag template are less defective and have high optical quality. On the other hand, a very weak UV emission peak and the blue emission doublet band reveal that the ZnO sample grown on the as-deposited silver template are highly defective. The micro-Raman spectra of the ZnO nanostructures grown on both types of Ag templates show enhanced Raman scattering which is related to surface enhanced Raman scattering (SERS).

  6. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  7. Bioconcentration factors (BCF) of silver in wild Agaricus campestris

    SciTech Connect

    Falandysz, J.; Danisiewicz, D.

    1995-07-01

    Silver is an element naturally occurring in small concentrations in different environmental sites. However, many anthropogenic sources of silver led to contamination of this element in soil surfaces, pastures, and coastal marine areas in different parts of the world. Estimates are that 40% of the 1.15x10{sup 4}t of silver produced annually worldwide, will escape into the environment. Due to municipal waste discharge and/or industrial effluents with high silver concentrations, 100 x above the background level have been reported in invertebrate species from polluted marine areas. The meta-stabile radioisotope, {sup 110m}Ag, is a main component of the liquid effluents from nuclear facilities under normal operating conditions. The presence of {sup 111}Ag and {sup 110m}Ag also has been widely found throughout Europe in the 1986 Chernobyl fallout. Silver ions are environmentally harmful. High toxic effects have been observed at low concentrations, especially in aquatic species. Species of lower fungi as well as the mushroom Agaricus bisporus are know to bioaccumulate high concentrations of silver when grown on an artificially enriched substrate. This study looks at the relationship between the silver content of soil and bioconcentration potential of wild Agaricus campestris from sites under different use and with different concentrations of heavy metals. 28 refs., 2 figs., 2 tabs.

  8. Galapagos Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of the Galapagos Islands was acquired on March 12, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The Galapagos Islands, which are part of Ecuador, sit in the Pacific Ocean about 1000 km (620 miles) west of South America. As the three craters on the largest island (Isabela Island) suggest, the archipelago was created by volcanic eruptions, which took place millions of years ago. Unlike most remote islands in the Pacific, the Galapagos have gone relatively untouched by humans over the past few millennia. As a result, many unique species have continued to thrive on the islands. Over 95 percent of the islands' reptile species and nearly three quarters of its land bird species cannot be found anywhere else in the world. Two of the more well known are the Galapagos giant tortoise and marine iguanas. The unhindered evolutionary development of the islands' species inspired Charles Darwin to begin The Origin of Species eight years after his visit there. To preserve the unique wildlife on the islands, the Ecuadorian government made the entire archipelago a national park in 1959. Each year roughly 60,000 tourists visit these islands to experience what Darwin did over a century and a half ago. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  9. Dendrochronology of Strain-Relaxed Islands

    SciTech Connect

    Merdzhanova, T.; Kiravittaya, S.; Rastelli, A.; Stoffel, M.; Denker, U.; Schmidt, O.G.

    2006-06-09

    We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes.

  10. Dendrochronology of strain-relaxed islands.

    PubMed

    Merdzhanova, T; Kiravittaya, S; Rastelli, A; Stoffel, M; Denker, U; Schmidt, O G

    2006-06-01

    We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes. PMID:16803325

  11. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  12. The Silver Bullet Syndrome.

    ERIC Educational Resources Information Center

    Dehne, George C.

    1995-01-01

    Many colleges address complex problems with a single "silver bullet" strategy. Because value shifts according to the consumer's situation or goal, private colleges should become more aware of their "situational value" and exploit it. This requires an understanding of how students choose colleges. In contrast, popular silver bullets target…

  13. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    NASA Astrophysics Data System (ADS)

    Lu, Haifei

    excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.

  14. Method for the recovery of silver from silver zeolite

    SciTech Connect

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  15. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  16. Akpatok Island

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Akpatok Island lies in Ungava Bay in northern Quebec, Canada. Accessible only by air, Akpatok Island rises out of the water as sheer cliffs that soar 500 to 800 feet (150 to 243 m) above the sea surface. The island is an important sanctuary for cliff-nesting seabirds. Numerous ice floes around the island attract walrus and whales, making Akpatok a traditional hunting ground for native Inuit people. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on January 22, 2001. Image provided by the USGS EROS Data Center Satellite Systems Branch

  17. Deposition and characterizations of ultrasmooth silver thin films assisted with a germanium wetting layer

    NASA Astrophysics Data System (ADS)

    Zhang, Junce; Fryauf, David M.; Diaz Leon, Juan J.; Garrett, Matthew; VJ, Logeeswaran; Islam, Saif M.; Kobayashi, Nobuhiko P.

    2015-08-01

    In this paper, silver thin films deposited on SiO2 substrates with a germanium wetting layer fabricated by electron-beam evaporation were studied. The characterization methods of XTEM, FTIR, XRD and XRR were used to study the structural properties of silver thin films with various thicknesses of germanium layers. Silver films deposited with very thin (1-5nm) germanium wetting layers show about one half of improvement in the crystallite sizes comparing silver films without germanium layer. The surface roughness of silver thin films significantly decrease with a thin germanium wetting layer, reaching a roughness minimum around 1-5nm of germanium, but as the germanium layer thickness increases, the silver thin film surface roughness increases. The relatively higher surface energy of germanium and bond dissociation energy of silver-germanium were introduced to explain the effects the germanium layer made to the silver film deposition. However, due to the Stranski-Krastanov growth mode of germanium layer, germanium island formation started with increased thickness (5-15nm), which leads to a rougher surface of silver films. The demonstrated silver thin films are very promising for large-scale applications as molecular anchors, optical metamaterials, plasmonic devices, and several areas of nanophotonics.

  18. Silver(II) Oxide or Silver(I,III) Oxide?

    ERIC Educational Resources Information Center

    Tudela, David

    2008-01-01

    The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…

  19. Mineral commodity profiles: Silver

    USGS Publications Warehouse

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  20. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    PubMed Central

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  1. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  2. Surfactantless synthesis of silver nanoplates and their application in SERS.

    SciTech Connect

    Sun, Y.; Wiederrecht, G.; Center for Nanoscale Materials

    2007-11-01

    Silver nanoplates with thicknesses of 50-70 nm and edge lengths ranging from 200 nm to 1 mm are grown on semiconductor waters at room temperature through a simple galvanic reaction between an aqueous solution of silver nitrate and n-type GaAs. The as-grown silver structures have chemically clean surfaces because no surfactant or coordinating molecules are involved in the synthesis. Electron microscopy characterization indicates that each silver plate has rough surfaces and a half-moon morphology with one straight edge and on arclike edge. Systematic studies on varying reaction conditions reveal that the oxide (i.e., Ga{sub 2}O{sub 3} and As{sub 2}O{sub 3}) layers of GaAs, generated in situ in the reactions, play an important role in assisting the growth of anisotropic nanoplates. The cleanliness of the surfaces of the silver nanoplates is beneficial to attachment of interesting molecules on their surfaces for various applications, such as plasmonic-enhanced photophysical and photochemical processes and surface-enhanced spectroscopies.

  3. Island Hopping

    ERIC Educational Resources Information Center

    Bennett, Gayle

    2009-01-01

    At some institutions, it may feel as though faculty live on one island and advancement staff on another. The islands form part of an archipelago, and they exchange ambassadors and send emissaries occasionally, but interactions are limited. It may even seem as though the two groups speak different languages, deal in different currencies, and abide…

  4. Facile route to morphologically tailored silver patches on colloidal particles.

    PubMed

    Klupp Taylor, Robin N; Bao, Huixin; Tian, Chenting; Vasylyev, Serhiy; Peukert, Wolfgang

    2010-08-17

    Here we demonstrate, for the first time, the heterogeneous nucleation and growth of silver patches on submicrometer silica spheres. While patches can be grown directly onto native silica particles, it is shown that a higher patch yield can be obtained by first treating the silica with a mixture of an alkanolamine and silver nitrate. Variation of the pretreatment and subsequent coating reactions allowed the patch yield, number, size, thickness, and shape to be adjusted. The patchy particles were shown to possess plasmon modes extending from the visible into the near-IR region, making these structures highly interesting for both their asymmetric morphological and functional properties. PMID:20695605

  5. Silver recovery system data

    SciTech Connect

    Boulineau, B.

    1991-08-26

    In August of 1990 the Savannah River Site Photography Group began testing on a different type of silver recovery system. This paper describes the baseline study and the different phases of installation and testing of the system.

  6. Siberian Islands

    Atmospheric Science Data Center

    2013-04-16

    ... Distinguishing Clouds from Ice over the East Siberian Sea, Russia     View Larger Image ... clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya ...

  7. Enhanced water splitting with silver decorated GaN photoelectrode

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Syed, Z. A.; Smith, R.; Athanasiou, M.; Gong, Y.; Yu, X.; Bai, J.; Wang, T.

    2016-07-01

    By means of a cost-effective approach, we demonstrate a GaN-based photoelectrode decorated with self-organized silver nano-islands employed for solar powered hydrogen generation, demonstrating 4 times increase in photocurrent compared with a reference sample without using any silver. Our photoelectrode exhibits a 60% incident photon-to-electron conversion efficiency. The enhanced hydrogen generation is attributed to a significantly increased carrier generation rate as a result of strongly localized electric fields induced by surface plasmon coupling effect. The silver coating also contributes to the good chemical stability of our photoelectrode in a strong alkali electrolyte. This work paves the way for the development of GaN and also InGaN based photoelectrodes with ultra-high solar hydrogen conversion efficiency.

  8. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Kabiraj, D.; Satpati, Biswarup

    2015-06-01

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (˜ 200 nm) grown initially on silicon substrate. The naoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  9. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    SciTech Connect

    Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  10. Experimental evidence of direct contact formation for the current transport in silver thick film metallized silicon emitters

    NASA Astrophysics Data System (ADS)

    Cabrera, Enrique; Olibet, Sara; Glatz-Reichenbach, Joachim; Kopecek, Radovan; Reinke, Daniel; Schubert, Gunnar

    2011-12-01

    Great advances have been achieved in the development of silver pastes. The use of smaller silver particles, higher silver content, and, thus, less glass frit allow modern silver pastes to contact high resistive emitters without the necessity of a selective emitter or subsequent plating. To identify the microscopic key reasons behind the improvement of silver paste, it is essential to understand the current transport mechanism from the silicon emitter into the bulk of the silver finger. Two current transport theories predominate: i) The current flows through the Ag crystallites grown into the Si emitter, which are separated by a thin glass layer or possibly in direct contact with the silver finger. ii) The current is transported by means of multistep tunneling into the silver finger across nano-Ag colloids in the glass layer, which are formed at optimal firing conditions; the formation of Ag crystallites into the Si surface is synonymous with over-firing. In this study, we contact Si solar cell emitters with different silver pastes on textured and flat silicon surfaces. A sequential selective silver-glass etching process is employed to expose and isolate the different contact components for current transport. The surface configurations after the etching sequences are observed with scanning electron microscopy. Liquid conductive silver is then applied to each sample and the contact resistivity is measured to determine the dominant microscopic conduction path system. We observe glass-free emitter areas at the tops of the pyramidal-textured Si that lead to the formation of direct contacts between the Ag crystallites grown into the Si emitter and the bulk of the silver finger. We present experimental evidence that the major current flow into the silver finger is through these direct contacts.

  11. Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles

    PubMed Central

    2010-01-01

    Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time. PMID:20672091

  12. Island of Okinawa, Japan

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The island of Okinawa, (26.5N, 128.0E) largest of the Ryukyu Islands, Japan. The Ryukyu island group lies south of the main home islands of Japan in an arc towards the Chinese island Republic of Taiwan. As is typical throughout the Japanese home islands, intense urban development can be observed all over the island in this near vertical view.

  13. Increase of island density via formation of secondary ordered islands on pit-patterned Si (001) substrates

    SciTech Connect

    Zhong, Z.; Schmidt, O.G.; Bauer, G.

    2005-09-26

    Site-controlled groups of Ge islands are grown on pit-patterned Si (001) substrates. By varying the deposited amount of Ge, we find that the growth starts with the formation of a single island at the pit bottom and then proceeds to the formation of a highly symmetric Ge island group around the pit top. A bimodal size distribution of dome-shaped islands at the bottom and at the top corners of the pits is observed. A growth mechanism is proposed to qualitatively explain these phenomena. Our experiments help to promote a further understanding of Ge island growth on patterned substrates.

  14. Concerning the energy levels of silver in Ge-Si alloys

    SciTech Connect

    Tahirov, V. I.; Agamaliev, Z. A.; Sadixova, S. R.; Guliev, A. F.; Gahramanov, N. F.

    2012-03-15

    The emission from impurity states of silver (an element of the IB subgroup) in a Ge-Si alloy, containing 18 at % Si, has been studied. The donor level of silver has been found in crystals doubly doped with gallium and silver, while its first acceptor level has been revealed in crystals doped with only silver. Single crystals were grown by pulling from a melt using a feeding rod. Doping with gallium was performed by introducing this element into the feeding rod, and silver was introduced into the crystals via diffusion. The positions of the donor and first acceptor Ag levels with respect to the top of the valence band were found by analyzing the temperature dependence of the Hall coefficient and the electroneutrality equation for the crystal: 0.06 and 0.29 eV, respectively.

  15. Silver nanostructures formation in porous Si/SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sivakov, Vladimir; Kaniukov, Egor Yu.; Petrov, Alexander V.; Korolik, Olga V.; Mazanik, Alexander V.; Bochmann, Arne; Teichert, Steffen; Hidi, Izabella J.; Schleusener, Alexander; Cialla, Dana; Eugenia Toimil-Molares, Maria; Trautmann, Christina; Popp, Jürgen; Demyanov, Sergey E.

    2014-08-01

    Self-organized silver nanostructures were grown in porous Si/SiO2 matrix fabricated by ion track technology. The different silver nanostructures with shapes like “sunflowers”, “azalea” or “corn” were realized by applying wet-chemical electroless deposition. We show that reproducible self-organized silver “sunflower” like nanostructures provide a high enhanced Raman signal of Nile blue dye molecules. Signal enhancement for a few or even just a single silver “sunflower” is demonstrated by analyzing the surface-enhanced Raman signature of Nile blue dye molecules. According to this, the silver nanostructures can act as efficient surfaces for surface enhanced Raman spectroscopy as well as (bio)-sensor applications.

  16. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  17. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  18. Silver-iron batteries

    NASA Astrophysics Data System (ADS)

    Lindstroem, O.

    1980-04-01

    Production methods for iron electrodes were studied. It was found that a sintering temperature of 700 C gave the best strength and capacity. Production methods and additions for silver electrodes were also studied. The capacity of the produced iron and silver electrodes were 1100 mAh/cu cm. Different separators were investigated. Cellophane I and II from Du Pont was found to be the best. In tests open cells achieved 60 percent of the calculated capacity. In order to minimize the increase of the pressure in closed cells different additions to the electrodes were studied.

  19. Devon Island

    Atmospheric Science Data Center

    2013-04-17

    article title:  Mars Researchers Rendezvous on Remote Arctic Island   ... equipment and technology that may be deployed during a human mission to Mars. One of the many objectives of the project scientists is to ... Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's ...

  20. Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multiangle Imaging Spectro-Radiometer (MISR) image of five Hawaiian Islands was acquired by the instrument's vertical- viewing (nadir) camera on June 3, 2000. The image shows the islands of Oahu, Molokai, Lanai, Maui, and Kahoolawe. The prevailing Pacific trade winds bring higher levels of rainfall to the eastern slopes of the islands, leading to a greater abundance of vegetation on the windward coasts. The small change in observation angle across the nadir camera's field-of- view causes the right-hand portion of the image to be more affected by Sun glint, making the ocean surface appear brighter. Oahu is the westernmost of the islands seen in this image. Waikiki Beach and the city of Honolulu are located on the southern shore, to the west of Diamond Head caldera. MISR is one of several Earth-observing instruments on the Terra satellite, launched in December 1999. The Terra spacecraft, the flagship of a fleet of satellites dedicated to understanding our global environment, is part of NASA's Earth Sciences Enterprise, a long-term research program dedicated to understanding how human-induced and natural changes affect our world. Image courtesy NASA/GSFC/JPL, MISR Team

  1. Anatahan Island

    Atmospheric Science Data Center

    2013-04-19

    ... Snorkelers around this island are likely to encounter the fish Achilles Tang and the Moorish Idol (Acanthurus achilles and Zanclus ... Terra circles the Earth in the same orbit as Landsat 7, flying at an altitude of about 700 kilometers above the Earth's surface. ...

  2. Electrochemical deposition of silver crystals aboard Skylab 4

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.; Johnston, M. H.; Gates, D. W.

    1976-01-01

    Silver crystals were grown aboard Skylab 4 by an electro-chemical reaction and subsequently returned to earth for comparison with crystals grown at 1- and 5-g. Both the Skylab and earth-grown crystals show a variety of structures. Certain tendencies in structure dependency on gravity level, however, can be discerned. In addition, downward growing dendrite streamers; upward growing chunky crystal streamers; growth along an air/liquid interface; and ribbon, film, and fiber crystal habits were observed in experiments conducted on the ground with solutions of varying concentrations. It was also observed that the crystal structures of space and ground electro-deposited silver crystals were very similar to the structures of germanium selenide and germanium telluride crystals grown in space and on the ground by a vapor transport technique. Consideration of the data leads to the conclusions that: (1) the rate of electrochemical displacement of silver ions from a 5 percent aqueous solution by copper is predominantly diffussion controlled in space and kinetically controlled in 1- and higher-g because of augmentation of mass transport by convection; (2) downward and upward crystal streamers are the result of gravity-driven convection, the flow patterns of which can be delineated. Lateral growths along an air/liquid interface are the result of surface-tension-driven convection, the pattern of which also can be delineated; (3) electrolysis in space or low-g environments can produce either dendritic crystals with more perfect microcrystalline structures or massive, single crystals with fewer defects than those grown on ground or at higher g-levels. Ribbons or films of space-grown silicon crystals would find a ready market for electronic substrate and photocell applications. Space-grown dendritic, metal crystals present the possibility of unique catalysts. Large perfect crystals of various materials are desired for a number of electronic and optical applications; and (4) vapor

  3. Tales From Silver Lands.

    ERIC Educational Resources Information Center

    Finger, Charles J.

    In 1925, "Tales From Silver Lands" was awarded the Newbery medal as the most distinguished contribution to American children's literature for the year. The book contains a collection of 19 short stories learned from the Indians of South America as the author traveled to different lands. As described on the dust jacket, the tales are about "strange…

  4. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  5. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    NASA Astrophysics Data System (ADS)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  6. Indium growth and island height control on silicon submonolayer phases

    NASA Astrophysics Data System (ADS)

    Chen, Jizhou

    The quantum size effects (QSE) make it possible to control the dimensions of self-assembled nanostructures. An important goal in present day surface science is to grow uniform sized self-assembled nanostructures. One system which has displayed a number of interesting surface structures is Pb/In grown on a Si(111) substrate. The first part of the thesis discussed Pb islands grown on the anisotropic Si(111)-In(4x1) substrate. In addition to a preferred height of 4 monolayers due to QSE, these islands grow as nanowires with a preferred width of 660nm due to strain driven growth from the anisotropic substrate. Islands grown on the In(4x1) substrate also retain their preferred height to room temperature in contrast to previously observed critical temperatures of 250 K or less for islands grown on other substrates. Then In islands were grown on Si(111)-Pb-alpha-sqrt3 x sqrt3 substrate. The In islands in face-centered cubic (FCC) structure were found to have a preferred height of 4 monolayers due to QSE. With further depositions, an FCC to body-centered tetragonal(BCT) structure transition is observed. The In bct islands was found to have unexpected fast growth rate compared to FCC structure, which indicate the extra high mobility of In atoms. In the last part In islands were grown on varies of In phases at low temperature. Conversion between submonolayer In phases are observed. Due to the highly mobility of In atoms, the QSE effects observed on the Pb alpha phase is not observed.

  7. Characterization of Electrochemically Generated Silver

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (<500 ppb) have been shown to kill bacteria in water systems and keep it safe for potability. Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  8. Streamlined Island

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-514, 15 October 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a streamlined island in Marte Vallis, a large outflow channel system that crosses the 180oW meridian between the Elysium and Amazonis regions of Mars. The flow patterns on the floor of Marte Vallis might be the remains of lava flows or mud flows. Marte is the Spanish word for Mars. Most of the largest valleys on the red planet are named for 'Mars' in various languages. This island is located near 21.8oN, 175.3oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  9. Theoretical characteristics of optical polarizing films using oblique metal island films with distributed island shape

    NASA Astrophysics Data System (ADS)

    Baba, Kazutaka; Kakinuma, Yu

    2008-02-01

    An oblique metal island (OMI) film is composed of prolate metal nanoclusters inclining to one side. The OMI film has large optical anisotropy as the resonance wavelengths for the polarization along the shorter and longer axes of the prolate metal nanoclusters are different from each other. Therefore, the multiplayer of the OMI layers and thin glass layer could be used as an optical polarizing film. In previous works, we have investigated the optical polarizing films using ideal OMI films with uniform aspect ratio of islands for simplification. However, in the OMI films fabricated by using a conventional vacuum evaporation system, the aspect ratio is not uniform. In this paper, we describe the optical polarizing film using the OMI films with distributed island shape. We have calculated the optical characteristics of the OMI films with distributed island shape by assuming that the distribution of aspect ratio of islands is expressed by use of the log-normal function. As the variance of aspect ratio is large, the resonance characteristics become broad. Therefore, it seems that the OMI films with distributed island shape are useful for the wideband optical polarizing films for visible region. By using the OMI films with distributed island shape, we have designed wideband optical polarizing films for 400 - 500 nm by using aluminum and for 620 - 760 nm by using silver as metals. The extinction ratios of designed optical polarizing films are greater than 20 dB.

  10. Hydrometallurgical recovery of silver from waste silver oxide button cells

    NASA Astrophysics Data System (ADS)

    Sathaiyan, N.; Nandakumar, V.; Ramachandran, P.

    In recent years, recycling of household batteries has attracted much attention mainly with respect to environmental aspects in addition to the savings. Small silver oxide primary cells used in electric watches become a waste after their life is over. Recycling procedures are needed to prevent any environmental impact from these wastes and to recover the value inherent in the scrap. Smelting and electrolytic methods are discussed for silver recovery from this battery waste. Acid leaching of waste batteries and precipitation of silver as silver chloride followed by smelting at 1000 °C yields a silver recovery of about 83%. An electrolytic route is studied as an alternative to the smelting operation and involves the electrodeposition of silver with higher purity from a silver thiosulfate complex prepared from silver chloride. The electrolysis is potentiostatically controlled at a potential of -0.400 to -0.600 V (SCE) for avoiding side-reactions such as the sulfiding of silver. Although recovery methods have been identified in principle, their suitability for mixed small battery waste and economic factors have yet to be demonstrated.

  11. Classifying Pacific islands

    NASA Astrophysics Data System (ADS)

    Nunn, Patrick D.; Kumar, Lalit; Eliot, Ian; McLean, Roger F.

    2016-12-01

    An earth-science-based classification of islands within the Pacific Basin resulted from the preparation of a database describing the location, area, and type of 1779 islands, where island type is determined as a function of the prevailing lithology and maximum elevation of each island, with an island defined as a discrete landmass composed of a contiguous land area ≥1 ha (0.01 km2) above mean high-water level. Reefs lacking islands and short-lived (<20 years) transient islands are not included. The principal aim of the classification is to assess the spatial diversity of the geologic and geomorphic attributes of Pacific islands. It is intended to be valid at a regional scale and based on two attributes: five types of lithology (volcanic, limestone, composite, continental, surficial) and a distinction between high and low islands. These attributes yielded eight island types: volcanic high and low islands; limestone high and low islands; composite high and low islands; reef (including all unconsolidated) islands; and continental islands. Most common are reef islands (36 %) and volcanic high islands (31 %), whereas the least common are composite low islands (1 %). Continental islands, 18 of the 1779 islands examined, are not included in maps showing the distribution of island attributes and types. Rationale for the spatial distributions of the various island attributes is drawn from the available literature and canvassed in the text. With exception of the few continental islands, the distribution of island types is broadly interpretable from the proximity of island-forming processes. It is anticipated the classification will become the basis for more focused investigation of spatial variability of the climate and ocean setting as well as the biological attributes of Pacific islands. It may also be used in spatial assessments of second-order phenomena associated with the islands, such as their vulnerability to various disasters, coastal erosion, or ocean pollution as

  12. Extraction of Silver by Glucose.

    PubMed

    Baksi, Ananya; Gandi, Mounika; Chaudhari, Swathi; Bag, Soumabha; Gupta, Soujit Sen; Pradeep, Thalappil

    2016-06-27

    Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) . PMID:27119514

  13. Genetics Home Reference: Russell-Silver syndrome

    MedlinePlus

    ... Genetics Home Health Conditions Russell-Silver syndrome Russell-Silver syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Russell-Silver syndrome is a growth disorder characterized by slow ...

  14. Silver Ink For Jet Printing

    NASA Technical Reports Server (NTRS)

    Vest, R. W.; Singaram, Saraswathi

    1989-01-01

    Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.

  15. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  16. Silver Nanoparticles in Dental Biomaterials

    PubMed Central

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; da Cruz, Adriana Dibo; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time. PMID:25667594

  17. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  18. Solomon Islands.

    PubMed

    1988-06-01

    The Solomon Islands, which form an archipelago in the Southwest Pacific about 1900 km northeast of Australia, are described. Included are brief descriptions about such points as geography, people, history, type of government, political conditions, economy, and foreign relations. In 1987 the population was 301,180 (49% under age 14); the annual growth rate was 3.67%. The infant mortality rate is 46/1000; the life expectancy, 54 years. Health conditions in the Solomons generally are adequate, and the country does not suffer from serious endemic diseases other than malaria, in both the vivax and falsiparum strains. Hospitals and pharmacies are limited to population centers and missions. PMID:12177986

  19. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters.

    PubMed

    Hanks, Nicole A; Caruso, Joseph A; Zhang, Peng

    2015-12-01

    To study the phytoremediation capabilities of Pistia stratiotes in silver nanoparticle (AgNP) and silver ion contaminated wastewaters, individual plants were grown in media spiked with different concentrations of silver nanoparticle and silver ions (0.02, 0.2, and 2 mg L(-1)). Control experiments were carried out at the same time for comparison purposes. Visual changes in the plants were also recorded periodically during each experiment. Total silver concentrations were monitored in the media before, during, and at the termination of the experiments. In addition, analysis of total silver in plant root and leaf samples after termination were carried out to determine the effect of the different media concentrations. The results showed that P. stratiotes can survive in AgNP and ions under 0.02 mg L(-1) and contaminants are retained within the plant. The use of P. stratiotes as a phytoremediator shows potential in removing heavy metal nanoparticles and is competitive in its removal of the ion counterpart. Even higher concentrations of silver, regardless of form, can be reduced to lower levels than the World Health Organization's maximum contamination limit. PMID:26342265

  20. Carbon Nanotube Interconnects Realized through Functionalization and Sintered Silver Attachment.

    PubMed

    Gopee, V; Thomas, O; Hunt, C; Stolojan, V; Allam, J; Silva, S R P

    2016-03-01

    Carbon nanotubes (CNTs) in the form of interconnects have many potential applications, and their ability to perform at high temperatures gives them a unique capability. We show the development of a novel transfer process using CNTs and sintered silver that offers a unique high-temperature, high-conductivity, and potentially flexible interconnect solution. Arrays of vertically aligned multiwalled carbon nanotubes of approximately 200 μm in length were grown on silicon substrates, using low-temperature photothermal chemical vapor deposition. Oxygen plasma treatment was used to introduce defects, in the form of hydroxyl, carbonyl, and carboxyl groups, on the walls of the carbon nanotubes so that they could bond to palladium (Pd). Nanoparticle silver was then used to bind the Pd-coated multiwalled CNTs to a copper substrate. The silver-CNT-silver interconnects were found to be ohmic conductors, with resistivity of 6.2 × 10(-4) Ωm; the interconnects were heated to temperatures exceeding 300 °C (where common solders fail) and were found to maintain their electrical performance. PMID:26835786

  1. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  2. Graphic Grown Up

    ERIC Educational Resources Information Center

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  3. Silver based SERS substrates fabricated from block copolymer thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Lee, Wonjoo; Lee, Seung Yong; Gao, Zhenghan; Rabin, Oded; Briber, R. M.

    2013-03-01

    Poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP, Mw = 47-b-10 kDa, PDI =1.10) thin films were used to form large-scale long range ordered self-assembled hexagonal patterns of vertically P4VP oriented cylinders in a PS matrix on Si substrates. The P4VP cylindrical domains were crosslinked and quaternized using 1,4-dibromobutane. Negatively charged 15nm gold nanoparticles were attached to the quaternized P4VP domains through Coulombic interactions. Silver was then grown on the gold seeds to create nanometer scale gaps between the nanoparticles. The gap between the nanoparticles was fine tuned by controlling the silver growth time. The substrates showed large enhancement factors in the Raman scattering signal for a broad range of incident wavelengths. Present address: LG Chem Ltd, Information Technology & Electronic Materials R&D, Yuseong-gu Daejeon, South Korea

  4. Island Formation: Constructing a Coral Island

    ERIC Educational Resources Information Center

    Austin, Heather; Edd, Amelia

    2009-01-01

    The process of coral island formation is often difficult for middle school students to comprehend. Coral island formation is a dynamic process, and students should have the opportunity to experience this process in a synergistic context. The authors provide instructional guidelines for constructing a coral island. Students play an interactive role…

  5. Rethinking Schools and the Power of Silver

    ERIC Educational Resources Information Center

    Sleeter, Christine

    2011-01-01

    This 25th anniversary of "Rethinking Schools" can be thought of as its silver anniversary. Silver itself must be considered through contrasting lenses. On the one hand, as lessons in "Rethinking Globalization" teach, silver and gold were the basis of Europe's horrendous exploitation of Latin America. On the other hand, silver is often associated…

  6. Silver clusters and chemistry in zeolites

    SciTech Connect

    Sun, T.; Seff, K. . Dept. of Chemistry)

    1994-06-01

    The spectroscopic work done on silver clusters trapped in solid noble gas matrices at low temperature has been extensively reviewed by Ozin, and Henglein has done the same for photochemical studies of colloidal silver particles in solution. This article will review the chemistry of silver in zeolite hosts, including the synthesis and structures of silver clusters. 127 refs.

  7. Studies of n-butane conversion over silica-supported platinum, platinum-silver and platinum-copper catalysts

    SciTech Connect

    Gu, Junhua

    1992-06-09

    The present work was undertaken to elucidate effect of adding silver and copper to silica-supported platinum catalyst on the activity and selectivity in the n-butane reactions. At the conditions of this study n-butane underwent both hydrogenolysis and structural isomerization. The catalytic activity and selectivities between hydrogenolysis and isomerization and within hydrogenolysis were measured at temperature varying from 330 C to 370 C. For platinum-silver catalysts, at lower temperatures studied the catalytic activity per surface platinum atom (turnover frequency) remained constant at lower silver content (between 0 at. % and 30 at. %) and decreased with further increased silver loading, suggesting that low- index planes could be dominant in the hydrogenolysis of n-butane. Moreover, increasing silver content resulted in an enhancement of the selectivity of isomerization products relative to hydrogenolysis products. At the higher temperature studied, no suppression in catalytic activity was observed. It is postulated that surface structure could change due to the mobility of surface silver atoms, leading to surface silver atoms forming islands or going to the bulk, and leaving large portions of basal planes exposed with active platinum atoms. It is also suggested that the presence of inert silver atoms results in weakening of the H-surface bond. This results in increased mobility of hydrogen atoms on the surface and hence, higher reactivity with other adsorbed species. For platinum copper catalysts, the mixed ensembles could play an active role in the hydrogenolysis of n-butane.

  8. Retiring the Silver Bullet

    SciTech Connect

    Lasure, Linda L.

    2006-01-01

    Over the past few decades, advances in biology and electronics have resulted in an enormous increase in the screening rate of new compounds and in the capacity to synthesize vast numbers of new compounds. The understanding of disease has greatly improved. At the same time, the number of targets (or diseases) for the silver bullets has also increased. Yet, the belief that we have to screen enormous numbers of compounds to find the next new drug continues. Today, disease is understood to be a complex interaction of many systems. This ought to cause us to change our paradigm, but it has not. The fundamental reason for the apparent failure of our drug discovery and development research is that we are operating under the constraints of an out-of-date paradigm. The silver-bullet paradigm has always been a myth. Now is the time to debunk the myth and change the paradigm. Our other option is to continue on as we are and accept that the United States will become obsolete on the playing field of drug discovery.

  9. A Silver DNAzyme.

    PubMed

    Saran, Runjhun; Liu, Juewen

    2016-04-01

    Silver is a very common heavy metal, and its detection is of significant analytical importance. DNAzymes are DNA-based catalysts; they typically recruit divalent and trivalent metal ions for catalysis. Herein, we report a silver-specific RNA-cleaving DNAzyme named Ag10c obtained after six rounds of in vitro selection. Ag10c displays a catalytic rate of 0.41 min(-1) with 10 μM Ag(+) at pH 7.5 with 200 mM NaNO3, while its activity is completely inhibited with the same concentration of NaCl. Ag10c is highly specific for Ag(+) among all the tested metals. A catalytic beacon biosensor is designed by labeling a fluorophore and a quencher on the DNAzyme. Fluorescence enhancement is observed in the presence of Ag(+) with a detection limit of 24.9 nM Ag(+). The sensor shows a similar analytical performance in Lake Huron water. This is the first monovalent transition metal dependent RNA-cleaving DNAzyme. Apart from its biosensor application, this study strengthens the idea of exploring beyond the traditional understanding of multivalent ion dependent DNAzyme catalysis. PMID:26977895

  10. Process for making silver metal filaments

    DOEpatents

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  11. Process for making silver metal filaments

    SciTech Connect

    Bamberger, C.E.

    1997-05-06

    A process is disclosed for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles. 1 fig.

  12. Polymer glazing for silver mirrors

    SciTech Connect

    Neidlinger, H H; Schissel, P

    1985-07-01

    This paper reports on an evaluation and modification of polymeric glazings to protect silver mirrors. The mirrors were made using Corning 7809 glass as a substrate onto which a thin silver film is deposited. The modified polymeric films are then cast from solution onto the silver. The mirrors were characterized by measuring the hemispherical reflectance and the specular reflectance at 660 nm and selected acceptance angles (7.5 mrad or 3.5 mrad). The mirrors were exposed to environmental degradation using accelerated weathering devices and outdoor exposure. Empirical evidence has demonstrated that polymethylmethacrylate is a stable polymer in a terrestrial environment, but the polymer does not provide adequate protection for the silver reflector. The crucial role in degradation played by ultraviolet (uv) light is shown by several experimental results. It has been demonstrated that uv stabilizers added to the polymer improve the weatherability of mirrors. The relative effectiveness of different stabilizers will be discussed in terms of the weathering modes, retention of optical properties, and effectiveness of the additives. The process for silver deposition influences the reflectance of silver mirrors, and the optical properties depend on subtle relationships between the metallization and the dielectric (polymeric) films that are in contact with the silver.

  13. Nucleation, growth, and dissolution of silver nanostructures formed in nanotubular J-aggregates of amphiphilic cyanine dyes.

    PubMed

    Steeg, Egon; Polzer, Frank; Kirmse, Holm; Qiao, Yan; Rabe, Jürgen P; Kirstein, Stefan

    2016-06-15

    Solution fabricated high aspect ratio silver nanowires are of interest because of their usability in plasmonic devices or transparent electrodes. Recently, silver nanowires with diameters of 6.5nm and lengths exceeding tens or hundreds of microns were grown by reduction of silver ions within the inner volume of nanotubular J-aggregates of an amphiphilic cyanine dye. Unlike in other soft template systems, the anisotropic growth of the silver wires is not caused by different screening of the diverse facets of silver crystals. Instead, the shape of the wires replicates the inner space of the tubes without destroying the template. This effect is demonstrated by ex-situ observation of the growth of the silver wires via transmission electron microscopy. The wire growth is initiated by exposure to blue light and starts with small, isolated crystallites within the tubular aggregates. The crystallites grow into pieces of wires that finally coalesce into continuous wires. The growth is mediated by material transport through the membrane-like wall of the dye aggregates. This wall permeability is further demonstrated by dissolution of the silver wires via oxidative etching by addition of sodium chloride. It is concluded that the cyanine double layer wall is permeable for ions such as silver, sodium, chlorine, and water molecules. This permeability permits control of the wire length through the concentration of chlorine when oxygen is removed from the solvent. PMID:27038282

  14. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1985-01-01

    The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.

  15. Silver Complexes of Dihalogen Molecules.

    PubMed

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations). PMID:27404568

  16. Hawaiian Island Archipelago

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  17. Selectively deposited silver coatings on gold-capped silicon nanowires for surface-enhanced Raman spectroscopy.

    PubMed

    Becker, M; Stelzner, Th; Steinbrück, A; Berger, A; Liu, J; Lerose, D; Gösele, U; Christiansen, S

    2009-06-01

    Gold caps on silicon nanowires are selectively coated with silver by autometallography (electroless deposition). Changing the conditions of silver deposition, a variety of different coating morphologies can be produced [figure: see text]. The different silver coating morphologies are investigated in terms of their capabilities for surface enhanced Raman scattering (SERS) experiments.Gold caps on silicon nanowires are hemispherical and only a few tens of nanometers in diameter when grown from metal catalysts by the vapor-liquid-solid growth mechanism using chemical vapor deposition. These gold caps are capable of enhancing Raman signals based on the surface-enhanced Raman scattering effect. The Raman signal can be enhanced even further (by at least one order of magnitude) when silver is selectively deposited onto these gold caps by autometallography (electroless deposition). By changing the silver deposition conditions, different coating morphologies can be realized on the gold caps that range from very thin, smooth layers to uneven and extremely rough coatings. The SERS signal enhancement and the spatial homogeneity of the achievable enhancement are compared for the different silver coatings using a model dye molecule. PMID:19399821

  18. Silver Nafion for Thermogalvanic Applications

    NASA Astrophysics Data System (ADS)

    Chang, William; Popere, Bhooshan; Evans, Chris; Russ, Boris; Segalman, Rachel

    2015-03-01

    Thermogalvanics convert a temperature gradient, typically from waste heat, into electrical power using a reversible electrochemical reaction. The conversion efficiency in thermogalvanics, like with thermoelectrics, are governed by the Seebeck coefficient, the carrier conductivity and the thermal conductivity of the material. We demonstrate that the material systems silver Nafion and silver poly-styrenesulfonate are air-stable, water processable materials that demonstrate extremely high Seebeck coefficients and moderate carrier conductivities. These power factors, when coupled with the low thermal conductivities inherent in polymers, results in materials with excellent thermogalvanic figure of merits. We show the dependence of these three material properties to material composition and processing. In this talk, we show how the Seebeck coefficient in silver Nafion and silver polystyrene-sulfonate are opposite in sign, allowing construction of a thermogalvanic device. With these ion conductors, we hope to open up a flexible pathway to waste heat recovery using materials typically studied for electrochemical applications.

  19. STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces

    PubMed Central

    Ahmad Zebari, Amir A; Kolmer, Marek

    2013-01-01

    Summary Islands composed of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules are grown on a hydrogen passivated Ge(001):H surface. The islands are studied with room temperature scanning tunneling microscopy and spectroscopy. The spontaneous and tip-induced formation of the top-most layer of the island is presented. Assistance of the scanning probe seems to be one of the factors that facilitate and speed the process of formation of the top-most layer. PMID:24367762

  20. STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces.

    PubMed

    Ahmad Zebari, Amir A; Kolmer, Marek; Prauzner-Bechcicki, Jakub S

    2013-01-01

    Islands composed of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules are grown on a hydrogen passivated Ge(001):H surface. The islands are studied with room temperature scanning tunneling microscopy and spectroscopy. The spontaneous and tip-induced formation of the top-most layer of the island is presented. Assistance of the scanning probe seems to be one of the factors that facilitate and speed the process of formation of the top-most layer. PMID:24367762

  1. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  2. Surface enhanced Raman scattering and photoluminescence properties of catalytic grown ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Jacob, C.

    2009-09-01

    Sword-like (diameter ranging from 40 nm to 300 nm) and needle-like zinc oxide (ZnO) nanostructures (average tip diameter ˜40 nm) were synthesized on annealed silver template over silicon substrate and directly on silicon wafer, respectively via thermal evaporation of metallic zinc followed by a thermal annealing in air. The surface morphology, microstructure, chemical analysis and optical properties of the grown samples were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, room temperature photoluminescence and Raman spectroscopy. The sword-like ZnO nanostructures grown on annealed silver template are of high optical quality compared to needle-like ZnO nanorods for UV emission and show enhanced Raman scattering.

  3. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    NASA Astrophysics Data System (ADS)

    Sirotinkin, V. P.; Bush, A. A.; Kamentsev, K. E.; Dau, H. S.; Yakovlev, K. A.; Tishchenko, E. A.

    2015-09-01

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1- x)CuO · 20 x AgNO3 · 20Li2CO3 (0 ≤ х ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter с of the LiCu2O2 rhombic unit cell, a slight increase in parameter а, and a slight decrease in parameter b.

  4. Theoretical investigations of silver clusters and silver-ligand systems.

    SciTech Connect

    Jellinek, J.; Salian, U.; Srinivas, S.

    1999-05-19

    Studies directed at understanding structural and electronic properties of silver clusters have been and remain the subject of an active theoretical [1-22] and experimental [23- 38] effort. One of the reasons is the (still) important role these systems play in the photographic process. Investigations of interactions of silver clusters with different atoms and molecules are motivated primarily by a possible utility of these clusters in catalytic processes. The important role of silver in the selective oxidation of ethylene into ethylene oxide, the feedstock for polyester production, is well-known [39]. Possible variations in chemical reactivity with the cluster size and understanding of the mechanisms of interactions with different ligands may lead to new and more efficient applications. Investigations of cluster-ligand systems also contribute a great deal to a better understanding of gas-surface interactions. Accordingly, theoretical studies of silver clusters and cluster-ligand systems [40-44] fall into two categories--those that use clusters as models for silver surfaces [40], and those that target clusters and cluster-ligand interactions as subjects in their own right [41-44]. The common goal of all these studies is to elucidate the nature of the interatomic interactions and bonding at the microscopic level and thereby arrive at a fundamental understanding and description of the various structural and electronic properties.

  5. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  6. Protein retention on plasma-treated hierarchical nanoscale gold-silver platform

    PubMed Central

    Fang, Jinghua; Levchenko, Igor; Mai-Prochnow, Anne; Keidar, Michael; Cvelbar, Uros; Filipic, Gregor; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2015-01-01

    Dense arrays of gold-supported silver nanowires of about 100 nm in diameter grown directly in the channels of nanoporous aluminium oxide membrane were fabricated and tested as a novel platform for the immobilization and retention of BSA proteins in the microbial-protective environments. Additional treatment of the silver nanowires using low-temperature plasmas in the inductively-coupled plasma reactor and an atmospheric-pressure plasma jet have demonstrated that the morphology of the nanowire array can be controlled and the amount of the retained protein may be increased due to the plasma effect. A combination of the neutral gold sublayer with the antimicrobial properties of silver nanowires could significantly enhance the efficiency of the platforms used in various biotechnological processes. PMID:26307515

  7. Protein retention on plasma-treated hierarchical nanoscale gold-silver platform

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; Mai-Prochnow, Anne; Keidar, Michael; Cvelbar, Uros; Filipic, Gregor; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2015-08-01

    Dense arrays of gold-supported silver nanowires of about 100 nm in diameter grown directly in the channels of nanoporous aluminium oxide membrane were fabricated and tested as a novel platform for the immobilization and retention of BSA proteins in the microbial-protective environments. Additional treatment of the silver nanowires using low-temperature plasmas in the inductively-coupled plasma reactor and an atmospheric-pressure plasma jet have demonstrated that the morphology of the nanowire array can be controlled and the amount of the retained protein may be increased due to the plasma effect. A combination of the neutral gold sublayer with the antimicrobial properties of silver nanowires could significantly enhance the efficiency of the platforms used in various biotechnological processes.

  8. Falkland Islands, UK

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of the Falkland Islands (52.0S, 58.5W) was taken with a dual camera mount. Compare this scene with STS048-109-043 to analyze the unique properties of each film type. Seldom seen cloud free, the Falkland Islands lie off the southern coast of Argentina. The cold Falklands Ocean Current keeps the islands chilly, ideal for sheep herding and fishing, the two main industries. Colonies of seals and penguins also thrive on the islands.

  9. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  10. 21 CFR 73.2500 - Silver.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous... certification. Certification of this color additive is not necessary for the protection of the public health...

  11. Diomede Islands, Bering Straight

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Diomede Islands consisting of the western island Big Diomede (also known as Imaqliq, Nunarbuk or Ratmanov Island), and the eastern island Little Diomede (also known as Krusenstern Island or Inaliq), are two rocky islands located in the middle of the Bering Strait between Russia and Alaska. The islands are separated by an international border and the International Date Line which is approximately 1.5 km from each island; you can look from Alaska into tomorrow in Russia. At the closest land approach between the United States, which controls Little Diomede, and Russia, which controls Big Diomede, they are 3 km apart. Little Diomede Island constitutes the Alaskan City of Diomede, while Big Diomede Island is Russia's easternmost point. The first European to reach the islands was the Russian explorer Semyon Dezhnev in 1648. The text of the 1867 treaty finalizing the sale of Alaska uses the islands to designate the border between the two nations.

    The image was acquired July 8, 2000, covers an area of 13.5 x 10.8 km, and is located at 65.8 degrees north latitude, 169 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. Processes involved in the formation of silver clusters on silicon surface

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S. R.; Chini, T. K.; Datta, D.; Hippler, R.; Shyjumon, I.; Smirnov, B. M.

    2008-12-01

    We analyze scanning electron microscopy measurements for structures formed in the deposition of solid silver clusters onto a silicon(100) substrate and consider theoretical models of cluster evolution onto a surface as a result of diffusion and formation of aggregates of merged clusters. Scanning electron microscopy (SEM) data are presented in addition to energy dispersive X-ray spectrometry (EDX) measurements of the these films. Solid silver clusters are produced by a DC magnetron sputtering source with a quadrupole filter for selection of cluster sizes (4.1 and 5.6 nm or 1900 and 5000 atoms per cluster in this experiment); the energy of cluster deposition is 0.7 eV/atom. Rapid thermal annealing of the grown films allows analysis of their behavior at high temperatures. The results exhibit formation of cluster aggregates via the diffusion of deposited solid clusters along the surface; an aggregate consists of up to hundreds of individual clusters. This process is essentially described by the diffusion-limited aggregation (DLA) model, and thus a grown porous film consists of cluster aggregates joined by bridges. Subsequent annealing of this film leads to its melting at temperatures lower than to the melting point of bulk silver. Analysis of evaporation of this film at higher temperatures gives a binding energy in bulk silver of ɛ0= (2.74 ± 0.03) eV/atom.

  13. Effects of simulated acidic rainfalls on yields of field-grown radishes and garden beets

    SciTech Connect

    Evans, L S; Cunningham, E A; Lewin, K F

    1981-01-01

    The effects of small additions of simulated acidic rain on radishes and garden beets grown under standard agronomic practices was determined. Only the foliage of plants was sprayed with simulated rain. The composition of the simulated rainfall approximated that of rain falling in the Long Island, NY area. (ACR)

  14. 21 CFR 73.2500 - Silver.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Silver. 73.2500 Section 73.2500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2500 Silver. (a) Identity. (1) The color additive, silver, is a crystalline powder of high purity...

  15. Fluorescent silver nanoclusters stabilized by DNA scaffolds.

    PubMed

    Yuan, Zhiqin; Chen, Ying-Chieh; Li, Hung-Wen; Chang, Huan-Tsung

    2014-09-01

    Fluorescent silver nanoclusters, in particular DNA stabilized (templated) silver nanoclusters, have attracted much attention because of their molecule-like optical properties, strong fluorescence and good biocompatibility. In this feature article, we summarize the DNA stabilized silver nanoclusters from the viewpoints of synthesis, optical properties, as well as recent applications in biological detection and imaging. PMID:24901353

  16. The Myth of the Silver Surfer

    ERIC Educational Resources Information Center

    Gorard, Stephen; Selwyn, Neil

    2008-01-01

    In this article, the authors write about the myth of the "silver surfers"--those third-age learners adept at using the internet and other technologies for a mixture of formal and informal learning episodes. The notion of the silver surfer has endured since the latter half of the 1990s. It is sustained by the annual Silver Surfer week, media…

  17. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  18. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell

    SciTech Connect

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-05-15

    The local electric field enhancement at different points of silver-dielectric-silver nanoshell is investigated using quasi-static theory. Because of the symmetric and anti-symmetric coupling between surface plasmon of inner silver core and outer silver shell, the local electric field spectrum of silver-dielectric-silver has two distinct peaks at resonance wavelengths. The silver core size and middle dielectric thickness affect the local electric field enhancement at different points of silver-dielectric-silver nanoshell. Increasing the silver core radius always leads to blue shift of shorter resonance wavelength and red shift of longer resonance wavelength. We observed two distinct local electric field peaks, which are corresponded to the symmetric and anti-symmetric coupling between inner and outer surface plasmons. In a system with thick silver shell, local electric field enhancement is greater than a system with thin silver shell. However, the local electric field variations as a function of silver core radius in both systems are different at different points of nanoshell. The effects of the dielectric thickness variations on local electric field are different from those from silver core size variations. As the dielectric thickness is about 3 nm, the highest local electric field enhancement occurs at the surface of the inner silver core, where the symmetric and anti-symmetric modes are mixed together.

  19. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell

    NASA Astrophysics Data System (ADS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-05-01

    The local electric field enhancement at different points of silver-dielectric-silver nanoshell is investigated using quasi-static theory. Because of the symmetric and anti-symmetric coupling between surface plasmon of inner silver core and outer silver shell, the local electric field spectrum of silver-dielectric-silver has two distinct peaks at resonance wavelengths. The silver core size and middle dielectric thickness affect the local electric field enhancement at different points of silver-dielectric-silver nanoshell. Increasing the silver core radius always leads to blue shift of shorter resonance wavelength and red shift of longer resonance wavelength. We observed two distinct local electric field peaks, which are corresponded to the symmetric and anti-symmetric coupling between inner and outer surface plasmons. In a system with thick silver shell, local electric field enhancement is greater than a system with thin silver shell. However, the local electric field variations as a function of silver core radius in both systems are different at different points of nanoshell. The effects of the dielectric thickness variations on local electric field are different from those from silver core size variations. As the dielectric thickness is about 3 nm, the highest local electric field enhancement occurs at the surface of the inner silver core, where the symmetric and anti-symmetric modes are mixed together.

  20. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  1. Synthesis and oxidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Qi, Hua; Alexson, D. A.; Glembocki, O. J.; Prokes, S. M.

    2011-02-01

    We demonstrated a fast and easy way to synthesize Ag nanoparticles (NPs) on ZnO nanowires (NWs) and silicon substrates by an electroless (EL) plating approach. ZnO NWs used here were grown via vapor-solid (VS) mechanism at 560 °C for 30 min. The stability to oxidation of these EL-produced homogeneous Ag NPs on ZnO nanowires was investigated by surface enhanced Raman spectroscopy (SERS), showing that the attachment of thiol to the Ag surface can slow down the oxidation process, and the SERS signal remains strong for more than ten days. Furthermore, we examined the surface oxidation kinetics of the Ag NPs as a function of NPs size and size distribution by monitoring the oxygen amount in the composites using energy dispersive x-ray (EDX). Results indicate that the EL plated Ag NPs show faster oxidation rates than those produced by e-beam (EB) evaporation in air. We attribute this to the fact that the EL produced silver particles are very small, in the 20 nm range, and thus have high surface energy, thus enhancing the oxidation. These studies provide extensive information related to the Ag NP oxidation rates, which can help in extending the Ag lifetime for various applications.

  2. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  3. Magnetite nano-islands on Graphene

    NASA Astrophysics Data System (ADS)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  4. Photo-reduction of silver salts on highly heterogeneous lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Jones, P. M.; Dunn, S.

    2007-05-01

    This paper presents the work undertaken to determine the influences on the photo-induced growth of silver nanoclusters on the surfaces of lead zirconate titanate thin films. The lead zirconate titanate films were grown on indium tin oxide coated glass. They exhibited a highly textured surface and can be treated as wide bandgap semiconductors that exhibit ferroelectric behaviour. We show that there is a preferential deposition of silver metal on the ferroelectric films that is related not only to the polarization state of the ferroelectric domains but also to the surface defects such as grain boundaries and defects within the film. The greatest deposition rates are found to occur at grain boundaries where there is an approximately 40:1 ratio of silver clusters when compared to the native positive domains exhibited by the lead zirconate titanate. We propose that the mechanism for cluster growth depends on the availability, and diffusion rate, of electrons into the growing cluster and that the clusters grow from a discrete nucleation point. We also show that the growth of a monolayer of silver is sufficient to prevent the formation of electron-hole pairs by blocking the UV irradiation and that the silver nanoparticles are readily removed from the surface using an ultrasonic bath leading to a possible new method of manufacturing metal nanoparticles.

  5. Cytotoxicity of silver dressings on diabetic fibroblasts.

    PubMed

    Zou, Shi-Bo; Yoon, Won-Young; Han, Seung-Kyu; Jeong, Seong-Ho; Cui, Zheng-Jun; Kim, Woo-Kyung

    2013-06-01

    A large number of silver-based dressings are commonly used in the management of chronic wounds that are at risk of infection, including diabetic foot ulcers. However, there are still controversies regarding the toxicity of silver dressings on wound healing. The purpose of this study was to objectively test the cytotoxicity of silver dressings on human diabetic fibroblasts. Human diabetic fibroblasts were obtained from the foot skin of four diabetic foot ulcer patients and cultured. The effect of five silver-containing dressing products (Aquacel Ag, Acticoat*Absorbent, Medifoam Ag, Biatain Ag and PolyMem Ag) and their comparable silver-free dressing products on morphology, proliferation and collagen synthesis of the cultured human diabetic fibroblasts were compared in vitro. In addition, extracts of each dressing were tested in order to examine the effect of other chemical components found in the dressings on cytotoxicity. The diabetic fibroblasts cultured with each silver-free dressing adopted the typical dendritic and fusiform shape. On the other hand, the diabetic fibroblasts did not adopt this typical morphology when treated with the different silver dressings. All silver dressings tested in the study reduced the viability of the diabetic fibroblasts and collagen synthesis by 54-70 and 48-68%, respectively, when compared to silver-free dressings. Silver dressings significantly changed the cell morphology and decreased cell proliferation and collagen synthesis of diabetic fibroblasts. Therefore, silver dressings should be used with caution when treating diabetic wounds. PMID:22533495

  6. Influence of injected silver content on synthesis of silver coated nickel particles by DC thermal plasma

    NASA Astrophysics Data System (ADS)

    Park, Si Taek; Kim, Tae-Hee; Park, Dong-Wha

    2016-06-01

    Silver nanoparticle-coated spherical nickel particles were prepared from a mixture of micro-sized silver and nickel as raw materials by DC thermal plasma treatment. The mixture of micro-sized silver and nickel powders was injected into the high-temperature region of an argon thermal plasma jet. Although the silver, with its very high thermal conductivity and relatively low boiling point, was thoroughly evaporated by this process, nickel was not evaporated perfectly because of its comparatively low thermal conductivity and high boiling point. The rough nickel powder was spheroidized as it melted. Finally, silver evaporated by the thermal plasma quickly condensed into nanoparticles on the surfaces of the micro-sized spherical nickel particles, aided by the sharp temperature gradient of the thermal plasma jet. With varying the ratios of silver to nickel feedstock from 1:10 to 5:1, the products synthesized in each condition were examined by XRD, XPS, FE-SEM, and FE-TEM. More silver nanoparticles were attached on the nickel by increasing the injected feedstock to 9.8 at% silver. Meanwhile, a decrease of silver in the products was observed when larger amounts of silver were introduced to the thermal plasma jet. The exposed silver components decreased with greater proportions of silver feedstock because of the metal's dendritic structure and the formation of silver-coated silver particles.

  7. Growth and evaluation of nonlinear optical crystals for laser applications: Lithium borate, barium borate and silver gallium selenide

    NASA Astrophysics Data System (ADS)

    Feigelson, Robert S.; Route, Roger K.

    1994-12-01

    This report summarizes a four year program on the development of high efficiency nonlinear optical materials. Major achievements were the development of effective top-seeded solution growth techniques for beta-barium borate (BBO) and lithium triborate (LBO). BBO crystals were also grown for the first time in the US by the direct melt growth technique, a metastable method that leads to significantly higher growth rates than the commercial solution-growth technique. High quality crystals were made available for optical property determinations and nonlinear optical device development at government and commercial laboratories. Additional accomplishments involved development of an optimum heat-treatment technology for eliminating optical scattering centers from as-grown crystals of silver gallium selenide. Cooperative programs were carried out with NRL to quantify the effects of intrinsic and extrinsic defects on residual absorption. It was discovered that silver gallium selenide and silver gallium sulfide crystals grown from silver-rich solutions are free of anomolous absorption in the 2 micron waveband which is currently the major problem limiting generation of high intensity, tunable 3-5 micron radiation by OPO methods using these materials. A new nonlinear optical material, (La,Gd)Sc3(BO3)4 has been identified for future study.

  8. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    PubMed Central

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; Baer, Donald R.; Smith, Jordan N.; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D.; Chen, Shu; Porter, Alexandra E.; Ryan, Mary P.

    2015-01-01

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies. PMID:26178265

  9. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages.

    PubMed

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H; Baer, Donald R; Smith, Jordan N; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D; Chen, Shu; Porter, Alexandra E; Ryan, Mary P

    2015-01-01

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies. PMID:26178265

  10. Gold, Silver and Bronze Citations.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents the gold, silver, and bronze winners of a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, focusing on concepts and ideas that made them exceptional. For each citation, the article offers information on the firm, client, total area, total…

  11. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    NASA Astrophysics Data System (ADS)

    Sudheer, Tiwari, P.; Varshney, G. K.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  12. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material▿

    PubMed Central

    Egger, Salome; Lehmann, Rainer P.; Height, Murray J.; Loessner, Martin J.; Schuppler, Markus

    2009-01-01

    Nanotechnology enables development and production of novel silver-based composite materials. We used in vitro tests to demonstrate the antimicrobial activity of a silver-silica nanocomposite compared to the activities of conventional materials, such as silver nitrate and silver zeolite. A silver-silica-containing polystyrene material was manufactured and shown to possess strong antimicrobial properties. PMID:19270121

  13. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  14. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    de la Figuera, Juan; Quesada, Adrián; Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta; Prieto, Pilar; Muñoz-Martín, Ángel; Aballe, Lucía; Marco, José F.

    2015-12-01

    We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO3 by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  15. Immunogold silver staining for light microscopy.

    PubMed

    Lackie, P M

    1996-07-01

    The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies. PMID:8858363

  16. Contemporary anthropogenic silver cycle: a multilevel analysis.

    PubMed

    Johnson, Jeremiah; Jirikowic, Julie; Bertram, Marlen; van Beers, D; Gordon, R B; Henderson, Kathryn; Klee, R J; Lanzano, Ted; Lifset, R; Oetjen, Lucia; Graedel, T E

    2005-06-15

    Anthropogenic cycling of silver in 1997 is presented using three discrete governmental units: 64 countries encompassing what we believe to be over 90% of global silver flows, 9 world regions, and the entire planet. Using material flow analysis (MFA) techniques, the country level cycles are aggregated to produce the regional cycles, which are used to form a "best estimate" global cycle. Interesting findings include the following: (1) several silver-mining countries export ore and concentrate but also import silver-containing semiproducts and products; (2) the level of development for a country, as indicated by the gross domestic product, is a fair indicator of silver use, but several significant outliers exist; (3) the countries with the greatest mine production include Mexico, the United States, Peru, and China, whereas the United States, Japan, India, Germany, and Italy lead in the fabrication and manufacture of products; (4) North America and Europe's use of silver products exceed that of other regions on a per capita basis; (5) global silver discards, including tailings and separation waste, totaled approximately 57% of the silver mined; (6) approximately 57% of the silver entering waste management globally is recycled; and (7) the amount of silver entering landfills globally is comparable to the amount found in tailings. The results of this MFA lay the basis for further analysis, which in turn can offer insight into natural resource policy, the characterization of environmental impact, and better resource management. PMID:16047806

  17. Ober's Island, One of the Review Islands on Rainy Lake, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ober's Island, One of the Review Islands on Rainy Lake, bounded on the south by The Hawk Island and on the north by The Crow Island. These islands are located seven miles east of Ranier, Minnesota, three miles west of Voyageur National Park, and one mile south of the international border of the United States of America and Canada. The legal description of Mallard Island is Lot 6, Section 19, T-17-N, R-22-W, Koochiching County, Minnesota, Ranier, Koochiching County, MN

  18. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  19. Silver ions eluted from partially protected silver nanoparticles.

    PubMed

    Heidari Zare, Hamideh; Düttmann, Oliver; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2016-01-01

    The most prominent character of a new type of antibacterial urological catheters is the zebra-stripe pattern of a silver film, which is plated electroless on their interior wall and capped by a very thin semipermeable layer of parylene. This design effectively controls the release rate of Ag(+) ions in artificial urine, which has been measured as function of time with optical emission spectroscopy. By evaluating the minimum inhibitory concentration against certain strains of bacteria with solutions of AgNO3 of known concentration with the method of optical density and applying this analysis to the silver-eluting catheters, it was shown that this moderation prolongs the period of their application significantly. But to act as antibacterial agent in chlorine-containing solutions, as in urine, the presence of urea is required to avoid precipitation of AgCl and to meet or even exceed the minimum inhibitory concentration of Ag(+). The quality of the silver depot layer was further determined by the deposition rate and its morphology, which revealed that the film consisted of grains with a mean size of 150 nm. PMID:27400747

  20. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires

    PubMed Central

    Kim, Tae Gyu; Kim, Jin Kwon; Kim, Ellen; Lee, Ji Hyun; Chung, Young Shin

    2015-01-01

    To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a “Daphnia sp., acute immobilization test,” “Fish, acute toxicity test,” and “freshwater alga and cyanobacteria, growth inhibition test.” Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 1” for Raphidocelis subcapitata, while the AgNWs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 2” for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments. PMID:26125025

  1. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    PubMed

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  2. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    SciTech Connect

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-08-06

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  3. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  4. Preparation of silver nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  5. Production of Recovery of Silver for Laboratory Use.

    ERIC Educational Resources Information Center

    Hill, James W.; Bellows, Lena

    1986-01-01

    Describes a method by which teachers can either produce their own silver of "technical" quality or recycle silver chloride residues to recover the silver for similar reuse. Procedures used are outlined and economics of the method are discussed. (JN)

  6. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  7. Marine and Island Ecology.

    ERIC Educational Resources Information Center

    Stephens, Lawrence J.; And Others

    1988-01-01

    Describes an ecology course which provides students with an opportunity to observe aquatic and terrestrial life in the Bahamas. States that students learn scientific methodology by measuring physical and chemical aspects of the island habitats. Provides information on the island, course description and objectives, transportation, facilities, and…

  8. Channel Islands rare plants

    USGS Publications Warehouse

    McEachern, K.

    1999-01-01

    Database contains information on 65 rare plant taxa on six islands from archive searches and field surveys, including population location, size and extent 1920-1999, population and habitat conditions, census data, phenological information, associated species. USGS-BRD, Channel Islands Field Station, Ventura, CA.

  9. Pine Island Bay

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Birth of a Large Iceberg in Pine Island Bay, Antarctica     View ... iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75°S latitude, 102°W longitude) sometime ...

  10. Back to Treasure Island

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    In this article, the author presents the Treasure Island problem and some inquiry activities derived from the problem. Trying to find where pirates buried a treasure leads to a surprising answer, multiple solutions, and a discussion of problem solving. The Treasure Island problem is an example of an inquiry activity that can be implemented in…

  11. Island Natural Science School.

    ERIC Educational Resources Information Center

    Toronto Board of Education (Ontario).

    Prepared for students in grade six attending the Island Natural Science School, Toronto, Ontario, Canada, this booklet offers information and suggests activities in the areas of ecology, conservation, natural resources, and outdoor recreation. Introductory material describes island lore, its formation and significant features, followed by units of…

  12. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  13. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  14. 40 CFR 421.120 - Applicability: Description of the secondary silver subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary silver subcategory. 421.120 Section 421.120 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Silver Subcategory § 421.120 Applicability: Description of the secondary silver... silver from secondary silver facilities processing photographic and nonphotographic raw materials....

  15. 40 CFR 421.120 - Applicability: Description of the secondary silver subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary silver subcategory. 421.120 Section 421.120 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Silver Subcategory § 421.120 Applicability: Description of the secondary silver... silver from secondary silver facilities processing photographic and nonphotographic raw materials....

  16. 40 CFR 421.120 - Applicability: Description of the secondary silver subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary silver subcategory. 421.120 Section 421.120 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Silver Subcategory § 421.120 Applicability: Description of the secondary silver... silver from secondary silver facilities processing photographic and nonphotographic raw materials....

  17. 40 CFR 421.120 - Applicability: Description of the secondary silver subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary silver subcategory. 421.120 Section 421.120 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Silver Subcategory § 421.120 Applicability: Description of the secondary silver... silver from secondary silver facilities processing photographic and nonphotographic raw materials....

  18. 40 CFR 421.120 - Applicability: Description of the secondary silver subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary silver subcategory. 421.120 Section 421.120 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Silver Subcategory § 421.120 Applicability: Description of the secondary silver... silver from secondary silver facilities processing photographic and nonphotographic raw materials....

  19. Risk assessment of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shipelin, V. A.; Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples.

  20. Strain relief and shape oscillations in site-controlled coherent SiGe islands.

    PubMed

    Hrauda, N; Zhang, J J; Groiss, H; Etzelstorfer, T; Holý, V; Bauer, G; Deiter, C; Seeck, O H; Stangl, J

    2013-08-23

    Strain engineering and the crystalline quality of semiconductor nanostructures are important issues for electronic and optoelectronic devices. We report on defect-free SiGe island arrays resulting from Ge coverages of up to 38 monolayers grown on prepatterned Si(001) substrates. This represents a significant expansion of the parameter space known for the growth of perfect island arrays. A cyclic development of the Ge content and island shape was observed while increasing the Ge coverage. Synchrotron-based x-ray diffraction experiments and finite element method calculations allow us to study the strain behavior of such islands in great detail. In contrast to the oscillatory changes of island shape and average Ge content, the overall strain behavior of these islands exhibits a clear monotonic trend of progressive strain relaxation with increasing Ge coverage. PMID:23892543

  1. Strain relief and shape oscillations in site-controlled coherent SiGe islands

    NASA Astrophysics Data System (ADS)

    Hrauda, N.; Zhang, J. J.; Groiss, H.; Etzelstorfer, T.; Holý, V.; Bauer, G.; Deiter, C.; Seeck, O. H.; Stangl, J.

    2013-08-01

    Strain engineering and the crystalline quality of semiconductor nanostructures are important issues for electronic and optoelectronic devices. We report on defect-free SiGe island arrays resulting from Ge coverages of up to 38 monolayers grown on prepatterned Si(001) substrates. This represents a significant expansion of the parameter space known for the growth of perfect island arrays. A cyclic development of the Ge content and island shape was observed while increasing the Ge coverage. Synchrotron-based x-ray diffraction experiments and finite element method calculations allow us to study the strain behavior of such islands in great detail. In contrast to the oscillatory changes of island shape and average Ge content, the overall strain behavior of these islands exhibits a clear monotonic trend of progressive strain relaxation with increasing Ge coverage.

  2. Fluorescent silver nanoclusters as DNA probes

    NASA Astrophysics Data System (ADS)

    Obliosca, Judy M.; Liu, Cong; Yeh, Hsin-Chih

    2013-08-01

    Fluorescent silver nanoclusters (few atoms, quantum sized) have attracted much attention as promising substitutes for conventional fluorophores. Due to their unique environmental sensitivities, new fluorescent probes have been developed based on silver nanoclusters for the sensitive and specific detection of DNA. In this review we present the recent discoveries of activatable and color-switchable properties of DNA-templated silver nanoclusters and discuss the strategies to use these new properties in DNA sensing.

  3. Synthesis and optical properties of silver nanoparticles

    SciTech Connect

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-31

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  4. Silver europium(III) polyphosphate

    PubMed Central

    Ayadi, Mounir; Férid, Mokhtar; Moine, Bernard

    2009-01-01

    Europium(III) silver polyphosphate, AgEu(PO3)4, was prepared by the flux method. The atomic arrangement is built up by infinite (PO3)n chains (periodicity of 4) extending along the c axis. These chains are joined to each other by EuO8 dodeca­hedra. The Ag+ cations are located in the voids of this arrangement and are surrounded by five oxygen atoms in a distorted [4+1] coordination. PMID:21582031

  5. Silver staining of proteins in polyacrylamide gels

    PubMed Central

    Chevallet, Mireille; Luche, Sylvie; Rabilloud, Thierry

    2006-01-01

    Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It combines excellent sensitivity (in the low nanogram range) whilst using very simple and cheap equipment and chemicals. It is compatible with downstream processing such as mass spectrometry analysis after protein digestion. The sequential phases of silver staining are protein fixation, then sensitization, then silver impregnation and finally image development. Several variants of silver staining are described here, which can be completed in a time range from 2 hours to one day after the end of the electrophoretic separation. Once completed, the stain is stable for several weeks PMID:17487168

  6. Morphology of a silver/polyacrylonitrile nanocomposite

    NASA Astrophysics Data System (ADS)

    Kudryashov, M. A.; Mashin, A. I.; Tyurin, A. S.; Fedosov, A. E.; Chidichimo, G.; De Filpo, G.

    2011-01-01

    Silver/polyacrylonitrile (Ag/PAN) nanocomposites are synthesized at the stage of simultaneous acrylonitrile polymerization and the reduction of silver ions from a mixture of silver nitrate AgNO3, acrylonitrile, and a photoinitiator. The synthesized films are transparent in the visible region and are characterized by a uniform dispersion of silver nanoparticles in a PAN matrix without any macroscopic agglomeration. The effects of the metal salt and photoinitiator concentrations on the size and density of metal nanoparticles in a composite are revealed.

  7. Fabrication of Silver Nano-Noodles

    NASA Astrophysics Data System (ADS)

    Iwanabe, Yasuhiko; Horiuchi, Toshiyuki; Tominaga, Junji; Büchel, Dorothea; Mihalcea, Christophe

    2003-10-01

    We report that silver nanowires can easily be fabricated from organic solution including silver ions by focusing a laser beam on a light absorbing material surface. Focusing a laser beam on a Si film (100-nm thickness on a glass substrate) in silver oxide (AgOx) saturated benzoic acid (BA) (10-3 M)-2-propanol (IPA) solution produced noodle-like silver nanowires with diameters of less than 50 nm. It was suggested that the Ag nanowires were formed by super-cooling effect at local heating and solubility around the laser spot region, and transported to the laser spot area by thermal convection.

  8. Silver-assisted chemical etching on silicon with polyvinylpyrrolidone-mediated formation of silver dendrites.

    PubMed

    Chen, Chia-Yun; Hsiao, Po-Hsuan

    2015-02-23

    Metal-assisted chemical etching (MaCE) on silicon (Si)-mediated by polyvinylpyrrolidone (PVP)-is systematically investigated herein. It is found that the morphologies and crystallographic natures of the grown silver (Ag) dendrites can be significantly modulated, with the presence of PVP in the MaCE process leading to the formation of faceted Ag dendrites preferentially along the (111) crystallographic phase, rather than along the (200) phase. Further explorations of the PVP-mediated effect on Si etching are also revealed. In contrast to the aligned Si nanowires formed by MaCE without PVP addition, only distributed nanopores with sizes of 200 to 400 nm appear on the Si surfaces in the presence of PVP. The origin of surface polishing on Si in the PVP-mediated MaCE process can be attributed to the distinct transport pathway of holes supplied by the Ag(+) ions, where the holes are injected directly into the primary Ag seeds, rather than through Ag dendrites, thus leading to the isotropic etching of the Si surface. PMID:25521287

  9. X-ray diffraction analysis of LiCu{sub 2}O{sub 2} crystals with additives of silver atoms

    SciTech Connect

    Sirotinkin, V. P. Bush, A. A.; Kamentsev, K. E.; Dau, H. S.; Yakovlev, K. A.; Tishchenko, E. A.

    2015-09-15

    Silver-containing LiCu{sub 2}O{sub 2} crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1-x)CuO · 20{sub x}AgNO{sub 3} · 20Li{sub 2}CO{sub 3} (0 ≤ x ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu{sub 2}O{sub 2} structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter c of the LiCu{sub 2}O{sub 2} rhombic unit cell, a slight increase in parameter a, and a slight decrease in parameter b.

  10. Biomolecules Detection Using a Silver-Enhanced Gold Nanoparticle-Based Biochip

    PubMed Central

    2010-01-01

    Silver-enhanced labeling method has been employed in immunochromatographic assays for improving the sensitivity of detecting pathogens. In this paper, we apply the silver enhancement technique for biomolecular signal amplification in a gold nanoparticle-based conductimetric biochip. We show that the response of the silver-enhanced biochip comprises two distinct regions namely: (a) a sub-threshold region where conduction occurs due to electron hopping between silver islands and the electrolyte and (b) an above-threshold region where the conduction is due to a direct flow of electrons. These two regions are characterized by different conduction slopes, and we show that combining the information from both these regions can improve the sensitivity of the biochip. Results from fabricated prototypes show a dynamic range of more than 40 dB and with a detection limit less than 240 pg/mL. The fabrication of the biochip is compatible with standard complementary metal–oxide–semiconductor (CMOS) processes making it ideal for integration in next-generation CMOS biosensors. PMID:20672093

  11. Biomolecules Detection Using a Silver-Enhanced Gold Nanoparticle-Based Biochip.

    PubMed

    Liu, Yang; Zhang, Deng; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2010-01-01

    Silver-enhanced labeling method has been employed in immunochromatographic assays for improving the sensitivity of detecting pathogens. In this paper, we apply the silver enhancement technique for biomolecular signal amplification in a gold nanoparticle-based conductimetric biochip. We show that the response of the silver-enhanced biochip comprises two distinct regions namely: (a) a sub-threshold region where conduction occurs due to electron hopping between silver islands and the electrolyte and (b) an above-threshold region where the conduction is due to a direct flow of electrons. These two regions are characterized by different conduction slopes, and we show that combining the information from both these regions can improve the sensitivity of the biochip. Results from fabricated prototypes show a dynamic range of more than 40 dB and with a detection limit less than 240 pg/mL. The fabrication of the biochip is compatible with standard complementary metal-oxide-semiconductor (CMOS) processes making it ideal for integration in next-generation CMOS biosensors. PMID:20672093

  12. Biomolecules Detection Using a Silver-Enhanced Gold Nanoparticle-Based Biochip

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Deng; Alocilja, Evangelyn C.; Chakrabartty, Shantanu

    2010-03-01

    Silver-enhanced labeling method has been employed in immunochromatographic assays for improving the sensitivity of detecting pathogens. In this paper, we apply the silver enhancement technique for biomolecular signal amplification in a gold nanoparticle-based conductimetric biochip. We show that the response of the silver-enhanced biochip comprises two distinct regions namely: (a) a sub-threshold region where conduction occurs due to electron hopping between silver islands and the electrolyte and (b) an above-threshold region where the conduction is due to a direct flow of electrons. These two regions are characterized by different conduction slopes, and we show that combining the information from both these regions can improve the sensitivity of the biochip. Results from fabricated prototypes show a dynamic range of more than 40 dB and with a detection limit less than 240 pg/mL. The fabrication of the biochip is compatible with standard complementary metal-oxide-semiconductor (CMOS) processes making it ideal for integration in next-generation CMOS biosensors.

  13. Fluorescence enhancement on silver nanostructures: studies of components of ribosomal translation in vitro

    NASA Astrophysics Data System (ADS)

    Mandecki, Wlodek; Bharill, Shashank; Borejdo, Julian; Cabral, Diana; Cooperman, Barry S.; Farrell, Ian; Fetter, Linus; Goldman, Emanuel; Gryczynski, Zygmunt; Jakubowski, Hieronim; Liu, Hanqing; Luchowski, Rafal; Matveeva, Evgenia; Pan, Dongli; Qin, Haiou; Tennant, Donald; Gryczynski, Ignacy

    2008-02-01

    Metallic particles, silver in particular, can significantly enhance the fluorescence of dye molecules in the immediate vicinity (5-20 nm) of the particle. This magnifying effect can be theoretically explained/predicted by considering the change of photonic mode density near the fluorophore due to coupling to the conducting surface. We are using this method to observe fluorescence from a single ribosomal particle in a project aimed at acquiring sequence information from the translating ribosome (NIH's $1000 Genome Initiative). Several quartz slides with silver nanostructures were made using electron beam lithography techniques. The structures were approximately 50 nm high silver tiles measuring 400-700 nm on the side, and were spaced differently over a total area of 1 mm x 1 mm on any given quartz slide. In a preliminary experiment, we coated this surface with the Alexa 647-labeled antibodies and collected single molecule images using the MicroTime 200 (PicoQuant) confocal system. We showed that the fluorescence intensity measured over the silver islands film was more than 100-fold higher than fluorescence from a comparable site on uncoated section of the quartz slide. No noticeable photobleaching was seen. The fluorescence lifetime was very short, about 200 ps or less (this is the resolution limit of the system). The method has great promise for investigations of biologically relevant single molecules.

  14. Ober's Island: The Mallard Ober's Island, One of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ober's Island: The Mallard - Ober's Island, One of the Review Islands on Rainy Lake, bounded on the south by The Hawk Island and on the north by The Crow Island. These islands are located seven miles east of Ranier, Minnesota, three miles west of Voyageur National Park, and one mile south of the international border of the United States of America and Canada. The legal description of Mallard Island is Lot 6, Section 19, T-17-N, R-22-W, Koochiching County, Minnesota, Ranier, Koochiching County, MN

  15. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-10-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  16. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  17. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  18. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    SciTech Connect

    Liu Suwen; Wehmschulte, Rudolf J. . E-mail: rwehmsch@fit.edu; Lian Guoda; Burba, Christopher M.

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  19. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    PubMed Central

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  20. Glass frits coated with silver nanoparticles for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  1. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    NASA Astrophysics Data System (ADS)

    Holtz, R. D.; Souza Filho, A. G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O. L.

    2010-05-01

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  2. Percolation threshold determination of sputtered silver films using Stokes parameters and in situ conductance measurements.

    PubMed

    Hafezian, Soroush; Baloukas, Bill; Martinu, Ludvik

    2014-08-20

    This work presents a straightforward approach to determine the percolation threshold of silver thin films deposited by magnetron sputtering on various oxide layers at room temperature. The proposed method is based on the observation of the coupling of p-polarized light with local surface plasmons. By measuring the first Stokes parameter in real time, one can determine the moment at which the nano-islands of silver begin to coalesce into a continuous film. We confirm the results by in situ and ex situ conductance measurements. The method is then used to assess the percolation threshold on different oxide seed layers such as ZnSnO, ZnO, TiO2, and SiO2. PMID:25321107

  3. Cognitive Constraints and Island Effects

    ERIC Educational Resources Information Center

    Hofmeister, Philip; Sag, Ivan A.

    2010-01-01

    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that…

  4. Preliminary Silver-hydrogen Cell Test Results

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1984-01-01

    Silver-hydrogen cells were tested. The objective of the test was to estimate useful life by operation at accelerated, simulated geosynchronous orbit conditions. Ten simulated seasons were run and are summarized. The results to-date reflect stable, trouble-free performance and indicate that the silver-hydrogen couple shows promise as a lightweight alternative to the nickel systems.

  5. The Math Emporium: Higher Education's Silver Bullet

    ERIC Educational Resources Information Center

    Twigg, Carol A.

    2011-01-01

    Throughout the 1990's, many people saw information technology as a silver bullet that could solve many of higher education's problems, among them the need to improve learning outcomes and control the ever-upward trajectory of higher education costs. The term "silver bullet" connotes a direct and effortless solution to a problem. Unsurprisingly,…

  6. A silver ion water sterilization system

    NASA Technical Reports Server (NTRS)

    Parry, E. P.

    1971-01-01

    Small amounts of silver are incorporated in mixture of ion exchange resins, and water passing through this mixture is thus exposed to silver ion concentration. System is useful in self-contained water systems except city water systems where residual chlorine level is stipulated.

  7. 21 CFR 73.2500 - Silver.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous... contain only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b) Specifications... therefrom intended solely or in part for coloring purposes shall bear, in addition to any other...

  8. 21 CFR 73.2500 - Silver.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous... contain only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b) Specifications... therefrom intended solely or in part for coloring purposes shall bear, in addition to any other...

  9. 21 CFR 73.2500 - Silver.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous... contain only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b) Specifications... therefrom intended solely or in part for coloring purposes shall bear, in addition to any other...

  10. Silver disinfection in water distribution systems

    NASA Astrophysics Data System (ADS)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.